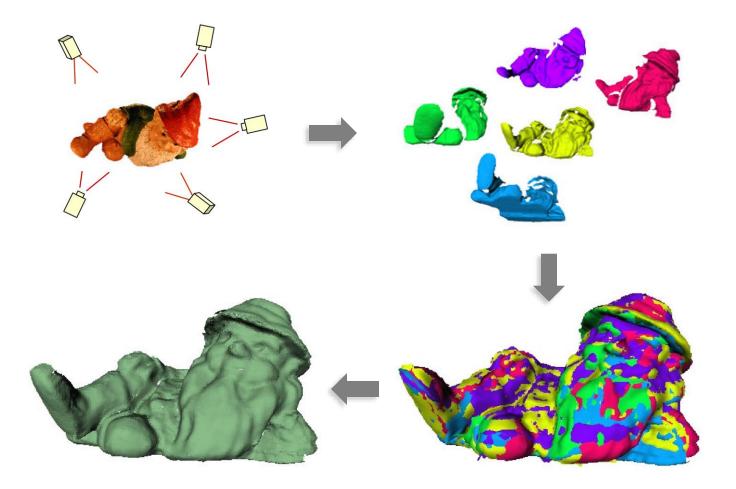
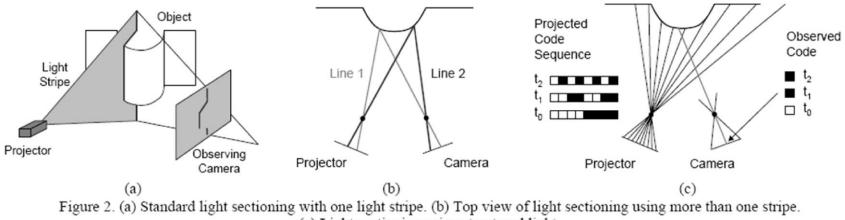
Shape Matching

Qixing Huang Feb. 13th 2017

Geometry Reconstruction Pipeline



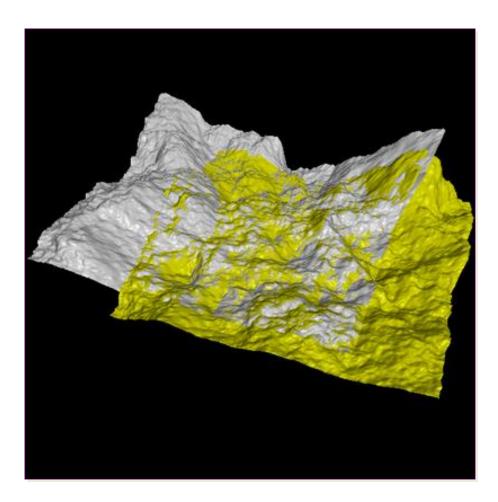
Binary Encoded Light Stripes



- (c) Light sectioning using structured light.
- Set of light planes are projected into the scene
- Individual light planes are indexed by an encoding scheme for the light patterns
 - Obtained images are used to uniquely address the light plane corresponding to every image point

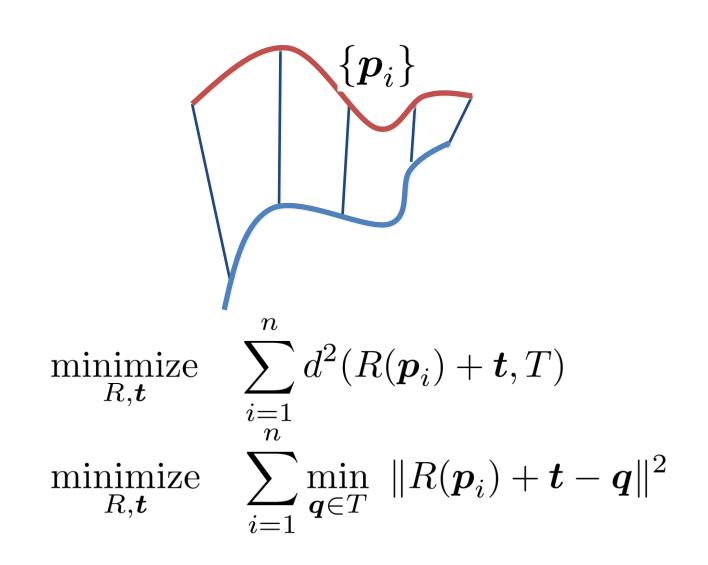
ICP for Pairwise Alignment

Pairwise Alignment



ICP [Besel and Mckay' 92]

