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Why joint analysis?

Horse DonkeyMule



Why joint analysis?

Ambiguities exist when matching two pieces



Why joint analysis?

Ambiguities resolved when looking at additional piece



Cycle consistency

Inconsistent Consistent

The composition of maps along a cycle should be identity

m12 ∘ m23 ∘ ⋯ ∘ mn1 = I



Part I
Map Synchronization for Pose Estimation

R,t



Pipeline of 3D reconstruction

1. Collect data from different 
viewpoints 

2. Recover relative poses 
between views 

3. Reconstruct 3D model



Pipeline of 3D reconstruction

1. Collect data from different 
viewpoints 

2. Recover relative poses 
between views 
• Compute for each pair 

separately

• Pairwise estimation might be 
inaccurate or failed

• Joint optimization required



Pose optimization (synchronization)

Goal  
Given noisy pairwise pose measurements, 

jointly optimizing all of them in order to  
improve accuracy and reject outliers

How
Cycle consistency on pose graph!

Three types of approaches
• Inlier/outlier inference 

• Local, iterative optimization

• Global, factorization-based optimization



Detect “good or bad” edges in the graph

Inlier/outlier inference

Name # images largest cc | S | #reg full #reg S rt full rt S rt S+BA
Stonehenge 614 490 72 408 403 276 min 14 min 26 min
St. Peter’s 927 471 59 390 370 11.6 hrs 3.54 hrs 4.85 hrs
Pantheon 1123 784 101 598 579 108.4 hrs 7.58 hrs 11.58 hrs
Pisa1 2616 1671 298 1186 1130 17.8 days 14.68 hrs 22.21 hrs
Trafalgar Square 8000 3892 277 - 2973 > 50 days 17.78 hrs 30.12 hrs
Pisa2 1112 1110 352 1101 1093 18.5 days 32.9 hrs 37.4 hrs

Table 1. Data sets and running times. Each row lists: name, the name of the scene; # images, the number of input images; largest cc, the
size of the largest connected component of the image graph; | S |, the size of the computed skeletal set; #reg full, the number of images
registered in the full reconstruction; #reg S, the number of images registered in the skeletal set reconstruction; rt full, the running time of
the full reconstruction; rt S, the running time of the skeletal set reconstruction, including computing the pairwise reconstructions and the
skeletal graph; rt S+BA, the running time of the skeletal set reconstruction plus a final bundle adjustment.

(a) (b) (c) (d) (e)
Figure 3. Reconstructions of the Pantheon. (a) The full image graph for the Pantheon and (b) our skeletal graph. The black (interior)
nodes of (b) comprise the skeletal set, and the gray (leaf) nodes are added in later. The Pantheon consists of two dense sets of views
(corresponding to the inside and outside), with a thin connection between them (views taken outside that see through the door). Note how
the skeletal set preserves this important connection, but sparsifies the dense parts of the graph. (c) Reconstruction from the skeletal set
only. (d) After using pose estimation to register the remaining images. (e) After running bundle adjustment on (d).

building the skeletal graph, and reconstructing the scene).
For Trafalgar (the largest set), the baseline method was still
running after 50 days.
The results show that our method takes significantly less

time than the baseline method, and the performance gain
increases dramatically with the size of the data set. The
speedup ranged from a factor of 2 for St. Peter’s, to a factor
of about 40 for Trafalgar Square, the largest collection. At
the same time, our algorithm recovers most of the images
reconstructed by the baseline method. A few images are
lost; most of these are very tenuously connected to the rest,
and can mistakenly be pruned as infeasible while building
the skeletal graph. Our method also worked well on the set
taken by a single person (Pisa2), though the fraction of im-
ages in the skeletal set is somewhat higher than for the Inter-
net sets. For most of the data sets, our algorithm spent more
time in reconstruction than in building the skeletal graph;
for a few particularly dense sets (e.g., the Pantheon), the
preprocessing took more time.
Next, we analyze the tradeoff between the stretch factor

t and the accuracy of the reconstruction. We first recon-

structed St. Peter’s with multiple values of t, and compared
the results to the reconstruction obtained from running the
baseline method on the full image set. For each value of t,
we aligned the resulting reconstruction to the baseline re-
construction by finding a similarity transform between cor-
responding points, and computed the distance between cor-
responding cameras, both before and after a final bundle.
Figure 5 shows the results, plotting the size of the skeletal
set, and the median error in camera position, for several val-
ues of t. As t increases, the size of the skeletal set decreases,
and the error before bundling increases. However, applying
a final bundle results in a low, relatively constant error level
(in this case, a median error between 6-8cm for a building
about 24m in width), even for stretch factors as large as 30,
at which point only 10% of the images are used in the skele-
tal set. For even larger stretch factors, however, the bundled
solution begins to degrade, because the initialization from
the skeletal set is no longer good enough to converge to the
correct solution. We also ran the same experiment on an
image collection with known ground truth, with compara-
ble results (please see the supplemental website).
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Abstract

Repetitive and ambiguous visual structures in general

pose a severe problem in many computer vision applica-

tions. Identification of incorrect geometric relations be-

tween images solely based on low level features is not al-

ways possible, and a more global reasoning approach about

the consistency of the estimated relations is required. We

propose to utilize the typically observed redundancy in the

hypothesized relations for such reasoning, and focus on the

graph structure induced by those relations. Chaining the

(reversible) transformations over cycles in this graph al-

lows to build suitable statistics for identifying inconsistent

loops in the graph. This data provides indirect evidence for

conflicting visual relations. Inferring the set of likely false

positive geometric relations from these non-local observa-

tions is formulated in a Bayesian framework. We demon-

strate the utility of the proposed method in several appli-

cations, most prominently the computation of structure and

motion from images.

1. Introduction
Computing the geometric relations from unorganized

image sets purely from visual features is a difficult task.
In order to obtain a tractable method, usually a pairwise
matching procedure is applied first, which is followed by
a fusion step to merge the initially obtained pairwise re-
lations into some global reference frame. The approaches
proposed in the literature vary widely in the details of this
latter upgrade procedure. Since the first pairwise match-
ing step uses only very limited information, the reported
pairwise relations are susceptible to inconsistencies due to
visual ambiguities, and the subsequent fusion method must
be able to cope with such erroneous input. We do not re-
strict the notion of pairwise matching solely to images, but
also consider e.g. mutual alignment of 3D point sets.

In this work we propose to detect and remove conflict-
ing pairwise relations, and thereby cleaning the input for
the subsequent upgrade step from incorrect data. The prin-
cipal components are illustrated in Figure 1. The pairwise

Figure 1. The original set of images (a) is robustly matched yield-
ing a graph containing all potential pairwise relations (b). Acquisi-
tion of deviation statistics over loops results in non-local error ob-
servations (c), from which the incorrect relations are inferred (d).
Large error and erroneous relations are indicated by dark edges.
Observe that the central and the top right image look similar, but
actually show different sides of the building.

relations generated by the preceding matching stage are typ-
ically highly redundant, which enables checking the intrin-
sic geometric consistency of these relations. The set of
reported pairwise relations corresponds directly to a graph
structure associating its edges with the relations (Fig.1(b)).
Most classes of pairwise relations relevant in computer vi-
sion applications—e.g. homographies, relative pose, Eu-
clidean and similarity transformations—allow the concate-
nation of geometric relations to hypothesize new, poten-
tially not directly observed relations. Large deviations be-
tween predicted (chained) and actually observed transfor-
mations indicate at least one conflicting edge among the in-
volved relations. Under the weak assumption of invertible
transformations we can restrict the focus on cycles in the
graph structure. Concatenating the transformations along
a loop in the graph should return the identity function in
an ideal, noise-free setting. Again, the likelihood of hav-
ing at least one incorrect edge in the loop is strongly re-
lated to the deviation of the chained transformation from
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Find a tree of confident maps and composite others

Node — image
Edge — map between images
Edge weight — confidence of map

Inlier/outlier inference by spanning tree

Limitation
A single incorrect map can destroy everything



Optimization-based approach

Optimize pose variables subject to the cycle consistency constraint

Xij
min d Xij −Mij( )

( i , j )∈e
∑

st.   Xij X jk!Xzi = I   ∀(i, j,k,!, z)∈c

Limitation
Number of constraints (cycles) grows quickly with the number of nodes

Noisy measurements



Problem reformation
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Table I
SYMBOLS USED IN THIS PAPER

Graph

G = (V, E) Directed graph
m Number of edges/measurements
n Number of nodes/poses
V Vertex set; |V| = n
E Edge set; |E| = m
e = (i, j) 2 E Edge between nodes i and j
A 2 Rm⇥n Incidence matrix of G
A 2 Rm⇥(n�1) Anchored incidence matrix of G
L = A>A Laplacian matrix of G
L = A>A Anchored Laplacian matrix of G

Real PGO formulation

Ā = A⌦ I2 Augmented incidence matrix
Ā = A⌦ I2 Augmented anchored incidence matrix
L̄ = L⌦ I2 Augmented Laplacian matrix
W 2 R4n⇥4n Real pose graph matrix
W 2 R(4n�2)⇥(4n�2) Real anchored pose graph matrix
p 2 R2n Node positions
⇢ 2 R2(n�1) Anchored node positions
r 2 R2n Node rotations

Complex PGO formulation

W̃ 2 C(2n�1)⇥(2n�1) Complex anchored pose graph matrix
⇢̃ 2 Cn�1 Anchored complex node positions
r̃ 2 Cn Complex node rotations

Miscellanea

SO(2) 2D rotation matrices
↵SO(2) Scalar multiple of a 2D rotation matrix
|V| Cardinality of the set V
In n⇥ n identity matrix
0n (1n) Vector of zeros (ones) of dimension n
Tr (X) Trace of the matrix X

Figure 2. Schematic representation of Pose Graph Optimization: the objective
is to associate a pose xi to each node of a directed graph, given relative pose
measurements (�ij ,Rij) for each edge (i, j) in the graph.

(relations (4) become linear after rearranging the rotation Ri

to the left-hand side). In absence of noise, the problem admits
a unique solution as long as one fixes the pose of a node (say
p1 = 02 and R1 = I2) and the underling graph is connected.

In this work we focus on connected graphs, as these are the
ones of practical interest in PGO (a graph with k connected
components can be split in k subproblems, which can be
solved and analyzed independently).

Assumption 1 (Connected Pose Graph): The graph G, un-
derlying pose graph optimization, is connected. ⌅

In presence of noise, the relations (4) cannot be met exactly
and pose graph optimization looks for a set of positions
{p1, . . . ,pn} and rotations {R1, . . . ,Rn} that minimize the
mismatch with respect to the measurements. This mismatch
can be quantified by different cost functions. We adopt the
formulation proposed in [12]:

min
{pi},

{Ri2SO(2)}

X

(i,j)2E

!�

ijk�ij�R
>
i (pj�pi)k22+

!R
ij

2
kRij�R

>
i Rjk2F,

(5)
where k ·k2 is the standard Euclidean distance and k ·kF is the
Frobenius norm. The Frobenius norm kRa�RbkF is a standard
measure of distance between two rotations Ra and Rb, and
it is commonly called chordal distance, see, e.g., [28]. In (5),
we used the notation {pi} (resp. {Ri}) to denote the set of
unknown positions {p1 . . . ,pn} (resp. rotations). The weights
!�

ij and !R
ij allow accommodating measurement uncertainty;

to simplify notation, in the following we assume !�

ij = !R
ij =

1: including these terms in the derivation is straightforward
and they are indeed taken into account in our experiments.

Rearranging the terms, problem (5) can be rewritten as:

min
{pi},

{Ri2SO(2)}

X

(i,j)2E

k(pj �pi)�Ri�ijk22+
1

2
kRj �RiRijk2F,

(6)
where we exploited the fact that the 2-norm is invariant to
rotation, i.e., for any vector v and any rotation matrix R it
holds kRvk2 = kvk2. Eq. (6) highlights that the objective is
a quadratic function of the unknowns.

The complexity of the problem stems from the fact that the
constraint Ri 2 SO(2) is nonconvex, see, e.g., [53]. To make
this more explicit, we follow [12], and use a more convenient
representation for nodes’ rotations. A planar rotation Ri can
be written as in (1), and is fully defined by the vector

ri =


cos(✓i)
sin(✓i)

�
. (7)

Using this parametrization and with simple matrix manipula-
tion, Eq. (6) becomes (cf. with Eq. (11) in [12]):

min
{pi},{ri}

X

(i,j)2E

k(pj � pi)�Dijrik22 + krj �Rijrik22 (8)

s.t.: krik22 = 1, i = 1, . . . , n

where we defined:

Dij =


�

x
ij ��

y
ij

�
y
ij �

x
ij

�
, (with �ij

.
= [�

x
ij �

y
ij ]

>
) , (9)

and where the constraints krik22 = 1 specify that we look for
vectors ri that represent admissible rotations (i.e., such that
cos(✓i)2 + sin(✓i)2 = 1).

Problem (8) is a quadratic problem with quadratic equality
constraints. The latter are nonconvex, hence computing a
global minimum of (8) is hard in general. There are two
problem instances, however, for which it is easy to compute
a global minimizer, which attains zero cost. These two cases
are recalled in Propositions 1-2.

Proposition 1 (Zero cost in trees): An optimal solution for
a PGO problem in the form (8) whose underlying graph is a
tree attains zero cost. ⌅

This is a well known fact in robotics. The interested
reader can find a formal proof in [6, Appendix 8.1]. Roughly
speaking, in a tree, we can build an optimal solution by con-
catenating the relative pose measurements, and this solution
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Section VI presents a numerical evaluation on simulated
and real datasets. In practical regimes of operation (rotation
noise < 0.3 rad), our Monte Carlo runs always produced a
penalized pose graph matrix satisfying the SZEP. Hence, in
this regime, our approach enables the computation (and the
verification) of the optimal solution. For larger noise (e.g., 1rad
standard deviation for rotations), we observed cases in which
the penalized pose graph matrix has multiple zero eigenvalues.

This paper extends our initial proposal [12] in many di-
rections: the formulation in the complex domain, all results
involving the SZEP, and the optimal solution are novel. While
we advertised our results in the workshop paper [42], the
verification techniques and the experimental results presented
in this paper are new and unpublished. Moreover, we provide
extra results, proofs, and a toy example in which the duality
gap is nonzero in the technical report [6].

II. NOTATION AND PRELIMINARY CONCEPTS

Section II-A introduces our notation. Section II-B recalls
standard concepts from graph theory, and can be safely skipped
by the expert reader. Section II-C, instead, discusses the
properties of the set of 2 ⇥ 2 matrices that are multiples of
a planar rotation matrix. We denote this set with the symbol
↵SO(2). ↵SO(2) is of interest in this paper since the action
of any matrix Z 2 ↵SO(2) can be conveniently represented
as a multiplication between complex numbers (Section III-C).
Table I summarizes the main symbols used in this paper.

A. Notation
The cardinality of a set V is written as |V|. The sets of real

and complex numbers are denoted with R and C, respectively.
In denotes the n⇥n identity matrix, 1n denotes the (column)
vector of all ones of dimension n, 0n⇥m denotes the n ⇥m
matrix of all zeros (we also use 0n

.
= 0n⇥1). For a matrix

M , Mij denotes the element of M in row i and column j.
For matrices with a block structure we use [M ]ij to denote
the d ⇥ d block of M at the block row i and block column
j. In this paper we only deal with matrices that have 2 ⇥ 2

blocks, i.e., d = 2, hence the notation [M ]ij is unambiguous.

B. Graph terminology
A directed graph G is a pair (V, E), where the vertices or

nodes V are a finite set of elements, and E ⇢ V ⇥V is the set
of edges. Each edge is an ordered pair e = (i, j). We say that e
is incident on nodes i and j, leaves node i, called tail, and is
directed towards node j, called head. The number of nodes
and edges is denoted with n

.
= |V| and m

.
= |E|, respectively.

The incidence matrix A of a directed graph is a m ⇥ n
matrix with elements in {�1, 0,+1} that exhaustively de-
scribes the graph topology. Each row of A corresponds to
an edge e = (i, j) and has exactly two non-zero elements, a
�1 on the i-th column and a +1 on the j-th column.

C. The set ↵SO(2)

The set ↵SO(2) is defined as

↵SO(2)
.
= {↵R : ↵ 2 R, R 2 SO(2)},

where SO(2) is the set of 2D rotation matrices. Recall that
SO(2) can be parametrized by an angle ✓ 2 (�⇡,+⇡], and
any matrix R 2 SO(2) is in the form:

R = R(✓) =


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
. (1)

Clearly, SO(2) ⇢ ↵SO(2). The set ↵SO(2) is closed under
standard matrix multiplication, i.e., for any Z1,Z2 2 ↵SO(2),
also the product Z1Z2 2 ↵SO(2). In full analogy with SO(2),
it is trivial to show that the multiplication is commutative,
i.e., for any Z1,Z2 2 ↵SO(2) it holds that Z1Z2 = Z2Z1.
Moreover, for Z = ↵R with R 2 SO(2) it holds that Z>

Z =

|↵|2I2. The set ↵SO(2) is also closed under matrix addition:
for R1,R2 2 SO(2), we have that

↵1R1 + ↵2R2=↵1


c1 �s1
s1 c1

�
+↵2


c2 �s2
s2 c2

�
=

=


↵1c1 + ↵2c2 �(↵1s1 + ↵2s2)
↵1s1 + ↵2s2 ↵1c1 + ↵2c2

�
=


a �b
b a

�
= ↵3R3,

(2)
where we used the shorthands ci and si for cos(✓i) and sin(✓i),
and we defined a

.
= ↵1c1 + ↵2c2 and b

.
= ↵1s1 + ↵2s2.

In (2), the scalar ↵3

.
= ±

p
a2 + b2 (if nonzero) normalizesh

a �b
b a

i
, such that R3

.
=

h
a/↵3 �b/↵3

b/↵3 a/↵3

i
is a rotation

matrix; if ↵3 = 0, then ↵1R1 + ↵2R2 = 02⇥2, which also
falls in our definition of ↵SO(2). From this reasoning, it is
clear that an alternative definition of ↵SO(2) is

↵SO(2)
.
=

⇢
a �b
b a

�
: a, b 2 R

�
. (3)

The set ↵SO(2) is tightly coupled with the set of complex
numbers C. Indeed, a matrix in the form (3) is also known as
a matrix representation of a complex number [19]. We explore
the implications of this fact for PGO in Section III-C.

III. POSE GRAPH OPTIMIZATION IN THE COMPLEX DOMAIN

Sections III-A-III-B recall a standard statement of the pose
graph optimization problem. Section III-C frames the problem
in the complex domain. Section III-D discusses properties of
the matrices involved in the real and complex formulations.

A. Standard PGO
PGO estimates n poses from m relative pose measurements.

We focus on the planar case, in which the i-th pose xi is
described by the pair xi

.
= (pi,Ri), where pi 2 R2 is a

position in the plane, and Ri2SO(2). The pose measurement
between two nodes, say i and j, is described by the pair
(�ij ,Rij), where �ij 2R2 and Rij 2SO(2) are the relative
position and rotation measurements, respectively.

The problem can be visualized as a directed graph G(V , E),
where an unknown pose is attached to each node in the set
V , and each edge (i, j) 2 E corresponds to a relative pose
measurement between nodes i and j (Fig. 2).

In a noiseless case, the measurements satisfy:

�ij = R
>
i (pj � pi) , Rij = R

>
i Rj , (4)

and we can compute the unknown rotations {R1, . . . ,Rn}
and positions {p1, . . . ,pn} by solving a set of linear equations

Estimate absolute pose for each node

which respect relative measurements
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Section VI presents a numerical evaluation on simulated
and real datasets. In practical regimes of operation (rotation
noise < 0.3 rad), our Monte Carlo runs always produced a
penalized pose graph matrix satisfying the SZEP. Hence, in
this regime, our approach enables the computation (and the
verification) of the optimal solution. For larger noise (e.g., 1rad
standard deviation for rotations), we observed cases in which
the penalized pose graph matrix has multiple zero eigenvalues.

This paper extends our initial proposal [12] in many di-
rections: the formulation in the complex domain, all results
involving the SZEP, and the optimal solution are novel. While
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extra results, proofs, and a toy example in which the duality
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between two nodes, say i and j, is described by the pair
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Section VI presents a numerical evaluation on simulated
and real datasets. In practical regimes of operation (rotation
noise < 0.3 rad), our Monte Carlo runs always produced a
penalized pose graph matrix satisfying the SZEP. Hence, in
this regime, our approach enables the computation (and the
verification) of the optimal solution. For larger noise (e.g., 1rad
standard deviation for rotations), we observed cases in which
the penalized pose graph matrix has multiple zero eigenvalues.

This paper extends our initial proposal [12] in many di-
rections: the formulation in the complex domain, all results
involving the SZEP, and the optimal solution are novel. While
we advertised our results in the workshop paper [42], the
verification techniques and the experimental results presented
in this paper are new and unpublished. Moreover, we provide
extra results, proofs, and a toy example in which the duality
gap is nonzero in the technical report [6].

II. NOTATION AND PRELIMINARY CONCEPTS

Section II-A introduces our notation. Section II-B recalls
standard concepts from graph theory, and can be safely skipped
by the expert reader. Section II-C, instead, discusses the
properties of the set of 2 ⇥ 2 matrices that are multiples of
a planar rotation matrix. We denote this set with the symbol
↵SO(2). ↵SO(2) is of interest in this paper since the action
of any matrix Z 2 ↵SO(2) can be conveniently represented
as a multiplication between complex numbers (Section III-C).
Table I summarizes the main symbols used in this paper.

A. Notation
The cardinality of a set V is written as |V|. The sets of real

and complex numbers are denoted with R and C, respectively.
In denotes the n⇥n identity matrix, 1n denotes the (column)
vector of all ones of dimension n, 0n⇥m denotes the n ⇥m
matrix of all zeros (we also use 0n

.
= 0n⇥1). For a matrix

M , Mij denotes the element of M in row i and column j.
For matrices with a block structure we use [M ]ij to denote
the d ⇥ d block of M at the block row i and block column
j. In this paper we only deal with matrices that have 2 ⇥ 2

blocks, i.e., d = 2, hence the notation [M ]ij is unambiguous.

B. Graph terminology
A directed graph G is a pair (V, E), where the vertices or

nodes V are a finite set of elements, and E ⇢ V ⇥V is the set
of edges. Each edge is an ordered pair e = (i, j). We say that e
is incident on nodes i and j, leaves node i, called tail, and is
directed towards node j, called head. The number of nodes
and edges is denoted with n

.
= |V| and m

.
= |E|, respectively.

The incidence matrix A of a directed graph is a m ⇥ n
matrix with elements in {�1, 0,+1} that exhaustively de-
scribes the graph topology. Each row of A corresponds to
an edge e = (i, j) and has exactly two non-zero elements, a
�1 on the i-th column and a +1 on the j-th column.

C. The set ↵SO(2)

The set ↵SO(2) is defined as

↵SO(2)
.
= {↵R : ↵ 2 R, R 2 SO(2)},

where SO(2) is the set of 2D rotation matrices. Recall that
SO(2) can be parametrized by an angle ✓ 2 (�⇡,+⇡], and
any matrix R 2 SO(2) is in the form:

R = R(✓) =


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
. (1)

Clearly, SO(2) ⇢ ↵SO(2). The set ↵SO(2) is closed under
standard matrix multiplication, i.e., for any Z1,Z2 2 ↵SO(2),
also the product Z1Z2 2 ↵SO(2). In full analogy with SO(2),
it is trivial to show that the multiplication is commutative,
i.e., for any Z1,Z2 2 ↵SO(2) it holds that Z1Z2 = Z2Z1.
Moreover, for Z = ↵R with R 2 SO(2) it holds that Z>

Z =

|↵|2I2. The set ↵SO(2) is also closed under matrix addition:
for R1,R2 2 SO(2), we have that

↵1R1 + ↵2R2=↵1


c1 �s1
s1 c1

�
+↵2


c2 �s2
s2 c2

�
=

=


↵1c1 + ↵2c2 �(↵1s1 + ↵2s2)
↵1s1 + ↵2s2 ↵1c1 + ↵2c2

�
=


a �b
b a

�
= ↵3R3,

(2)
where we used the shorthands ci and si for cos(✓i) and sin(✓i),
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.
= ↵1c1 + ↵2c2 and b

.
= ↵1s1 + ↵2s2.

In (2), the scalar ↵3

.
= ±

p
a2 + b2 (if nonzero) normalizesh

a �b
b a

i
, such that R3

.
=

h
a/↵3 �b/↵3

b/↵3 a/↵3

i
is a rotation

matrix; if ↵3 = 0, then ↵1R1 + ↵2R2 = 02⇥2, which also
falls in our definition of ↵SO(2). From this reasoning, it is
clear that an alternative definition of ↵SO(2) is

↵SO(2)
.
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⇢
a �b
b a

�
: a, b 2 R

�
. (3)

The set ↵SO(2) is tightly coupled with the set of complex
numbers C. Indeed, a matrix in the form (3) is also known as
a matrix representation of a complex number [19]. We explore
the implications of this fact for PGO in Section III-C.

III. POSE GRAPH OPTIMIZATION IN THE COMPLEX DOMAIN

Sections III-A-III-B recall a standard statement of the pose
graph optimization problem. Section III-C frames the problem
in the complex domain. Section III-D discusses properties of
the matrices involved in the real and complex formulations.
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described by the pair xi

.
= (pi,Ri), where pi 2 R2 is a

position in the plane, and Ri2SO(2). The pose measurement
between two nodes, say i and j, is described by the pair
(�ij ,Rij), where �ij 2R2 and Rij 2SO(2) are the relative
position and rotation measurements, respectively.

