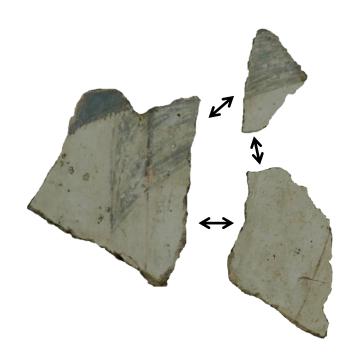
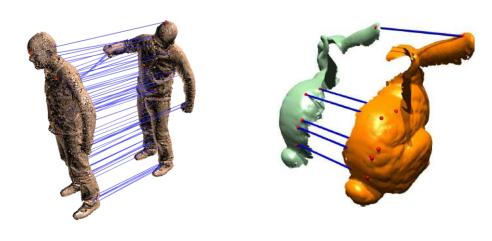
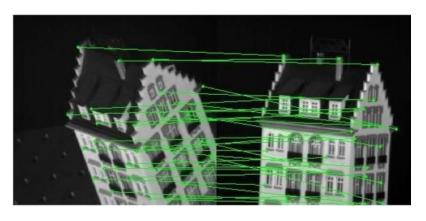
Data-Driven Shape Correspondence



Qixing Huang
December 5th 2016

Maps between objects

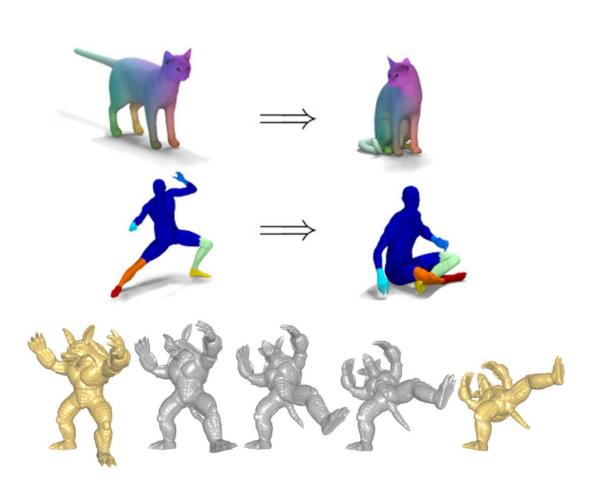




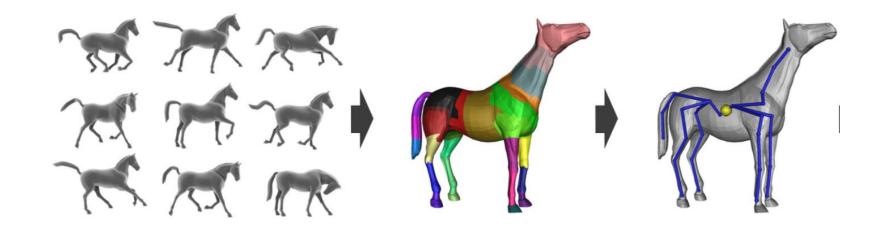
Maps for propagation and interpolation

Propagation:

Interpolation:

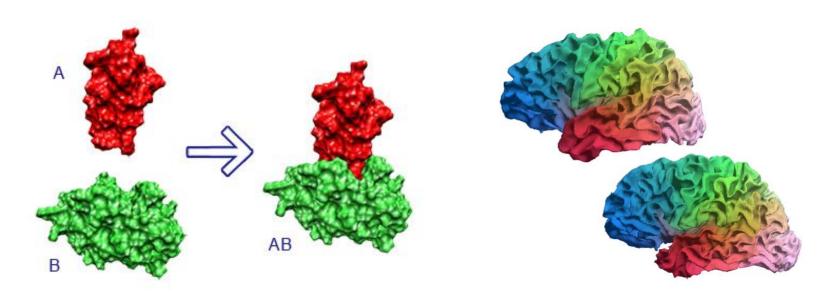


Aggregating information



Segmentation and Skeleton Extraction

Matching in other domains

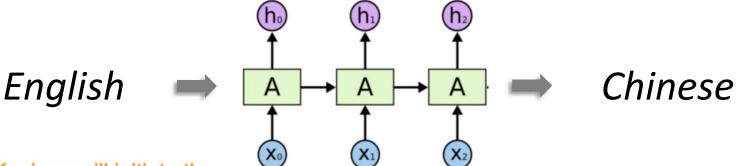


Protein docking

Brain matching

http://zbi-www.bioinf.uni-sb.de/en/about-bioinformatics/docking.html http://step.polymtl.ca/~rv101/images/research-brains.png

Mapping between different domains



Li Keqiang will initiate the annual dialogue mechanism between premiers of China and Canada during this visit, and hold the first annual dialogue with Premier Trudeau of Canada.