ICP Formulation

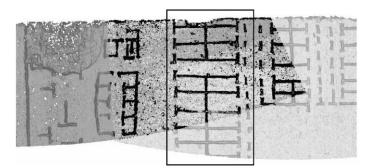


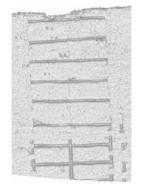
ICP Variants

• Point-plane distance [Chen and Medioni' 91]

$$\underset{R, \boldsymbol{t}}{\text{minimize}} \quad \sum_{i=1}^{n} \left((R \boldsymbol{p}_{i} + \boldsymbol{t} - \boldsymbol{q}_{i})^{T} \boldsymbol{n}_{i} \right)^{2}$$

• Stable sampling [Gelfand et al. 03]



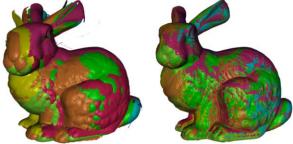


• Robust norm

$$\underset{R, \boldsymbol{t}}{\text{minimize}} \quad \sum_{i=1}^{n} \min_{\boldsymbol{q} \in T} \| R(\boldsymbol{p}_i) + \boldsymbol{t} - \boldsymbol{q} \|$$

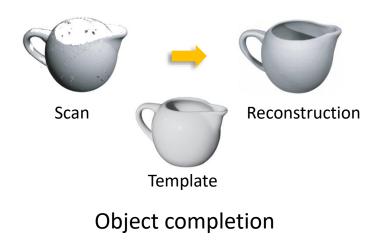
Today's lecture

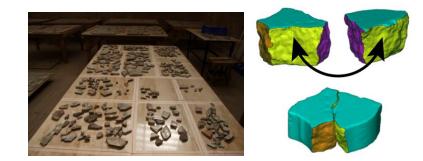
Rigid matching --- how to generate the initial guess



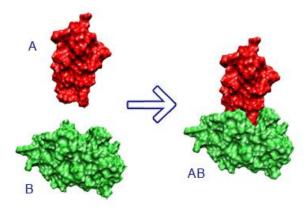
Applications

Surface reconstruction



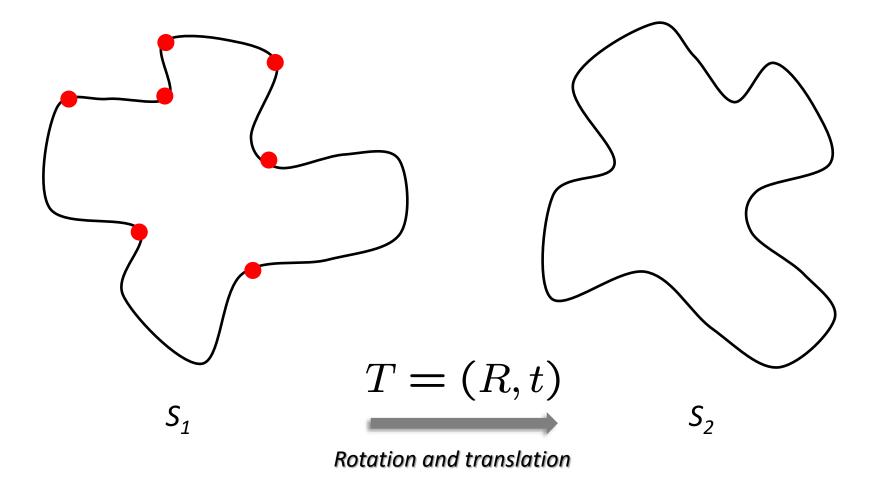


Fragment assembly



Protein docking

Rigid Matching

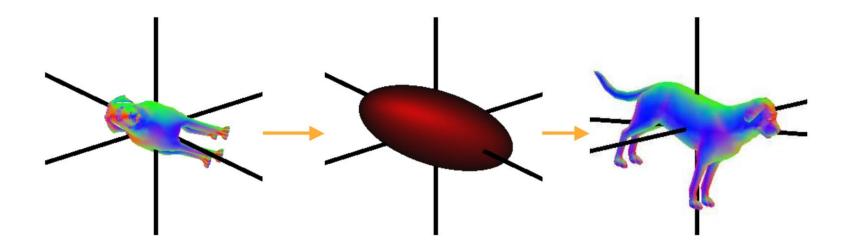


Approach --- PCA

 Use PCA to place models into a canonical coordinate frame

> Covariance matrix computation

Principal Axis alignment



Principal axis computation

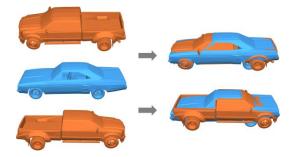
 Given a collection of points {p_i}, form the covariance matrix:

