Multi-View Matching & Mesh Generation

Qixing Huang Feb. 13th 2017

Geometry Reconstruction Pipeline

RANSAC --- facts

- Sampling
 - Feature point detection
 [Gelfand et al. 05, Huang et al. 06]

Correspondences

- Use feature descriptors $m \ll O(n^2)$
- The candidate correspondences
- Denote the success rate $\ p pprox rac{n}{m}$
- *Basic* analysis
 - The probability of having a valid triplet p³
 - The probability of having a valid triplet in N trials is $1 (1 p^3)^N$

Multiple Matching

Spanning tree based

From this...

Automatic Three-dimensional Modeling from Reality, PhD thesis, D. Huber, Robotics Institute, Carnegie Mellon University, 2002

Spanning tree based

Spanning tree based

Issue: A single incorrect match can destroy everything

Detecting inconsistent cycles

Disambiguating visual relations using loop constraints, C. Zach, M. Klopscjotz, and M. POLLEFEYS, *CVPR'10*

Rotation

[Wang and Singer'13]

$$\mathbf{R} = \begin{bmatrix} I_3 & \cdots & \mathbf{R}_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{R}_{1n}^T & \cdots & I_3 \end{bmatrix}$$

minimize
$$\sum\limits_{(i,j)\in\mathcal{G}}\|\mathbf{R}_{ij}-\mathbf{R}_{ij}^{init}\|_{\mathcal{F}}$$

subject to

 $\mathrm{R} \succeq 0$

$$\mathbf{R}_{ii} = I_3, \quad 1 \le i \le n$$

 $\mathbf{R}_{ij} \in convex - hull(SO(3)), \quad 1 \le i < j \le n$

Meshing

Two Approaches

Computational Geometry Based

Implicit Surface -> Contouring

(a) An object with its medial axis; one maximal interior ball is shown.

b) The Voronoi diagram of S, with the
Voronoi ball surrounding one pole
shown. In 2D, we can select all Voronoi
vertices as poles, but not in 3D

c) The inner and outer polar balls.Outer polar balls with centers at infinity degenerate to halfspaces on the convex hull.

d) The power diagram cells of the poles, labeled inner and outer.

d) The power diagram cells of the poles, labeled inner and outer.

e) The power crust and the power shape of its interior solid.

Eigen Crust [Kolluri et al. 04]

Eigen Crust [Kolluri et al. 04]

Eigencrust

Two Approaches

Computational Geometry Based

Implicit Surface -> Contouring

Point Cloud -> Implicit Surface?

$$\sum_{i=1}^{N} w_i(\boldsymbol{x})(\boldsymbol{x} - \boldsymbol{p}_i)^T \boldsymbol{n}_i = 0$$

$$w_i(\boldsymbol{x}) = \frac{\exp(-\frac{\|\boldsymbol{x}-\boldsymbol{p}_i\|^2}{2\sigma^2})}{\sum_{i=1}^{n} \exp(-\frac{\|\boldsymbol{x}-\boldsymbol{p}_i\|^2}{2\sigma^2})}$$

Defining point-set surfaces [Amenta et al. 05]

Defining Point-Set Surfaces

Nina Amenta Yong J. Kil

Center for Image Processing and Integrated Computing, U C Davis

Poisson surface reconstruction [Kazhdan et al. 06]

Poisson surface reconstruction [Kazhdan et al. 06]

Define the vector field:

$$\nabla(\chi_M * \tilde{F})(q) = \sum_{s \in S} \int_{\mathscr{P}_s} \tilde{F}_p(q) \vec{N}_{\partial M}(p) dp$$
$$\approx \sum_{s \in S} |\mathscr{P}_s| \tilde{F}_{s.p}(q) s. \vec{N} \equiv \vec{V}(q)$$

Solve the Poisson equation:

$$\Delta ilde{\chi} =
abla \cdot ec{V}$$
 .

Poisson surface reconstruction [Kazhdan et al. 06]

VRIP

Poisson Surface Reconstruction

Contouring

Contouring (On A Grid)

- Input
 - A grid where each grid point (pixel or voxel) has a value (color)
 - An iso-value (threshold)
- Output
 - A closed, manifold, nonintersecting polyline (2D) or mesh (3D) that separates grid points above the isovalue from those that are below the iso-value.