李克強此行將啟動中加 總理年度對話機制,與 加拿大總理杜魯多舉行 兩國總理首次年度對 話。

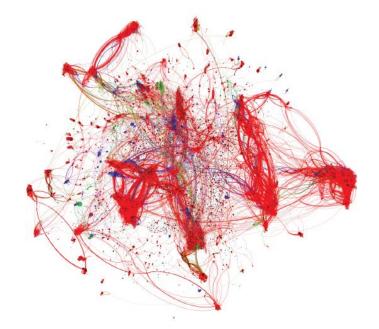
Matching is ubiquitous

- Introduction to machine learning (Coursera)
 - 40K code submissions for linear SVM

Credit: Jonathan Huang

Matching is ubiquitous

- Grading using maps between AST trees
 - Graders mark a very small portion of them
 - Propagate labels to other programs



Credit: Jonathan Huang

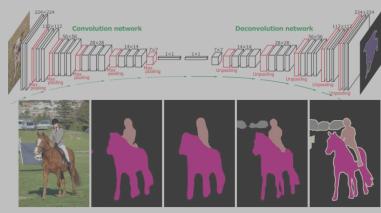
Matching is Hard!

IM GENET

1000 classes

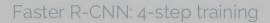
[He et al. 16]

Classification

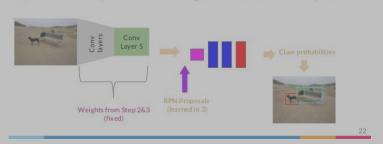


[Zheng et al. 16]

Segmentation

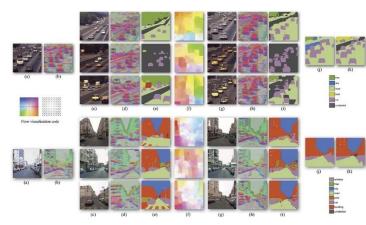


Step 4: Fine tune FC layers of Fast R-CNN using same shared convolutional layers as in 3.



[Ren et al. 16]

Recognition

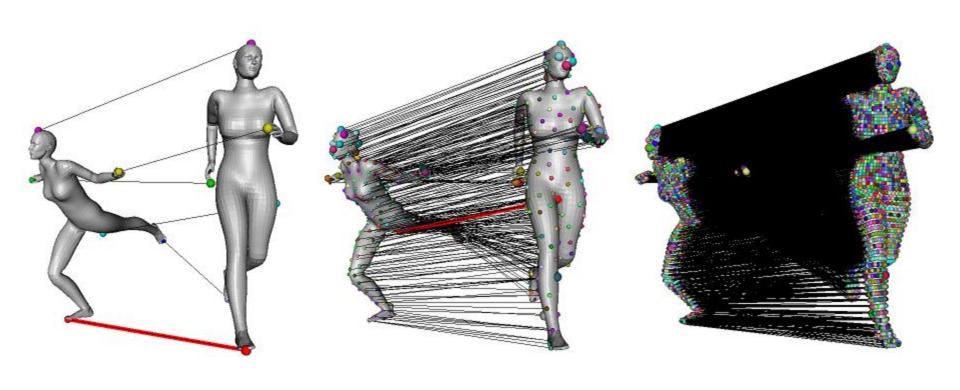


[Liu et al. 08]

Correspondence

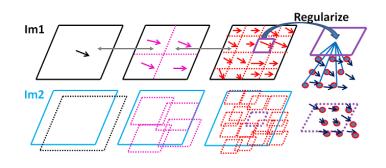
Fundamental Challenge: Lack of Training Data

Hard to label dense correspondences



State-of-the-art pair-wise methods

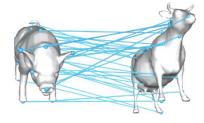
SIFTFlow [Liu et al. 08]



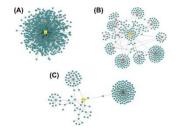
DSP [Kim et al. 13]



4-points voting [Aigor et al. 08]

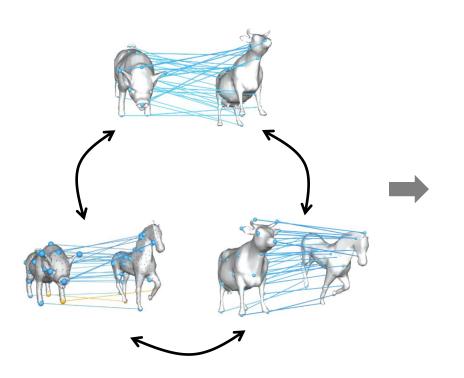


Blended intrinsic maps [Kim et al. 11]

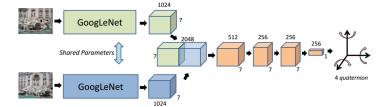


HubAlign [Hashemifar et al. 14]