$$\mathbf{c} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{p}_i$$
$$C = \frac{1}{N} \sum_{i=1}^{N} \mathbf{p}_i \mathbf{p}_i^T - \mathbf{c} \mathbf{c}^T$$

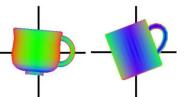
• Compute eigenvectors of matrix C

Issues with PCA

• Principal axes are not oriented

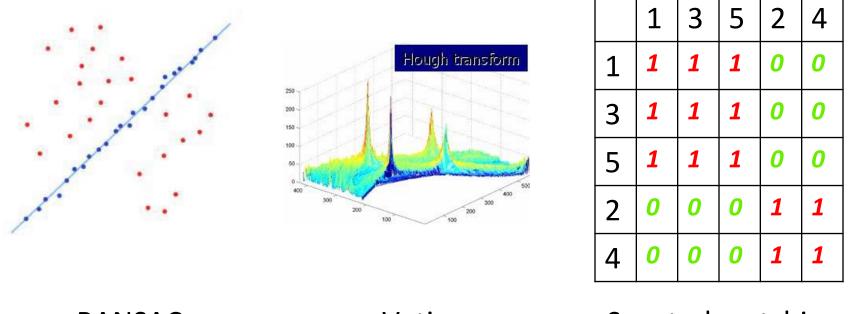


• Axes are unstable when principal values are similar



• Partial similarity

Approaches --- correspondence-based



RANSAC

Voting

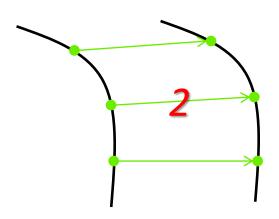
Spectral matching

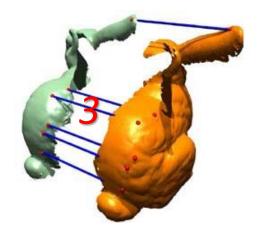
Partial similarity

Stable

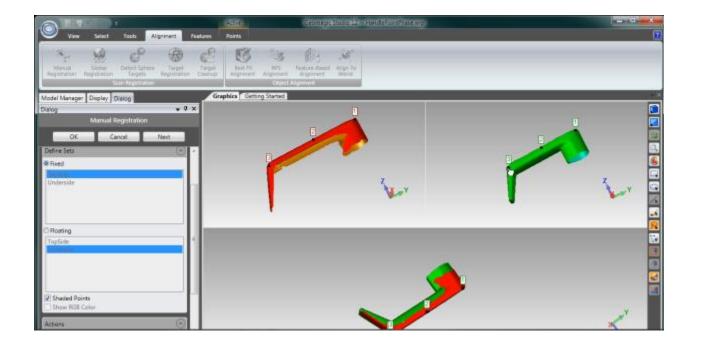
RANSAC

- How many point-pairs specify a rigid transform?
 - In R²?
 - In R³?
- Additional constraints?
 - Distance preserving
 - Stability?





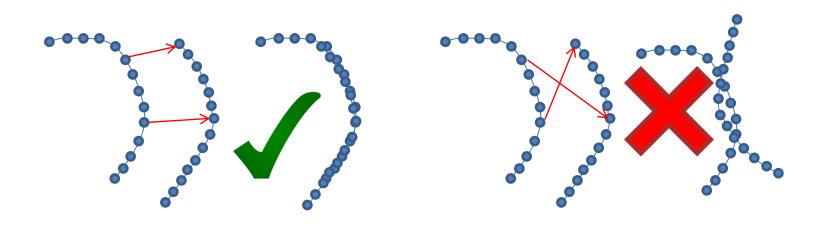
Software



Geomagic

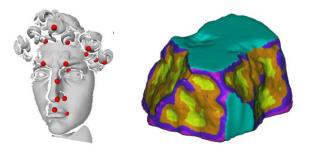
RANSAC

- Preprocessing: sample each object
- Recursion:
 - Step I: Sample three (two) pairs, check distance constraints
 - Step II: Fit a rigid transform
 - Step III: Check how many point pairs agree. If above threshold, terminates; otherwise goes to Step I



