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Geometric transformation between images
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Local correspondences Global relative pose



Why joint analysis!?

Horse Mule Donkey



Why joint analysis!?

Ambiguities exist when matching two pieces



Why joint analysis!?

Ambiguities resolved when looking at additional piece



Cycle consistency
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The composition of maps along a cycle should be identity
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Part |
Map Synchronization for Pose Estimation




Pipeline of 3D reconstruction

|. Collect data from different
viewpoints

2.| Recover relative poses

between views

3. Reconstruct 3D model




Pipeline of 3D reconstruction

2.| Recover relative poses
between views

* Compute for each pair
separately

* Pairwise estimation might be
inaccurate or failed

* Joint optimization required



Pose optimization (synchronization)

Goal

Given noisy pairwise pose measurements,

jointly optimizing all of them in order to
improve accuracy and reject outliers

How

Cycle consistency on pose graph!

Three types of approaches

e |nlier/outlier inference

* Local, iterative optimization

* Global, factorization-based optimization



Inlier/outlier inference

Detect “good or bad” edges in the graph

(b) Relation graph

Loop sampling
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Snavely et al. 2008 Zach et al. 2010



Inlier/outlier inference by spanning tree

Find a tree of confident maps and composite others

Node — image
Edge — map between images
Edge weight — confidence of map

Limitation
A single incorrect map can destroy everything




Optimization-based approach

Optimize pose variables subject to the cycle consistency constraint

/ Noisy measurements

min 3, d(X,-M,)

Limitation

Number of constraints (cycles) grows quickly with the number of nodes



Problem reformation

Estimate absolute pose for each node
r; = (pi, R;)
which respect relative measurements

R;; = R R,
A;; =R (p; — pi)

where (A, R;j)are pairwise measurements Carlone et al. (2015)

Cycle consistency is satisfied by construction!

eg R.R,R,=(R'R)R R)RR)=1I

l



Pose graph optimization

Noisy relative pose measurements

{R-]}E%isno(?)) Z dgs (i )2+d50(3) ’2

(t;}eR> (2,7)€E T T

Relative poses constructed from absolute poses

* Many choices of distance metrics

* Usually first solve rotation and then solve translation



Rotation optimization (averaging)

~

min E 14 RZ-R;-T, R,
{R;};evESO(3)N 4 ( J)
(¢,7)€E

* Many choices of loss functions, parameterizations, and optimization methods

Examples: Crandall (201 1), Chatterjee (2013), Tron (2014)
Surveys: Hartley(201 3), Carlone(2015), Tron (2016)

* Nonconvey, different initialization leads to different local minima

Eriksson (2018)



Spectral relaxation [Arie-Nachimson |2, Bernard 15,Arrigoni |6]

Use least-squares loss and write loss in matrix form G] = R, i@, j)ee
. 7| 0 otherwise
min)  ||R;—R]R;||. —» max tr(RTGR) A
(2,5)€E Rl
R — 2

Relax constraints on rotations

(R;}€SOB3) — RTR =1 “,

Then the problem becomes

Analytically solved by Eigenvalue decomposition!



SDP relaxation
[Arie-Nachimson |2, Fredriksson 12,Wang |3, Rosen |6, Carlone |5, Eriksson |8]

Rewrite the loss

o

tr(R'"GR) —» tr(GG) where G = RR*

lgnore SO(3) constraints, the problem becomes semidefinite program (SDP)

Convex and provable exact recovery [Wang |3, Rosen |6, Ericsson |8]



Robust factorization [Wang and Singer, 201 3]

Solution |: Robust loss function in SDP formation

mén(z):g HGZ] — Rng s.t. G;; =14, and G =0
1,7 )€

Solution 2: Reweighted spectral decomposition (= reweighted least squares)

maxtr(RTéR) - r if (i, j)e e
RTR — ] G 7e3%3 = < lJ ( ’J)
- U T 0 otherwise

.

Weights indicate the confidence of pairwise measurement
and computed from the residual in the previous iteration




Summary

Three types of methods

* Inlier/outlier inference
* Local, iterative optimization

* Global, factorization-based optimization

The best practice!

The combination of three!
|. Prune outliers by inference
2. Initialize by factorization

3. Refine by local optimization

Translation synchronization

e.g. [Brand 04, Jiang |3,Wilson |6, Huang |7]
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Part I
Map Synchronization for Correspondence Estimation




Correspondence problem

Represented by
permutation matrix



Cycle consistency is also desired
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Permutation synchronization

1

a
s[le e | = | et

\@/\3 \@H\/ \/

Input: pairwise correspondences from Output: cycle-consistent correspondences
existing algorithms which may be noisy which respect the input
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NP-Complete [Huber 2002]



Approaches

Inliner/outlier inference
[Huber 01, Huang 06, Cho 08, Zach10, Nguyen| I, Crandel | |, Huang 12, Zhoul 5]

Local, iterative optimization
[Yan |3, 14, | 5]

Global, factorization-based optimization
[Huang | 3, Pachauri |3, Chen 14, Zhoul 5]



Cycle consistency for permutation matrices




Cycle consistency for permutation matrices

Not true if the feature sets are not the same




Partial similarity

Feature sets are not always the same

— correspondences represented by partial permutation matrix

How can we represent the cycle consistency for partial permutation matrices!?