Outline

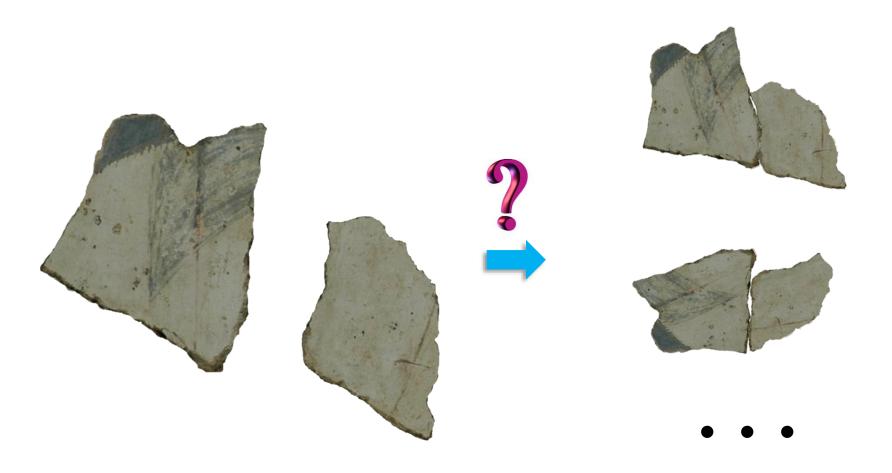


Map synchronization

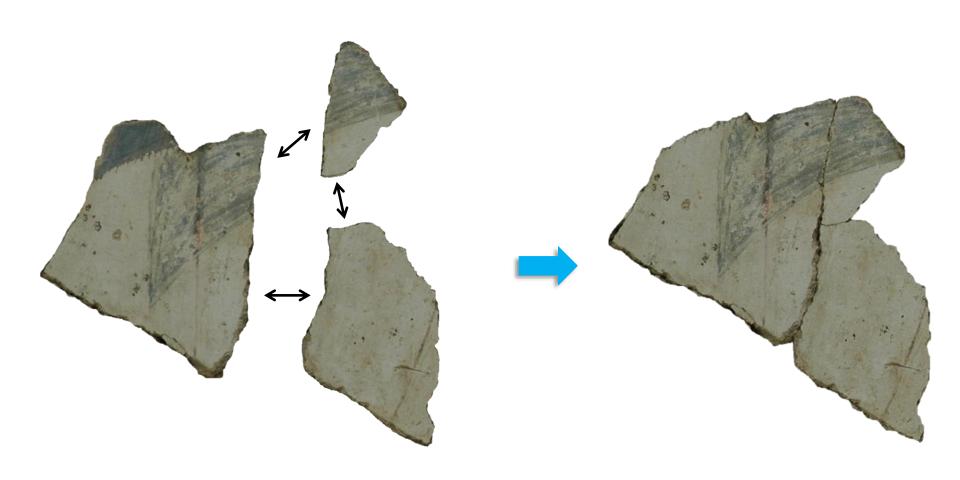


Supervising neural networks

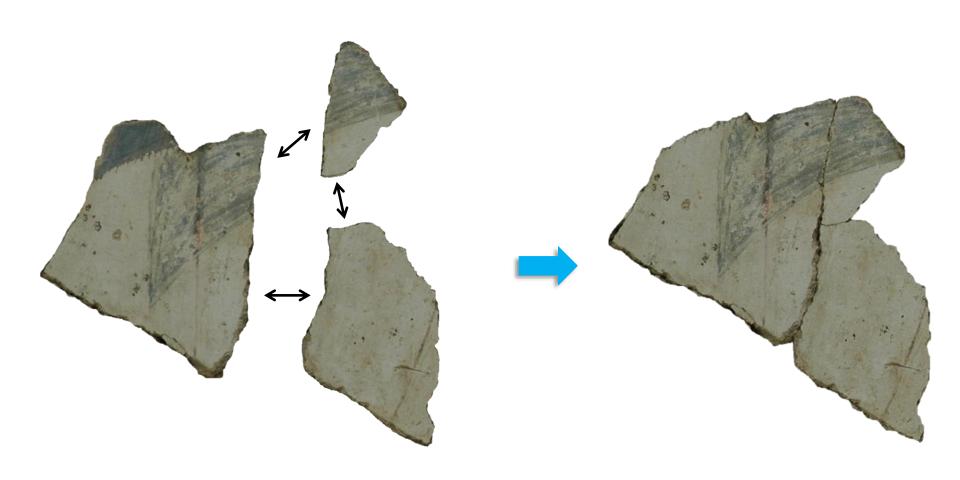
Ambiguities in assembling pieces



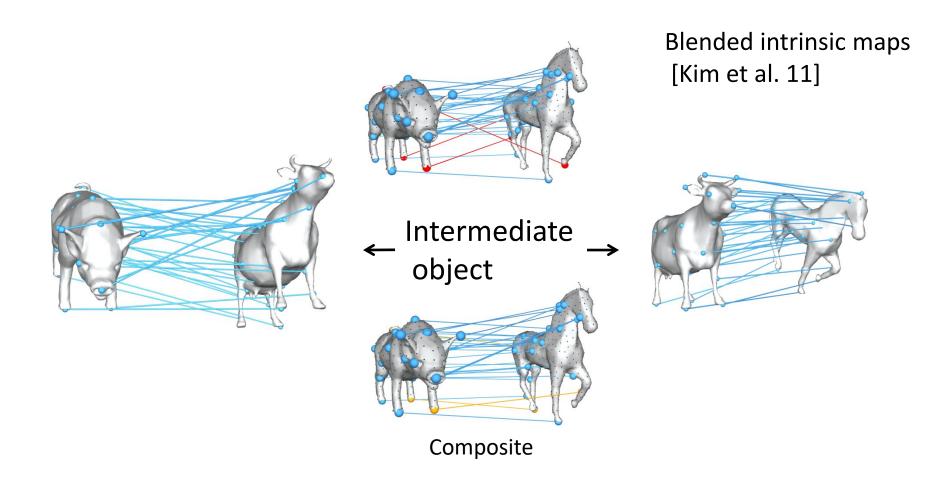
Resolving ambiguities by looking at additional pieces