RANSAC --- facts

- Sampling
 - Feature point detection
 [Gelfand et al. 05, Huang et al. 06]

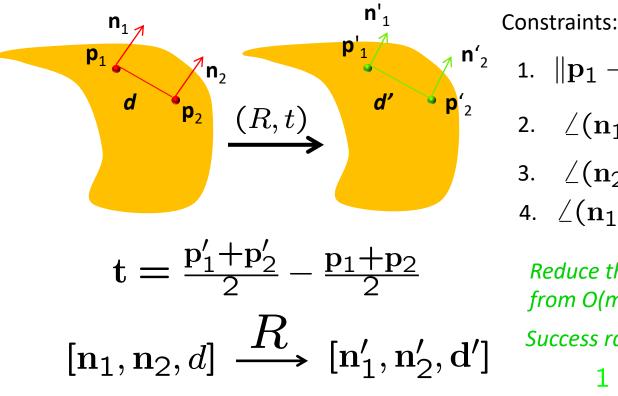


Correspondences

- Use feature descriptors $m \ll O(n^2)$
- The candidate correspondences
- Denote the success rate $\ p pprox rac{n}{m}$
- *Basic* analysis
 - The probability of having a valid triplet p³
 - The probability of having a valid triplet in N trials is $1 (1 p^3)^N$

RANSAC+

 How many surfel (position + normal) correspondences specify a rigid transform?



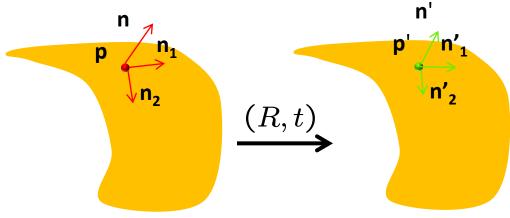
1. $\|\mathbf{p}_1 - \mathbf{p}_2\| \approx \|\mathbf{p}_1' - \mathbf{p}_2'\|$ 2. $\angle(\mathbf{n}_1, \mathbf{d}) = \angle(\mathbf{n}_1', \mathbf{d}')$ 3. $\angle(\mathbf{n}_2, \mathbf{d}) = \angle(\mathbf{n}_2', \mathbf{d}')$ 4. $\angle(\mathbf{n}_1, \mathbf{n}_2) = \angle(\mathbf{n}_1', \mathbf{n}_2')$

Reduce the number of trials from $O(m^3)$ to $O(m^2)$ Success rate: $1 - (1 - p^2)^N$

RANSAC++

- How many frame correspondences specify a rigid transform?
 - Principal curvatures

– Local PCA



$$\mathbf{t} = \mathbf{p}' - \mathbf{p}$$
$$R(\mathbf{n}, \mathbf{n}_1, \mathbf{n}_2) \approx (\mathbf{n}', \mathbf{n}_1', \mathbf{n}_2')$$

Further reduce the number of trials from O(m²) to O(m)

Success rate: $1-(1-p)^N$

Principal directions are unreliable

Implementation details

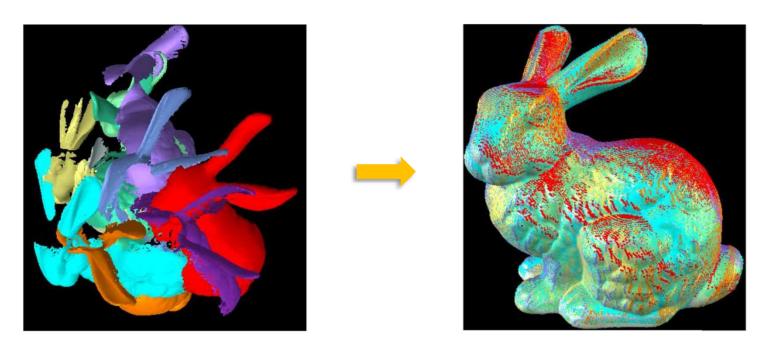
• Use feature points

3D SIFT features

Patch features

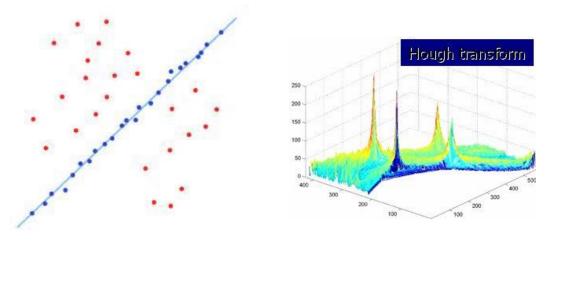
Implementation details

• Parameters?



