
CS376 Computer Vision
Lecture 7: Hough Transform

Qixing Huang

Feb. 13th 2019

Review

• Image filters

• Edge detection

• Binary image analysis

• Texture

• Optical Flow

Local analysis

Now: Fitting

• Want to associate a model with observed features

[Fig from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary shape.

Slide Credit: Kristen Grauman

Fitting: Main Idea

• Choose a parametric model to represent a set
of features

• Correlated problems

– What are the models

– Association between models and features

– How to optimize the models

Case study: Line fitting

• Why fit lines?

Line features are quite popular in natural images

• Incomplete edge detections

• How many lines

• Not all edges are lines

• Noise in detected edges

Difficulty of line fitting

Voting

• Impossible to test all combinations of features to extract the
models

• Let features vote for the models

– Cycle through features, cast votes for model parameters

– Usually each model should be low-dimensional

• Noise contribute less to the models

Fitting lines: Hough transform

• Given points that belong to a line, what is
the line?

• How many lines are there?

• Which points belong to which lines?

• Hough Transform is a voting technique
that can be used to answer all of these
questions:
– Record vote for each possible line on which

each edge point lies

– Look for lines that get many votes

Finding lines in an image: Hough space

x

y

m

b

m0

b0

Image space Parameter space

Connection between image (x,y) and parameter (m,b) spaces

– A line in the image corresponds to a point in Hough space

– To go from image space to Hough space:

• given a set of points (x,y), find all (m,b) such that y =
mx + b

• This process is repeated many times

Going from point pairs to lines

• Each point in the image
space corresponds to a line
in the parameter space

• The lines that pass through
two points in the image
space corresponds to a
point, which is the
intersection of these two
lines

x

y

image space
x0

y0
(x0, y0)

(x1, y1)

m

b

parameter space

b = –x1m + y1

Finding lines in an image: Hough algorithm

How can we use this to find the most likely parameters (m,b) for the
most prominent line in the image space?

• Let each edge point in image space vote for a set of possible
parameters in Hough space

• Accumulate votes in discrete set of bins*; parameters with the most
votes indicate line in image space.

x

y

m

b

image space parameter space

Slide Credit: Kristen Grauman

Finding lines in an image: Hough algorithm

Slide Credit: Kristen Grauman

: perpendicular distance

from line to origin

: angle the perpendicular

makes with the x-axis

Point in image space → sinusoid segment in Hough space

dyx =−  sincos

d



[0,0]

d



x

y

Issues with usual (m,b) parameter space: can take on

infinite values, undefined for vertical lines.

Image columns

Im
a

g
e

ro
w

s

Hough transform algorithm

Using the polar parameterization:

Basic Hough transform algorithm

1. Initialize H[d, ]=0

2. for each edge point I[x,y] in the image

for  = [min to max] // some quantization

H[d, ] += 1

3. Find the value(s) of (d, ) where H[d, ] is maximum

4. The detected line in the image is given by

H: accumulator array (votes)

d



Time complexity (in terms of number of votes per pt)?

dyx =−  sincos

Source: Steve Seitz

 sincos yxd −=

 sincos yxd −=

Example: Hough transform for straight lines

Which line generated this peak?

Slide Credit: Kristen Grauman

Original image Canny edges

Vote space and top peaks

d



Decode
the vote
space.

Showing longest segments found

Impact of noise on Hough

Image space

edge coordinates

Votes

x

y d

What difficulty does this present for an implementation?

Image space

edge coordinates

Votes

Impact of noise on Hough

Here, everything appears to be “noise”, or random

edge points, but we still see peaks in the vote space.

Extensions

Extension 1: Use the image gradient
1. same

2. for each edge point I[x,y] in the image

 = gradient at (x,y)

H[d, ] += 1

3. same

4. same

(Reduces degrees of freedom)

Extension 2
– give more votes for stronger edges

Extension 3
– change the sampling of (d, ) to give more/less resolution

Extension 4
– The same procedure can be used with circles, squares, or any other

shape

 sincos yxd −=

Slide Credit: Kristen Grauman

Other extensions

• More votes for stronger edges

• Vote for point pairs

• Before voting, check the candidacy of each point pair,
e.g., distances to the line that pass through these
two points

Slide Credit: Kristen Grauman

Hough transform for circles

• For a fixed radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222)()(rbyax ii =−+−

Image space Hough space a

b

Slide Credit: Kristen Grauman

Hough transform for circles

• For a fixed radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222)()(rbyax ii =−+−

Image space Hough space

Intersection:

most votes for

center occur

here.

Slide Credit: Kristen Grauman

Hough transform for circles

• For an unknown radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222)()(rbyax ii =−+−

Hough spaceImage space

b

a

r

?

Slide Credit: Kristen Grauman

Hough transform for circles

• For an unknown radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222)()(rbyax ii =−+−

Hough spaceImage space

b

a

r

Slide Credit: Kristen Grauman

Hough transform for circles

• For an unknown radius r, known gradient direction

• Circle: center (a,b) and radius r
222)()(rbyax ii =−+−

Hough spaceImage space

θ

x

Slide Credit: Kristen Grauman

Hough transform for circles

For every edge pixel (x,y) :

For each possible radius value r:

For each possible gradient direction θ:

// or use estimated gradient at (x,y)

a = x + r cos(θ) // column

b = y - r sin(θ) // row

H[a,b,r] += 1

end

end

• Check out online demo : http://www.markschulze.net/java/hough/

Time complexity per edge pixel?

Slide Credit: Kristen Grauman

http://www.markschulze.net/java/hough/

Original Edges

Example: detecting circles with Hough

Votes: Penny

Note: a different Hough transform (with separate accumulators)

was used for each circle radius (quarters vs. penny).

Slide Credit: Kristen Grauman

Original Edges

Example: detecting circles with Hough

Votes: QuarterCombined detections

Coin finding sample images from: Vivek Kwatra

Hough transform: pros and cons

Pros
• All points are processed independently, so can cope with

occlusion, gaps

• Some robustness to noise: noise points unlikely to contribute
consistently to any single bin

• Can detect multiple instances of a model in a single pass

Cons
• Complexity of search time increases exponentially with the

number of model parameters

• Non-target shapes can produce spurious peaks in parameter
space

• Quantization: can be tricky to pick a good grid size

Slide Credit: Kristen Grauman