The problem can be visualized as a directed graph G(V , E),
where an unknown pose is attached to each node in the set
V , and each edge (i, j) 2 E corresponds to a relative pose
measurement between nodes i and j (Fig. 2).

In a noiseless case, the measurements satisfy:
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>
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>
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where                 are pairwise measurements Carlone et al. (2015)

Cycle consistency is satisfied by construction!
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T Rj )(Rj

T Rk )(Rk
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Pose graph optimization

and then using the rotation estimate to initialize 2D pose
graph optimization entails consistent advantages in terms of
computation and robustness. In this work we show that this
initialization is beneficial in the 3D case as well (Fig. 1).
While in 2D it is possible to devise exact closed-form
solutions for rotation estimation [7], no closed-form solution
is known in the 3D case (beside the simple case of pose
graphs with a single cycle). However, related work offers
many approaches that work well in practice.

Our survey spans contributions to 3D rotation estimation
across three research communities. First, rotation estimation
(a.k.a. rotation averaging) has been studied in computer vi-
sion, where accurate camera orientation estimation is critical
to solve Bundle Adjustment in Structure from Motion [11],
[1], [12], [13], [14], [15], [16]. Second, rotation estimation
has been investigated in the control theory community, where
it finds application to vehicle coordination [17], sensor
network localization and camera network calibration [18],
[19], attitude synchronization [20], [21], and distributed
consensus on manifold [22], [23]. Third, techniques to solve
for rotations have been studied in robotics [17], [7], [24].

Since our goal is to initialize 3D SLAM, we omit pla-
nar approaches. Moreover, we exclude techniques based on
discretization [25], since these techniques usually have poor
scalability [26]. Finally, we purposely avoid the problem of
outlier rejection, and we assume that gross outliers have been
removed using suitable techniques, e.g., [27], [28].

Section II introduces pose graph optimization and dis-
cusses the importance of rotation estimation. Section III
surveys five techniques for rotation estimation. In particular,
Section III-A reviews the closed-form solution for graphs
with a single cycle, proposed by Sharp et al. in [14], and fur-
ther studied by Dubbelman et al. [24], and Peters et al. [29].
Section III-B reviews the chordal relaxation of Martinec and
Pajdla [1]. Section III-C reviews the quaternion relaxation of
Govindu [11], and the recent analysis of Hartley et al. [15].
Section III-D reviews the semidefinite programming relax-
ation of Fredriksson and Olsson [16]. Section III-E discusses
the gradient descent technique of Tron and Vidal [30].
Section IV provides numerical comparisons and elucidates
on the use of these techniques in SLAM.

Beyond the survey contribution, we propose three minor
contributions. First, we extend the technique of Section III-
B to incorporate vertical direction measurements; this is im-
portant when rotation estimation can be informed by gravity
measurements from an IMU. Second, we show how to exploit
rotation estimation in SLAM and we compare the surveyed
techniques in simulated and real robotics benchmarking
problems. Third, we release an open source implementation
of the best performing techniques as part of the gtsam

suite [31], which is a widely used library for SLAM.
Note that computer vision literature offers an excellent

survey on rotation averaging [15]. In this work, we comple-
ment [15] by covering other techniques (3 of the 5 techniques
reviewed in this paper are not discussed in [15]) and by
presenting a numerical evaluation on robotic problems.

II. WHY IS ROTATION ESTIMATION IMPORTANT?
In this section we remark why rotation estimation is central

to pose graph optimization (Section II-A) and we introduce

standard distance metrics in SO(3) (Section II-B).

A. Pose Graph Optimization and Rotation Initialization

Pose graph optimization estimates n robot poses from m
relative pose measurements. Both robot poses and relative
measurements are quantities in SE(3)

.
= {(R, t) : R 2

SO(3), t 2 R3}. The special orthogonal group SO(3) is the
set of 3D rotations which is formally defined as SO(3)

.
=

{R 2 R3⇥3
: RTR = I3, det(R) = 1}, where I3 is the

3⇥ 3 identity matrix and det(·) is the matrix determinant.
The problem can be easily visualized as a directed graph,

in which nodes correspond to robot poses (to be estimated)
while edges E correspond to relative measurements. An edge
(i, j) 2 E encodes a relative pose measurement between pose
i and j. Each relative pose measurement includes a relative
rotation Rij and a relative translation tij :

tij = RT
i (tj � ti) + t✏ij , Rij = RT

i RjR
✏
ij , (1)

where the pair (Ri, ti) defines the pose of node i (resp. j),
and t✏ij 2 R3, R✏

ij 2 SO(3) denote measurement noise.
Pose graph optimization estimates robot positions {ti} and

rotations {Ri} by solving the optimization problem

min
{Ri}2SO(3)

{ti}2R3

X

(i,j)2E

dR3

�
tij ,R

T
i (tj�ti)

�2
+dSO(3)

�
Rij ,R

T
i Rj

�2

(2)
where dR3(ta, tb) denotes the Euclidean distance between
two vectors ta, tb 2 R3, while dSO(3)(Ra,Rb) denotes a
distance metric between two rotations in SO(3). Roughly
speaking, Problem (2) looks for the estimates (Ri, ti), i =
1, . . . , n that minimize the mismatch with respect to the
measurements (tij ,Rij), 8(i, j) 2 E , according to the
distance metrics dR3(·, ·) and dSO(3)(·, ·).

The Euclidean distance dR3(·, ·) is simply:

dR3

�
tij ,R

T
i (tj�ti)

� .
=
��RT

i (tj�ti)�tij
��=ktj�ti�Ritijk ,

(3)
while different choices for the distance dSO(3)(·, ·) are dis-
cussed in Section II-B.1

The following observations motivate our interest in rota-
tion estimation. First, if rotations were known, say Ri = R̂i,
8i = 1 . . . , n, Problem (2) would simplify to:

min
{ti}2R3

X

(i,j)2E

���tj � ti � R̂itij
���
2

(4)

which is a linear least squares problem, hence easy to solve.
Second, translations appear linearly in the residual errors
in (3), and this implies that the initial guess for translations
is irrelevant. Third, in common SLAM problems, the first
term in (2) has a minor influence on the rotation estimate,
and an accurate rotation initialization can be computed by
minimizing only the second term:

P : min
{Ri}2SO(3)

X

(i,j)2E

dSO(3)

�
Rij ,R

T
i Rj

�2
(5)

1Note that we consider isotropic distances. One may use anisotropic
distances (i.e., nondiagonal covariance matrices) in the nonlinear refinement
that usually follows the initialization techniques discussed in this paper.

• Many choices of distance metrics

• Usually first solve rotation and then solve translation

Noisy relative pose measurements 

Relative poses constructed from absolute poses



Rotation optimization (averaging)

• Many choices of loss functions, parameterizations, and optimization methods 
Examples: Crandall (2011), Chatterjee (2013), Tron (2014)  
Surveys: Hartley(2013), Carlone(2015), Tron (2016)

3. Inference-based methods: these techniques do not out-
put a result in terms of rotations, but label each edge
as an outlier or not. They exploit the fact that measure-
ments composed around a cycle in the graph of rotations
should (approximately) give the identity rotation.

It is interesting to notice that these families treat the differ-
ential geometry of the space of rotations differently. Global
methods embed all the rotations into a single subspace, local
methods use the Riemannian manifold structure of the space
while inference-based methods use its group structure. As
such, one might expect that these different families have
complementary stengths and weaknesses. In this paper we
test a few representatives from each family (including ex-
isting and novel variants) and some of their combinations.
Our goal is to find the best performing methods in terms
of robustness to outliers. The only existing analysis with a
similar scope is [10]. That paper, however, did not consider
some of the more advanced methods (such as those based on
low-rank priors), and did not explicitly evaluate the methods
against the presence of outliers.

2. Notation and preliminaries

We model the set of images as an undirected graph
G = (V,E), where the vertices V = {1, . . . , N} repre-
sent the images and the edges E ✓ V ⇥ V represent pairs
of images for which RANSAC was able to find a pose with
a large enough support (25 correspondences in our imple-
mentation). We use deg(i) to number of neighbors (degree)
of node i 2 V . We denote as Ri the rotation component of
the rigid body transformation from camera i to world coor-
dinates, and as R̃ij the measured relative rotation from the
coordinates in camera j to those in camera i. For ideal (noise-
less) measurements, we have R̃ij = RiR

T
j

. We denote the
Lie group rotations as SO(3), which has the group structure
given by the usual matrix multiplication, and a Riemannian
manifold structure giving a geodesic distance dSO(3)(·, ·).
Moreover, we use k·kF and k·k1 to denote, respectively, the
L2 (Frobenious) and L1 (sum of absolute values) vector
norms of a matrix. We use [A]ij;3⇥3 to indicate the three-
by-three block in the i-th block-row and j-th block-column
of a matrix A. Finally, we define the projection of a matrix
A 2 R3⇥3 to SO(3) as

projSO(3)(A) = U diag
�
1, 1, det(UV

T
�
V

T
, (1)

where A = U⌃V T is the Singular Value Decomposition
(SVD) of A.

3. Problem formulation

The general formulation for the rotation optimization
problem is given by:

min
{Ri}i2V 2SO(3)N

X

(i,j)2E

`(Ri, R̃ijRj), (2)

where ` is a loss function which is zero when the two argu-
ments are the same. For ideal measurements, and using the
group properties of rotations, (2) is equivalent to

min
{Ri}i2V 2SO(3)N

X

(i,j)2E

`(RiR
T
i
, R̃ij) (3)

We consider below variants of this general formulation.

4. Datasets and testing protocol

We are interested in evaluating the performance of differ-
ent methods under a varying percentage of outliers. In order
to perform this analysis, we need to use synthetic datasets.
However, we would like to use graph topologies and poses
that are realistic. For this reason, we use the ground-truth
rotations that are provided with the datasets of [27], and ob-
tain the pose-graph from the corresponding images. Table 1
contains a summary of the characteristics of these datasets.

For each dataset, we start from the set of relative rotations
obtained from the ground-truth poses and then introduce
corruptions with a increasing percentage of outliers (from
0% to 80% in 5% increments). The location of the outliers
(i.e., the subset of edges in E) is chosen uniformly at random.
The outlying measurements are obtained by corrupting the
ground-truth with a rotation with a random angle between
60 and 90 degrees and a random axis (to approximate the
distribution of real outliers). For each method we test, we
collect all the distances between the relative rotations in the
result and the ground truth (we do not use the absolute poses
because, in the presence of outliers, the alignment with the
ground truth is not generally straightforward). These errors
are aggregated over 100 random outlier realizations. In all
the plots we will show, we report the mean (in solid lines)
and median (in dashed lines) of these aggregated errors.

5. Global, factorization-based methods

All the methods considered in this section share the ideas
of considering the unknown absolute rotations in a single
stacked matrix R = stack({Ri}i2V ) 2 R3N⇥3, and ne-
glecting the non-linear constraints RT

i
Ri = I for all i 2 V .

Name # poses # edges % edges

Fountain-P11 11 23 41.82
Herz-Jesu-P8 8 13 46.43
Herz-Jesu-P25 25 73 24.33
Castle-P19 19 33 19.30
Castle-P30 30 110 25.29
Entry-P10 10 14 31.11

Table 1: Datasets used to obtain the ground truth poses and
graph topology. The percentage of edges is computed over
the total number of possible pairs.
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Abstract

In this paper we explore the role of duality principles

within the problem of rotation averaging, a fundamental

task in a wide range of computer vision applications. In

its conventional form, rotation averaging is stated as a min-

imization over multiple rotation constraints. As these con-

straints are non-convex, this problem is generally consid-

ered challenging to solve globally. We show how to circum-

vent this difficulty through the use of Lagrangian duality.

While such an approach is well-known it is normally not

guaranteed to provide a tight relaxation. Based on spectral

graph theory, we analytically prove that in many cases there

is no duality gap unless the noise levels are severe. This al-

lows us to obtain certifiably global solutions to a class of

important non-convex problems in polynomial time.

We also propose an efficient, scalable algorithm that out-

performs general purpose numerical solvers and is able to

handle the large problem instances commonly occurring in

structure from motion settings. The potential of this pro-

posed method is demonstrated on a number of different

problems, consisting of both synthetic and real-world data.

1. Introduction

Rotation averaging appears as a subproblem in many
important applications in computer vision, robotics, sen-
sor networks and related areas. Given a number of rela-
tive rotation estimates between pairs of poses, the goal is to
compute absolute camera orientations with respect to some
common coordinate system. In computer vision, for in-
stance, non-sequential structure from motion systems such
as [21, 11, 22] rely on rotation averaging to initialize bundle
adjustment. The overall idea is to consider as much data as
possible in each step to avoid suboptimal reconstructions.
In the context of rotation averaging this amounts to using as
many camera pairs as possible.

The problem can be thought of as inference on the cam-

Figure 1: In many structure from motion pipelines, cam-
era orientations are estimated with rotation averaging fol-
lowed by recovery of camera centres (red) and 3D structure
(blue). Here are three solutions corresponding to different
local minima of the same rotation averaging problem.

era graph. An edge (i, j) in this undirected graph represents
a relative rotation measurement R̃ij and the objective is to
find the absolute orientation Ri for each vertex i such that
RiR̃ij = Rj holds (approximately in the presence of noise)
for all edges. The problem is generally considered difficult
due to the need to enforce non-convex rotation constraints.
Indeed, both L1 and L2 formulations of rotation averaging
can have local minima, see Fig. 1. Wilson et al. [28] studied
local convexity of the problem and showed that instances
with large loosely connected graphs are hard to solve with
local, iterative optimization methods.

In contrast, our focus is on global optimality. In this
paper we show that convex relaxation methods can in fact
overcome the difficulties with local minima in rotation aver-
aging. We utilize Lagrangian duality to handle the quadratic
non-convex rotation constraints. While such an approach is
normally not guaranteed to provide a tight relaxation we
give analytical error bounds that guarantee there will be no
duality gap. For instance, it is sufficient that each angular
residual is less than 42.9� to ensure optimality for complete
camera graphs. Additionally, we develop a scalable and ef-
ficient algorithm, based on block coordinate descent, that
outperforms standard semidefinite program (SDP) solvers
for this problem.
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Spectral relaxation

which essentially requires to find rotations T̃ij whose compo-
sition is a known rotation ST

L, and such that the rotation an-
gles are small, in the sense of the angular norm kLog(T̃ij)k.

It is possible to show [14] that the minimum of (17) is
attained when the rotations T̃ij have the same rotation axis
of ST

L and rotation angle equal to kLog
�
ST
L
�
k/m:

T̃ ?
ij = Exp

 
Log

�
ST

L
�

m

!
(18)

where Exp (·) is the exponential map for SO(3).
Substituting T̃ ?

ij back into (16) and (13), we get the opti-
mal relative rotations. We then retrieve the desired absolute
rotations from (11), by chaining the relative rotations.

Related work [14], [33], [29] also discusses extensions to
the multi-loop case; these are iterative in nature and currently
cannot guarantee convergence to the optimal estimate.

B. Chordal Relaxation [1]
This section reviews the approach proposed by Martinec

and Pajdla [1]. This technique does not return the optimal so-
lution of Problem P in general, but, as shown in Section IV,
it performs astonishingly well in practice.

Let us use the chordal distance in Problem P:

min
{Ri}2SO(3)

X

(i,j)2E

��Rij�RT
i Rj

��2
F
=

min
{Ri}2SO(3)

X

(i,j)2E

��RT
ijR

T
i �RT

j

��2
F
. (19)

If we call rki the k-th row of Ri (k = 1, 2, 3), and we
write each row as a column vector, eq. (19) becomes:

min
{rk

i }

P
(i,j)2E

P
k=1,2,3

��RT
ijr

k
i � rkj

��2

subject to
⇥
r1i r2i r3i

⇤T 2 SO(3), i = 1, . . . , n, (20)

where the constraint restricts the choices of rki to vectors that
form meaningful rows of a rotation matrix (i.e., orthonormal
vectors that follow the right-hand rule).

The idea behind the second technique is a very simple one.
Rather than solving directly problem (20), one first solves an
unconstrained version of (20):

min
{rk

i }

X

(i,j)2E

X

k=1,2,3

��RT
ijr

k
i � rkj

��2 (21)

and obtains n matrices Mi
.
=

⇥
r1i r2i r3i

⇤T (which are not
rotations in general). Each rotation is then computed as:

R?
i = argmin

Ri2SO(3)

kMi �Rik2F (22)

which looks for the closest rotation matrix (in the Frobenius
norm sense) to Mi. The advantage is that (21) is a linear
least-squares problem. Moreover, problem (22) admits a
closed-form solution [15]: if we compute the singular value
decomposition Mi = SDV T, then:

R?
i = S diag

�
[1 1 det(SV T

)]
�
V T. (23)

Remark 1 (Homogeneous least squares): Problem (20) is
a homogeneous least squares problem, hence admits a trivial
solution in which the vectors are all zero. This reflects

an observability issue as we are trying to estimate global
rotations from relative measurements (the global frame is
unobservable). We can solve this indetermination by includ-
ing a prior on a rotation (e.g., the first rotation is R1 = I3),
or imposing a norm constraint as in [1]. We adopt the first
solution as it easily extends to the presence of other priors,
such as the one in the following subsection.

Including vertical priors. In the rest of this section
we present an original extension of the chordal relaxation
technique [1] to include vertical direction measurements.
Assume that the robot can measure the vertical direction
vi in the local frame Ri. For instance, it can sense the
gravity vector using an IMU. In the global frame the vertical
direction is g = [0 0 1]

T. The measurement model is:

vi = RT
i g + v✏

i (24)

where v✏
i represents measurement noise and the matrix RT

i
transforms g to the local frame. Since g = [0 0 1]

T, it is
easy to see that RT

i g = r3i , i.e., vi is a noisy measurement
of the last row of Ri. Therefore, if we have a set of vertical
measurements V , problem (21) can be extended to:

min
{rk

i }

X

(i,j)2E

X

k=1,2,3

��RT
ijr

k
i � rkj

��2 +
X

i2V

��r3i � vi

��2 (25)

which is still a linear least squares problem. A small example
in which we estimate rotations via (25) is reported in the
supplementary material [34].

C. Quaternion Relaxation [11], [15]

This section reviews the rotation estimation approach of
Govindu [11] and the recent analysis of Hartley et al. [15].
This approach uses the quaternion distance in Problem P:

min
{qi},{bij}

X

(i,j)2E

��qij � bij q
�1

i · qj
��2

subject to kqik2= 1, i = 1, . . . , n

bij 2 {�1,+1}, (i, j) 2 E (26)

where · denotes quaternion multiplication, and we use bij 2
{�1,+1} to model the sign ambiguity (compare with (6)).

Problem (26) is hard for the presence of integer variables
bij and because the norm constraints are non-convex.

Hartley et al. [15] propose to solve (26) in two steps. First,
determine the signs bij , and then solve (26) with fixed bij .
This two-stage solution is suboptimal in general, but it works
well for low levels of noise (Section IV). Let us review the
two steps required to (approximately) solve (26).

1) Computing the signs bij: Hartley et al. [15] propose
to determine bij using a spanning tree of the graph. Here
we give a different interpretation, based on the cycles of the
graph. We believe this interpretation is interesting as (i) it
shows that there are only ` integer variables to determine,
where ` = m� n+ 1 is the number of cycles in the graph,
and (ii) it draws connections with the planar solution [7].

As we did in Section III-A, we apply a change of variables,
so to work on the relative rotations:

q̃ij
.
= bij q

�1

i · qj (27)

This leads to optimization problems that can be solved glob-
ally (even in the presence of outliers), obtaining a (possibly)
approximate solution R. The final estimates are then ob-
tained by using projections:

Ri = projSO(3)

�
[R]i;3⇥3

�
, i 2 V . (4)

The various methods in how the matrix R is obtained and in
how the constraints are relaxed.

5.1. Linear methods

These methods obtain R from the SVD of some ma-
trix containing the measurements {R̃ij}, and use the loss
`(R1, R2) = kR1 �R2k2F in (2). Each term of the cost can
be expressed in different ways:

kRi � R̃ijRjk2F (5)

= kRikF � 2 tr(RT
i
R̃ijRj) + kRjkF (6)

= tr

 
Ri

Rj

�T 
I �R̃ij

�Rij
T

I

� 
Ri

Rj

�!
(7)

= 6� 2 tr(R̃T
ij
RiR

T
j
). (8)

Note that (7) and (8) are equivalent only if Ri, Rj are
orthonormal matrices. We then define the two matrices
L̃, G̃ 2 R3N⇥3N as

[L̃]ij;3⇥3 =

8
><

>:

deg(i)I if i = j,

�R̃ij if (i, j) 2 E,

0 otherwise,
(9)

[G̃]ij;3⇥3 =

8
><

>:

I if i = j,

R̃ij if (i, j) 2 E,

0 otherwise,
(10)

with the convention that R̃ji = R̃
T
ij

. The matrix L̃ is some-
times referred to as the Graph Connection Laplacian [24].
We can use (7) and (8) to rewrite (2) as:

min tr(RT
L̃R), (11)

max tr(RT
G̃R), (12)

and use the constraint RTR = I instead of considering
Ri 2 SO(3), i 2 V . Note that this effectively changes
the domain of the problem from the manifold SO(3)N to
the Stiefel manifold V3(R3N ). We call (11) the Linear L2
formulation and (12) the Linear Trace formulation. They
were first introduced by [21] and [5], respectively. Note that
(11) and (12) are no longer equivalent (this is because the
equality in (8) does not hold). With the relaxed constraint,
problem (11) (resp., (12)) can be solved in closed form after
computing the SVD of L̃ (resp., G̃) and setting R to be equal
to the three singular vector corresponding to the bottom
(resp., top) singular values.

Variant 1: Inspired by normalized cuts [23], we also
consider substituting the Laplacian L̃ with the Normalized
Laplacian D

� 1
2 L̃D

� 1
2 . The solution is then obtained by pro-

jecting D
� 1

2R instead of R directly (a similar modification
is considered with G̃). In general, this enhances the spectral
gap after the top (or bottom) three singular values, leading
to a possible performance improvement. These variant have
been proposed in [5, 24]. In the experiments, these variants
are denoted by the suffix Norm.

Variant 2: Inspired by the metric upgrade in affine SfM
[28], we tested the additional step of finding a matrix K 2
R3⇥3 such that the blocks in RK are close to orthonormal:

argmin
K2R3⇥3

k[R]i;3⇥3KK
T[R]T

i;3⇥3 � Ik2
F
. (13)

This variant is denoted by the suffix Upg.
Numerical tests: Figure 1 shows the results of the com-

parison of the linear methods. For both the Laplacian and
the trace formulations, the normalization step leads to worse
perfomances, and the metric upgrade does not make an ap-
preciable difference. Between the two formulations (without
modifications), the trace formulation give slightly better re-
sults. Note that these method are not robust to outliers (as
expected), but they establish a good baseline.

5.2. Semidefinite and Nuclear Norm relaxations

These methods can be seen as an evolution of the ones
above. Instead of recovering R directly, these method aim
to recover the matrix G = RRT, which has four character-
istics: it is positive-semidefinite, has rank three, each block
on the diagonal is equal to I and each block off the diago-
nal [G]ij;3⇥3 corresponds to the ideal measurement RiR

T
j

.
Then, the orthogonality constraints of SO(3) are relaxed to
either positive-semidefinite constraints on G (G ⌫ 0, lead-
ing to an Semi-Definite Program, SDP, formulation) or to
a low-rank prior (leading to a Nuclear Norm formulation)
subject to the constraints on the diagonal (which are linear).
These relaxation can be paired with different objective func-
tions. The matrix R is then obtained as in the Linear Trace
formulation, where G is used instead of G̃.

5.2.1 Trace formulation

This formulation has first appeared in [5]. To derive it, note
that the cost in (12) can be written as tr(G̃RRT) = tr(G̃G).
Together with the SDP relaxation, this leads to solving

max
G⌫0,[G]ii;3⇥3=I

tr(G̃G). (14)

This is a convex problem (because we dropped the rank-three
constraint) and it can be efficiently solved (we use CVX [16]
in our implementation).

Variant 1: We can constraint each block [G]ij;3⇥3 to
be in the convex hull of SO(3) with a minimal number

R =
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Use least-squares loss and write loss in matrix form

This leads to optimization problems that can be solved glob-
ally (even in the presence of outliers), obtaining a (possibly)
approximate solution R. The final estimates are then ob-
tained by using projections:

Ri = projSO(3)

�
[R]i;3⇥3

�
, i 2 V . (4)

The various methods in how the matrix R is obtained and in
how the constraints are relaxed.