Learn parameters from registered scans

Approaches --- correspondence-based



	1	3	5	2	4
1	1	1	1	0	0
3	1	1	1	0	0
5	1	1	1	0	0
2	0	0	0	1	1
4	0	0	0	1	1

RANSAC

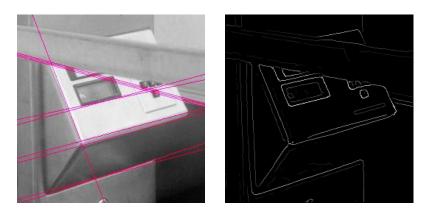
Spectral matching

Partial similarity

Stable

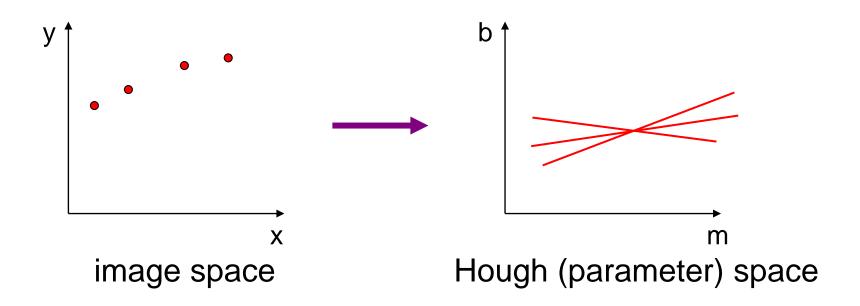
Hough transform for line fitting

- Line detection in an image
 - what is the line?
 - How many lines?
 - Point-line associations?

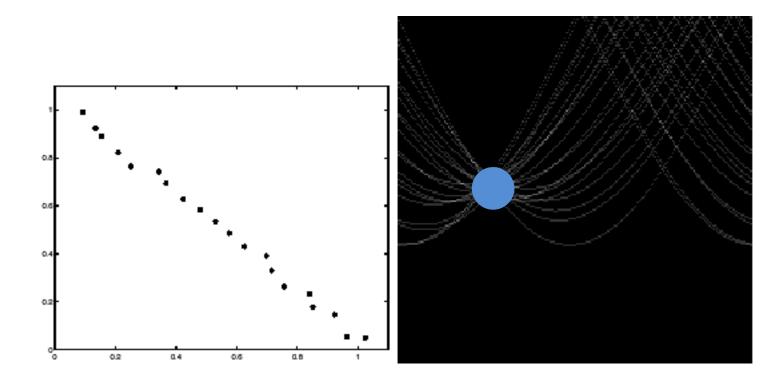


- Hough Transform is a voting technique that can be used to answer all of these questions
 - Record vote for each possible line on which each edge point lies
 - Look for lines that get many votes.