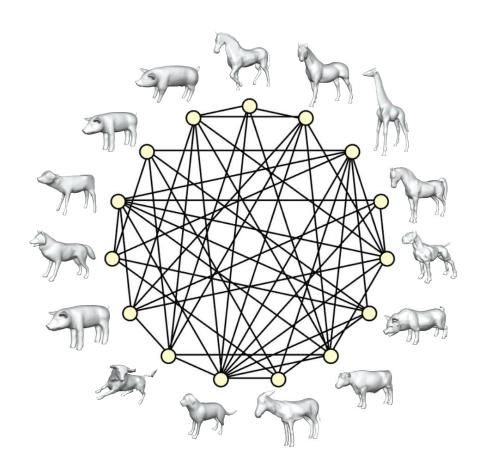
Resolving ambiguities by looking at additional pieces



Matching through intermediate objects --- map propagation

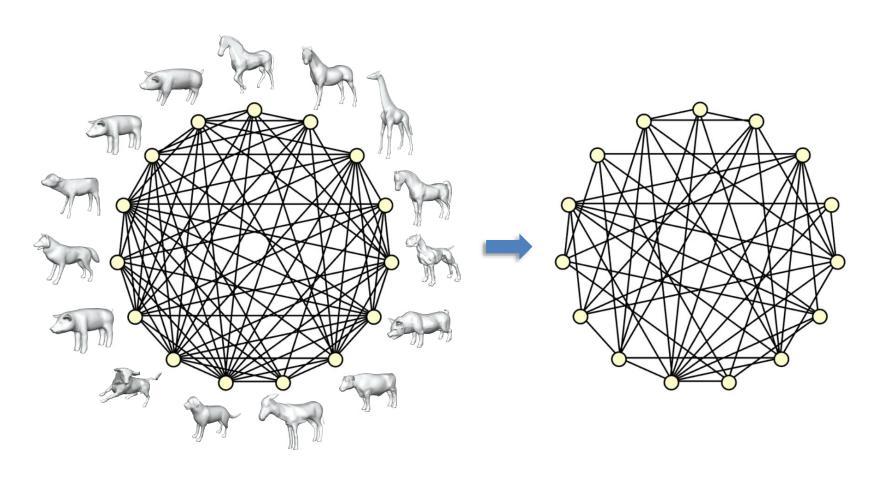


Pair-wise maps usually contain sufficient information



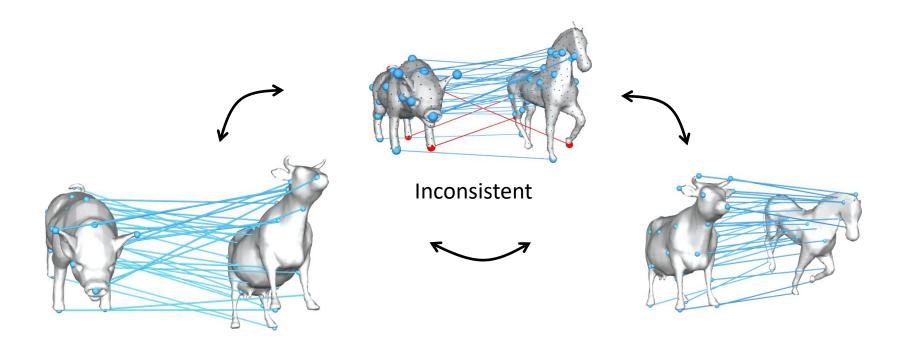
Network of approximately correct blended intrinsic maps