5.1. Linear methods

These methods obtain R from the SVD of some ma-
trix containing the measurements {R̃ij}, and use the loss
`(R1, R2) = kR1 �R2k2F in (2). Each term of the cost can
be expressed in different ways:

kRi � R̃ijRjk2F (5)

= kRikF � 2 tr(RT
i
R̃ijRj) + kRjkF (6)

= tr
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Ri

Rj

�T 
I �R̃ij

�Rij
T

I

� 
Ri

Rj

�!
(7)

= 6� 2 tr(R̃T
ij
RiR

T
j
). (8)

Note that (7) and (8) are equivalent only if Ri, Rj are
orthonormal matrices. We then define the two matrices
L̃, G̃ 2 R3N⇥3N as

[L̃]ij;3⇥3 =

8
><

>:

deg(i)I if i = j,

�R̃ij if (i, j) 2 E,

0 otherwise,
(9)
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8
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I if i = j,

R̃ij if (i, j) 2 E,

0 otherwise,
(10)

with the convention that R̃ji = R̃
T
ij

. The matrix L̃ is some-
times referred to as the Graph Connection Laplacian [24].
We can use (7) and (8) to rewrite (2) as:

min tr(RT
L̃R), (11)

max tr(RT
G̃R), (12)

and use the constraint RTR = I instead of considering
Ri 2 SO(3), i 2 V . Note that this effectively changes
the domain of the problem from the manifold SO(3)N to
the Stiefel manifold V3(R3N ). We call (11) the Linear L2
formulation and (12) the Linear Trace formulation. They
were first introduced by [21] and [5], respectively. Note that
(11) and (12) are no longer equivalent (this is because the
equality in (8) does not hold). With the relaxed constraint,
problem (11) (resp., (12)) can be solved in closed form after
computing the SVD of L̃ (resp., G̃) and setting R to be equal
to the three singular vector corresponding to the bottom
(resp., top) singular values.

Variant 1: Inspired by normalized cuts [23], we also
consider substituting the Laplacian L̃ with the Normalized
Laplacian D

� 1
2 L̃D

� 1
2 . The solution is then obtained by pro-

jecting D
� 1

2R instead of R directly (a similar modification
is considered with G̃). In general, this enhances the spectral
gap after the top (or bottom) three singular values, leading
to a possible performance improvement. These variant have
been proposed in [5, 24]. In the experiments, these variants
are denoted by the suffix Norm.

Variant 2: Inspired by the metric upgrade in affine SfM
[28], we tested the additional step of finding a matrix K 2
R3⇥3 such that the blocks in RK are close to orthonormal:

argmin
K2R3⇥3

k[R]i;3⇥3KK
T[R]T

i;3⇥3 � Ik2
F
. (13)

This variant is denoted by the suffix Upg.
Numerical tests: Figure 1 shows the results of the com-

parison of the linear methods. For both the Laplacian and
the trace formulations, the normalization step leads to worse
perfomances, and the metric upgrade does not make an ap-
preciable difference. Between the two formulations (without
modifications), the trace formulation give slightly better re-
sults. Note that these method are not robust to outliers (as
expected), but they establish a good baseline.

5.2. Semidefinite and Nuclear Norm relaxations

These methods can be seen as an evolution of the ones
above. Instead of recovering R directly, these method aim
to recover the matrix G = RRT, which has four character-
istics: it is positive-semidefinite, has rank three, each block
on the diagonal is equal to I and each block off the diago-
nal [G]ij;3⇥3 corresponds to the ideal measurement RiR

T
j

.
Then, the orthogonality constraints of SO(3) are relaxed to
either positive-semidefinite constraints on G (G ⌫ 0, lead-
ing to an Semi-Definite Program, SDP, formulation) or to
a low-rank prior (leading to a Nuclear Norm formulation)
subject to the constraints on the diagonal (which are linear).
These relaxation can be paired with different objective func-
tions. The matrix R is then obtained as in the Linear Trace
formulation, where G is used instead of G̃.

5.2.1 Trace formulation

This formulation has first appeared in [5]. To derive it, note
that the cost in (12) can be written as tr(G̃RRT) = tr(G̃G).
Together with the SDP relaxation, this leads to solving

max
G⌫0,[G]ii;3⇥3=I

tr(G̃G). (14)

This is a convex problem (because we dropped the rank-three
constraint) and it can be efficiently solved (we use CVX [16]
in our implementation).

Variant 1: We can constraint each block [G]ij;3⇥3 to
be in the convex hull of SO(3) with a minimal number

and then using the rotation estimate to initialize 2D pose
graph optimization entails consistent advantages in terms of
computation and robustness. In this work we show that this
initialization is beneficial in the 3D case as well (Fig. 1).
While in 2D it is possible to devise exact closed-form
solutions for rotation estimation [7], no closed-form solution
is known in the 3D case (beside the simple case of pose
graphs with a single cycle). However, related work offers
many approaches that work well in practice.

Our survey spans contributions to 3D rotation estimation
across three research communities. First, rotation estimation
(a.k.a. rotation averaging) has been studied in computer vi-
sion, where accurate camera orientation estimation is critical
to solve Bundle Adjustment in Structure from Motion [11],
[1], [12], [13], [14], [15], [16]. Second, rotation estimation
has been investigated in the control theory community, where
it finds application to vehicle coordination [17], sensor
network localization and camera network calibration [18],
[19], attitude synchronization [20], [21], and distributed
consensus on manifold [22], [23]. Third, techniques to solve
for rotations have been studied in robotics [17], [7], [24].

Since our goal is to initialize 3D SLAM, we omit pla-
nar approaches. Moreover, we exclude techniques based on
discretization [25], since these techniques usually have poor
scalability [26]. Finally, we purposely avoid the problem of
outlier rejection, and we assume that gross outliers have been
removed using suitable techniques, e.g., [27], [28].

Section II introduces pose graph optimization and dis-
cusses the importance of rotation estimation. Section III
surveys five techniques for rotation estimation. In particular,
Section III-A reviews the closed-form solution for graphs
with a single cycle, proposed by Sharp et al. in [14], and fur-
ther studied by Dubbelman et al. [24], and Peters et al. [29].
Section III-B reviews the chordal relaxation of Martinec and
Pajdla [1]. Section III-C reviews the quaternion relaxation of
Govindu [11], and the recent analysis of Hartley et al. [15].
Section III-D reviews the semidefinite programming relax-
ation of Fredriksson and Olsson [16]. Section III-E discusses
the gradient descent technique of Tron and Vidal [30].
Section IV provides numerical comparisons and elucidates
on the use of these techniques in SLAM.

Beyond the survey contribution, we propose three minor
contributions. First, we extend the technique of Section III-
B to incorporate vertical direction measurements; this is im-
portant when rotation estimation can be informed by gravity
measurements from an IMU. Second, we show how to exploit
rotation estimation in SLAM and we compare the surveyed
techniques in simulated and real robotics benchmarking
problems. Third, we release an open source implementation
of the best performing techniques as part of the gtsam

suite [31], which is a widely used library for SLAM.
Note that computer vision literature offers an excellent

survey on rotation averaging [15]. In this work, we comple-
ment [15] by covering other techniques (3 of the 5 techniques
reviewed in this paper are not discussed in [15]) and by
presenting a numerical evaluation on robotic problems.

II. WHY IS ROTATION ESTIMATION IMPORTANT?
In this section we remark why rotation estimation is central

to pose graph optimization (Section II-A) and we introduce

standard distance metrics in SO(3) (Section II-B).

A. Pose Graph Optimization and Rotation Initialization

Pose graph optimization estimates n robot poses from m
relative pose measurements. Both robot poses and relative
measurements are quantities in SE(3)

.
= {(R, t) : R 2

SO(3), t 2 R3}. The special orthogonal group SO(3) is the
set of 3D rotations which is formally defined as SO(3)

.
=

{R 2 R3⇥3
: RTR = I3, det(R) = 1}, where I3 is the

3⇥ 3 identity matrix and det(·) is the matrix determinant.
The problem can be easily visualized as a directed graph,

in which nodes correspond to robot poses (to be estimated)
while edges E correspond to relative measurements. An edge
(i, j) 2 E encodes a relative pose measurement between pose
i and j. Each relative pose measurement includes a relative
rotation Rij and a relative translation tij :

tij = RT
i (tj � ti) + t✏ij , Rij = RT

i RjR
✏
ij , (1)

where the pair (Ri, ti) defines the pose of node i (resp. j),
and t✏ij 2 R3, R✏

ij 2 SO(3) denote measurement noise.
Pose graph optimization estimates robot positions {ti} and

rotations {Ri} by solving the optimization problem

min
{Ri}2SO(3)

{ti}2R3

X

(i,j)2E

dR3

�
tij ,R

T
i (tj�ti)

�2
+dSO(3)

�
Rij ,R

T
i Rj

�2

(2)
where dR3(ta, tb) denotes the Euclidean distance between
two vectors ta, tb 2 R3, while dSO(3)(Ra,Rb) denotes a
distance metric between two rotations in SO(3). Roughly
speaking, Problem (2) looks for the estimates (Ri, ti), i =
1, . . . , n that minimize the mismatch with respect to the
measurements (tij ,Rij), 8(i, j) 2 E , according to the
distance metrics dR3(·, ·) and dSO(3)(·, ·).

The Euclidean distance dR3(·, ·) is simply:

dR3

�
tij ,R

T
i (tj�ti)

� .
=
��RT

i (tj�ti)�tij
��=ktj�ti�Ritijk ,

(3)
while different choices for the distance dSO(3)(·, ·) are dis-
cussed in Section II-B.1

The following observations motivate our interest in rota-
tion estimation. First, if rotations were known, say Ri = R̂i,
8i = 1 . . . , n, Problem (2) would simplify to:

min
{ti}2R3

X

(i,j)2E

���tj � ti � R̂itij
���
2

(4)

which is a linear least squares problem, hence easy to solve.
Second, translations appear linearly in the residual errors
in (3), and this implies that the initial guess for translations
is irrelevant. Third, in common SLAM problems, the first
term in (2) has a minor influence on the rotation estimate,
and an accurate rotation initialization can be computed by
minimizing only the second term:

P : min
{Ri}2SO(3)

X

(i,j)2E

dSO(3)

�
Rij ,R

T
i Rj

�2
(5)

1Note that we consider isotropic distances. One may use anisotropic
distances (i.e., nondiagonal covariance matrices) in the nonlinear refinement
that usually follows the initialization techniques discussed in this paper.

Relax constraints on rotations

Then the problem becomes

Analytically solved by Eigenvalue decomposition!

This leads to optimization problems that can be solved glob-
ally (even in the presence of outliers), obtaining a (possibly)
approximate solution R. The final estimates are then ob-
tained by using projections:

Ri = projSO(3)

�
[R]i;3⇥3

�
, i 2 V . (4)

The various methods in how the matrix R is obtained and in
how the constraints are relaxed.

5.1. Linear methods

These methods obtain R from the SVD of some ma-
trix containing the measurements {R̃ij}, and use the loss
`(R1, R2) = kR1 �R2k2F in (2). Each term of the cost can
be expressed in different ways:

kRi � R̃ijRjk2F (5)

= kRikF � 2 tr(RT
i
R̃ijRj) + kRjkF (6)

= tr

 
Ri

Rj

�T 
I �R̃ij

�Rij
T

I

� 
Ri

Rj

�!
(7)

= 6� 2 tr(R̃T
ij
RiR

T
j
). (8)

Note that (7) and (8) are equivalent only if Ri, Rj are
orthonormal matrices. We then define the two matrices
L̃, G̃ 2 R3N⇥3N as

[L̃]ij;3⇥3 =

8
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deg(i)I if i = j,
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0 otherwise,
(9)
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8
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0 otherwise,
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with the convention that R̃ji = R̃
T
ij

. The matrix L̃ is some-
times referred to as the Graph Connection Laplacian [24].
We can use (7) and (8) to rewrite (2) as:

min tr(RT
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and use the constraint RTR = I instead of considering
Ri 2 SO(3), i 2 V . Note that this effectively changes
the domain of the problem from the manifold SO(3)N to
the Stiefel manifold V3(R3N ). We call (11) the Linear L2
formulation and (12) the Linear Trace formulation. They
were first introduced by [21] and [5], respectively. Note that
(11) and (12) are no longer equivalent (this is because the
equality in (8) does not hold). With the relaxed constraint,
problem (11) (resp., (12)) can be solved in closed form after
computing the SVD of L̃ (resp., G̃) and setting R to be equal
to the three singular vector corresponding to the bottom
(resp., top) singular values.

Variant 1: Inspired by normalized cuts [23], we also
consider substituting the Laplacian L̃ with the Normalized
Laplacian D
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2 L̃D

� 1
2 . The solution is then obtained by pro-

jecting D
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2R instead of R directly (a similar modification
is considered with G̃). In general, this enhances the spectral
gap after the top (or bottom) three singular values, leading
to a possible performance improvement. These variant have
been proposed in [5, 24]. In the experiments, these variants
are denoted by the suffix Norm.

Variant 2: Inspired by the metric upgrade in affine SfM
[28], we tested the additional step of finding a matrix K 2
R3⇥3 such that the blocks in RK are close to orthonormal:

argmin
K2R3⇥3
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T[R]T
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F
. (13)

This variant is denoted by the suffix Upg.
Numerical tests: Figure 1 shows the results of the com-

parison of the linear methods. For both the Laplacian and
the trace formulations, the normalization step leads to worse
perfomances, and the metric upgrade does not make an ap-
preciable difference. Between the two formulations (without
modifications), the trace formulation give slightly better re-
sults. Note that these method are not robust to outliers (as
expected), but they establish a good baseline.

5.2. Semidefinite and Nuclear Norm relaxations

These methods can be seen as an evolution of the ones
above. Instead of recovering R directly, these method aim
to recover the matrix G = RRT, which has four character-
istics: it is positive-semidefinite, has rank three, each block
on the diagonal is equal to I and each block off the diago-
nal [G]ij;3⇥3 corresponds to the ideal measurement RiR

T
j

.
Then, the orthogonality constraints of SO(3) are relaxed to
either positive-semidefinite constraints on G (G ⌫ 0, lead-
ing to an Semi-Definite Program, SDP, formulation) or to
a low-rank prior (leading to a Nuclear Norm formulation)
subject to the constraints on the diagonal (which are linear).
These relaxation can be paired with different objective func-
tions. The matrix R is then obtained as in the Linear Trace
formulation, where G is used instead of G̃.

5.2.1 Trace formulation

This formulation has first appeared in [5]. To derive it, note
that the cost in (12) can be written as tr(G̃RRT) = tr(G̃G).
Together with the SDP relaxation, this leads to solving

max
G⌫0,[G]ii;3⇥3=I

tr(G̃G). (14)

This is a convex problem (because we dropped the rank-three
constraint) and it can be efficiently solved (we use CVX [16]
in our implementation).

Variant 1: We can constraint each block [G]ij;3⇥3 to
be in the convex hull of SO(3) with a minimal number

This leads to optimization problems that can be solved glob-
ally (even in the presence of outliers), obtaining a (possibly)
approximate solution R. The final estimates are then ob-
tained by using projections:

Ri = projSO(3)

�
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�
, i 2 V . (4)

The various methods in how the matrix R is obtained and in
how the constraints are relaxed.

5.1. Linear methods

These methods obtain R from the SVD of some ma-
trix containing the measurements {R̃ij}, and use the loss
`(R1, R2) = kR1 �R2k2F in (2). Each term of the cost can
be expressed in different ways:

kRi � R̃ijRjk2F (5)

= kRikF � 2 tr(RT
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Note that (7) and (8) are equivalent only if Ri, Rj are
orthonormal matrices. We then define the two matrices
L̃, G̃ 2 R3N⇥3N as

[L̃]ij;3⇥3 =
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><

>:

deg(i)I if i = j,

�R̃ij if (i, j) 2 E,

0 otherwise,
(9)

[G̃]ij;3⇥3 =
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I if i = j,

R̃ij if (i, j) 2 E,

0 otherwise,
(10)

with the convention that R̃ji = R̃
T
ij

. The matrix L̃ is some-
times referred to as the Graph Connection Laplacian [24].
We can use (7) and (8) to rewrite (2) as:

min tr(RT
L̃R), (11)

max tr(RT
G̃R), (12)

and use the constraint RTR = I instead of considering
Ri 2 SO(3), i 2 V . Note that this effectively changes
the domain of the problem from the manifold SO(3)N to
the Stiefel manifold V3(R3N ). We call (11) the Linear L2
formulation and (12) the Linear Trace formulation. They
were first introduced by [21] and [5], respectively. Note that
(11) and (12) are no longer equivalent (this is because the
equality in (8) does not hold). With the relaxed constraint,
problem (11) (resp., (12)) can be solved in closed form after
computing the SVD of L̃ (resp., G̃) and setting R to be equal
to the three singular vector corresponding to the bottom
(resp., top) singular values.

Variant 1: Inspired by normalized cuts [23], we also
consider substituting the Laplacian L̃ with the Normalized
Laplacian D

� 1
2 L̃D

� 1
2 . The solution is then obtained by pro-

jecting D
� 1

2R instead of R directly (a similar modification
is considered with G̃). In general, this enhances the spectral
gap after the top (or bottom) three singular values, leading
to a possible performance improvement. These variant have
been proposed in [5, 24]. In the experiments, these variants
are denoted by the suffix Norm.

Variant 2: Inspired by the metric upgrade in affine SfM
[28], we tested the additional step of finding a matrix K 2
R3⇥3 such that the blocks in RK are close to orthonormal:

argmin
K2R3⇥3

k[R]i;3⇥3KK
T[R]T

i;3⇥3 � Ik2
F
. (13)

This variant is denoted by the suffix Upg.
Numerical tests: Figure 1 shows the results of the com-

parison of the linear methods. For both the Laplacian and
the trace formulations, the normalization step leads to worse
perfomances, and the metric upgrade does not make an ap-
preciable difference. Between the two formulations (without
modifications), the trace formulation give slightly better re-
sults. Note that these method are not robust to outliers (as
expected), but they establish a good baseline.

5.2. Semidefinite and Nuclear Norm relaxations

These methods can be seen as an evolution of the ones
above. Instead of recovering R directly, these method aim
to recover the matrix G = RRT, which has four character-
istics: it is positive-semidefinite, has rank three, each block
on the diagonal is equal to I and each block off the diago-
nal [G]ij;3⇥3 corresponds to the ideal measurement RiR
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.
Then, the orthogonality constraints of SO(3) are relaxed to
either positive-semidefinite constraints on G (G ⌫ 0, lead-
ing to an Semi-Definite Program, SDP, formulation) or to
a low-rank prior (leading to a Nuclear Norm formulation)
subject to the constraints on the diagonal (which are linear).
These relaxation can be paired with different objective func-
tions. The matrix R is then obtained as in the Linear Trace
formulation, where G is used instead of G̃.

5.2.1 Trace formulation

This formulation has first appeared in [5]. To derive it, note
that the cost in (12) can be written as tr(G̃RRT) = tr(G̃G).
Together with the SDP relaxation, this leads to solving

max
G⌫0,[G]ii;3⇥3=I

tr(G̃G). (14)

This is a convex problem (because we dropped the rank-three
constraint) and it can be efficiently solved (we use CVX [16]
in our implementation).

Variant 1: We can constraint each block [G]ij;3⇥3 to
be in the convex hull of SO(3) with a minimal number
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SDP relaxation

This leads to optimization problems that can be solved glob-
ally (even in the presence of outliers), obtaining a (possibly)
approximate solution R. The final estimates are then ob-
tained by using projections:

Ri = projSO(3)

�
[R]i;3⇥3

�
, i 2 V . (4)

The various methods in how the matrix R is obtained and in
how the constraints are relaxed.

5.1. Linear methods

These methods obtain R from the SVD of some ma-
trix containing the measurements {R̃ij}, and use the loss
`(R1, R2) = kR1 �R2k2F in (2). Each term of the cost can
be expressed in different ways:
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Note that (7) and (8) are equivalent only if Ri, Rj are
orthonormal matrices. We then define the two matrices
L̃, G̃ 2 R3N⇥3N as

[L̃]ij;3⇥3 =
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>:

deg(i)I if i = j,

�R̃ij if (i, j) 2 E,

0 otherwise,
(9)

[G̃]ij;3⇥3 =

8
><

>:

I if i = j,

R̃ij if (i, j) 2 E,

0 otherwise,
(10)

with the convention that R̃ji = R̃
T
ij

. The matrix L̃ is some-
times referred to as the Graph Connection Laplacian [24].
We can use (7) and (8) to rewrite (2) as:

min tr(RT
L̃R), (11)

max tr(RT
G̃R), (12)

and use the constraint RTR = I instead of considering
Ri 2 SO(3), i 2 V . Note that this effectively changes
the domain of the problem from the manifold SO(3)N to
the Stiefel manifold V3(R3N ). We call (11) the Linear L2
formulation and (12) the Linear Trace formulation. They
were first introduced by [21] and [5], respectively. Note that
(11) and (12) are no longer equivalent (this is because the
equality in (8) does not hold). With the relaxed constraint,
problem (11) (resp., (12)) can be solved in closed form after
computing the SVD of L̃ (resp., G̃) and setting R to be equal
to the three singular vector corresponding to the bottom
(resp., top) singular values.

Variant 1: Inspired by normalized cuts [23], we also
consider substituting the Laplacian L̃ with the Normalized
Laplacian D

� 1
2 L̃D

� 1
2 . The solution is then obtained by pro-

jecting D
� 1

2R instead of R directly (a similar modification
is considered with G̃). In general, this enhances the spectral
gap after the top (or bottom) three singular values, leading
to a possible performance improvement. These variant have
been proposed in [5, 24]. In the experiments, these variants
are denoted by the suffix Norm.

Variant 2: Inspired by the metric upgrade in affine SfM
[28], we tested the additional step of finding a matrix K 2
R3⇥3 such that the blocks in RK are close to orthonormal:

argmin
K2R3⇥3

k[R]i;3⇥3KK
T[R]T

i;3⇥3 � Ik2
F
. (13)

This variant is denoted by the suffix Upg.
Numerical tests: Figure 1 shows the results of the com-

parison of the linear methods. For both the Laplacian and
the trace formulations, the normalization step leads to worse
perfomances, and the metric upgrade does not make an ap-
preciable difference. Between the two formulations (without
modifications), the trace formulation give slightly better re-
sults. Note that these method are not robust to outliers (as
expected), but they establish a good baseline.

5.2. Semidefinite and Nuclear Norm relaxations

These methods can be seen as an evolution of the ones
above. Instead of recovering R directly, these method aim
to recover the matrix G = RRT, which has four character-
istics: it is positive-semidefinite, has rank three, each block
on the diagonal is equal to I and each block off the diago-
nal [G]ij;3⇥3 corresponds to the ideal measurement RiR

T
j

.
Then, the orthogonality constraints of SO(3) are relaxed to
either positive-semidefinite constraints on G (G ⌫ 0, lead-
ing to an Semi-Definite Program, SDP, formulation) or to
a low-rank prior (leading to a Nuclear Norm formulation)
subject to the constraints on the diagonal (which are linear).
These relaxation can be paired with different objective func-
tions. The matrix R is then obtained as in the Linear Trace
formulation, where G is used instead of G̃.

5.2.1 Trace formulation

This formulation has first appeared in [5]. To derive it, note
that the cost in (12) can be written as tr(G̃RRT) = tr(G̃G).
Together with the SDP relaxation, this leads to solving

max
G⌫0,[G]ii;3⇥3=I

tr(G̃G). (14)

This is a convex problem (because we dropped the rank-three
constraint) and it can be efficiently solved (we use CVX [16]
in our implementation).

Variant 1: We can constraint each block [G]ij;3⇥3 to
be in the convex hull of SO(3) with a minimal number

Rewrite the loss

This leads to optimization problems that can be solved glob-
ally (even in the presence of outliers), obtaining a (possibly)
approximate solution R. The final estimates are then ob-
tained by using projections:

Ri = projSO(3)
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, i 2 V . (4)

The various methods in how the matrix R is obtained and in
how the constraints are relaxed.

5.1. Linear methods

These methods obtain R from the SVD of some ma-
trix containing the measurements {R̃ij}, and use the loss
`(R1, R2) = kR1 �R2k2F in (2). Each term of the cost can
be expressed in different ways:

kRi � R̃ijRjk2F (5)

= kRikF � 2 tr(RT
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= tr
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Note that (7) and (8) are equivalent only if Ri, Rj are
orthonormal matrices. We then define the two matrices
L̃, G̃ 2 R3N⇥3N as

[L̃]ij;3⇥3 =

8
><

>:

deg(i)I if i = j,

�R̃ij if (i, j) 2 E,

0 otherwise,
(9)

[G̃]ij;3⇥3 =

8
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>:

I if i = j,

R̃ij if (i, j) 2 E,

0 otherwise,
(10)

with the convention that R̃ji = R̃
T
ij

. The matrix L̃ is some-
times referred to as the Graph Connection Laplacian [24].
We can use (7) and (8) to rewrite (2) as:

min tr(RT
L̃R), (11)

max tr(RT
G̃R), (12)

and use the constraint RTR = I instead of considering
Ri 2 SO(3), i 2 V . Note that this effectively changes
the domain of the problem from the manifold SO(3)N to
the Stiefel manifold V3(R3N ). We call (11) the Linear L2
formulation and (12) the Linear Trace formulation. They
were first introduced by [21] and [5], respectively. Note that
(11) and (12) are no longer equivalent (this is because the
equality in (8) does not hold). With the relaxed constraint,
problem (11) (resp., (12)) can be solved in closed form after
computing the SVD of L̃ (resp., G̃) and setting R to be equal
to the three singular vector corresponding to the bottom
(resp., top) singular values.

Variant 1: Inspired by normalized cuts [23], we also
consider substituting the Laplacian L̃ with the Normalized
Laplacian D

� 1
2 L̃D

� 1
2 . The solution is then obtained by pro-

jecting D
� 1

2R instead of R directly (a similar modification
is considered with G̃). In general, this enhances the spectral
gap after the top (or bottom) three singular values, leading
to a possible performance improvement. These variant have
been proposed in [5, 24]. In the experiments, these variants
are denoted by the suffix Norm.