Voting

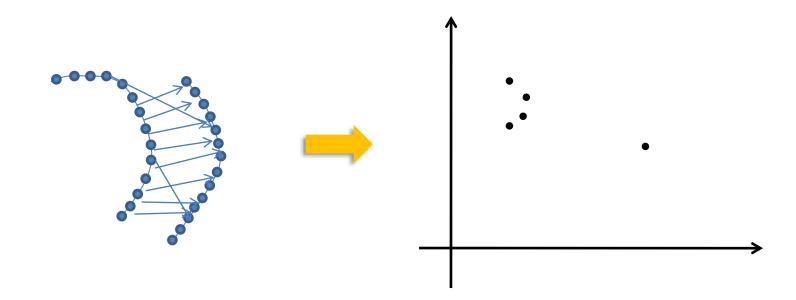


Clustering

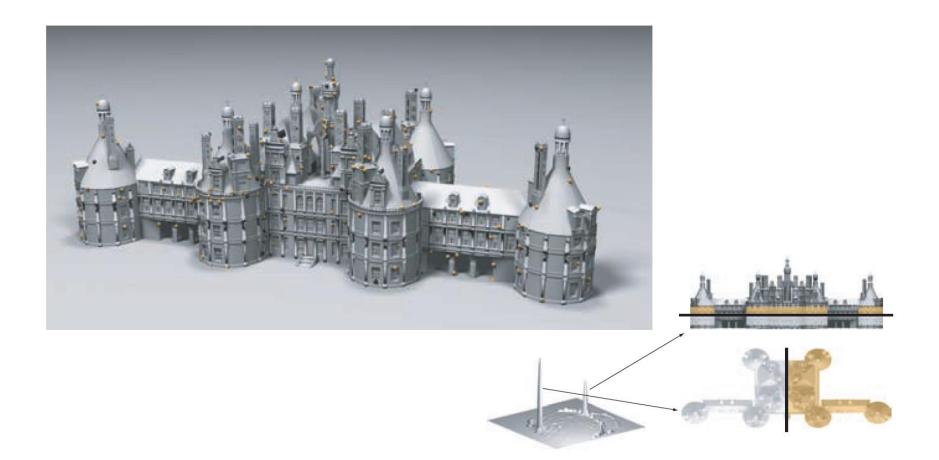


Rigid matching

• Rigid transform detection from feature correspondences

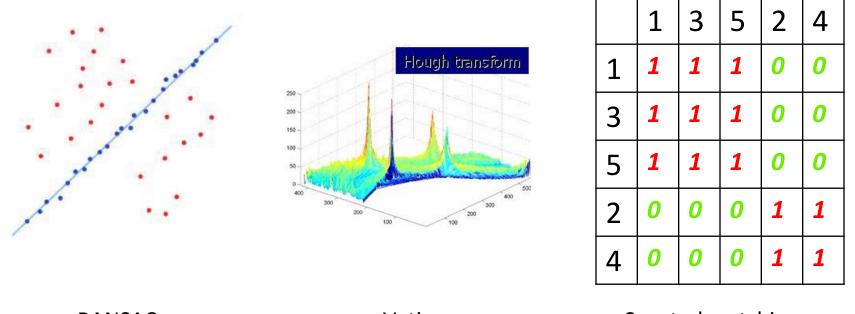


Symmetry detection



Partial and Approximate Symmetry Detection for 3D Geometry, N. Mitra, L. Guibas, and M. Pauly, SIGGRAPH' 06

Approaches --- correspondence-based



RANSAC

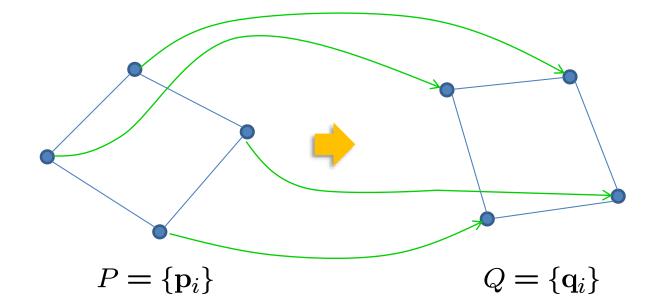
Voting

Spectral matching

Partial similarity

Stable

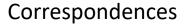
Distance preservation ⇔ Rigidity?

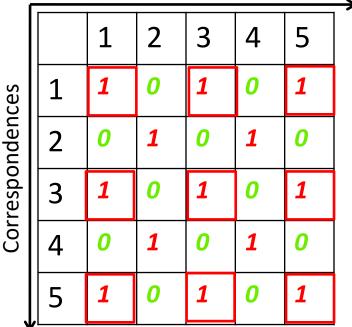


 $\|\mathbf{p}_i - \mathbf{p}_j\| = \|\phi(\mathbf{p}_i) - \phi(\mathbf{p}_j)\| \qquad \qquad \phi(\mathbf{p}_i) = R \cdot \mathbf{p}_i + t$ $\det(R) = -1$

Spectral approach

 0: Inconsistent, 1: Consistent





Correspondences

Consistency matrix

A Spectral Technique for Correspondence Problems using Pairwise Constraints, M. Leordeanu and M. Hebert, ICCV 2005