Map synchronization problem

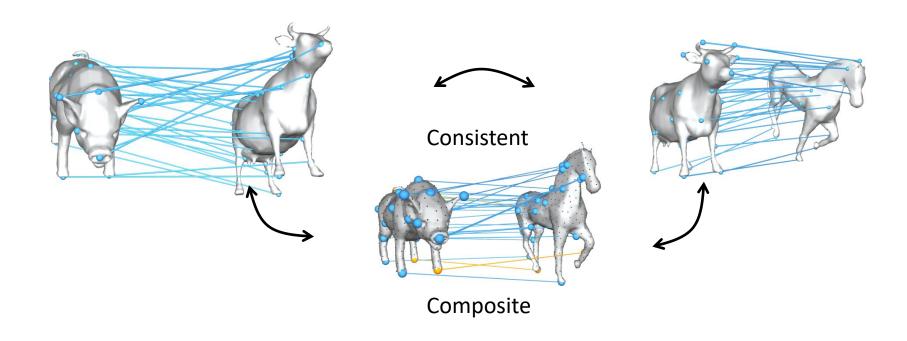


Identify correct maps among a (sparse) network of maps

A natural constraint on maps is that they should be consistent along cycles



A natural constraint on maps is that they should be consistent along cycles

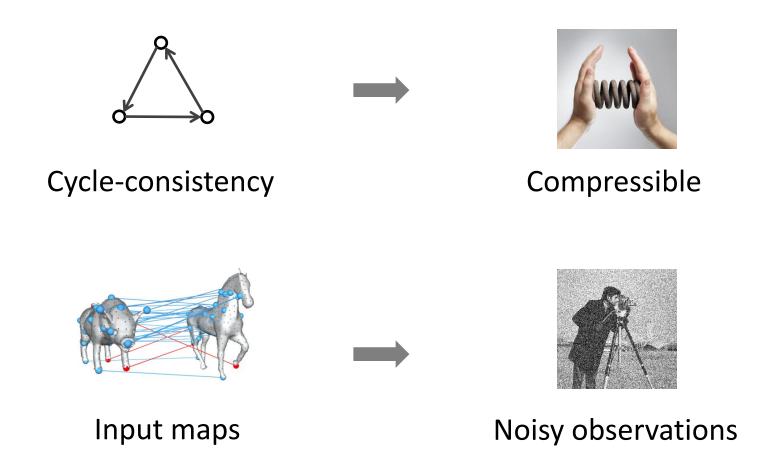


Literature on utilizing the cycle-consistency constraint

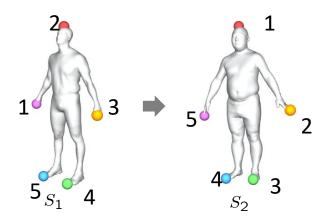
• Spanning tree optimization [Huber et al. 01, Huang et al. 06, Cho et al. 08, Crandel et al. 11, Huang et al. 12]

• Sampling inconsistent cycles [Zach et al. 10, Nyugen et al. 11, Zhou et al. 15]

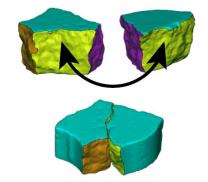
Compressive sensing view of map synchronization



Matrix representation of maps



$$X_{12} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$



$$T_{12} = \left[\begin{array}{cc} R_{12} & \boldsymbol{t}_{12} \\ 0 & 1 \end{array} \right]$$

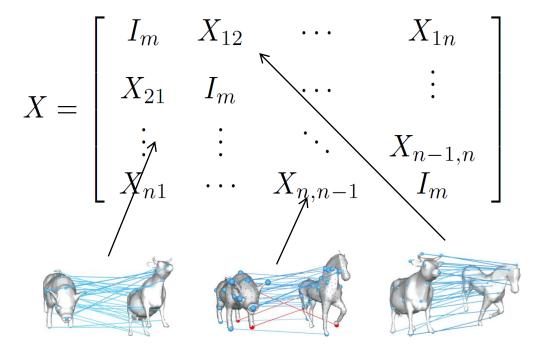
Map synchronization as constrained matrix recovery

$$X = \begin{bmatrix} I_m & X_{12} & \cdots & X_{1n} \\ X_{21} & I_m & \cdots & \vdots \\ \vdots & \vdots & \ddots & X_{n-1,n} \\ X_{n1} & \cdots & X_{n,n-1} & I_m \end{bmatrix}$$

$$= \begin{bmatrix} I_m \\ \vdots \\ X_{n1} \end{bmatrix} \begin{bmatrix} I_m & \cdots & X_{n1}^T \end{bmatrix}$$

$$X_{ij} = X_{j1} X_{i1}^T$$

Map synchronization as constrained matrix recovery



Parameter-free

Theoretical guarantees

Noisy measurements of matrix blocks

Q. H and L. Guibas, *Consistent Shape Maps via Semidefinite Programming*, Sym. on Geometry Processing'13 Y. Chen, L. Guibas, Q. H, *Near-Optimal Joint Object Matching via Convex Relaxation*, ICML'14 Q. H, F. Wang, L. Guibas, Functional Map Networks for Analyzing and Exploring Large Shape Collections, SIGGRAPH' 14 S. Shen, Q.H., N. Srebro, S. Sunghavi, Normalized Spectral Map Synchronization, NIPS' 16