Variant 2: Inspired by the metric upgrade in affine SfM
[28], we tested the additional step of finding a matrix K 2
R3⇥3 such that the blocks in RK are close to orthonormal:

argmin
K2R3⇥3

k[R]i;3⇥3KK
T[R]T

i;3⇥3 � Ik2
F
. (13)

This variant is denoted by the suffix Upg.
Numerical tests: Figure 1 shows the results of the com-

parison of the linear methods. For both the Laplacian and
the trace formulations, the normalization step leads to worse
perfomances, and the metric upgrade does not make an ap-
preciable difference. Between the two formulations (without
modifications), the trace formulation give slightly better re-
sults. Note that these method are not robust to outliers (as
expected), but they establish a good baseline.

5.2. Semidefinite and Nuclear Norm relaxations

These methods can be seen as an evolution of the ones
above. Instead of recovering R directly, these method aim
to recover the matrix G = RRT, which has four character-
istics: it is positive-semidefinite, has rank three, each block
on the diagonal is equal to I and each block off the diago-
nal [G]ij;3⇥3 corresponds to the ideal measurement RiR

T
j

.
Then, the orthogonality constraints of SO(3) are relaxed to
either positive-semidefinite constraints on G (G ⌫ 0, lead-
ing to an Semi-Definite Program, SDP, formulation) or to
a low-rank prior (leading to a Nuclear Norm formulation)
subject to the constraints on the diagonal (which are linear).
These relaxation can be paired with different objective func-
tions. The matrix R is then obtained as in the Linear Trace
formulation, where G is used instead of G̃.

5.2.1 Trace formulation

This formulation has first appeared in [5]. To derive it, note
that the cost in (12) can be written as tr(G̃RRT) = tr(G̃G).
Together with the SDP relaxation, this leads to solving

max
G⌫0,[G]ii;3⇥3=I

tr(G̃G). (14)

This is a convex problem (because we dropped the rank-three
constraint) and it can be efficiently solved (we use CVX [16]
in our implementation).

Variant 1: We can constraint each block [G]ij;3⇥3 to
be in the convex hull of SO(3) with a minimal number

where 

This leads to optimization problems that can be solved glob-
ally (even in the presence of outliers), obtaining a (possibly)
approximate solution R. The final estimates are then ob-
tained by using projections:

Ri = projSO(3)
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These methods obtain R from the SVD of some ma-
trix containing the measurements {R̃ij}, and use the loss
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Note that (7) and (8) are equivalent only if Ri, Rj are
orthonormal matrices. We then define the two matrices
L̃, G̃ 2 R3N⇥3N as
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0 otherwise,
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0 otherwise,
(10)

with the convention that R̃ji = R̃
T
ij

. The matrix L̃ is some-
times referred to as the Graph Connection Laplacian [24].
We can use (7) and (8) to rewrite (2) as:

min tr(RT
L̃R), (11)

max tr(RT
G̃R), (12)

and use the constraint RTR = I instead of considering
Ri 2 SO(3), i 2 V . Note that this effectively changes
the domain of the problem from the manifold SO(3)N to
the Stiefel manifold V3(R3N ). We call (11) the Linear L2
formulation and (12) the Linear Trace formulation. They
were first introduced by [21] and [5], respectively. Note that
(11) and (12) are no longer equivalent (this is because the
equality in (8) does not hold). With the relaxed constraint,
problem (11) (resp., (12)) can be solved in closed form after
computing the SVD of L̃ (resp., G̃) and setting R to be equal
to the three singular vector corresponding to the bottom
(resp., top) singular values.

Variant 1: Inspired by normalized cuts [23], we also
consider substituting the Laplacian L̃ with the Normalized
Laplacian D

� 1
2 L̃D

� 1
2 . The solution is then obtained by pro-

jecting D
� 1

2R instead of R directly (a similar modification
is considered with G̃). In general, this enhances the spectral
gap after the top (or bottom) three singular values, leading
to a possible performance improvement. These variant have
been proposed in [5, 24]. In the experiments, these variants
are denoted by the suffix Norm.

Variant 2: Inspired by the metric upgrade in affine SfM
[28], we tested the additional step of finding a matrix K 2
R3⇥3 such that the blocks in RK are close to orthonormal:

argmin
K2R3⇥3

k[R]i;3⇥3KK
T[R]T

i;3⇥3 � Ik2
F
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This variant is denoted by the suffix Upg.
Numerical tests: Figure 1 shows the results of the com-

parison of the linear methods. For both the Laplacian and
the trace formulations, the normalization step leads to worse
perfomances, and the metric upgrade does not make an ap-
preciable difference. Between the two formulations (without
modifications), the trace formulation give slightly better re-
sults. Note that these method are not robust to outliers (as
expected), but they establish a good baseline.

5.2. Semidefinite and Nuclear Norm relaxations

These methods can be seen as an evolution of the ones
above. Instead of recovering R directly, these method aim
to recover the matrix G = RRT, which has four character-
istics: it is positive-semidefinite, has rank three, each block
on the diagonal is equal to I and each block off the diago-
nal [G]ij;3⇥3 corresponds to the ideal measurement RiR
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Then, the orthogonality constraints of SO(3) are relaxed to
either positive-semidefinite constraints on G (G ⌫ 0, lead-
ing to an Semi-Definite Program, SDP, formulation) or to
a low-rank prior (leading to a Nuclear Norm formulation)
subject to the constraints on the diagonal (which are linear).
These relaxation can be paired with different objective func-
tions. The matrix R is then obtained as in the Linear Trace
formulation, where G is used instead of G̃.

5.2.1 Trace formulation

This formulation has first appeared in [5]. To derive it, note
that the cost in (12) can be written as tr(G̃RRT) = tr(G̃G).
Together with the SDP relaxation, this leads to solving
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tr(G̃G). (14)

This is a convex problem (because we dropped the rank-three
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with the convention that R̃ji = R̃
T
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. The matrix L̃ is some-
times referred to as the Graph Connection Laplacian [24].
We can use (7) and (8) to rewrite (2) as:

min tr(RT
L̃R), (11)

max tr(RT
G̃R), (12)

and use the constraint RTR = I instead of considering
Ri 2 SO(3), i 2 V . Note that this effectively changes
the domain of the problem from the manifold SO(3)N to
the Stiefel manifold V3(R3N ). We call (11) the Linear L2
formulation and (12) the Linear Trace formulation. They
were first introduced by [21] and [5], respectively. Note that
(11) and (12) are no longer equivalent (this is because the
equality in (8) does not hold). With the relaxed constraint,
problem (11) (resp., (12)) can be solved in closed form after
computing the SVD of L̃ (resp., G̃) and setting R to be equal
to the three singular vector corresponding to the bottom
(resp., top) singular values.

Variant 1: Inspired by normalized cuts [23], we also
consider substituting the Laplacian L̃ with the Normalized
Laplacian D

� 1
2 L̃D

� 1
2 . The solution is then obtained by pro-

jecting D
� 1

2R instead of R directly (a similar modification
is considered with G̃). In general, this enhances the spectral
gap after the top (or bottom) three singular values, leading
to a possible performance improvement. These variant have
been proposed in [5, 24]. In the experiments, these variants
are denoted by the suffix Norm.

Variant 2: Inspired by the metric upgrade in affine SfM
[28], we tested the additional step of finding a matrix K 2
R3⇥3 such that the blocks in RK are close to orthonormal:

argmin
K2R3⇥3

k[R]i;3⇥3KK
T[R]T

i;3⇥3 � Ik2
F
. (13)

This variant is denoted by the suffix Upg.
Numerical tests: Figure 1 shows the results of the com-

parison of the linear methods. For both the Laplacian and
the trace formulations, the normalization step leads to worse
perfomances, and the metric upgrade does not make an ap-
preciable difference. Between the two formulations (without
modifications), the trace formulation give slightly better re-
sults. Note that these method are not robust to outliers (as
expected), but they establish a good baseline.

5.2. Semidefinite and Nuclear Norm relaxations

These methods can be seen as an evolution of the ones
above. Instead of recovering R directly, these method aim
to recover the matrix G = RRT, which has four character-
istics: it is positive-semidefinite, has rank three, each block
on the diagonal is equal to I and each block off the diago-
nal [G]ij;3⇥3 corresponds to the ideal measurement RiR

T
j

.
Then, the orthogonality constraints of SO(3) are relaxed to
either positive-semidefinite constraints on G (G ⌫ 0, lead-
ing to an Semi-Definite Program, SDP, formulation) or to
a low-rank prior (leading to a Nuclear Norm formulation)
subject to the constraints on the diagonal (which are linear).
These relaxation can be paired with different objective func-
tions. The matrix R is then obtained as in the Linear Trace
formulation, where G is used instead of G̃.

5.2.1 Trace formulation

This formulation has first appeared in [5]. To derive it, note
that the cost in (12) can be written as tr(G̃RRT) = tr(G̃G).
Together with the SDP relaxation, this leads to solving

max
G⌫0,[G]ii;3⇥3=I

tr(G̃G). (14)

This is a convex problem (because we dropped the rank-three
constraint) and it can be efficiently solved (we use CVX [16]
in our implementation).

Variant 1: We can constraint each block [G]ij;3⇥3 to
be in the convex hull of SO(3) with a minimal number

[Arie-Nachimson 12, Fredriksson 12, Wang 13, Rosen 16, Carlone 15, Eriksson 18]

Convex and provable exact recovery [Wang 13, Rosen 16, Ericsson 18]



Robust factorization [Wang and Singer, 2013]

It can be verified that L1 is PSD, and that in the noiseless case L1RT = 0. The least
d eigenvectors of L1 corresponding to its smallest eigenvalues, followed by the SVD
procedure for rounding (2.7) can be used to recover the rotations. A slightly modified
procedure that uses the eigenvectors of the normalized graph connection Laplacian

L1 = D�1/2
1 L1D

�1/2
1 = Ind �D�1/2

1 W1D
�1/2
1 (2.9)

is analyzed in [4]. Specifically, Theorem 10 in [4] bounds the least squares cost (2.1)
incurred by this approximate solution from above and below in terms of the eigen-
values of the normalized graph connection Laplacian and the second eigenvalue of
the normalized Laplacian (the latter reflecting the fact that synchronization is easier
on well-connected graphs, or equivalently, more di�cult on graphs with bottlenecks).
This generalizes a previous result obtained by [38] that considers a spectral relaxation
algorithm for Max-Cut that achieves a non-trivial approximation ratio.

3. Least Unsquared Deviation (LUD) and Semidefinite Relaxation. As
mentioned earlier, the least squares approach may not be optimal when a large propor-
tion of the measurements are outliers [26, 36, 19]. To guard the orientation estimation
from outliers, we replace the sum of squared residuals in (2.1) with the more robust
sum of unsquared residuals

min
R1,...,Rn2SO(d)

X

(i,j)2E

��R�1
i

Rj �Rij

�� , (3.1)

to which we refer as LUD.4 The self consistency error given in (3.1) mitigates the
contribution from large residuals that may result from outliers. However, the prob-
lem (3.1) is non-convex and therefore extremely di�cult to solve if one requires the
matrices Ri to be rotations, that is, when adding the orthogonality and determinant
constraints of SO(d) given in (1.1).

Notice that the cost function (3.1) can be rewritten using the Gram matrix G
that was defined earlier in (2.3) for the SDP relaxation. Indeed, the optimization
(3.1) is equivalent to

min
R1,...,Rn2SO(d)

X

(i,j)2E

kGij �Rijk . (3.2)

Relaxing the non-convex rank and determinant constraints as in the SDP relaxation
leads to the following natural convex relaxation of the optimization problem (3.1):

min
G

X

(i,j)2E

kGij �Rijk s.t. Gii = Id, and G < 0. (3.3)

This type of relaxation is often referred to as semidefinite relaxation (SDR) [34, 20].
Once G is found, either the deterministic or random procedures for rounding can be
used to determine the rotations R1, . . . , Rn.

4. Exact Recovery of the Gram matrix G.

4For simplicity we consider the case where wij = 1 for (i, j) 2 E. In general, one may consider

the minimization of
P

(i,j)2E wij

���R�1
i Rj �Rij

���.

5

Solution 1: Robust loss function in SDP formation

Solution 2: Reweighted spectral decomposition (= reweighted least squares)

This leads to optimization problems that can be solved glob-
ally (even in the presence of outliers), obtaining a (possibly)
approximate solution R. The final estimates are then ob-
tained by using projections:

Ri = projSO(3)

�
[R]i;3⇥3

�
, i 2 V . (4)

The various methods in how the matrix R is obtained and in
how the constraints are relaxed.

5.1. Linear methods

These methods obtain R from the SVD of some ma-
trix containing the measurements {R̃ij}, and use the loss
`(R1, R2) = kR1 �R2k2F in (2). Each term of the cost can
be expressed in different ways:

kRi � R̃ijRjk2F (5)

= kRikF � 2 tr(RT
i
R̃ijRj) + kRjkF (6)

= tr

 
Ri

Rj

�T 
I �R̃ij

�Rij
T

I

� 
Ri

Rj

�!
(7)

= 6� 2 tr(R̃T
ij
RiR

T
j
). (8)

Note that (7) and (8) are equivalent only if Ri, Rj are
orthonormal matrices. We then define the two matrices
L̃, G̃ 2 R3N⇥3N as

[L̃]ij;3⇥3 =

8
><

>:

deg(i)I if i = j,

�R̃ij if (i, j) 2 E,

0 otherwise,
(9)

[G̃]ij;3⇥3 =

8
><

>:

I if i = j,

R̃ij if (i, j) 2 E,

0 otherwise,
(10)

with the convention that R̃ji = R̃
T
ij

. The matrix L̃ is some-
times referred to as the Graph Connection Laplacian [24].
We can use (7) and (8) to rewrite (2) as:

min tr(RT
L̃R), (11)

max tr(RT
G̃R), (12)

and use the constraint RTR = I instead of considering
Ri 2 SO(3), i 2 V . Note that this effectively changes
the domain of the problem from the manifold SO(3)N to
the Stiefel manifold V3(R3N ). We call (11) the Linear L2
formulation and (12) the Linear Trace formulation. They
were first introduced by [21] and [5], respectively. Note that
(11) and (12) are no longer equivalent (this is because the
equality in (8) does not hold). With the relaxed constraint,
problem (11) (resp., (12)) can be solved in closed form after
computing the SVD of L̃ (resp., G̃) and setting R to be equal
to the three singular vector corresponding to the bottom
(resp., top) singular values.

Variant 1: Inspired by normalized cuts [23], we also
consider substituting the Laplacian L̃ with the Normalized
Laplacian D

� 1
2 L̃D

� 1
2 . The solution is then obtained by pro-

jecting D
� 1

2R instead of R directly (a similar modification
is considered with G̃). In general, this enhances the spectral
gap after the top (or bottom) three singular values, leading
to a possible performance improvement. These variant have
been proposed in [5, 24]. In the experiments, these variants
are denoted by the suffix Norm.

Variant 2: Inspired by the metric upgrade in affine SfM
[28], we tested the additional step of finding a matrix K 2
R3⇥3 such that the blocks in RK are close to orthonormal:

argmin
K2R3⇥3

k[R]i;3⇥3KK
T[R]T

i;3⇥3 � Ik2
F
. (13)

This variant is denoted by the suffix Upg.
Numerical tests: Figure 1 shows the results of the com-

parison of the linear methods. For both the Laplacian and
the trace formulations, the normalization step leads to worse
perfomances, and the metric upgrade does not make an ap-
preciable difference. Between the two formulations (without
modifications), the trace formulation give slightly better re-
sults. Note that these method are not robust to outliers (as
expected), but they establish a good baseline.

5.2. Semidefinite and Nuclear Norm relaxations

These methods can be seen as an evolution of the ones
above. Instead of recovering R directly, these method aim
to recover the matrix G = RRT, which has four character-
istics: it is positive-semidefinite, has rank three, each block
on the diagonal is equal to I and each block off the diago-
nal [G]ij;3⇥3 corresponds to the ideal measurement RiR

T
j

.
Then, the orthogonality constraints of SO(3) are relaxed to
either positive-semidefinite constraints on G (G ⌫ 0, lead-
ing to an Semi-Definite Program, SDP, formulation) or to
a low-rank prior (leading to a Nuclear Norm formulation)
subject to the constraints on the diagonal (which are linear).
These relaxation can be paired with different objective func-
tions. The matrix R is then obtained as in the Linear Trace
formulation, where G is used instead of G̃.

5.2.1 Trace formulation

This formulation has first appeared in [5]. To derive it, note
that the cost in (12) can be written as tr(G̃RRT) = tr(G̃G).
Together with the SDP relaxation, this leads to solving

max
G⌫0,[G]ii;3⇥3=I

tr(G̃G). (14)

This is a convex problem (because we dropped the rank-three
constraint) and it can be efficiently solved (we use CVX [16]
in our implementation).

Variant 1: We can constraint each block [G]ij;3⇥3 to
be in the convex hull of SO(3) with a minimal number

This leads to optimization problems that can be solved glob-
ally (even in the presence of outliers), obtaining a (possibly)
approximate solution R. The final estimates are then ob-
tained by using projections:

Ri = projSO(3)

�
[R]i;3⇥3

�
, i 2 V . (4)

The various methods in how the matrix R is obtained and in
how the constraints are relaxed.

5.1. Linear methods

These methods obtain R from the SVD of some ma-
trix containing the measurements {R̃ij}, and use the loss
`(R1, R2) = kR1 �R2k2F in (2). Each term of the cost can
be expressed in different ways:

kRi � R̃ijRjk2F (5)

= kRikF � 2 tr(RT
i
R̃ijRj) + kRjkF (6)

= tr
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�Rij
T

I
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(7)
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ij
RiR

T
j
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Note that (7) and (8) are equivalent only if Ri, Rj are
orthonormal matrices. We then define the two matrices
L̃, G̃ 2 R3N⇥3N as

[L̃]ij;3⇥3 =

8
><

>:

deg(i)I if i = j,

�R̃ij if (i, j) 2 E,

0 otherwise,
(9)

[G̃]ij;3⇥3 =

8
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>:

I if i = j,

R̃ij if (i, j) 2 E,

0 otherwise,
(10)

with the convention that R̃ji = R̃
T
ij

. The matrix L̃ is some-
times referred to as the Graph Connection Laplacian [24].
We can use (7) and (8) to rewrite (2) as:

min tr(RT
L̃R), (11)

max tr(RT
G̃R), (12)

and use the constraint RTR = I instead of considering
Ri 2 SO(3), i 2 V . Note that this effectively changes
the domain of the problem from the manifold SO(3)N to
the Stiefel manifold V3(R3N ). We call (11) the Linear L2
formulation and (12) the Linear Trace formulation. They
were first introduced by [21] and [5], respectively. Note that
(11) and (12) are no longer equivalent (this is because the
equality in (8) does not hold). With the relaxed constraint,
problem (11) (resp., (12)) can be solved in closed form after
computing the SVD of L̃ (resp., G̃) and setting R to be equal
to the three singular vector corresponding to the bottom
(resp., top) singular values.

Variant 1: Inspired by normalized cuts [23], we also
consider substituting the Laplacian L̃ with the Normalized
Laplacian D

� 1
2 L̃D

� 1
2 . The solution is then obtained by pro-

jecting D
� 1

2R instead of R directly (a similar modification
is considered with G̃). In general, this enhances the spectral
gap after the top (or bottom) three singular values, leading
to a possible performance improvement. These variant have
been proposed in [5, 24]. In the experiments, these variants
are denoted by the suffix Norm.

Variant 2: Inspired by the metric upgrade in affine SfM
[28], we tested the additional step of finding a matrix K 2
R3⇥3 such that the blocks in RK are close to orthonormal:

argmin
K2R3⇥3

k[R]i;3⇥3KK
T[R]T

i;3⇥3 � Ik2
F
. (13)

This variant is denoted by the suffix Upg.
Numerical tests: Figure 1 shows the results of the com-

parison of the linear methods. For both the Laplacian and
the trace formulations, the normalization step leads to worse
perfomances, and the metric upgrade does not make an ap-
preciable difference. Between the two formulations (without
modifications), the trace formulation give slightly better re-
sults. Note that these method are not robust to outliers (as
expected), but they establish a good baseline.

5.2. Semidefinite and Nuclear Norm relaxations

These methods can be seen as an evolution of the ones
above. Instead of recovering R directly, these method aim
to recover the matrix G = RRT, which has four character-
istics: it is positive-semidefinite, has rank three, each block
on the diagonal is equal to I and each block off the diago-
nal [G]ij;3⇥3 corresponds to the ideal measurement RiR

T
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.
Then, the orthogonality constraints of SO(3) are relaxed to
either positive-semidefinite constraints on G (G ⌫ 0, lead-
ing to an Semi-Definite Program, SDP, formulation) or to
a low-rank prior (leading to a Nuclear Norm formulation)
subject to the constraints on the diagonal (which are linear).
These relaxation can be paired with different objective func-
tions. The matrix R is then obtained as in the Linear Trace
formulation, where G is used instead of G̃.

5.2.1 Trace formulation

This formulation has first appeared in [5]. To derive it, note
that the cost in (12) can be written as tr(G̃RRT) = tr(G̃G).
Together with the SDP relaxation, this leads to solving

max
G⌫0,[G]ii;3⇥3=I

tr(G̃G). (14)

This is a convex problem (because we dropped the rank-three
constraint) and it can be efficiently solved (we use CVX [16]
in our implementation).

Variant 1: We can constraint each block [G]ij;3⇥3 to
be in the convex hull of SO(3) with a minimal number

!G⎡⎣ ⎤⎦ij;3×3
=

wij !Rij if (i, j)∈ε

0 otherwise

⎧
⎨
⎪

⎩⎪
Weights indicate the confidence of pairwise measurement 
and computed from the residual in the previous iteration 



Summary

Three types of methods
• Inlier/outlier inference 

• Local, iterative optimization

• Global, factorization-based optimization
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Figure 6: Comparison of methods with inference pre-processing and iterative post-processing combined
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Figure 7: Comparison of all the methods that combine infer-
ence pre-processing with iterative post-processing

the effects of noise coupled with outliers (in this paper we
focused exclusively on the latter due to space reasons), and
the computational costs of each method. Finally, we will in-
vestigate theoretical conditions concerning the identifiability
of inliers and outliers.
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Figure 4: Comparison for iterative methods

where " is a step size that can be computed in closed form
[29] and f

0 is the derivative of f . All the rotations {Ri} can
be updated at the same time in parallel. Interestingly, for
ideal measurements and with b high enough, this algorithm
converges to the correct solution from almost any initial
configuration [29]. Unfortunately, these guarantees do not
hold in the presence of outliers, which is the case we are
interested in this paper.

6.2. Weiszfeld algorithm

In the formulation of [18], the function f is chosen to
simply be f(x) = x. This leads to a formulation which
is the equivalent to an L1 fitting but with the use of the
manifold distance. Unfortunately, the problem becomes
non-differentiable (when one or more of the distances are
equal to zero), and simple gradient techniques cannot be
applied. However, if one fixes all the rotations except one,
the problem reduces to a generalized median problem, for
which the Weiszfeld algorithm has been shown to have good
convergence properties [2]. The corresponding choice of
weights becomes wij = wi for all j : (i, j) 2 E (i.e., we
have only one weight) and

wi =
X

j:(i,j)2E

klog(RT
i
Rj)k�1

. (25)

Each rotation needs to be updated in sequence, so that
this algorithm performs the minimization of the objective
function in a coordinate-descent fashion, ensuring that the
cost is reduced at every step. However, since the cost is not
differentiable everywhere, there are no strong guarantees of
convergence to a local minimum.

We mention here the work [11], which represents a more
efficient way to optimize the same cost function.

Numerical tests: Figure 4 shows the effect of using the
local iterative methods on top of the Linear Trace, SDP Trace,
and Nuclear norm L12 global methods reviewed in Section 5
(the results for the other formulations are similar to the ones
shown, and have been omitted due to space limitations).

The introduction of the local refinement introduces a dra-
matic boost in performances for all methods, including those

based on robust losses. The comparison between the func-
tions for reshaping the distance gives inconclusive results, as
the performances are quite similar and depend on the method
used for initialization.