Clique extraction

	1	2	3	4	5
1	1	0	1	0	1
2	0	1	0	1	0
3	1	0	1	0	1
4	0	1	0	1	0
5	1	0	1	0	1

Consistency matrix

permute

	1	3	5	2	4
1	1	1	1	0	0
3	1	1	1	0	0
5	1	1	1	0	0
2	0	0	0	1	1
4	0	0	0	1	1

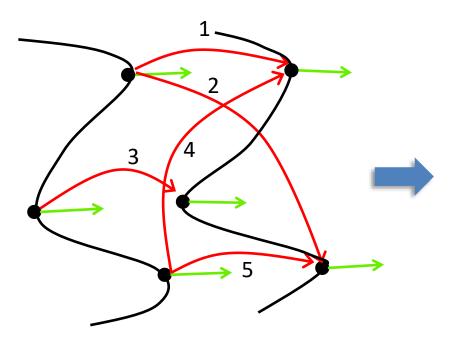
Consistency matrix

Algorithm

- Step 1: Compute the maximum eigenvector **v** of **C**
- Step 2: Sort the vertices based on magnitude of v and initialize the cluster
- Step 3: Incrementally insert vertices while checking the clique constraint
- Step 4: Stop if the size of the cluster is small, otherwise accept the cluster and go to Step 1

Incorporate normals/frames

Clustering becomes easier



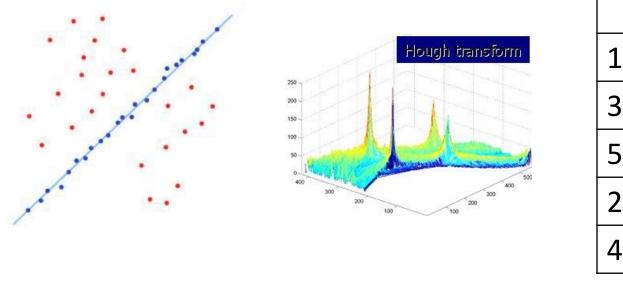
Correspondences

0: Inconsistent, 1: Consistent

Correspondences Correspondences Ω

Consistency matrix

Approaches --- correspondence-based



	1	3	5	2	4
1	1	1	1	0	0
3	1	1	1	0	0
5	1	1	1	0	0
2	0	0	0	1	1
4	0	0	0	1	1

RANSAC

Voting

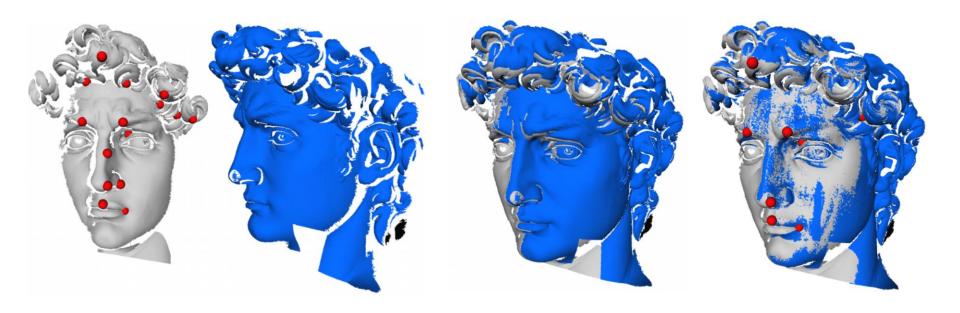
Spectral matching

Partial similarity

Stable

Post-processing

• Refine the match via ICP

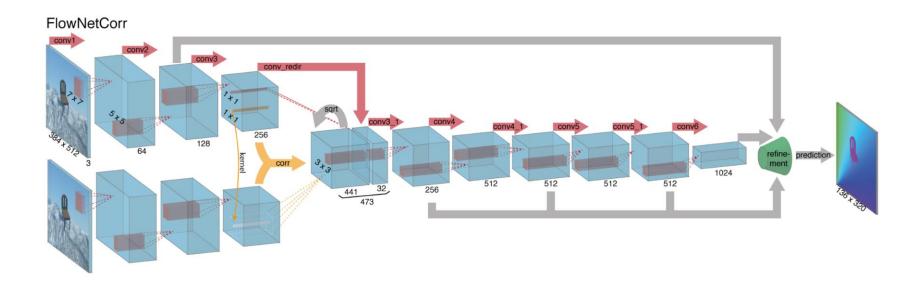


Input

After matching After registration

Pair-wise matching in the deep learning era

[Fischer et al. 15]



Feature extraction

Matching

FlowNet: Learning Optical Flow with Convolutional Networks. ICCV' 15