Contouring (On A Grid)

- Input
 - A grid where each grid point (pixel or voxel) has a value (color)
 - An iso-value (threshold)
- Output
 - Equivalently, we extract the zero-contour (separating negative from positive) after subtracting the iso-value from the grid points

Algorithms

- Primal methods
 - Marching Squares (2D),
 Marching Cubes (3D)
 - Placing vertices on grid edges

- Dual methods
 - Dual Contouring (2D,3D)
 - Placing vertices in grid cells

- For each grid cell with a sign change
 - Create one vertex on each grid edge with a sign change
 - Connect vertices by lines

- For each grid cell with a sign change
 - Create one vertex on each
 grid edge with a sign change
 - Connect vertices by lines

- Creating vertices: linear interpolation
 - Assuming the underlying, continuous function is linear on the grid edge
 - Linearly interpolate the positions of the two gridpoints $<math>t = \frac{f_0}{f_0 - f_1}$

- For each grid cell with a sign change
 - Create one vertex on each grid edge with a sign change
 - Connect vertices by lines

- Connecting vertices by lines
 - Lines shouldn't intersect
 - Each vertex is used once
 - So that it will be used exactly twice by the two cells incident on the edge
- Two approaches
 - Do a walk around the grid cell
 - Connect consecutive pair of vertices
 - Or, using a pre-computed look-up table
 - 2⁴=16 sign configurations
 - For each sign configuration, it stores the indices of the grid edges whose vertices make up the lines.

- For each grid cell with a sign change
 - Create one vertex on each grid edge with a sign change (using linear interpolation)
 - Connect vertices into triangles

- For each grid cell with a sign change
 - Create one vertex on each grid edge with a sign change
 - (using linear interpolation)
 - Connect vertices into triangles

- Connecting vertices by triangles
 - Triangles shouldn't intersect
 - To be a closed manifold:
 - Each vertex used by a triangle "fan"
 - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)

- Connecting vertices by triangles
 - Triangles shouldn't intersect
 - To be a closed manifold:
 - Each vertex used by a triangle "fan"
 - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)

- Connecting vertices by triangles
 - Triangles shouldn't intersect
 - To be a closed manifold:
 - Each vertex used by a triangle "fan"
 - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)

- Connecting vertices by triangles
 - Triangles shouldn't intersect
 - To be a closed manifold:
 - Each vertex used by a triangle "fan"
 - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)
 - Each mesh edge on the grid face is shared between adjacent cells

- Connecting vertices by triangles
 - Triangles shouldn't intersect
 - To be a closed manifold:
 - Each vertex used by a triangle "fan"
 - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)
 - Each mesh edge on the grid face is shared between adjacent cells
- Look-up table
 - 2^8=256 sign configurations
 - For each sign configuration, it stores indices of the grid edges whose vertices make up the triangles

Sign: "0 0 0 1 0 1 0 0" Triangles: {{2,8,11},{4,7,10}}

Lookup Table

Algorithms

- Primal methods
 - Marching Squares (2D),
 Marching Cubes (3D)
 - Placing vertices on grid
 edges

- Dual methods
 - Dual Contouring (2D,3D)
 - Placing vertices in grid cells

Dual Contouring (2D)

- For each grid cell with a sign change
 - Create one vertex
- For each grid edge with a sign change
 - Connect the two vertices in the adjacent cells with a line segment

Dual Contouring (2D)

- For each grid cell with a sign change
 - Create one vertex
- For each grid edge with a sign change
 - Connect the two vertices in the adjacent cells with a line segment

Dual Contouring (2D)

- Creating the vertex within a cell
 - Compute one point on each grid edge with a sign change (by linear interpolation)
 - There could be more than two sign-changing edges, so
 >2 points possible
 - Take the centroid of these points

Dual Contouring (3D)

- For each grid cell with a sign change
 - Create one vertex (same way as 2D)
- For each grid edge with a sign change
 - Create a quad (or two triangles) connecting the four vertices in the adjacent grid cubes
 - No look-up table is needed!

Duality

- The two outputs have a dual structure
 - Vertices and quads of Dual Contouring correspond (roughly) to un-triangulated polygons and vertices produced by Marching Cubes

Marching Cubes

Dual Contouring Slide Credit: Tao Ju

Slide Credit: Tao Ju

Primal vs. Dual

- Marching Cubes
 - ✓ Always manifold
 - × Requires look-up table in 3D
 - × Often generates thin and tiny poly

Marching Cubes

- Dual Contouring
 - × Can be non-manifold
 - ✓ No look-up table needed
 - < Generates better-shaped polygon

Dual Contouring

Slide Credit: Tao Ju

Primal vs. Dual

- Marching Cubes
 - − ✓ Always manifold
 - × Requires look-up table in 3D
 - × Often generates thin and tiny polygons
 - × Restricted to uniform grids
- Dual Contouring
 - × Can be non-manifold
 - − ✓ No look-up table needed
 - Generates better-shaped polygon
 - Can be applied to any type of gric