7. Outlier inference

The last family of algorithms aims to identify and re-
move outliers before estimating the rotations. As such, these
algorithm are naturally used as a preprocessing step for
the other algorithms, and rely on the following idea. Let
L = {v1, v2, . . . , vl, v1} describe a cycle (or loop) in the
graph G. Ideally, the composition of the rotations along the
cycle, that is, RL = Rv1v2Rv2v3 . . . Rvlv1 would be equal
to the identity transformation for any cycle. We define the
loop closure error as

eL = dSO(3)(RL, I). (26)

In the presence of small noise, the composed rotation is
expected to be near the identity and eL to be small. However,
if the cycle contains one or more outliers, the loop closure
error is likely to be very large. This insight was first used
in [15], which, however, only aimed to find a spanning tree of
inliers. A more recent and complete approach is [31], which
follows a two step strategy. The first step is loop sampling.
First, choose all loops of length three. Then, compute a
Minimum Spanning Tree (MST) of the graph, and sample
the loops obtained by adding in sequence the edges that do
not belong to the tree. This is repeated for a desired number
of times, while adjusting the weights for the computation
of the MST to be equal to the number of times each edge
appeared across the previous loops. In our implementation,
we sample at least 6|E| loops. The second step is outlier
inference. We define indicator variables xij , xL 2 {0, 1}
for each edge (i, j) 2 E and each sampled loop L, with the
constraint

xL = max
ij2L

xij . (27)

Ideally, the variables should be equal to one if the corre-
sponding edge or the loop contains an outlier. In practice,
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Figure 5: Comparison for methods with inference preprocessing

these are unknown, and they need to be estimated from the
closure errors {eL} on the sampled loops by minimizing the
following discrete energy:

E({xij}, {xL}) =
X

(i,j)2E

⇢ijxij +
X

L

⇢L(eL)xL. (28)

The parameters {⇢ij} are given by a prior on the likelihood
of an edge to be an outlier or not (we set p(xij = 0) = 0.9).
The parameters ⇢L(eL) are given by a probabilistic model
of the error eL with and without outliers in the loop. The
discrete optimization problem of minimizing (28) subject
to (27) can be relaxed to a linear program with linear con-
straint [31]. In some instances, the solution of the linear
program is exact, in the sense that the variables {xij} and
{xL} in the solution assume discrete values. If this is not
the case, one can find an exact solution by using branch and
bound (i.e., fix all the variables that are discrete, fix an addi-
tional variable first to zero, then to one, and then recursively
solve the reduced problem).

Note that information about loop closures is implicitly
used also by the global methods when a low-rank solution
is found (see also the discussion in [29]). However, these
method do not perform hard decisions on the location of
the outliers, leading to lower performances. In practice, we
found that this method is rather conservative, labeling the
edges as inliers when the closure errors are inconclusive. We
presume that this is due to the strong prior.

Numerical tests: Figure 5 shows the results of applying
outlier inference before some of the global methods from
Section 5 (again, some of the other methods have a similar
behaviour and have been omitted). As with the local iterative
methods, the addition of the inference step for removing out-
liers shows a dramatic boost in performance. Interestingly,
this boost is more pronounced when the inference is applied
before methods that are originally non-robust.

8. Combined methods

From the results above, we have seen that robust norms,
local iterative refinement and outlier inference are all ways

to significantly improve the robustness to outliers in rotation
optimization. The natural questions now are: what happens
when all these methods are combined, and what is the com-
bination that gives the best results in practice? We now give
the answers.

Numerical tests: Figure 6 compares the results of using
the outlier inference and local iterative methods. When the
two are combined, the performance is better than any one
of them alone. Finally, Figure 7 shows the results with the
different global optimization methods. The use of pre and
postprocessing effectively levels out the differences between
the different global optimization methods, and a simple lin-
ear method performs surprisingly well. Moreover, the over-
all performance shows a behaviour very close to the ideal
breakpoint of 50% outliers.

9. Conclusions and future work

We evaluated a large number of competing and comple-
mentary methods for rotation optimization in a pose graph
with applications to SfM. We have shown that the best results
are obtained by combining a preprocessing step to remove
outliers using loop closure errors, followed by a linear fac-
torization method to obtain a global, approximate solution
and a postprocessing step to refine the estimates. The result-
ing method can tolerate a large number of outliers. This is
not entirely surprising, as a similar procedure is commonly
used in two-view SfM for fitting an essential matrix: first
RANSAC is used to reject outliers, then the eight-point al-
gorithm is used to get an initial, linear estimate, which is
then refined using non-linear optimization. On the other
hand, approaches based on low-rank factorization (such as
Robust-PCA and SDP relaxations), which are more complex
and harder to tune for very sparse datasets, have not shown
significant improvements.

As future work, we will expand our tests to use larger
datasets. We do not expect significantly different results, as
the individual steps (outlier inference, global linear solution,
local non-linear refinement) have already been shown to be
effective on large datasets [2, 10, 31]. We will also evaluate
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Figure 6: Comparison of methods with inference pre-processing and iterative post-processing combined
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Figure 7: Comparison of all the methods that combine infer-
ence pre-processing with iterative post-processing

the effects of noise coupled with outliers (in this paper we
focused exclusively on the latter due to space reasons), and
the computational costs of each method. Finally, we will in-
vestigate theoretical conditions concerning the identifiability
of inliers and outliers.
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The combination of three!

1. Prune outliers by inference

2. Initialize by factorization

3. Refine by local optimization
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solve the problem in the low-dimensional variable space
(Section 5). Besides validating our method on both simu-
lated and real benchmark datasets, we also demonstrate the
applicability of the proposed method combined with deep
learning and graph matching to match images with differ-
ent objects and reconstruct category-specific object models
(Section 6).

2. Related work
The early work on joint matching aimed to select cycle-

consistent matches and identify incorrect matches from bad
cycles [38, 28]. The assumption for this family of meth-
ods is that correct matches are dominant in the raw in-
put. Otherwise, it is difficult to find a sufficient number
of closed cycles [16]. Yan et al. [36] proposed to use the
cycle consistency as an explicit constraint in graph match-
ing, but the resulted optimization is nonconvex and hard to
solve globally. Recent results in [18, 16, 29] showed that
the consistent matches could be extracted from the spec-
trum (top eigenvectors) of the matrix composed of all pair-
wise matches. The rationale behind this spectral technique
is that the problem can be formulated as a quadratic integer
program and relaxed into a generalized Rayleigh problem.
But the relaxation assumes full feature correspondences (bi-
jection) between images [29]. Recently, Huang and Guibas
[16] proposed an elegant solution based on convex relax-
ation and derived the theoretical conditions for exact recov-
ery. The result is further improved in [10] by assuming that
the underlying rank of the variable matrix can be reliably
estimated. In these works, the problem is formulated as
SDP, which has a limited computational efficiency in real
applications.

Regarding methodology, our work is inspired by the re-
cent advances on low-rank matrix recovery which adopt
convex relaxation [8, 7] and explore the underlying low-
rank structure to accelerate computation [5, 15]. Our work
is also related to some other problems that aim to find global
estimates from pairwise estimates such as rotation averag-
ing [14, 34] and model fusion [37].

3. Preliminaries and notation
Suppose we have n images and extract pi features from

each image i. The objective is to find feature correspon-
dences between all pairs of images. Before introducing the
proposed method, we first give a brief introduction to pair-
wise matching techniques and the definition of cycle con-
sistency.

3.1. Pairwise matching
To match an image pair (i, j), one can compute similari-

ties for all pairs of feature points from two images and store
them in a matrix Sij 2 Rpi⇥pj .

We represent the feature correspondences for image pair
(i, j) by a partial permutation matrix Xij 2 {0, 1}pi⇥pj ,
which satisfies the doubly stochastic constraints:

0  Xij1  1, ,0  XT
ij1  1. (1)

To find Xij , we can maximize the inner product between
Xij and Sij subject to the constraints in (1) resulting in a
linear assignment problem, which has been well studied and
can be efficiently solved by the Hungarian algorithm.

In image matching, spatial rigidity is usually preferred,
i.e., the relative location of two features in an image should
be similar to that of their correspondences in the other im-
age. This problem is well known as graph matching and for-
mulated as a quadratic assignment problem (QAP). While
QAP is NP-hard, many efficient algorithms have been pro-
posed to solve it approximately, e.g., [22, 1, 11]. Those
solvers basically relax the binary constraint on the permu-
tation matrix, solve the optimization, and outputs the con-
fidence that a candidate match is correct. We refer readers
to the related literature for details. Here we aim to empha-
size that the outputs of graph matching solvers are actually
optimized affinity scores of candidate matches, which con-
sider both feature similarity and spatial rigidity. We will use
these scores (saved in Sij) as our input if needed.

3.2. Cycle consistency
Some recent work proposed to use the cycle consistency

as a constraint to match a bunch of images [29, 36, 10],
which can be described by

Xij = XizXzj , (2)

for any three images (i, j, z) and extended to the case with
more images.

The recent results in [16, 29] show that the cycle con-
sistency can be described more concisely by introducing a
virtual “universe” that is defined as the set of unique fea-
tures that appear in the image collection. Each point in the
universe may be observed by several images and the cor-
responding image points should be matched. Therefore,
consistent matching should satisfy Xij = AiA

T
j , where

Ai 2 {0, 1}pi⇥k denotes the map from Image i to the uni-
verse, k is the number of points in the universe, and k � pi

for all i.
Suppose the correspondences for all m =

Pn
i=1 pi

features in the image collection is denoted by X 2
{0, 1}m⇥m:

X =

0

BBB@

X11 X12 · · · X1n

X21 X22 · · · X2n
...

...
. . .

...
Xn1 · · · · · · Xnn
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Cycle consistency is also desired

Inconsistent Consistent



Permutation synchronization

Input: pairwise correspondences from 
existing algorithms which may be noisy

Output: cycle-consistent correspondences 
which respect the input

permutation matrix ⇧ defined by

[⇧]ij =

⇢
1, if ⇡(j) = i

0, otherwise (7)

The set of m ⇥ m permutation matrices is a group under
matrix multiplication. The inverse of a permutation matrix is
given by its transpose, i.e. ⇧�1

= ⇧
T . The simplest choice

for a distance on Sm is given by

d(⇡1,⇡2) = d(e,⇡
�1
1 ⇡2)

.
= m� h⇧1,⇧2i (8)

where hA,Bi .
= tr(A

T
B), e is the identity map and ⇧1,⇧2

are the matrix representations of the permutations ⇡1 and ⇡2

respectively. The distance function defined above is simply
the number of labels assigned differently by permutations ⇡1

and ⇡2. With a slight abuse of notation, we write ⇧ 2 Sm

meaning that ⇧ is an m⇥m permutation matrix.

C. Consensus Algorithms
Consensus algorithms have been extensively studied in the

control community [28], [26], [27]. In its simplest form, a
consensus algorithm is a decentralized protocol in which the
agents, modeled as vertices of a graph, try to reach agreement
by communicating only with their neighbors. More formally,
let xi(t) 2 R denote the state of agent i at time time t. Then,
the simplest consensus protocol is given by

xi(t+ 1) =

X

j2Ni[{i}

aijxj(t) (9)

where aij � 0 and
P

j aij = 1. Popular choices for the
mixing coefficients aij result in the protocols

x(t+ 1) = (I � ✏L(G))x(t) (10)

where x = [x1, . . . , xn]
T and 0 < ✏ < 1/maxi[�(G)]ii and

x(t+ 1) = F (G)x(t) (11)

IV. PROBLEM FORMALIZATION
In this section, we formalize the problem of consistent

data association. We assume there are n sensors observing
m targets. For instance, assume we have a set of n cameras
observing a scene in the world described by a set of m

feature points. Sensors communicate only with a subset of
all sensors. Communication constraints between sensors are
encoded by the sensor graph. The sensor graph is the digraph
G = (V, E) where V = {1, 2, . . . , n} and (i, j) 2 E if
there is information flow from sensor i to j. The pairwise
association ⇡ij 2 Sm is defined as follows: we have that
⇡ij(l) = k if the lth target in jth sensor corresponds to the
kth target in ith sensor. Observe that the pairwise associations
⇡ij can be written as ⇡ij = ⇡i � ⇡

�1
j , where ⇡i 2 Sm

is the mapping from the labels of sensor i to some global
labels, termed the “universe of features” in some works [10],
[11]. We denote by e⇡ij 2 Sm the, possibly erroneous,
estimated pairwise association between sensor i and j and
by e⇧ij the corresponding matrix representation. Moreover,
let ⇧i

.
= ⇢(⇡i).

Related to the sensor graph is the data association graph
D = (VD, ED, wD), where VD = V ⇥ {1, 2, . . . ,m}. There
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Fig. 2. Example with n = 3 sensors S1, S2, S3 observing m = 3 targets.
Top: consistent data association. Bottom: inconsistent data association since
⇡12 � ⇡23(2) = 3 but ⇡31(2) = 2.

is an edge from (i, k) to (j, l) if and only if (i, j) 2 E and
[e⇧ij ]kl > 0. The corresponding edge weight is simply equal
to [e⇧ij ]kl.

First, we need a precise definition of consistency.
Definition 4.1 (Consistency): A set of pairwise associa-

tions {e⇡ij}(i,j)2E is consistent if

e⇡ij � e⇡jk = e⇡ik (12)

for all valid indices i, j, k.
Based on the definition of consistency, the problem of

consistent data association is naturally defined as follows.

Definition 4.2 (Consistent data association):
Given pairwise associations {e⇡ij}(i,j)2E , find labels
⇡1, . . . ,⇡n 2 Sm, such that

e⇡ij = ⇡i � ⇡�1
j , 8 (i, j) 2 E (13)

Remark 1: Under the presence of noise, it might not be
possible to find labels {⇡i}ni=1 satisfying (13) exactly. There-
fore, in practice we are looking for labels {⇡i}ni=1 satisfying
(13) as much as possible according to some criterion.

Next, we have the consistency condition (12) in terms of
the representations of the pairwise associations.

Lemma 4.3 (Rank constraint for consistency [9]): Given
pairwise associations {e⇡ij}(i,j)2E , define the block matrix
P by [P]ij =

e⇧ij
.
= ⇢(e⇡ij). The set of pairwise associations

{e⇡ij}(i,j)2E is consistent if and only if

P ⌫ 0, [P]ii = I, rank(P) = m (14)

V. DISTRIBUTED AVERAGING
In the classic consensus algorithms, each agent updates his

estimate of a collective quantity by taking convex combina-
tions of the estimates of his neighbors. The problem at hand
is different: we do not want all ⇡i’s to converge to the same
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⇢
1, if ⇡(j) = i

0, otherwise (7)

The set of m ⇥ m permutation matrices is a group under
matrix multiplication. The inverse of a permutation matrix is
given by its transpose, i.e. ⇧�1

= ⇧
T . The simplest choice

for a distance on Sm is given by

d(⇡1,⇡2) = d(e,⇡
�1
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= m� h⇧1,⇧2i (8)

where hA,Bi .
= tr(A

T
B), e is the identity map and ⇧1,⇧2

are the matrix representations of the permutations ⇡1 and ⇡2

respectively. The distance function defined above is simply
the number of labels assigned differently by permutations ⇡1

and ⇡2. With a slight abuse of notation, we write ⇧ 2 Sm

meaning that ⇧ is an m⇥m permutation matrix.

C. Consensus Algorithms
Consensus algorithms have been extensively studied in the

control community [28], [26], [27]. In its simplest form, a
consensus algorithm is a decentralized protocol in which the
agents, modeled as vertices of a graph, try to reach agreement
by communicating only with their neighbors. More formally,
let xi(t) 2 R denote the state of agent i at time time t. Then,
the simplest consensus protocol is given by

xi(t+ 1) =

X

j2Ni[{i}

aijxj(t) (9)

where aij � 0 and
P

j aij = 1. Popular choices for the
mixing coefficients aij result in the protocols

x(t+ 1) = (I � ✏L(G))x(t) (10)

where x = [x1, . . . , xn]
T and 0 < ✏ < 1/maxi[�(G)]ii and

x(t+ 1) = F (G)x(t) (11)

IV. PROBLEM FORMALIZATION
In this section, we formalize the problem of consistent

data association. We assume there are n sensors observing
m targets. For instance, assume we have a set of n cameras
observing a scene in the world described by a set of m

feature points. Sensors communicate only with a subset of
all sensors. Communication constraints between sensors are
encoded by the sensor graph. The sensor graph is the digraph
G = (V, E) where V = {1, 2, . . . , n} and (i, j) 2 E if
there is information flow from sensor i to j. The pairwise
association ⇡ij 2 Sm is defined as follows: we have that
⇡ij(l) = k if the lth target in jth sensor corresponds to the
kth target in ith sensor. Observe that the pairwise associations
⇡ij can be written as ⇡ij = ⇡i � ⇡

�1
j , where ⇡i 2 Sm

is the mapping from the labels of sensor i to some global
labels, termed the “universe of features” in some works [10],
[11]. We denote by e⇡ij 2 Sm the, possibly erroneous,
estimated pairwise association between sensor i and j and
by e⇧ij the corresponding matrix representation. Moreover,
let ⇧i

.
= ⇢(⇡i).

Related to the sensor graph is the data association graph
D = (VD, ED, wD), where VD = V ⇥ {1, 2, . . . ,m}. There
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Fig. 2. Example with n = 3 sensors S1, S2, S3 observing m = 3 targets.
Top: consistent data association. Bottom: inconsistent data association since
⇡12 � ⇡23(2) = 3 but ⇡31(2) = 2.

is an edge from (i, k) to (j, l) if and only if (i, j) 2 E and
[e⇧ij ]kl > 0. The corresponding edge weight is simply equal
to [e⇧ij ]kl.

First, we need a precise definition of consistency.
Definition 4.1 (Consistency): A set of pairwise associa-

tions {e⇡ij}(i,j)2E is consistent if

e⇡ij � e⇡jk = e⇡ik (12)

for all valid indices i, j, k.
Based on the definition of consistency, the problem of

consistent data association is naturally defined as follows.

Definition 4.2 (Consistent data association):
Given pairwise associations {e⇡ij}(i,j)2E , find labels
⇡1, . . . ,⇡n 2 Sm, such that

e⇡ij = ⇡i � ⇡�1
j , 8 (i, j) 2 E (13)

Remark 1: Under the presence of noise, it might not be
possible to find labels {⇡i}ni=1 satisfying (13) exactly. There-
fore, in practice we are looking for labels {⇡i}ni=1 satisfying
(13) as much as possible according to some criterion.

Next, we have the consistency condition (12) in terms of
the representations of the pairwise associations.

Lemma 4.3 (Rank constraint for consistency [9]): Given
pairwise associations {e⇡ij}(i,j)2E , define the block matrix
P by [P]ij =

e⇧ij
.
= ⇢(e⇡ij). The set of pairwise associations

{e⇡ij}(i,j)2E is consistent if and only if

P ⌫ 0, [P]ii = I, rank(P) = m (14)

V. DISTRIBUTED AVERAGING
In the classic consensus algorithms, each agent updates his

estimate of a collective quantity by taking convex combina-
tions of the estimates of his neighbors. The problem at hand
is different: we do not want all ⇡i’s to converge to the same

NP-Complete [Huber 2002]



Approaches

Inliner/outlier inference  
[Huber 01, Huang 06, Cho 08, Zach10, Nguyen11, Crandel 11, Huang 12, Zhou15]

Local, iterative optimization

[Yan 13, 14, 15]

Global, factorization-based optimization

[Huang 13, Pachauri 13, Chen 14, Zhou15]
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X13 = X12X 23



Cycle consistency for permutation matrices

X12 X 23

X13 = X12X 23

Not true if the feature sets are not the same



Partial similarity

Feature sets are not always the same 

— correspondences represented by partial permutation matrix

X13 = X12X 23

How can we represent the cycle consistency for partial permutation matrices?



Map to a latent feature space (universe) [Huang 13, Chen 14]
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Cycle consistency under partial similarity
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and all Ais are concatenated as rows in a matrix A 2
{0, 1}m⇥k. Then, one can write X as

X = AAT
, (4)

From (4), it is clear to see that a desired X should be both
positive semidefinite and low-rank:

X ⌫ 0, rank (X)  k. (5)

Using (5) the cycle consistency can be effectively im-
posed without checking all cycles of pairwise matches.
Moreover, partial matching is allowed, while bijection
needs to be assumed in (2).

4. Joint matching via rank minimization
Given affinity scores {Sij | 1  i, j  n}, we aim to

find globally consistent matches X . Note that Sij can be
all-zero if matching is not performed for a pair (i, j). More-
over, affinity scores can be computed from either feature
similarities or graph matching solvers according to specific
scenarios, as described in Section 3.1.

4.1. Formulation
We formulate the problem as a low-rank matrix recovery

problem. We maximize the inner product between Xij and
Sij for all i and j as multiple linear assignment problems.
At the same time, we minimize the rank of X to enforce
the cycle consistency. We ignore the positive semidefinite
constraint on X and will explain the reasons later.

To make the optimization tractable, we adopt the fol-
lowing relaxations: (1) X is treated as a real matrix X 2
[0, 1]m⇥m instead of a binary matrix, which is a general
practice in solving matching problems. Experimentally, we
found that the solution values were very close to 0 or 1 and
could be stably quantized by a threshold of 0.5. This might
be attributed to the existence of a linear term in the cost
function [26]. (2) Rank of X is replaced by the nuclear
norm kXk⇤ (sum of singular values), which is a tight con-
vex relaxation proven to be very effective in various low-
rank problems such as matrix completion [8] and robust
principal component analysis [7].

The estimated X should be sparse since at most one
value in each row of Xij can be nonzero. To induce spar-
sity, we minimize the sum of values in X . Combining all
three terms, we obtain the following cost function:

f(X) = �
nX

i=1

nX

j=1

hSij ,Xiji + ↵h1,Xi + �kXk⇤,

= �hS � ↵1,Xi + �kXk⇤, (6)

where h·, ·i denotes the inner product and S 2 Rm⇥m is the
matrix collecting all Sijs. ↵ is the weight of sparsity, which

can be interpreted as a threshold to remove small scores in
Sijs. In our implementation, we normalize the scores to let
them lie between 0 and 1 and empirically set ↵ = 0.1. �

controls the weight of the nuclear norm. We will discuss �
in Section 4.2 and Section 6.1.2.

Besides the doubly stochastic constraints in (1), addi-
tional constraints shall be imposed on X after relaxation:

Xii = Ipi , 1  i  n, (7)

Xij = XT
ji, 1  i, j  n, i 6= j, (8)

0  X  1, (9)

where (7) constrains self-matching to be identity, (8) con-
strains X to be symmetric, and (9) constrains the values in
X to lie in [0, 1].

Finally, we obtain the following optimization problem:

min
X

hW ,Xi + �kXk⇤,

s.t. X 2 C, (10)

where W = ↵1 � S and C denotes the set of matrices
satisfying the constraints given in (1), (7), (8) and (9).

Upon our experimental observation, the result didn’t de-
grade noticeably when removing the doubly stochastic con-
straints in (1). This might be attributed to the existence of
the sparsity regularizer. Therefore, we remove (1) in imple-
mentation to accelerate the computation.

4.2. Positive semidefiniteness
We ignore the positive semidefinite constraint for two

reasons: (1) solving SDP is generally unscalable; (2) with
the constraints in (7) and (8), the solution to (10) turns out
to be nearly positive semidefinite if � is sufficiently large.

Suppose �1, · · · ,�m are eigenvalues of X . From (7),
we have Xii = 1 for all i, and

Pm
i=1 �i = trace (X) = m,

which implies that the sum of �is is fixed. From (8), we
have X is symmetric, and �is are all real numbers. When
we choose a large �, kXk⇤ =

Pm
i=1 |�i| dominates the cost

function, and a solution with all nonnegative �is will give
the lowest cost, because

Pm
i=1 |�i| �

Pm
i=1 �i = m and

the equality holds iff. �i � 0 for all i. On the other hand,
the boundness of kXk⇤ also implies that the solution will be
insensitive to � when � is sufficiently large, and then min-
imizing the nuclear norm is equivalent to adding a positive
semidefinite constraint. The effect of � is experimentally
illustrated in Section 6.1.2.

5. Fast alternating minimization
5.1. Optimization in the low-rank space

The nuclear norm minimization in (10) is convex and the
state-of-the-art methods to solve this family of problems

3

Cycle consistency = positive semidefinite + low rank

   The maps are cycle consistent [Huang et al. 2013]
= X can be factorized as above = X is positive semidefinite and low-rank

Map between images Map from image 
to universe



Noisy	measurements	of	matrix	blocks

Permutation synchronization by matrix decomposition

Noise+
Xinput

[Huang et al. 2013]



Permutation synchronization by spectral method

where v1, v2, . . . , v` are the n leading normalized eigenvectors of T . Equivalently, P = U · U>,
where

U =
p
m

 | | . . . |
v1 v2 . . . vn

| | . . . |

!
. (12)

Thus, in contrast to the original combinatorial problem, (10) can be solved by just finding the m

leading eigenvectors of T .

Algorithm 1 Permutation Synchronization
Input: the objective matrix T

Compute the n leading eigenvectors (v1, v2, . . . , vn)
of T and set U =

p
m [v1, v2, . . . , vn]

for i=1 to m do

Pi1 = U(i�1)n+1:in,1:n U>
1:n,1:n

�i = argmax�2SnhPi1,�i [Kuhn-Munkres]
end for

for each (i, j) do

⌧ji = �j�
�1
i

end for

Output: the matrix (⌧ji)
m
i,j=1 of globally consistent

matchings

Of course, from P we must still recover the in-
dividual permutations �1,�2, . . . ,�m. How-
ever, as long as P is relatively close in form
(7), this is quite a simple and stable process.
One way to do it is to let each �i be the per-
mutation that best matches the (i, 1) block of
P in the linear assignment sense,

�i = arg min
�2Sn

hP (�), [P]i,1i ,

which is solved in O(n3) time by the Kuhn–
Munkres algorithm [18]1, and then set ⌧ji =
�j�

�1
i , which will then satisfy the consistency

relations. The pseudocode of the full algo-
rithm is given in Algorithm 1.

3 Analysis of the relaxed algorithm

Let us now investigate under what conditions we can expect the relaxation (10) to work well, in
particular, in what cases we can expect the recovered matchings to be exact.