Permutation synchronization

Objective function:

$$\min \sum_{(i,j) \in \mathcal{G}_{\nwarrow}} \|X_{ij}^{\mathrm{input}} - X_{ij}\|_1$$
 Observation graph

Constraints:

$$X \succ 0$$
 cycle-consistency

Semidefinite Program

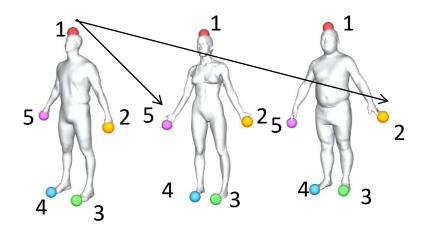
$$X_{ii} = I_m, \quad 1 \le i \le n$$

 $X_{ij}\mathbf{1} = \mathbf{1}, X_{ij}^T\mathbf{1} = \mathbf{1}, \quad 1 \le i < j \le n$
 $0 \le X \le 1$

Deterministic guarantee

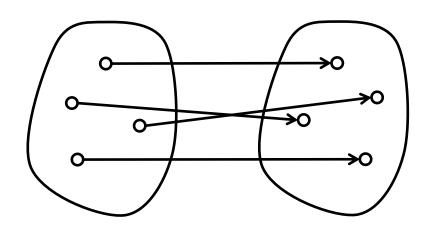
 Theorem: Given noisy input maps, permutation synchronization recovers the underlying maps if

#incorrect corres. of each point
$$< \frac{\lambda_2(G)}{4}$$

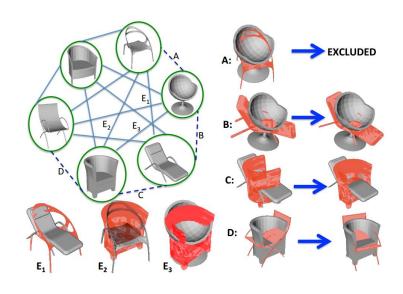


Optimality when the object graph G is a clique

- 25% incorrect correspondences
- Worst-case scenario
 - Two clusters of objects of equal size
 - Wrong correspondences between objects of different clusters only (50%)

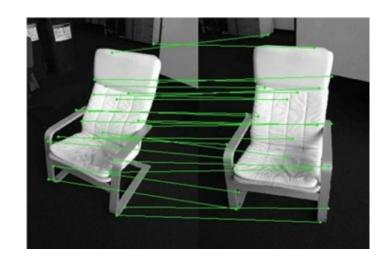


Justification of maximizing $\lambda_2(G)$ for map graph construction



Fuzzy correspondences on shapes [Kim et al 12]

Variants



Partial maps [CGH'14] Spectral Sync. [SHSS'16]

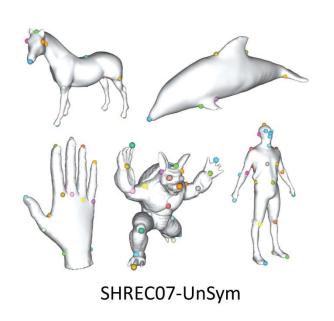
Rotation Sync. [Wang and Singer'14,...]

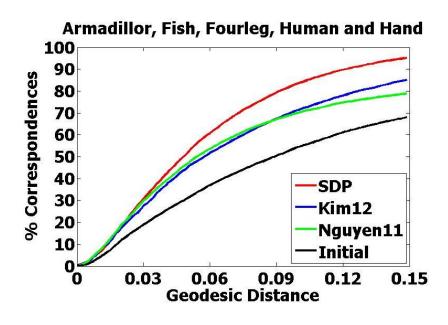
Near-optimal!

Near-optimal?