Cycle consistency under partial similarity

Map to a latent feature space (universe) [Huang |3, Chen 4]
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Cycle consistency under partial similarity

Xip = AlAzT

A and X are conceptually similar to absolute pose and relative pose



Cycle consistency = positive semidefinite + low rank

Map between images Map from image

/' to universe

X11 @ Xln
Bl S B (7
i an Xn2 Xnn | B An i
X =AA"

The maps are cycle consistent [Huang et al. 201 3]
= X can be factorized as above = X is positive semidefinite and low-rank



Permutation synchronization by matrix decomposition

X input

4 Noise

Noisy measurements of matrix blocks [Huang et al. 201 3]



Permutation synchronization by spectral method

zzzzz

Compute the n leading eigenvectors (v, va, ..., v,) Eigenvalue
of T andset U =+/m |vi,v2,...,Un] decomposition
for : =1 tom do .
P =U 1—1)n+1:in,1:n Ul:n, 1:n : - -
O; = arg( ma)xgegn (P;1,0) [Kuhn-Munkres] Discretization
end for
for each (7, 7) do
Tji — Oy 0'7;_1
end for
Output: the matrix (75;);;—; of globally consistent
matchings

Pachauri et al. (201 3). Solving the multi-way matching problem by permutation synchronization.



Permutation synchronization by convex optimization

Minimize Z ||ng;-lpUt — Xij”l
(2,7)€9

Constraints: X =~ 0 <— Positive semidefinite (cycle consistency)

Xii = [m..: 1 <i1<n

Xi1=1,X,1=1, 1<i<j<n

0< X <1

N

Relaxed constraints on permutation matrices

Huang and Guibas (2013). Consistent shape maps via semidefinite programming.



Permutation synchronization by convex optimization

minimize

subjectto X, = Iy, 1<i<n

m 11

>
_1 X_—O
X >0

Chen et al. (2014). Near-optimal joint object matching via convex relaxation.



Provable exact recovery of MatchLift [Chen 20[4]

* Theorem [CGH’14]: The underlying
permutations can be recovered w.h.p if

2/
e > log=(mn)
Jtrue

> C
vV Pobs

— p.s- the probability that two objects connect
— P:rue- the probability that a pair-wise map is correct
— Incorrect maps are random permutations



Comparison to previous methods
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Solving optimization

minimize
subject to X =Im 1<1<n

Xz-j1:1,Xz.Tj1:1, 1<i<j<n

X >0
X >0
ADMM [Boyd et al. | 1]




Make the optimization more efficient!?

i

n
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'

universe size

X is both positive semidefinite and low-rank
Rank is bounded by the size of universe




Low-rank formulation (MatchALS)

Pairwise matching cost Nuclear norm
Z frace (W;Z;XZ]) (sum of singular values)
1,

N /

st. X €C

T

Xij:X}; Xzz:Ipz 0< X <1

Zhou, Zhu and Daniilidis (2015). Multi-image matching via fast alternating minimization.



Mining consistent features




Feature point selection by optimization

Input pairwise maps

l @0 1 0

1 - @1 0 0

min W= XX E w10 0 0
st. X; ePrixk 1 <j<n Xi=®lo 0 0
@0 0 1

Variable size is small as k<<p

Wang, Zhou, & Daniilidis. (2017). Multi-lmage Semantic Matching by Mining Consistent Features.



Geometric constraint

The consistent feature points are 2D projections of the same or similar 3D structures

Wang, Zhou, & Daniilidis. (2017). Multi-lmage Semantic Matching by Mining Consistent Features.



Application — automatic landmark annotation




Application — automatic landmark annotation

000 cat head images



Application — cross-view matching for marker-less motion capture

20 20

Dong et al., CVPR 2019. Fast and Robust Multi-Person 3D Pose Estimation from Multiple Views.



Part |l
More research directions



Distributed algorithms

Centralized: all data is available Distributed: data in a subgraph is available
and processed at once and processed locally



Distributed multi-way matching

Algorithm

Previous Estimates from
estimate neighbors

Results
- Guaranteed to converge to true labels in noiseless case
- Solutions are always doubly stochastic matrices

Leonardos, Zhou, Daniilidis (2016). Distributed consistent data association.



Distributed multi-way matching

Divide the entire graph into overlapped subgraphs
Optimizing the permutation matrices for each subgraph with consensus constraints

min ), ((Wy,, Xy,) + Al Xy
S.1. Xy, € C;
XV’? . ij ,\V/(Z,]) c &

(ARY, 1M g

Hu, Huang, Thibert, Alpes, & Guibas (2018). Distributable Consistent Multi-Object Matching.



Multi-image matching as a clustering problem
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Tron, Zhou, Esteves, & Daniilidis (2017). Fast multi-image matching via density-based clustering.



Simultaneous mapping and clustering

Correspondence Quality (Church)
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Bajaj et al (2018). Simultaneous Mapping and Clustering via Spectral Decompositions.



Matching symmetric objects

Multiple plausible self-maps and pairwise maps

Sun et al (2018). Joint Map and Symmetry Synchronization.



Learning map synchronization

Recap: reweighed least squares for robust pose synchronization

minimize E Wy 4 HRZ] Rz — Rj H%:
R;€S0(3),1<i<n =
(2,5)€E

Weights determined by previous guess and “hand-crafted” loss function

Can we make the weighting scheme learnable!?



Learning map synchronization

Input Scans
Relati '
elative Weights Synchronized

Poses Poses

Weighting Synchronization

Module Module

Iterative reweighted least squares with learned weights
* Weighting module is a neural network
* Synchronization module is solving weighted spectral decomposition

Huang et al.,, CVPR 2019. Learning Transformation Synchronization.



Summary

Cycle consistency

Composition of maps along a cycle equals to identity

Synchronization for correspondences and relative poses
* inlier/outlier inference

* Local, iterative optimization

* Global, factorization-based optimization

Methods applied to more types of transformations

Open problems
* Scalability to large dataset

* Learning synchronization
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