In the absence of noise, i.e., when Tji = P (⌧̃ji) for some array (⌧̃ji)j,i of permutations that al-
ready satisfy the consistency relations (1), T will have precisely the same structure as described by
Proposition 1 for P . In particular, it will have n mutually orthogonal eigenvectors

v` =
1p
m

0

B@
[P (�̃1)]`

...
[P (�̃m)]`

1

CA ` = 1, . . . , n (13)

with the same eigenvalue m. Due to the n–fold degeneracy, however, the matrix of eigenvectors
(12) is only defined up to multiplication by an arbitrary rotation matrix O on the right, which means
that instead of the “correct” U (whose columns are (13)), the eigenvector decomposition of T may
return any U

0 = UO. Fortunately, when forming the product

P = U
0 · U 0> = U O O

>
U

> = U · U>

this rotation cancels, confirming that our algorithm recovers P = T , and hence the matchings
⌧ji = ⌧̃ji, with no error.

Of course, rather than the case when the solution is handed to us from the start, we are more in-
terested in how the algorithm performs in situations when either the Tji blocks are not permutation
matrices, or they are not synchronized. To this end, we set

T = T0 +N , (14)

where T0 is the correct “ground truth” synchronization matrix, while N is a symmetric perturbation
matrix with entries drawn independently from a zero-mean normal distribution with variance ⌘

2.

In general, to find the permutation best aligned with a given n⇥ n matrix T , the Kuhn–Munkres
algorithm solves for b⌧ = argmax⌧2SnhP (⌧), T i = argmax⌧2Sn(vec(P (⌧)) · vec(T )). Therefore,

1 Note that we could equally well have matched the �i’s to any other column of blocks, since they are only
defined relative to an arbitrary reference permutation: if, for any fixed �0, each �i is redefined as �i�0, the
predicted relative permutations ⌧ji = �j�0(�i�0)

�1 = �j�
�1
i stay the same.

4

Pachauri et al. (2013). Solving the multi-way matching problem by permutation synchronization.

Eigenvalue 
decomposition

= Xinput

Discretization



Permutation synchronization by convex optimization

Minimize

Constraints: Positive semidefinite (cycle consistency)

Relaxed constraints on permutation matrices

Huang and Guibas (2013). Consistent shape maps via semidefinite programming.



Permutation synchronization by convex optimization
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Provable exact recovery of MatchLift [Chen 2014]

Randomized setting

• Generalized Erdős–Rényi model: 
– pobs:  the probability that two objects connect 

– ptrue:  the probability that a pair-wise map is correct 
– Incorrect maps are random permutations 

• Theorem [CGH’14]: The underlying 
permutations can be recovered w.h.p if

Randomized setting

• Generalized Erdős–Rényi model: 
– pobs:  the probability that two objects connect 

– ptrue:  the probability that a pair-wise map is correct 
– Incorrect maps are random permutations 

• Theorem [CGH’14]: The underlying 
permutations can be recovered w.h.p if



Comparison to previous methods
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Solving optimization�FEM<O�GIF>I8D
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Make the optimization more efficient?

X is both positive semidefinite and low-rank  
Rank is bounded by the size of universe

X =

A1
A2
!
An

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

A1
T A2

T " An
T⎡

⎣⎢
⎤
⎦⎥

            !"# $#
universe size



Low-rank formulation (MatchALS)

min
X

hW ,Xi+ �kXk⇤

s.t. X 2 C

X. Zhou, M. Zhu, K. Daniilidis (UPenn) Multi-Image Matching

Nuclear norm
(sum of singular values)

min
X

hW ,Xi+ �kXk⇤

s.t. X 2 C

hW ,Xi =
X

i,j

trace
�
W T

ijXij
�

X. Zhou, M. Zhu, K. Daniilidis (UPenn) Multi-Image Matching

Pairwise matching cost

and all Ais are concatenated as rows in a matrix A 2
{0, 1}m⇥k. Then, one can write X as

X = AAT
, (4)

From (4), it is clear to see that a desired X should be both
positive semidefinite and low-rank:

X ⌫ 0, rank (X)  k. (5)

Using (5) the cycle consistency can be effectively im-
posed without checking all cycles of pairwise matches.
Moreover, partial matching is allowed, while bijection
needs to be assumed in (2).

4. Joint matching via rank minimization
Given affinity scores {Sij | 1  i, j  n}, we aim to

find globally consistent matches X . Note that Sij can be
all-zero if matching is not performed for a pair (i, j). More-
over, affinity scores can be computed from either feature
similarities or graph matching solvers according to specific
scenarios, as described in Section 3.1.

4.1. Formulation
We formulate the problem as a low-rank matrix recovery

problem. We maximize the inner product between Xij and
Sij for all i and j as multiple linear assignment problems.
At the same time, we minimize the rank of X to enforce
the cycle consistency. We ignore the positive semidefinite
constraint on X and will explain the reasons later.

To make the optimization tractable, we make the follow-
ing relaxations: (1) X is treated as a real matrix X 2
[0, 1]m⇥m instead of a binary matrix, which is a general
practice in solving matching problems. Experimentally, we
found that the solution values were very close to 0 or 1 and
could be stably quantized by a threshold of 0.5. This might
be attributed to the existence of a linear term in the cost
function [26]. (2) Rank of X is replaced by the nuclear nor-
m kXk⇤ (sum of singular values), which is a tight convex
relaxation proven to be very effective in various low-rank
problems such as matrix completion [8] and robust princi-
pal component analysis [7].

The estimated X should be sparse since at most one val-
ue in each row of Xij can be nonzero. To induce sparsity,
we minimize the sum of values in X . Combining all three
terms, we obtain the following cost function:

f(X) = �
nX

i=1

nX

j=1

hSij ,Xiji + ↵h1,Xi + �kXk⇤,

= �hS � ↵1,Xi + �kXk⇤, (6)

where h·, ·i denotes the inner product and S 2 Rm⇥m is the
matrix collecting all Sijs. ↵ is the weight of sparsity, which

can be interpreted as a threshold to remove small scores in
Sijs. In our implementation, we normalize the scores to let
them lie between 0 and 1 and empirically set ↵ = 0.1. �

controls the weight of the nuclear norm. We will discuss �
in Section 4.2 and Section 6.1.2.

Besides the doubly stochastic constraints in (1), addi-
tional constraints shall be imposed on X after relaxation:

Xii = Ipi , 1  i  n, (7)

Xij = XT
ji, 1  i, j  n, i 6= j, (8)

0  X  1, (9)

where (7) constrains self-matching to be identity, (8) con-
strains X to be symmetric, and (9) constrains the values in
X to lie in [0, 1].

Finally, we obtain the following optimization problem:

min
X

hW ,Xi + �kXk⇤,

s.t. X 2 C, (10)

where W = ↵1 � S and C denotes the set of matrices
satisfying the constraints given in (1), (7), (8) and (9).

Upon our experimental observation, the result doesn’t
degrade noticeably when removing the doubly stochastic
constraints in (1). This might be attributed to the existence
of the sparsity regularizer. Therefore, we remove (1) in im-
plementation to accelerate the computation.

4.2. Positive semidefiniteness

We ignore the positive semidefinite constraint for two
reasons: (1) solving SDP is generally unscalable; (2) with
the constraints in (7) and (8), the solution to (10) turns out
to be nearly positive semidefinite if � is sufficiently large.1

Suppose �1, · · · ,�m are eigenvalues of X . From (7),
we have Xii = 1 for all i, and

Pm
i=1 �i = trace (X) = m,

which implies that the sum of �is is fixed. From (8), we
have X is symmetric, and �is are all real numbers. When
we choose a large �, kXk⇤ =

Pm
i=1 |�i| dominates the cost

function, and a solution with all nonnegative �is will give
the lowest cost, because

Pm
i=1 |�i| �

Pm
i=1 �i = m and

the equality holds iff. �i � 0 for all i.
The boundness kXk⇤ � m also implies that the solu-

tion to (10) will be insensitive to � when � is sufficiently
large, and then minimizing the nuclear norm is equivalent
to adding a positive semidefinite constraint. The effect of �
is experimentally illustrated in Section 6.1.2.

1We use the term “nearly positive semidefinite” to refer to the proper-
ty that the negative eigenvalues of a matrix, if there exist, are negligible
compared to the norm of the matrix.

and all Ais are concatenated as rows in a matrix A 2
{0, 1}m⇥k. Then, one can write X as

X = AAT
, (4)

From (4), it is clear to see that a desired X should be both
positive semidefinite and low-rank:

X ⌫ 0, rank (X)  k. (5)

Using (5) the cycle consistency can be effectively im-
posed without checking all cycles of pairwise matches.
Moreover, partial matching is allowed, while bijection
needs to be assumed in (2).

4. Joint matching via rank minimization
Given affinity scores {Sij | 1  i, j  n}, we aim to

find globally consistent matches X . Note that Sij can be
all-zero if matching is not performed for a pair (i, j). More-
over, affinity scores can be computed from either feature
similarities or graph matching solvers according to specific
scenarios, as described in Section 3.1.

4.1. Formulation
We formulate the problem as a low-rank matrix recovery

problem. We maximize the inner product between Xij and
Sij for all i and j as multiple linear assignment problems.
At the same time, we minimize the rank of X to enforce
the cycle consistency. We ignore the positive semidefinite
constraint on X and will explain the reasons later.

To make the optimization tractable, we make the follow-
ing relaxations: (1) X is treated as a real matrix X 2
[0, 1]m⇥m instead of a binary matrix, which is a general
practice in solving matching problems. Experimentally, we
found that the solution values were very close to 0 or 1 and
could be stably quantized by a threshold of 0.5. This might
be attributed to the existence of a linear term in the cost
function [26]. (2) Rank of X is replaced by the nuclear nor-
m kXk⇤ (sum of singular values), which is a tight convex
relaxation proven to be very effective in various low-rank
problems such as matrix completion [8] and robust princi-
pal component analysis [7].

The estimated X should be sparse since at most one val-
ue in each row of Xij can be nonzero. To induce sparsity,
we minimize the sum of values in X . Combining all three
terms, we obtain the following cost function:

f(X) = �
nX

i=1

nX

j=1

hSij ,Xiji + ↵h1,Xi + �kXk⇤,

= �hS � ↵1,Xi + �kXk⇤, (6)

where h·, ·i denotes the inner product and S 2 Rm⇥m is the
matrix collecting all Sijs. ↵ is the weight of sparsity, which

can be interpreted as a threshold to remove small scores in
Sijs. In our implementation, we normalize the scores to let
them lie between 0 and 1 and empirically set ↵ = 0.1. �

controls the weight of the nuclear norm. We will discuss �
in Section 4.2 and Section 6.1.2.

Besides the doubly stochastic constraints in (1), addi-
tional constraints shall be imposed on X after relaxation:

Xii = Ipi , 1  i  n, (7)

Xij = XT
ji, 1  i, j  n, i 6= j, (8)

0  X  1, (9)

where (7) constrains self-matching to be identity, (8) con-
strains X to be symmetric, and (9) constrains the values in
X to lie in [0, 1].

Finally, we obtain the following optimization problem:

min
X

hW ,Xi + �kXk⇤,

s.t. X 2 C, (10)

where W = ↵1 � S and C denotes the set of matrices
satisfying the constraints given in (1), (7), (8) and (9).

Upon our experimental observation, the result doesn’t
degrade noticeably when removing the doubly stochastic
constraints in (1). This might be attributed to the existence
of the sparsity regularizer. Therefore, we remove (1) in im-
plementation to accelerate the computation.

4.2. Positive semidefiniteness

We ignore the positive semidefinite constraint for two
reasons: (1) solving SDP is generally unscalable; (2) with
the constraints in (7) and (8), the solution to (10) turns out
to be nearly positive semidefinite if � is sufficiently large.1

Suppose �1, · · · ,�m are eigenvalues of X . From (7),
we have Xii = 1 for all i, and

Pm
i=1 �i = trace (X) = m,

which implies that the sum of �is is fixed. From (8), we
have X is symmetric, and �is are all real numbers. When
we choose a large �, kXk⇤ =

Pm
i=1 |�i| dominates the cost

function, and a solution with all nonnegative �is will give
the lowest cost, because

Pm
i=1 |�i| �

Pm
i=1 �i = m and

the equality holds iff. �i � 0 for all i.
The boundness kXk⇤ � m also implies that the solu-

tion to (10) will be insensitive to � when � is sufficiently
large, and then minimizing the nuclear norm is equivalent
to adding a positive semidefinite constraint. The effect of �
is experimentally illustrated in Section 6.1.2.

1We use the term “nearly positive semidefinite” to refer to the proper-
ty that the negative eigenvalues of a matrix, if there exist, are negligible
compared to the norm of the matrix.

and all Ais are concatenated as rows in a matrix A 2
{0, 1}m⇥k. Then, one can write X as

X = AAT
, (4)

From (4), it is clear to see that a desired X should be both
positive semidefinite and low-rank:

X ⌫ 0, rank (X)  k. (5)

Using (5) the cycle consistency can be effectively im-
posed without checking all cycles of pairwise matches.
Moreover, partial matching is allowed, while bijection
needs to be assumed in (2).

4. Joint matching via rank minimization
Given affinity scores {Sij | 1  i, j  n}, we aim to

find globally consistent matches X . Note that Sij can be
all-zero if matching is not performed for a pair (i, j). More-
over, affinity scores can be computed from either feature
similarities or graph matching solvers according to specific
scenarios, as described in Section 3.1.

4.1. Formulation
We formulate the problem as a low-rank matrix recovery

problem. We maximize the inner product between Xij and
Sij for all i and j as multiple linear assignment problems.
At the same time, we minimize the rank of X to enforce
the cycle consistency. We ignore the positive semidefinite
constraint on X and will explain the reasons later.

To make the optimization tractable, we make the follow-
ing relaxations: (1) X is treated as a real matrix X 2
[0, 1]m⇥m instead of a binary matrix, which is a general
practice in solving matching problems. Experimentally, we
found that the solution values were very close to 0 or 1 and
could be stably quantized by a threshold of 0.5. This might
be attributed to the existence of a linear term in the cost
function [26]. (2) Rank of X is replaced by the nuclear nor-
m kXk⇤ (sum of singular values), which is a tight convex
relaxation proven to be very effective in various low-rank
problems such as matrix completion [8] and robust princi-
pal component analysis [7].

The estimated X should be sparse since at most one val-
ue in each row of Xij can be nonzero. To induce sparsity,
we minimize the sum of values in X . Combining all three
terms, we obtain the following cost function:

f(X) = �
nX

i=1

nX

j=1

hSij ,Xiji + ↵h1,Xi + �kXk⇤,

= �hS � ↵1,Xi + �kXk⇤, (6)

where h·, ·i denotes the inner product and S 2 Rm⇥m is the
matrix collecting all Sijs. ↵ is the weight of sparsity, which

can be interpreted as a threshold to remove small scores in
Sijs. In our implementation, we normalize the scores to let
them lie between 0 and 1 and empirically set ↵ = 0.1. �

controls the weight of the nuclear norm. We will discuss �
in Section 4.2 and Section 6.1.2.

Besides the doubly stochastic constraints in (1), addi-
tional constraints shall be imposed on X after relaxation:

Xii = Ipi , 1  i  n, (7)

Xij = XT
ji, 1  i, j  n, i 6= j, (8)

0  X  1, (9)

where (7) constrains self-matching to be identity, (8) con-
strains X to be symmetric, and (9) constrains the values in
X to lie in [0, 1].

Finally, we obtain the following optimization problem:

min
X

hW ,Xi + �kXk⇤,

s.t. X 2 C, (10)

where W = ↵1 � S and C denotes the set of matrices
satisfying the constraints given in (1), (7), (8) and (9).

Upon our experimental observation, the result doesn’t
degrade noticeably when removing the doubly stochastic
constraints in (1). This might be attributed to the existence
of the sparsity regularizer. Therefore, we remove (1) in im-
plementation to accelerate the computation.

4.2. Positive semidefiniteness

We ignore the positive semidefinite constraint for two
reasons: (1) solving SDP is generally unscalable; (2) with
the constraints in (7) and (8), the solution to (10) turns out
to be nearly positive semidefinite if � is sufficiently large.1

Suppose �1, · · · ,�m are eigenvalues of X . From (7),
we have Xii = 1 for all i, and

Pm
i=1 �i = trace (X) = m,

which implies that the sum of �is is fixed. From (8), we
have X is symmetric, and �is are all real numbers. When
we choose a large �, kXk⇤ =

Pm
i=1 |�i| dominates the cost

function, and a solution with all nonnegative �is will give
the lowest cost, because

Pm
i=1 |�i| �

Pm
i=1 �i = m and

the equality holds iff. �i � 0 for all i.
The boundness kXk⇤ � m also implies that the solu-

tion to (10) will be insensitive to � when � is sufficiently
large, and then minimizing the nuclear norm is equivalent
to adding a positive semidefinite constraint. The effect of �
is experimentally illustrated in Section 6.1.2.

1We use the term “nearly positive semidefinite” to refer to the proper-
ty that the negative eigenvalues of a matrix, if there exist, are negligible
compared to the norm of the matrix.

Zhou, Zhu and Daniilidis (2015). Multi-image matching via fast alternating minimization.



Mining consistent features



Feature point selection by optimization

Contributions
 ► An efficient and scalable algorithm that discovers consistent feature points for matching
 ► A novel low-rank constraint to optimize geometric consistency
 ► Two applications: 
    1) 3D object-class model reconstruction  2) automatic landmark annotation

Motivation
 Problem

 ► Estimate semantic correspondences across multiple images

 Challenges
► Repeatable feature point detection remaining unsolved

 ► Geometric consistency not fully exploited
 ► Lack of scalability

 Basic idea
 ► Formulate it as a feature selection and labeling problem
 ► Enforce cycle consistency and geometric consistency simultaneously

Approach
Select & Label

Formulation
Reference

   [1] X. Zhou, et al. Multi-image matching via fast alternating minimization. In ICCV, 2015.
   [2] C. Tomasi, et al. Shape and motion from image streams under orthography: a factorization method.     
        IJCV, 1992.
   [3] C. Bregler, et al. Recovering non-rigid 3d shape from image streams. In CVPR, 2000. 
   [4] B. Ham, et al. Proposal flow:Semantic correspondences from object proposals. T- PAMI, 2017.

Multi-Graph Matching

Dataset Input Spectral MatchLift MatchALS Ours Ours Input�Ours�
Hotel 0.57 0.53 0.64 0.58 0.63 0.90 0.85 1
House 0.74 0.74 0.79 0.75 0.79 0.93 0.95 1
Car 0.48 0.55 0.66 0.65 0.72 0.75 0.83 1
Duck 0.43 0.59 0.56 0.56 0.63 0.77 0.65 0.88
Face 0.86 0.92 0.93 0.94 0.95 0.95 0.99 1
Motorbike 0.30 0.25 0.28 0.27 0.40 0.61 0.85 1
Winebottle 0.52 0.64 0.71 0.72 0.73 0.82 0.92 1

Automatic Landmark Annotation

Dense Semantic Matching

Source image Target image Proposal Flow Optimized

Object-class Model Reconstruction

Match 1000 cat head images

Apply on top of Proposal Flow [4]

Sedans (FG3DCar dataset) Motorbikes (Internet images)

Input image Edge detection Sample points 

64
0×

1

Deep feature Pairwise matching Our algorithm

Pipeline

2D projections of similar 3D structures

Geometric Constraint

Affine Structure from Motion[2]

Multi-Image Semantic Matching by Mining Consistent Features
Qianqian Wang1        Xiaowei Zhou1        Kostas Daniilidis2

1 Zhejiang University      2  University of Pennsylvania

Mean viewpoint error on FG3DCar dataset: 7.14° in geodesic distance

Source image Target image Proposal Flow Optimized

Class Ours LOM[4]

car(S) 0.89 0.86
car(G) 0.62 0.58
car(M) 0.56 0.52
duc(S) 0.70 0.65
mot(S) 0.49 0.48
mot(G) 0.31 0.28
mot(M) 0.28 0.28
win(w/o C) 0.91 0.91
win(w/C) 0.52 0.37
win(M) 0.72 0.65
Avg. 0.60 0.56

�

Variable size is small as k<<p

Input pairwise maps

3. Preliminaries and notation

3.1. Pairwise matching

Given n images to match and pi feature points in each
image i, the pairwise feature correspondences for each im-
age pair (i, j) can be represented by a partial permuta-
tion matrix Pij 2 {0, 1}pi⇥pj , which satisfies the doubly
stochastic constraints:

0  Pij1  1,0  P
T
ij 1  1 (1)

Pij can be estimated by maximizing the inner product
between itself and the feature similarities subject to the con-
straints in (1). This is a linear assignment problem, which
is well-studied and can be solved by the Hungarian algo-
rithm. Finding Pij can also be formulated as a graph match-
ing problem, which can be cast as a quadratic assignment
problem (QAP). Specifically, an objective function encod-
ing both local compatibilities (feature similarity) and struc-
tural compatibilities (spatial rigidity) is maximized in order
to find the assignment. Although QAP is NP-hard, many
effective algorithms have been proposed to solve it approx-
imately, e.g., [2, 8, 26]. We will use the output of linear
matching or graph matching, denoted by Wij 2 Rpi⇥pj , as
our input.

3.2. Cycle consistency

Recent works [6, 35, 45] propose to use cycle consis-
tency as a constraint to match multiple images. The corre-
spondence between all pairs of images is cyclically consis-
tent if the following equation holds for any triplet of images
(i, j, z):

Pij = PizPzj (2)

The cycle consistency can be described more concisely
by introducing a virtual “universe” which is defined as the
set of unique features that appear in the image collection
[35, 18]. Each feature point in the universe must be ob-
served by at least one image and matched to corresponding
image points. Suppose the underlying correspondence be-
tween image i and the universe is denoted by partial permu-
tation matrix Xi 2 {0, 1}pi⇥u , where u is the size of the
universe and u � pi for all i. The pairwise correspondence
Pij can be represented as XiX

T
j .

If the permutation matrices are concatenated as

P =

2

6664

P11 P12 . . . P1n

P21 P22 . . . P2n
...

...
. . .

...
Pn1 Pn2 . . . Pnn

3

7775
, X =

2

6664

X1

X2
...

Xn

3

7775
, (3)

it has been shown that the set {Pij |8i, j} is cyclically con-
sistent if and only if P can be factorized as XX

T [26, 18].

4. Proposed methods

4.1. Matching by labeling

Recall that X 2 {0, 1}m⇥u is the map from image fea-
tures to the universe, where m and u denote the total number
of local features in the image collection and the size of uni-
verse, respectively. Another interpretation of X is that each
row vector of X is the label of the corresponding feature.
The image features with identical labels match each other.
To accommodate all image features, previous work [6, 54]
usually defines a sufficiently large u.

However, not all features that appear in the image col-
lection are desirable for matching. Particularly, in seman-
tic matching most of the randomly or uniformly sampled
features are nonrepeatable across images and should be ex-
cluded during matching. Inspired by this, we select the most
repeatable image features and map them to a more compact
feature space containing only k elements, where k is a pre-
defined small value meaning the number of selected features
in each image.

Suppose the correspondences between the feature points
in image i and the selected feature space is represented by
Xi 2 {0, 1}pi⇥k. Each Xi is a partial permutation matrix
with a small number of columns which satisfies

0  Xi1  1,XT
i 1 = 1 (4)

The sum of each column in Xi equals to 1, meaning that ev-
ery element in the selected feature space should correspond
to a feature point in each image. On the contrary, the sum of
a row could be zero, meaning that the corresponding feature
point is not selected.

The set {Xi|1  i  n} is what we need to esti-
mate. XiX

T
j gives the pairwise correspondences between

selected features in image i and j, which must be cyclically
consistent by construction as explained in Section 3.2. As
we attempt to identify the discriminative features that are
supposed to produce more cyclically consistent correspon-
dences in the initial pairwise matching, we minimize the
discrepancy between the initial pairwise matching results
and the constructed ones to estimate X:

min
X

1

4
kW �XX

T k2F

s.t. Xi 2 Ppi⇥k
, 1  i  n (5)

where P denotes the set of partial permutation matrices and
W 2 Rm⇥m is the collection of Wij . By solving (5), the
most repeatable features in the image collection will be se-
lected and matched in a cyclically consistent way.

4.2. Geometric constraint

Suppose we have tracked k features over n frames in a
scene. We use Mi 2 R2⇥k to denote the coordinates of

3

Wang, Zhou, & Daniilidis. (2017). Multi-Image Semantic Matching by Mining Consistent Features.



Geometric constraint

The consistent feature points are 2D projections of the same or similar 3D structures

Wang, Zhou, & Daniilidis. (2017). Multi-Image Semantic Matching by Mining Consistent Features.
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Application — automatic landmark annotation

Multi-Image Semantic Matching by Mining Consistent Features

Qianqian Wang†, Xiaowei Zhou†, Kostas Daniilidis‡
† Zhejiang University ‡ University of Pennsylvania

Figure 1: Given initial feature candidates in multiple images and their noisy correspondences between image pairs, the proposed method
identifies a sparse set of reliable feature points to establish cyclically and geometrically consistent correspondences across all images.
The figure shows an example of identified features (colored crosses) from 1000 cat head images (only 30 images shown here). The color
indicates correspondence. The last column: initial feature candidates (top) and manually-annotated landmarks provided by the dataset
(bottom), both in the first image. Interestingly, the automatically-identified feature points by the proposed method roughly coincide with
the manually-annotated landmarks.

Abstract

This work proposes a multi-image matching method to

estimate semantic correspondences across multiple images.