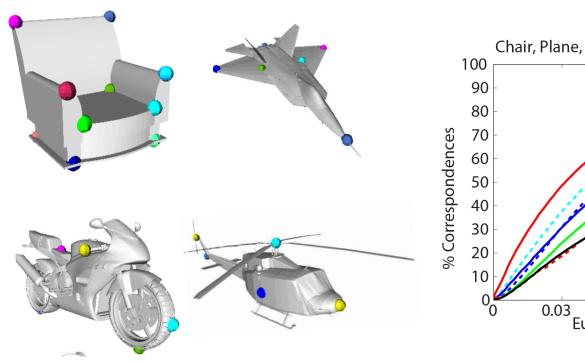
Experimental Results

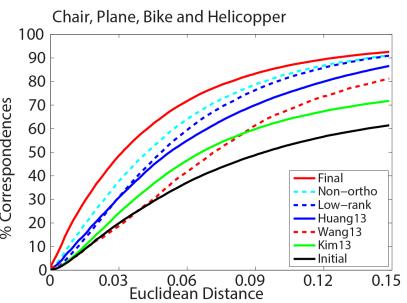
Constrained matrix recovery achieves state-of-the-art performance



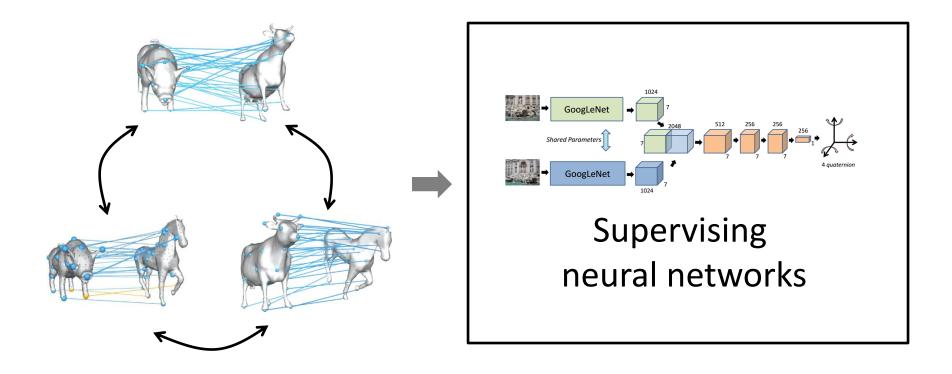


Constrained matrix recovery achieves state-of-the-art performance



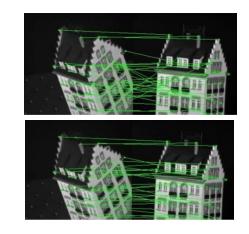


Outline



Matrix recovery perspective

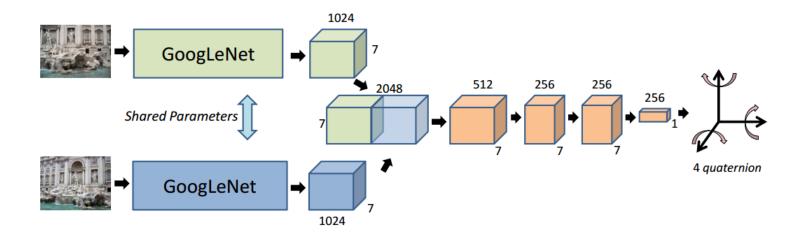
Map synchronization versus learning pairwise matching



CMU Hotel dataset

Pair-wise (RANSAC)	Joint Matching (from RANSAC)	Pairwise (Learning) Leordeanu et al. 12	
64.1%	97.4%	94.6%	
Joint Matching (from Learning)	Pairwise (Learning) Leordeanu et al. 12	Joint Matching (from Learning)	
100%	95.1%	100%	

Unsupervised Learning of Relative Camera Poses Using Neural Networks



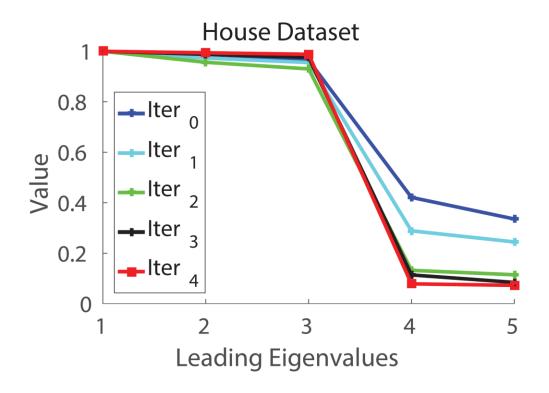
Alternating minimization converges

SydneyHouse [Chu et al.16] 125K Training, 30K Testing

PoseNet [Kendall et al.15] 390K Training, 91K Testing

Network	Iter. 0	Iter. 1	Iter. 2	Iter. 3	Iter. 4
PoseNet	13.35	10.14	9.23	8.94	8.92
SydneyHouse	6.13	5.02	4.95	4.89	4.87

