CS 395T Advanced Geometry Processing

Qixing Huang
Janurary 17th 2017

Self-Introduction

- BS, MS: Tsinghua University
- PhD: Stanford University (2012)

 Research Assistant Professor at TTI Chicago (2014-2016)

 Assistant Professor in Computer Science (2016 - Now)

My Research

Graphics/Computer Vision/Machine Learning

- Intersection of Graphics and Artificial Intelligence
 - Machine Learning
 - Natural Language Processing
 - Robotics
 - Computer Vision

Logistic

Office Hour: Fridays 3:00 pm --- 5:00 pm

- Grading:
 - 30% Paper presentation + In-class participation
 - 70% Final project (Groups of 2-3)
 - Proposal
 - Final project presentation
 - Project report

3D model as a data representation

A Personal Story

Reconstructing of the Octagon Monument

Finding matching fragments is a tedious job

3D reconstruction of fragments

3D reconstruction and completion

Reconstruction Pipeline [Huang et al. 06]

Visual impact of the 3D restoration

Recommended Books

Data!

Learning from Synthetic Data

Render-for-CNN [Su et al. 15]

Physically-Based Rendering [Zhang et al. 16]

Autonomous Driving

3D Sensors

3D Understanding

Architectural Design

Procedural Modeling

Architectural Geometry

Architectural Geometry

Movie Industry

Digital Characters --- Avatar

Virtual Reality

Matterport – Navigation of Indoor Environment

3D Product Search

Computational Biology

Protein Docking

Protein Folding

Three Major Topics

Reconstruction

Analysis

Synthesis

Geometry Reconstruction

Topic one – Geometry Reconstruction

Topic one – Geometry Reconstruction

Topic one – Geometry Reconstruction

Multi-view Stereo Reconstruction

Multi-view Stereo Reconstruction

Scanning-Based Reconstruction

The process of triangulation for an unknown point in 3D space

Scanning-Based Reconstruction

Scanning-Based Reconstruction

Kinect Fusion

Interactive Modeling

ShapeNet3D

3D Warehouse

Yobi3D

3M models in more than 4K categories

Data Representation

Triangular mesh

Implicit surface

Point cloud

Part-based models

Discussion

Geometric Data Analysis

Curvature

Curvature

Curvature Derivatives

Feature Lines

[Hildebrandt et al. 05]

Shape Descriptors

Shape Distributions

Spherical Harmonics

Light Field Descriptors

Shape Classification

[Wu et al. 15]

Shape Classification

[Su et al. 15]

Shape Segmentation

[Kalogerakis' 10]

Texton-Boost in 3D

Skeleton Extraction

Shape Segmentation

[Su et al. 16]

Hierarchical Decomposition

Hierarchical Decomposition

[Liu et al. 14]

Shape Matching

[Sahillioglu et al. 11]

Shape Matching

[Kim et al. 12]

Symmetry Detection

[Mitra et al. 06]

Discussion

Deformation/Editing/Synthesis/Modeling

Shape Editing

[Sorkine et al. 04]

Shape Deformation

[Crane et al. 11,13]

Shape Editing

[Huang et al. 12]

Content-Preserving Deformation

[Kraevoy et al. 08]

Shape Modeling

Modeling by example

Shape Synthesis

[Xu et al. 12]

Shape Synthesis

[Xu et al. 12]

Geometry Processing Meets Big-data and Deep Learning

Ambiguities in assembling pieces

Resolving ambiguities by looking at additional pieces

Generative Adversarial Shape Generation [Wu et al. 16]

Detailed Syllabus

Date	Topics
Jan. 17	Introduction
Jan. 19	Overview of Geometry Reconstruction and Acquisition
Jan. 24	Overview of Geometric Data Analysis
Jan. 26	Overview of Geometric Modeling, Synthesis and Fabrication
Jan. 31	Multi-View Geometry I
Feb. 2	Multi-View Geometry II
Feb. 7	Paper Presentations I (Multi-View Geometry)
Feb. 9	3D Scanning
Feb. 14	Geometric Alignment
Feb. 16	Mesh Generation
Feb. 21	Paper Presentations II (Geometry Reconstruction)
Feb. 23	Mesh Simplification and Smoothing
Feb. 28	Discrete Differential Geometry I
Mar. 2	Discrete Differential Geometry II
Mar. 7	Shape Deformation and Non-Rigid Alignment
1-	

Detailed Syllabus

1	
Mar. 7	Shape Deformation and Non-Rigid Alignment
Mar. 9	Paper Presentation III (Mesh Processing)
Mar. 14	Shape Analysis I (Retrieval/Recognition/Correspondence/Segmentation)
Mar. 16	Shape Analysis II (Data-Driven Object Matching)
Mar. 21	Shape Analysis III (Data-driven Shape Segmentation)
Mar. 23	Shape Analysis IV (3D Deep Learning I)
Mar. 28	Shape Analysis V (3D Deep Learning II)
Mar. 30	Paper presentations IV (Shape Analysis)
Apr. 4	Shape Reconstruction, Modeling and Synthesis I (Assembly-Based)
Apr. 6	Shape Reconstruction, Modeling and Synthesis II (Deep Learning)
Apr. 11	Paper presentations V (Reconstruction, Modeling and Synthesis)
Apr. 13	3D Printing
Apr. 18	Paper presentations VI (3D Printing)
Apr. 20	Graphics Meets AI (Overview)
Apr. 25	Paper presentations VII (Autonomous Geometry Reconstruction)
Apr. 27	Paper presentations VIII (Text-Based Geometry Synthesis)
May 2	Paper presentations IX (Learning to Generate Synthetic Data)
May 4	Final Project Presentations
i	

Questions?