In contrast to the previous methods that optimize all pair-

wise correspondences, the proposed method identifies and

matches only a sparse set of reliable features in the image

collection. In this way, the proposed method is able to prune

nonrepeatable features and also highly scalable to handle

thousands of images. We additionally propose a low-rank

constraint to ensure the geometric consistency of feature

correspondences over the whole image collection. Besides

the competitive performance on multi-graph matching and

semantic flow benchmarks, we also demonstrate the appli-

cability of the proposed method to reconstruct object-class

models and discover object-class landmarks from images

without any annotation.

1. Introduction

Computing feature correspondences across images is a
fundamental problem in computer vision. Low-level geo-
metric features (e.g. SIFT [30]) are successful for match-
ing images of the same scene. Recently, there has been

an increasing interest in semantic matching (e.g. [28, 22]),
i.e., establishing semantic correspondences across scenes or
object instances in the same class. Most research on se-
mantic matching focuses on the pairwise case that consid-
ers only image pairs. Finding consistent correspondences
across multiple images is important in many situations,
e.g., object-class model reconstruction [21] and automatic
landmark annotation [38]. Multi-image semantic matching
problem is the focus of this work.

Despite remarkable advances in solving both semantic
matching and multi-image matching problems (see related
work section), the following challenges remain. First, re-
peatable feature point detection for semantic matching is
an open problem [25, 38]. Previous work bypassed this is-
sue by either using all pixels (dense flow) [28] or randomly
sampled points [41], resulting in numerous nonrepeatable
features that have no real correspondences in other images
and should be explicitly handled. Second, previous multi-
image matching methods (e.g. [35, 54]) mainly optimize the
cycle consistency of correspondences and seldom consider
the geometric consistency simultaneously. While there have
been effective ways to enforce geometric constraints in the
pairwise setting (e.g. RANSAC [15] and graph matching
[26]), few solutions exist for the multi-image case. Finally,
the existing multi-image matching methods are computa-

1

1000 cat head images



Application — cross-view matching for marker-less motion capture

Dong et al., CVPR 2019. Fast and Robust Multi-Person 3D Pose Estimation from Multiple Views.
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Distributed algorithms

Centralized: all data is available 
and processed at once

Distributed: data in a subgraph is available 
and processed locally



Distributed multi-way matching

Algorithm

Distributed Gradient Descent

Gradient-related local update rule:

⇧i(t+ 1) =
1

|Ni|+ 1

�
⇧i(t) +

X

j2Ni

e⇧ij⇧j(t)
�

(6)

where |Ni| denotes the number of neighbors of sensor i.

Projection back onto the set of permutations by a linear

assignment problem.

Leonardos, Zhou, Daniilidis Distributed Consistent Data Association

Results
- Guaranteed to converge to true labels in noiseless case
- Solutions are always doubly stochastic matrices

Previous 
estimate

Estimates from 
neighbors

Leonardos, Zhou, Daniilidis (2016). Distributed consistent data association.



Divide the entire graph into overlapped subgraphs
Optimizing the permutation matrices for each subgraph with consensus constraints

Distributed multi-way matching

maps in its blocks, i.e.

XV =

0

BBBB@

I X12 · · · X1n

X21 I · · ·
...

... · · ·
. . .

...
Xn1 · · · · · · I

1

CCCCA

The goal of our formulation is to find a matrix XV that
encodes cycle-consistent maps from the noisy input XV . To
achieve this goal, one observation is that the desired match-
ing matrix XV is low-rank (c.f. [15]). Specififcally, we
assume there is an universal object of size m, i.e. there
are totally m distinct entities for all the objects Hi’s in
V . For each object Hi, we have a latent map encoded by
AHi 2 {0, 1}mi⇥m, which maps a vertex from Hi to an en-
tity in the universal object. Let AV be a tall matrix that con-
catenates AHi , i.e., AV = (AT

H1
, · · · ,AT

Hn
)T . It is easy to

see that the map matrix XV admits a low-rank factorization
as XV = AVA>

V . In [15, 32], the authors use this property
to develop robust algorithms for recovering XV from noisy
input maps.

Without losing generality. we assume h(XV) is an ob-
jective function that measures the quality of a set of cycle-
consistent maps encoded by XV , e.g., it promotes the low-
rankness of XV . The precise expression of h(XV) will be
discussed later. Our distributed formulation is given by

min
P

i
h (XVi)

s.t. XVi
i\j

= XVj
i\j

, 8(i, j) 2 E , (1)

where XVi
i\j

is the matching matrix of Vi\j in Vi, i.e. a sub-
matrix of XVi by picking blocks that belong to the matching
graphs in Vi\j . Each h(XVi) indicates local consistency
in Vi, and the condition that XVi

i\j
= XVj

i\j
will guaran-

tee that the overlapping subgraph are consistent. In such a
manner, the consistency condition will propagate through
the overlapping sub-graph to each component Vi conceptu-
ally similar to our proof of Theorem 1.

In the state-of-the-art methods of [15] and [32], the au-
thors proposed different formulations of objective function
h(XV). We will use the formulation described in [32] to
demonstrate our framework, because of its competent per-
formance and superior computational speed.

As in [32], h(XV) can be written as

min hWV ,XVi + �kXVk⇤
s.t. XV ⌫ 0,

XV(ii) = Imi , 8i
XV(ij) = X>

V(ji), 8i 6= j

0  X  1

(2)

where h·, ·i is the matrix inner product, k · k⇤ is the matrix
nuclear norm, and WV = ↵1�XV , and 1 denote the matrix

whose elements are 1. The purpose of adding constant ↵ is
to impose a L1 constraint on XV to promote sparsity. We
use XV(ij) to denote the (i, j)th block of the block matrix
XV . As has been shown in [32], the constraint XV ⌫ 0
may be relaxed for a sufficiently large �. Let Ci encode the
convex set induced by the constraints for Vi, we could then
simplify the formulation of our distributed problem as

min
P

i
(hWVi ,XVii + �kXVik⇤)

s.t. XVi 2 Ci

XVi
i\j

= XVj
i\j

, 8(i, j) 2 E

(3)

4. Alternating minimization
4.1. Algorithms

The nuclear norm minimization in (3) can be efficiently
optimized using recent results on low-rank matrix recovery,
which directly enforce low-rank decompositions XVi =
AViB

>
Vi

(c.f. [2, 11, 32]). Here AVi and BVi are latent
variables. According to [23], we can write the nuclear norm
as

kXk⇤ = min
A,B:AB>=X

1

2

�
kAk

2
F
+ kBk

2
F

�
.

To make the notations uncluttered, we will shorten XVi and
Xi

Vi\j
as Xi and Xij , respectively. Moreover, let Eij de-

note the selection matrix to extract the part of Xi that be-
longs to the set of Vi \ Vj , i.e. Xij = E>

ij
XiEij . With this

setup, the condition on intersection consistency becomes
E>

ij
XiEij = E>

ji
XjEji.

We then finalize our formation of the problem in (1) as

min
P

i

�
hWi,Xii +

�

2 kAik
2
F
+ �

2 kBik
2
F

�

s.t. Xi = AiB>
i
,

E>
ij
XiEij = E>

ji
XjEji,

Xi 2 Ci,

(4)

In all our experiments, we set ↵ = 0.1, � = 50, µ = 64,
and � = 1.

We apply ADMM to solve (4). The solver is summarized
in Algorithm 2. In particular, Yi and Zij are dual variables.
The constraints on X are handled implicitly and updated in
the alternating algorithm. The ADMM algorithm updates
primal variables by minimizing L and then applies gradient
descent to update the dual variables. Moreover, Ai and Bi

admit closed-form solution via solving least-squares. More-
over, Xi0 is the solution to the linear equation

µXi+2�
X

j

EijE
>
ij
XiEijE

>
ij
= µAiB

>
i

�(Wi+Yi)

+
X

j

Eij(2�M
k

j!i
� Zij + Zji)E

>
ij
.

Furthermore, the update on Xi requires a projection onto
the convex set C, PC(·), i.e. PC(X0) is the solution to the

Hu, Huang, Thibert,  Alpes, & Guibas (2018). Distributable Consistent Multi-Object Matching.

1. Gi is cycle consistent 8i,

2. Gi and Gj are joint normal 8(i, j) 2 E ,

3. K is simply connected (c.f. [12]).

Here we say the cover complex K is simply connected
if every closed curve can be deformed to a point (or in
other words the region enclosed by this curve has no-holes).
Please refer to [12] for a more general definition. This the-
orem states that the cycle consistency property on each sub-
graph would be propagated to the global consistency, if the
cover complex K satisfies the conditions stated in Theo-
rem 1. The proof to Theorem 1 is left to the supplementary
material.

Note that the 3nd condition in Theorem 1 is necessary.
Figure 2(a) provides a simple counter example, which sat-
isfies the 1st and 2nd conditions in Theorem 1. The cover
complex K, however, is homologous to the Torus T 2, which
is not simply connected. It is easy to see that the local-
consistency (which is trivial as each sub-graph is given by
an edge) does not lead to the global consistency among
these three edges.

Figure 2(c) provides another example to understand the
correctness of Theorem 1. In this case, there are four ob-
jects. It is clear that enforcing the cycle-consistency among
all four triple sub-graphs induces the cycle-consistency on
the original graph. This argument aligns with Theorem 1 as
K is simply connected. We defer detailed explanations to
the supplementary material.

Algorithm 1: Greedy Construction of K

Input : Map graph G = (V, E)
Number of cover nodes K

Output: Cover nodes {Gi}
K

1

1 Compute a graph clustering of G to K clusters (graph
cut or K-means on graph embeddings)

2 Assign each of the cluster to Gi, i = 1, · · · ,K
3 while condition not satisfied do
4 Assign Hj to Gi if Hj is neighboring to Gi in G or

within distance of ✏ to Gi in the embedding space
5 Build K from {Gi}

K

i

6 Check if K is connected
7 Compute homology group using [33]
8 Check if H1(K) is trivial
9 if Both conditions satisfied then

10 Break
11 end
12 end

To develop an algorithm based on Theorem 1, we pro-
posed a greedy algorithm to construct K as in Algorithm
1. Note that a complex K is simply connected, if 1) it is
connected; 2) the 1-dimensional homology group H1(K) is

Gi Gj

Gij

Gi Gj

(a) Subgraphs that forms an empty triangle cover complex

Gi Gj

Gij

Gi Gj

(b) Subgraphs that form a solid triangle cover complex
Gi Gj

Gij

Gi Gj

(c) Subgraphs that form an empty tetrahedron cover complex

Figure 2: Given local consistency, (a) is not globally con-
sistent, while (b) and (c) are guaranteed to be globally con-
sistent. (Left: the map graph with subgraphs circled out.
Right: the corresponding cover complex.)

trivial. Condition 1) could be easily verified by any graph
traversal algorithm (BFS/DFS), and condition 2) can be ver-
ified computationally as in [33].

3. Distributed Optimization

In this section, we introduce the proposed distributed for-
mulation of recovering cycle-consistent maps from noisy
pair-wise maps.

3.1. Formulation

Our formulation takes as input the pairwise base maps
�ij . We follow the state-of-the-art work on convex relax-
ation of enforcing cycle-consistent maps [15, 4] to encode
�ij into a data matrix Xij . Following the common strategy
for optimizing point-based maps, we relax �ij to be a par-
tial map and/or soft map, i.e. Xij 2 [0, 1]mi⇥mj , where mi

denote the number of vertices in Hi.
Let XV be the matching matrix that encodes pair-wise
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(a) Descriptors and QuickMatch clusters. Small
circles’ colors: image the descriptors come from.
Large circles’ colors: multi-image match to which
descriptors have been assigned. Red arrows: the tree
after QuickMatch. Black arrows: edges elimated by
QuickMatch from the original QuickShift tree.
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(b) The matrix of pairwise Eu-
clidean distances (darker colors
mean lower values). The points
are ordered by their multi-image
match cluster. Notice the clear
block-diagonal structure.
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(c) The density used by QuickMatch to order the points
in a tree. Notice how the descriptors on the right are
more discriminative (farther away with respect to other
descriptors) and hence they produce a stronger peak).

Figure 3: A simple synthetic multi-image matching problem with 4 images and 3 two-dimensional descriptors per image, its
intepretation as a clustering problem and the results of QuickMatch.

relation between lengths of the edges and clusters to break
the tree into connected components using a fixed threshold.
In QuickMatch, instead, we use the exclusion property and
the distinctivity criterion.

4.3. Breaking the tree into clusters
Given a tree, we now would like to break it into clusters

(connected components) which correspond to valid multi-
image matches. Our algorithm works by keeping track of the
collection of multi-image matches sets {Cc}. We define two
functions: matchImages(Cc), which returns the indeces
of the images {k1, k2, . . .} to which the features in Cc belong,
and matchDiscr(Cc), which returns the tightest distinctiv-
ity criterion, that is, matchDiscr(Cc) = minik:xik2Cc dik.
We use a bottom-up procedure where we initialize one clus-
ter for each datapoint, and then we consider each edge in the
QuickShift tree in ascending distance order, that is, from the
shortest to the longest. Assume that the edge under consid-
eration connects two datapoints xi1k1 and xi2k2 that belong
to two clusters Cc1 and Cc2 , respectively. If we consider this
edge as valid, then Cc1 and Cc2 are merged, otherwise the
edge is simply discarded. We consider an edge valid if these
two conditions are satisfied:

(EC1) The sets of images covered by the two clus-
ters are disjoint, that is, matchImages(Cc1) \
matchImages(Cc2) = ;;

(EC2) The edge is short with respect to the distinctivity
criterion of the two clusters, that is d(xi1k1 , xi2k2) 
⇢edge min

�
matchDiscr(Cc1),matchDiscr(Cc2)

�
.

Note that condition (EC1) implies that a single cluster cannot
contain two points from the same image (condition (C1) in
the definition of multi-image match). Also, since the only

operation we are performing on the clusters is merging, the
sets {Cc} are always disjoint (condition (C2) in the defini-
tion of multi-image match). The user-defined constant ⇢edge
can be used to tune the balance between false positives and
false negatives in the final edge matches. In the experiments
we use ⇢edge = 0.67. The algorithm terminates after con-
sidering all the edges, and the final clusters {Cc} indicate
the final multi-image correspondences (see Figure 3a for an
example).

4.4. Computational considerations
As it will be shown in the experiments, the algorithm

is, in practice, very fast. However, there are a few aspects
that can greatly speed up an implementation with relatively
modest effort.

1. The tree generated by the procedure in Section 4.2 can
be effectively stored using two 1-D vectors (one to store
the index of the parent of each point, and one to store
the corresponding distance).

2. During the construction of the tree, we can optionally
use a very conservative threshold to preemptively re-
move very long edges. This step does not change the
final result (if the threshold is high enough) but reduces
the number of edges considered by the procedure of
Section 4.3, thus providing a minor speed-up.

3. The functions matchImages and matchDiscr do
not need to be explicitly implemented. Their outputs
can instead be efficiently obtained using data structures
that are updated when an edge is considered valid. In
particular, the intersection operation in condition (EC1)
operates only on non-negative integers, and can be effi-
ciently implemented.

4325

permutation matrix ⇧ defined by

[⇧]ij =

⇢
1, if ⇡(j) = i

0, otherwise (7)

The set of m ⇥ m permutation matrices is a group under
matrix multiplication. The inverse of a permutation matrix is
given by its transpose, i.e. ⇧�1

= ⇧
T . The simplest choice

for a distance on Sm is given by

d(⇡1,⇡2) = d(e,⇡
�1
1 ⇡2)

.
= m� h⇧1,⇧2i (8)

where hA,Bi .
= tr(A

T
B), e is the identity map and ⇧1,⇧2

are the matrix representations of the permutations ⇡1 and ⇡2

respectively. The distance function defined above is simply
the number of labels assigned differently by permutations ⇡1

and ⇡2. With a slight abuse of notation, we write ⇧ 2 Sm

meaning that ⇧ is an m⇥m permutation matrix.

C. Consensus Algorithms
Consensus algorithms have been extensively studied in the

control community [28], [26], [27]. In its simplest form, a
consensus algorithm is a decentralized protocol in which the
agents, modeled as vertices of a graph, try to reach agreement
by communicating only with their neighbors. More formally,
let xi(t) 2 R denote the state of agent i at time time t. Then,
the simplest consensus protocol is given by

xi(t+ 1) =

X

j2Ni[{i}

aijxj(t) (9)

where aij � 0 and
P

j aij = 1. Popular choices for the
mixing coefficients aij result in the protocols

x(t+ 1) = (I � ✏L(G))x(t) (10)

where x = [x1, . . . , xn]
T and 0 < ✏ < 1/maxi[�(G)]ii and

x(t+ 1) = F (G)x(t) (11)

IV. PROBLEM FORMALIZATION
In this section, we formalize the problem of consistent

data association. We assume there are n sensors observing
m targets. For instance, assume we have a set of n cameras
observing a scene in the world described by a set of m

feature points. Sensors communicate only with a subset of
all sensors. Communication constraints between sensors are
encoded by the sensor graph. The sensor graph is the digraph
G = (V, E) where V = {1, 2, . . . , n} and (i, j) 2 E if
there is information flow from sensor i to j. The pairwise
association ⇡ij 2 Sm is defined as follows: we have that
⇡ij(l) = k if the lth target in jth sensor corresponds to the
kth target in ith sensor. Observe that the pairwise associations
⇡ij can be written as ⇡ij = ⇡i � ⇡

�1
j , where ⇡i 2 Sm

is the mapping from the labels of sensor i to some global
labels, termed the “universe of features” in some works [10],
[11]. We denote by e⇡ij 2 Sm the, possibly erroneous,
estimated pairwise association between sensor i and j and
by e⇧ij the corresponding matrix representation. Moreover,
let ⇧i

.
= ⇢(⇡i).

Related to the sensor graph is the data association graph
D = (VD, ED, wD), where VD = V ⇥ {1, 2, . . . ,m}. There
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3

S1 S2 S3
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Fig. 2. Example with n = 3 sensors S1, S2, S3 observing m = 3 targets.
Top: consistent data association. Bottom: inconsistent data association since
⇡12 � ⇡23(2) = 3 but ⇡31(2) = 2.

is an edge from (i, k) to (j, l) if and only if (i, j) 2 E and
[e⇧ij ]kl > 0. The corresponding edge weight is simply equal
to [e⇧ij ]kl.

First, we need a precise definition of consistency.
Definition 4.1 (Consistency): A set of pairwise associa-

tions {e⇡ij}(i,j)2E is consistent if

e⇡ij � e⇡jk = e⇡ik (12)

for all valid indices i, j, k.
Based on the definition of consistency, the problem of

consistent data association is naturally defined as follows.

Definition 4.2 (Consistent data association):
Given pairwise associations {e⇡ij}(i,j)2E , find labels
⇡1, . . . ,⇡n 2 Sm, such that

e⇡ij = ⇡i � ⇡�1
j , 8 (i, j) 2 E (13)

Remark 1: Under the presence of noise, it might not be
possible to find labels {⇡i}ni=1 satisfying (13) exactly. There-
fore, in practice we are looking for labels {⇡i}ni=1 satisfying
(13) as much as possible according to some criterion.

Next, we have the consistency condition (12) in terms of
the representations of the pairwise associations.

Lemma 4.3 (Rank constraint for consistency [9]): Given
pairwise associations {e⇡ij}(i,j)2E , define the block matrix
P by [P]ij =

e⇧ij
.
= ⇢(e⇡ij). The set of pairwise associations

{e⇡ij}(i,j)2E is consistent if and only if

P ⌫ 0, [P]ii = I, rank(P) = m (14)

V. DISTRIBUTED AVERAGING
In the classic consensus algorithms, each agent updates his

estimate of a collective quantity by taking convex combina-
tions of the estimates of his neighbors. The problem at hand
is different: we do not want all ⇡i’s to converge to the same

Tron, Zhou, Esteves, & Daniilidis (2017). Fast multi-image matching via density-based clustering.



Simultaneous mapping and clustering

Bajaj et al (2018). Simultaneous Mapping and Clustering via Spectral Decompositions.



Matching symmetric objects

Sun et al (2018). Joint Map and Symmetry Synchronization.

Multiple plausible self-maps and pairwise maps



Learning map synchronization

Recap: reweighed least squares for robust pose synchronization

Weights determined by previous guess and “hand-crafted” loss function

Can we make the weighting scheme learnable?
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Algorithm 1 Translation Synchronization Layer.
function SYNC((wij , Tij), 8(i, j) 2 E)

Form the connection Laplacian L and vector b;
Compute first 3 eigenvectors U of L;
Perform SVD on blocks of U to obtain {R

?

i
, 1  i 

n} via (3);
Solve (6) to obtain {t?

i
, 1  i  n};

return T
?

i
= (R?

i
, t?

i
), 1  i  n;

end function

We thus perform rotation synchronization and translation
synchronization separately.

Our rotation synchronization approach adapts the spec-
tral rotation synchronization approach described in [1].
Specifically, we consider the following optimization prob-
lem for rotation synchronization:

minimize
Ri2SO(3),1in

X

(i,j)2E

wijkRijRi � Rjk2
F (1)

Solving (1) exactly is difficult. We propose to relax the con-
straint Ri 2 SO(3), 1  i  n to

P
n

i=1 RiR
T

i
= nI3

when solving (1) and then project each of the resulting so-
lution Ri to SO(3). This leads to the following procedure
for rotation synchronization. More precisely, we introduce
a connection Laplacian L 2 R3n⇥3n [33], whose blocks are
given by

Lij :=

8
><

>:

P
j2N (i)

wijI3 i = j

�wijR
T

ij
(i, j) 2 E

0 otherwise

(2)

where N (i) collects all neighbor vertices of i in G.
Let U = (UT

1 , · · · , U
T
n

)T 2 R3n⇥3 collect the eigen-
vectors of L that correspond to the three smallest eigen-
values. We choose the sign of each eigenvector such thatP

n

i=1 det(Ui) > 0. To compute the absolute rotations, we
first perform singular value decomposition (SVD) on each

Ui = Vi⌃iW
T

i
.

We then output the corresponding absolute rotation estimate
as

R
⇤
i

= ViW
T

i
(3)

The following proposition states that although {R
?

i
, 1 

i  n} do not exactly optimize (1), they still provide ef-
fective synchronized rotations due to the following robust
recovery property:

Proposition 1. Consider the ground-truth rotations
R

gt
i

, 1  i  n. Suppose 8(i, j) 2 E where wij > 0,

RijR
gt
i

⇡ R
gt
j

. (4)

Then R
?

i
, 1  i  n in (3) approximately recovers the

ground-truth rotations R
gt

i
, 1  i  n. More precisely,

we define

�Rij = Rij � R
gt
j

R
gt
i

T

as the estimation error on Rij . With �R = {�Rij} we de-
note the corresponding error matrix. When the constraints
in (4) are exact, or equivalently, �R = 0, then the recovery
is also exact. In this case, we have

0 = �1(L) = �2(L) = �3(L) < �4(L)  · · ·  �3n(L).

In other words, if the weighting module sets weights of
outlier relative transformations to 0, then R

?

i
approximately

recover the underlying rotations.
Translation synchronization solves the following least
square problem to obtain ti:

minimize
ti,1in

X

(i,j)2E

wijkRijti + tij � tjk2 (5)

Let t = (tT

1 , · · · , tT

n
)T 2 R3n collect the translation com-

ponents of the synchronized poses in a column vector. In-
troduce a column vector b = (bT

1 , · · · , bT

n
)T 2 R3n where

bi := �
X

j2N (i)

wijR
T

ij
tij .

Then an1 optimal solution t? to (5) is given by

t? = L
+b. (6)

Similar to the case of rotation synchronization, we have the
following robust recovery property:

Proposition 2. (Informal) Consider the underlying syn-
chronized poses T

gt
i

= (Rgt
i

, tgt
i

), 1  i  n. Denote
tgt = (tgt

1

T

, · · · , tgt

n

T
)T . Suppose 8(i, j) 2 E where

wij > 0,

RijR
gt
i

⇡ R
gt
j

, Rijt
gt
i

+ tij ⇡ tgt
j

. (7)

Then t? in (6) approximately recovers tgt. In particular,
when the constraints in (7) are exact, then the recovery is
also exact.

Similar to the case of rotation synchronization, if the
pairwise matching module set the weights of outlier rela-
tive transformations to 0, then t?

i
approximately recover the

underlying translations.

1When L is positive semidefinite, then the solution is unique, and (6)
gives one optimal solution.

4
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Algorithm 1 Translation Synchronization Layer.
0: function SYNC((wij , Tij), 8(i, j) 2 E)
0: Form the connection Laplacian L and vector b;
0: Compute first 3 eigenvectors U of L;
0: Perform SVD on blocks of U to obtain {R

?

i
, 1  i 

n} via (3);
0: Solve (6) to obtain {t?

i
, 1  i  n};

0: return T
?

i
= (R?

i
, t?

i
), 1  i  n;

0: end function=0

Solving (1) exactly is difficult. We propose to relax the con-
straint Ri 2 SO(3), 1  i  n to

P
n

i=1 RiR
T

i
= nI3

when solving (1) and then project each of the resulting so-
lution Ri to SO(3). This leads to the following procedure
for rotation synchronization. More precisely, we introduce
a connection Laplacian L 2 R3n⇥3n [34], whose blocks are
given by

Lij :=

8
><

>:

P
j2N (i)

wijI3 i = j

�wijR
T

ij
(i, j) 2 E

0 otherwise

(2)

where N (i) collects all neighbor vertices of i in G.
Let U = (UT

1 , · · · , U
T
n

)T 2 R3n⇥3 collect the eigen-
vectors of L that correspond to the three smallest eigen-
values. We choose the sign of each eigenvector such thatP

n

i=1 det(Ui) > 0. To compute the absolute rotations, we
first perform singular value decomposition (SVD) on each

Ui = Vi⌃iW
T

i
.