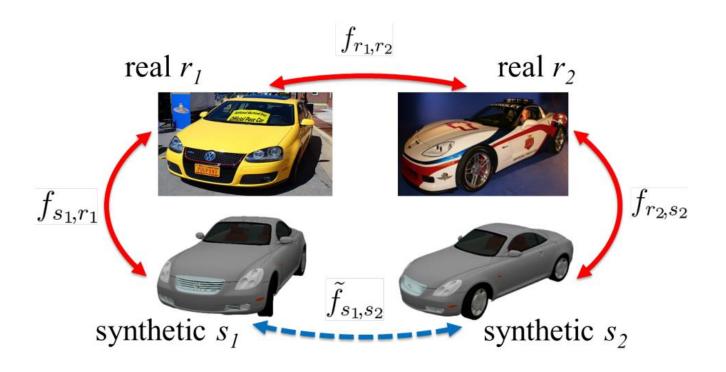
Predicted maps become more consistent



Cycle-consistency perspective

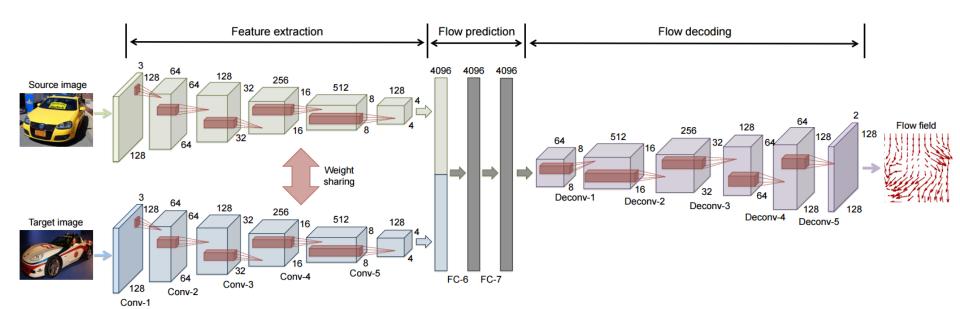
[Zhou-Krähenbühl-Abruy-Huang-Efros, CVPR' 16]

Connecting real images through synthetic images



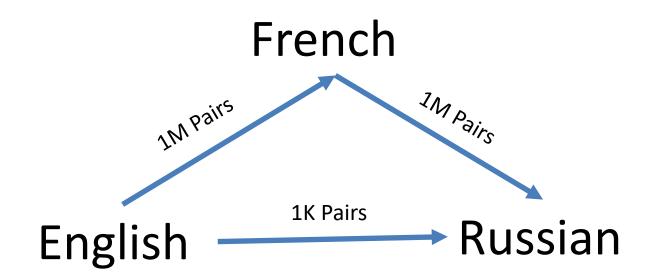
$$\tilde{f}_{s_1,s_2} = f_{s_1,r_1} \circ f_{r_1,r_2} \circ f_{r_2,s_2}$$

Flow architecture



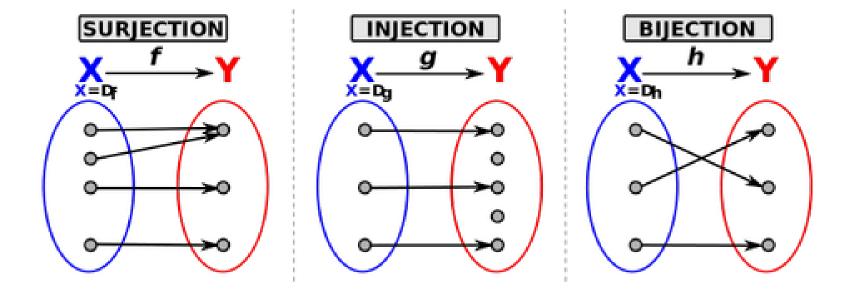
FlowNet [Fischer et al 15]

Multi-lingual Translation [Cho et al.]

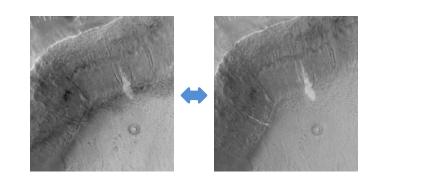


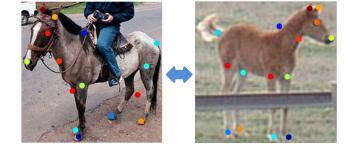
Looking Ahead

Maps as functions between sets

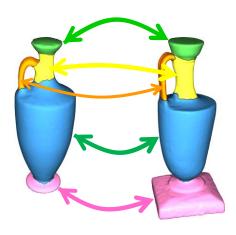


How to define sets on objects?





Pixels

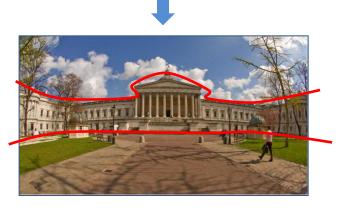


Parts

Key points

Sets (or representations) and maps should be optimized together

Pixel-wise correspondences



Segment correspondences

Questions?