We then output the corresponding absolute rotation estimate
as

R
⇤
i

= ViW
T

i
(3)

The following proposition states that although {R
?

i
, 1 

i  n} do not exactly optimize (1), they still provide ef-
fective synchronized rotations due to the following robust
recovery property:

Proposition 1. Consider the ground-truth rotations
R

gt
i

, 1  i  n. Suppose 8(i, j) 2 E where wij > 0,

RijR
gt
i
⇡ R

gt
j

. (4)

Then R
?

i
, 1  i  n in (3) approximately recovers the

ground-truth rotations R
gt

i
, 1  i  n. More precisely,

we define
�Rij = Rij �R

gt
j

R
gt
i

T

as the estimation error on Rij . With �R = {�Rij} we de-
note the corresponding error matrix. When the constraints
in (4) are exact, or equivalently, �R = 0, then the recovery
is also exact. In this case, we have

0 = �1(L) = �2(L) = �3(L) < �4(L)  · · ·  �3n(L).

In other words, if the weighting module sets weights of
outlier relative transformations to 0, then R

?

i
approximately

recover the underlying rotations.
Translation synchronization solves the following least
square problem to obtain ti:

minimize
ti,1in

X

(i,j)2E

wijkRijti + tij � tjk2 (5)

Let t = (tT

1 , · · · , tT

n
)T 2 R3n collect the translation com-

ponents of the synchronized poses in a column vector. In-
troduce a column vector b = (bT

1 , · · · , bT

n
)T 2 R3n where

bi := �
X

j2N (i)

wijR
T

ij
tij .

Then an1 optimal solution t? to (5) is given by

t? = L
+b. (6)

Similar to the case of rotation synchronization, we have the
following robust recovery property:

Proposition 2. (Informal) Consider the underlying syn-
chronized poses T

gt
i

= (Rgt
i

, tgt
i

), 1  i  n. Denote
tgt = (tgt

1

T

, · · · , tgt

n

T
)T . Suppose 8(i, j) 2 E where

wij > 0,

RijR
gt
i
⇡ R

gt
j

, Rijt
gt
i

+ tij ⇡ tgt
j

. (7)

Then t? in (6) approximately recovers tgt. In particular,
when the constraints in (7) are exact, then the recovery is
also exact.

Similar to the case of rotation synchronization, if the
pairwise matching module set the weights of outlier rela-
tive transformations to 0, then t?

i
approximately recover the

underlying translations.

4.2. Weighting Module
We define the weighting module as the following func-

tion:
w

(k+1)
ij

 Weight
✓
(Si, Sj , T

in
ij

, s(k)
ij

) (8)

where the input consists of (i) a pair of scans Si and Sj ,
(ii) the input relative transformation T

in
ij

between them, and
(iii) a status vector s(k)

ij
2 R4. The output of this weighting

module is given by the new weight w
(k+1)
ij

at the k + 1th
iteration. With ✓ we denote the trainable weights of the
weighting module. In the following, we first introduce the
definition of the status vector s(k)

ij
.

1When L is positive semidefinite, then the solution is unique, and (6)
gives one optimal solution.
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Algorithm 1 Translation Synchronization Layer.
0: function SYNC((wij , Tij), 8(i, j) 2 E)
0: Form the connection Laplacian L and vector b;
0: Compute first 3 eigenvectors U of L;
0: Perform SVD on blocks of U to obtain {R

?

i
, 1  i 

n} via (3);
0: Solve (6) to obtain {t?

i
, 1  i  n};

0: return T
?

i
= (R?

i
, t?

i
), 1  i  n;

0: end function=0

Solving (1) exactly is difficult. We propose to relax the con-
straint Ri 2 SO(3), 1  i  n to

P
n

i=1 RiR
T

i
= nI3

when solving (1) and then project each of the resulting so-
lution Ri to SO(3). This leads to the following procedure
for rotation synchronization. More precisely, we introduce
a connection Laplacian L 2 R3n⇥3n [34], whose blocks are
given by

Lij :=

8
><

>:

P
j2N (i)

wijI3 i = j

�wijR
T

ij
(i, j) 2 E

0 otherwise

(2)

where N (i) collects all neighbor vertices of i in G.
Let U = (UT

1 , · · · , U
T
n

)T 2 R3n⇥3 collect the eigen-
vectors of L that correspond to the three smallest eigen-
values. We choose the sign of each eigenvector such thatP

n

i=1 det(Ui) > 0. To compute the absolute rotations, we
first perform singular value decomposition (SVD) on each

Ui = Vi⌃iW
T

i
.

We then output the corresponding absolute rotation estimate
as

R
⇤
i

= ViW
T

i
(3)

The following proposition states that although {R
?

i
, 1 

i  n} do not exactly optimize (1), they still provide ef-
fective synchronized rotations due to the following robust
recovery property:

Proposition 1. Consider the ground-truth rotations
R

gt
i

, 1  i  n. Suppose 8(i, j) 2 E where wij > 0,

RijR
gt
i
⇡ R

gt
j

. (4)

Then R
?

i
, 1  i  n in (3) approximately recovers the

ground-truth rotations R
gt

i
, 1  i  n. More precisely,

we define
�Rij = Rij �R

gt
j

R
gt
i

T

as the estimation error on Rij . With �R = {�Rij} we de-
note the corresponding error matrix. When the constraints
in (4) are exact, or equivalently, �R = 0, then the recovery
is also exact. In this case, we have

0 = �1(L) = �2(L) = �3(L) < �4(L)  · · ·  �3n(L).

In other words, if the weighting module sets weights of
outlier relative transformations to 0, then R

?

i
approximately

recover the underlying rotations.
Translation synchronization solves the following least
square problem to obtain ti:

minimize
ti,1in

X

(i,j)2E

wijkRijti + tij � tjk2 (5)

Let t = (tT

1 , · · · , tT

n
)T 2 R3n collect the translation com-

ponents of the synchronized poses in a column vector. In-
troduce a column vector b = (bT

1 , · · · , bT

n
)T 2 R3n where

bi := �
X

j2N (i)

wijR
T

ij
tij .

Then an1 optimal solution t? to (5) is given by

t? = L
+b. (6)

Similar to the case of rotation synchronization, we have the
following robust recovery property:

Proposition 2. (Informal) Consider the underlying syn-
chronized poses T

gt
i

= (Rgt
i

, tgt
i

), 1  i  n. Denote
tgt = (tgt

1

T

, · · · , tgt

n

T
)T . Suppose 8(i, j) 2 E where

wij > 0,

RijR
gt
i
⇡ R

gt
j

, Rijt
gt
i

+ tij ⇡ tgt
j

. (7)

Then t? in (6) approximately recovers tgt. In particular,
when the constraints in (7) are exact, then the recovery is
also exact.

Similar to the case of rotation synchronization, if the
pairwise matching module set the weights of outlier rela-
tive transformations to 0, then t?

i
approximately recover the

underlying translations.

4.2. Weighting Module
We define the weighting module as the following func-

tion:
w

(k+1)
ij

 Weight
✓
(Si, Sj , T

in
ij

, s(k)
ij

) (8)

where the input consists of (i) a pair of scans Si and Sj ,
(ii) the input relative transformation T

in
ij

between them, and
(iii) a status vector s(k)

ij
2 R4. The output of this weighting

module is given by the new weight w
(k+1)
ij

at the k + 1th
iteration. With ✓ we denote the trainable weights of the
weighting module. In the following, we first introduce the
definition of the status vector s(k)

ij
.

1When L is positive semidefinite, then the solution is unique, and (6)
gives one optimal solution.
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Figure 2: Illustration of our recurrent module. [Please ex-
plain the notations here. also what do the dots here repre-
sent. ][Xiangru, please draw one.]

scan Si in a world coordinate system ⌃. Without losing gen-
erality, we assume the world coordinate system is given by
⌃ := ⌃1. Note that unlike traditional transformation syn-
chronization approaches that merely use T

in
ij

, our approach
also incorporates additional information extracted from the
input scans Si, 1  i  n.

3.2. Approach Overview
Our approach is motivated from iteratively reweighted

least squares (or IRLS)[14], which has been applied to
transformation synchronization (e.g. [20]). The key idea
of IRLS is to maintain an edge weight wij , (i, j) 2 E for
each input transformation T

in
ij

so that the objective func-
tion because quadratic, and transformation synchronization
admits a closed-form solution. One can then use the closed-
form solution to update the edge weights. Under a special
weighting scheme (c.f.[20]), it has been shown that when
the fraction of incorrect measurements is below a constant,
the weights associated with these incorrect measurements
eventually become 0. One way to understand reweighting
schemes is that when the weights converged, the reweighted
square loss becomes the actual robust loss function that
is used to solve the corresponding transformation synchro-
nization problem. In contrast to using a generic weighting
scheme, we propose to learn the weighting scheme from
data by designing a recurrent network that replicates the
reweighted transformation synchronization procedure. By
doing so, we implicitly learn a suitable loss function for
transformation synchronization.

As illustrated in Figure 2, the proposed recurrent module
combines a synchronization layer and a weighting module.
At the kth iteration, the synchronization layer takes as input
the initial relative transformations T

in
ij

2 SE(3), 8(i, j) 2
E and their associated weights w

(k)
ij

2 (0, 1) and outputs
synchronized poses T

(k)
i

: ⌃i ! ⌃ for the input objects

Si, 1  i  n. Initially, we set w
(1)
ij

= 1, 8(i, j) 2 E . The
technical details of the synchronization layer are described
in Section 4.1.

The weighting module operates on each object pair in
isolation. For each edge (i, j) 2 E , the input to the pro-
posed pairwise matching module consists of the input rela-
tive transformation T

in
ij

, the induced relative transformation
at the kth iteration

T̂
(k)
ij

:= T
(k)
j

T
(k)
i

�1
,

features extracted from the initial alignment of the two in-
put scans, and a status vector v(k) that collects global sig-
nals from the synchronization layer at the kth iteration (e.g.,
spectral gap). The output is the associated weight w

(k+1)
ij

at
the k + 1th iteration.

The network is trained end-to-end by penalizing the dif-
ferences between the ground-truth poses and the output of
the last synchronization layer. The technical details of the
end-to-end training procedure are described in Section 4.3.

4. Approach
In this section, we introduce the technical details of our

learning transformation synchronization approach. In Sec-
tion 4.1, we introduce details of the synchronization layer.
In Section 4.2, we describe the weighting module. Finally,
we show how to train the proposed network end-to-end in
Section 4.3. Note that the proofs of the propositions intro-
duced in this section are deferred to the supplemental mate-
rial.

4.1. Synchronization Layer
For simplicity, we ignore the superscripts k and in when

introducing the synchronization layer. Let Tij = (Rij , tij)
and wij be the input relative transformation and its weights
associated with the edge (i, j) 2 E . We assume that this
weighted graph is connected. The goal of the synchro-
nization layer is to compute the synchronized pose T

?

i
=

(R?

i
, t?

i
) associated with each scan Si. Note that a correct

relative transformation Tij = (Rij , tij) induces two sepa-
rate constraints on the rotations R

?

i
and translations t?

i
, re-

spectively:

RijR
?

i
= R

?

j
, Rijt

?

i
+ tij = t?

j
.

We thus perform rotation synchronization and translation
synchronization separately.

Our rotation synchronization approach adapts the spec-
tral rotation synchronization approach described in [1].
Specifically, we consider the following optimization prob-
lem for rotation synchronization:

minimize
Ri2SO(3),1in

X

(i,j)2E

wijkRijRi � Rjk2
F (1)
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Figure 2: Illustration of our recurrent module. [Please ex-
plain the notations here. also what do the dots here repre-
sent. ][Xiangru, please draw one.]

scan Si in a world coordinate system ⌃. Without losing gen-
erality, we assume the world coordinate system is given by
⌃ := ⌃1. Note that unlike traditional transformation syn-
chronization approaches that merely use T

in
ij

, our approach
also incorporates additional information extracted from the
input scans Si, 1  i  n.

3.2. Approach Overview
Our approach is motivated from iteratively reweighted

least squares (or IRLS)[14], which has been applied to
transformation synchronization (e.g. [20]). The key idea
of IRLS is to maintain an edge weight wij , (i, j) 2 E for
each input transformation T

in
ij

so that the objective func-
tion because quadratic, and transformation synchronization
admits a closed-form solution. One can then use the closed-
form solution to update the edge weights. Under a special
weighting scheme (c.f.[20]), it has been shown that when
the fraction of incorrect measurements is below a constant,
the weights associated with these incorrect measurements
eventually become 0. One way to understand reweighting
schemes is that when the weights converged, the reweighted
square loss becomes the actual robust loss function that
is used to solve the corresponding transformation synchro-
nization problem. In contrast to using a generic weighting
scheme, we propose to learn the weighting scheme from
data by designing a recurrent network that replicates the
reweighted transformation synchronization procedure. By
doing so, we implicitly learn a suitable loss function for
transformation synchronization.

As illustrated in Figure 2, the proposed recurrent module
combines a synchronization layer and a weighting module.
At the kth iteration, the synchronization layer takes as input
the initial relative transformations T

in
ij

2 SE(3), 8(i, j) 2
E and their associated weights w

(k)
ij

2 (0, 1) and outputs
synchronized poses T

(k)
i

: ⌃i ! ⌃ for the input objects

Si, 1  i  n. Initially, we set w
(1)
ij

= 1, 8(i, j) 2 E . The
technical details of the synchronization layer are described
in Section 4.1.

The weighting module operates on each object pair in
isolation. For each edge (i, j) 2 E , the input to the pro-
posed pairwise matching module consists of the input rela-
tive transformation T

in
ij

, the induced relative transformation
at the kth iteration

T̂
(k)
ij

:= T
(k)
j

T
(k)
i
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,

features extracted from the initial alignment of the two in-
put scans, and a status vector v(k) that collects global sig-
nals from the synchronization layer at the kth iteration (e.g.,
spectral gap). The output is the associated weight w

(k+1)
ij

at
the k + 1th iteration.

The network is trained end-to-end by penalizing the dif-
ferences between the ground-truth poses and the output of
the last synchronization layer. The technical details of the
end-to-end training procedure are described in Section 4.3.

4. Approach
In this section, we introduce the technical details of our

learning transformation synchronization approach. In Sec-
tion 4.1, we introduce details of the synchronization layer.
In Section 4.2, we describe the weighting module. Finally,
we show how to train the proposed network end-to-end in
Section 4.3. Note that the proofs of the propositions intro-
duced in this section are deferred to the supplemental mate-
rial.

4.1. Synchronization Layer
For simplicity, we ignore the superscripts k and in when

introducing the synchronization layer. Let Tij = (Rij , tij)
and wij be the input relative transformation and its weights
associated with the edge (i, j) 2 E . We assume that this
weighted graph is connected. The goal of the synchro-
nization layer is to compute the synchronized pose T

?
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=

(R?

i
, t?

i
) associated with each scan Si. Note that a correct

relative transformation Tij = (Rij , tij) induces two sepa-
rate constraints on the rotations R
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and translations t?

i
, re-

spectively:

RijR
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We thus perform rotation synchronization and translation
synchronization separately.

Our rotation synchronization approach adapts the spec-
tral rotation synchronization approach described in [1].
Specifically, we consider the following optimization prob-
lem for rotation synchronization:

minimize
Ri2SO(3),1in

X

(i,j)2E

wijkRijRi � Rjk2
F (1)
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Abstract

Estimating the relative rigid pose between two RGB-D
scans of the same underlying environment is a fundamental
problem in computer vision, robotics, and computer graph-
ics. Most existing approaches allow only limited maximum
relative pose changes since they require considerable over-
lap between the input scans. We introduce a novel deep neu-
ral network that extends the scope to extreme relative poses,
with little or even no overlap between the input scans. The
key idea is to infer more complete scene information about
the underlying environment and match on the completed
scans. In particular, instead of only performing scan com-
pletion from each individual scan, our approach alternates
between relative pose estimation and scan completion. This
allows us to perform scan completion by utilizing informa-
tion from both input scans at late iterations, resulting in
better results for both scan completion and relative pose
estimation. Experimental results on benchmark datasets
show that our approach leads to considerable improvements
over state-of-the-art approaches for relative pose estima-
tion. In particular, our approach provides encouraging rel-
ative pose estimates even between non-overlapping scans.

1. Introduction
Estimating the relative rigid pose between a pair of

RGB-D scans is a fundamental problem in computer vi-
sion, robotics, and computer graphics with applications to
systems such as 3D reconstruction [51], structure-from-
motion [40], and simultaneous localization and mapping
(SLAM) [43]. Most existing approaches [13, 18, 1, 30, 48]
follow a three-step paradigm (c.f. [51]): feature extrac-
tion, feature matching, and rigid transform fitting with the
most consistent feature correspondences. However, this
paradigm requires the input RGB-D scans to have consid-
erable overlap, in order to establish sufficient feature corre-
spondences for matching. For input scans of extreme rela-
tive poses with little or even no overlap, this paradigm falls
short since there are very few or no features to be found in
the overlapping regions. Nevertheless, such problem set-
tings with minimal overlap are common in many applica-

RGB-D Scan #1

RGB-D Scan #2

Completion 
Module

Completed CubeMap #1

Completed CubeMap #2

Transform

Transform
Relative Pose 

ModuleCompletion 
Module

Figure 1: Illustration of the work-flow of our approach. We regis-
ter two scans by alternating between inferring complete represen-
tation and pairwise matching.

tions such as solving jigsaw puzzles [5], early detection of
loop closure for SLAM [14], and reconstruction from min-
imal observations, e.g., a few snapshots of an indoor envi-
ronment [26].

While the conventional paradigm breaks down in this
setting, we hypothesize that solutions are possible using
the prior knowledge for typical scene structure and object
shapes. Intuitively, when humans are asked to perform pose
estimation for non-overlapping inputs, they utilize the prior
knowledge of the underlying geometry. For example, we
can complete a human model from two non-overlapping
scans of both the front and the back of a person; we can
also tell the relative pose of two non-overlapping indoor
scans by knowing that the layout of the room satisfies the
Manhattan world assumption [7]. This suggests that when
direct matching of non-overlapping scans is impossible, we
seek to match them by first performing scan completions
and then matching completed scans for their relative pose.

Inspired from the iterative procedure for simultaneous
reconstruction and registration [16], we propose to alter-
nate between scan completion and relative pose estimation
so that we can leverage signals from both input scans to
achieve better completion results. Specifically, we intro-
duce an end-to-end neural network that takes a pair of RGB-
D scans with little overlap as input and outputs the relative
pose between them. Key to our approach are internal mod-
ules that infer the completion of each input scan, allowing
even widely separated scans to be iteratively registered with
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Abstract

Estimating the relative rigid pose between two RGB-D
scans of the same underlying environment is a fundamental
problem in computer vision, robotics, and computer graph-
ics. Most existing approaches allow only limited maximum
relative pose changes since they require considerable over-
lap between the input scans. We introduce a novel deep neu-
ral network that extends the scope to extreme relative poses,
with little or even no overlap between the input scans. The
key idea is to infer more complete scene information about
the underlying environment and match on the completed
scans. In particular, instead of only performing scan com-
pletion from each individual scan, our approach alternates
between relative pose estimation and scan completion. This
allows us to perform scan completion by utilizing informa-
tion from both input scans at late iterations, resulting in
better results for both scan completion and relative pose
estimation. Experimental results on benchmark datasets
show that our approach leads to considerable improvements
over state-of-the-art approaches for relative pose estima-
tion. In particular, our approach provides encouraging rel-
ative pose estimates even between non-overlapping scans.

1. Introduction
Estimating the relative rigid pose between a pair of

RGB-D scans is a fundamental problem in computer vi-
sion, robotics, and computer graphics with applications to
systems such as 3D reconstruction [51], structure-from-
motion [40], and simultaneous localization and mapping
(SLAM) [43]. Most existing approaches [13, 18, 1, 30, 48]
follow a three-step paradigm (c.f. [51]): feature extrac-
tion, feature matching, and rigid transform fitting with the
most consistent feature correspondences. However, this
paradigm requires the input RGB-D scans to have consid-
erable overlap, in order to establish sufficient feature corre-
spondences for matching. For input scans of extreme rela-
tive poses with little or even no overlap, this paradigm falls
short since there are very few or no features to be found in
the overlapping regions. Nevertheless, such problem set-
tings with minimal overlap are common in many applica-
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Figure 1: Illustration of the work-flow of our approach. We regis-
ter two scans by alternating between inferring complete represen-
tation and pairwise matching.

tions such as solving jigsaw puzzles [5], early detection of
loop closure for SLAM [14], and reconstruction from min-
imal observations, e.g., a few snapshots of an indoor envi-
ronment [26].

While the conventional paradigm breaks down in this
setting, we hypothesize that solutions are possible using
the prior knowledge for typical scene structure and object
shapes. Intuitively, when humans are asked to perform pose
estimation for non-overlapping inputs, they utilize the prior
knowledge of the underlying geometry. For example, we
can complete a human model from two non-overlapping
scans of both the front and the back of a person; we can
also tell the relative pose of two non-overlapping indoor
scans by knowing that the layout of the room satisfies the
Manhattan world assumption [7]. This suggests that when
direct matching of non-overlapping scans is impossible, we
seek to match them by first performing scan completions
and then matching completed scans for their relative pose.

Inspired from the iterative procedure for simultaneous
reconstruction and registration [16], we propose to alter-
nate between scan completion and relative pose estimation
so that we can leverage signals from both input scans to
achieve better completion results. Specifically, we intro-
duce an end-to-end neural network that takes a pair of RGB-
D scans with little overlap as input and outputs the relative
pose between them. Key to our approach are internal mod-
ules that infer the completion of each input scan, allowing
even widely separated scans to be iteratively registered with
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3.2. Approach Overview

Our approach is motivated from iteratively reweighted
least squares (or IRLS)[13], which has been applied to
transformation synchronization (e.g. [19]). The key idea
of IRLS is to maintain an edge weight wij , (i, j) 2 E for
each input transformation T

in
ij

so that the objective func-
tion because quadratic, and transformation synchronization
admits a closed-form solution. One can then use the closed-
form solution to update the edge weights. Under a special
weighting scheme (c.f.[19]), it has been shown that when
the fraction of incorrect measurements is below a constant,
the weights associated with these incorrect measurements
eventually become 0. One way to understand reweighting
schemes is that when the weights converged, the reweighted
square loss becomes the actual robust loss function that
is used to solve the corresponding transformation synchro-
nization problem. In contrast to using a generic weighting
scheme, we propose to learn the weighting scheme from
data by designing a recurrent network that replicates the
reweighted transformation synchronization procedure. By
doing so, we implicitly learn a suitable loss function for
transformation synchronization.

As illustrated in Figure 2, the proposed recurrent module
combines a synchronization layer and a weighting module.
At the kth iteration, the synchronization layer takes as input
the initial relative transformations T

in
ij

2 SE(3), 8(i, j) 2
E and their associated weights w

(k)
ij

2 (0, 1) and outputs
synchronized poses T

(k)
i

: ⌃i ! ⌃ for the input objects
Si, 1  i  n. Initially, we set w

(1)
ij

= 1, 8(i, j) 2 E . The
technical details of the synchronization layer are described
in Section 4.1.

The weighting module operates on each object pair in
isolation. For each edge (i, j) 2 E , the input to the pro-
posed pairwise matching module consists of the input rela-
tive transformation T

in
ij

, the induced relative transformation

at the kth iteration
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features extracted from the initial alignment of the two in-
put scans, and a status vector v(k) that collects global sig-
nals from the synchronization layer at the kth iteration (e.g.,
spectral gap). The output is the associated weight w

(k+1)
ij

at
the k + 1th iteration.

The network is trained end-to-end by penalizing the dif-
ferences between the ground-truth poses and the output of
the last synchronization layer. The technical details of the
end-to-end training procedure are described in Section 4.3.

4. Approach
In this section, we introduce the technical details of our

learning transformation synchronization approach. In Sec-
tion 4.1, we introduce details of the synchronization layer.
In Section 4.2, we describe the weighting module. Finally,
we show how to train the proposed network end-to-end in
Section 4.3. Note that the proofs of the propositions intro-
duced in this section are deferred to the supplemental mate-
rial.

4.1. Synchronization Layer
For simplicity, we ignore the superscripts k and in when

introducing the synchronization layer. Let Tij = (Rij , tij)
and wij be the input relative transformation and its weights
associated with the edge (i, j) 2 E . We assume that this
weighted graph is connected. The goal of the synchro-
nization layer is to compute the synchronized pose T
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) associated with each scan Si. Note that a correct
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Iterative reweighted least squares with learned weights
• Weighting module is a neural network
• Synchronization module is solving weighted spectral decomposition 
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Summary

Cycle consistency
Composition of maps along a cycle equals to identity

Synchronization for correspondences and relative poses
• inlier/outlier inference

• Local, iterative optimization

• Global, factorization-based optimization

   Methods applied to more types of transformations

Open problems
• Scalability to large dataset

• Learning synchronization
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