Generating Animated Videos of Human Activities from Natural Language Descriptions
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Introduction
Generating realistic character animations is of great importance in computer graphics

and

related domains. In this paper, we introduce a sequence-to-sequence model that

maps a natural language (NL) description to an animation of a humanoid skeleton.
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Approach

Step 1. We pretrain the animation decoder using an autoencoder objective. We train
the autoencoder to reconstruct the input using the L2 distance between the predicted

and

We

animation as the loss function L:
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use the data representation proposed by Holden et al. [2]:
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Network Architecture:

* The decoder Is the GRU with residual connections proposed by Martinez et al. [4]
 Trajectory prediction module is inspired by Agrawal et al. [1]

Training data: KIT Motion-Language Dataset [5] and Human3.6M [3]
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Figure 3: (Left) The network architecture for the autoencoder. (Right) The network
architecture for the trajectory prediction (TP) module. LP indicates a linear projection
layer and FC indicates a fully connected layer.

Step 2: We train the end-to-end network for generating animations from text using the
same loss function.
Training data: KIT Motion-Language Dataset [5] and additional paired data that we

coll

ected on Amazon Mechanical Turk (AMT)
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Figure 4: Network architecture for our full pipeline.

Experimental results

Baseline methods:

* Nearest neighbor: Our simplest baseline Is a standard TF-1DF bag-of-words nearest
neighbor method.

* Plappert et al. [6]’s method: This method also generates animations from text
descriptions, but their animated character moves in place because their model does
not predict the character’s trajectory.

Evaluation metrics:

Dynamic time warping mean absolute error (DTW-MAE):

1. Use the dynamic time warping algorithm to warp animations to same length

2. Compute the absolute error at each time step and average across time

DTW-MAE-T 1s DTW-MAE on animations with the trajectory information removed.

| DTW-MAE DTW-MAE-T

Nearest neighbors 9.80 +5.79 90.76 £ 5.77
Plappert et al.’s method N/A 8.44 + 3.99
Our method 0.74 + 4.34 9.71+ 4.32

Table 1: Dynamic time warping mean absolute error metric on the test set. (Lower Is
better)

Human evaluation: We conducted a crowd-sourced human evaluation of the generated
animations using AMT to evaluate the generated animations for faithfulness to the
description. Below Is a diagram of how we set up the Human Intelligence Task:
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The win rate Is defined as the number of comparisons won by the method divided by
the total number of comparisons for a particular pair of methods.

Human evaluation win rate on the test set. (Higher is better)
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Discussion

Evaluation metrics:

 DTW-MAE results do not agree well with human evaluation win rate

* We need better automatic metrics for comparing animations

* Our method outperforms Plappert et al. [6]’s method on the human evaluation win rate
but it might not be fair because many descriptions describe global movement

* There Is room for improvement for both animation generation methods

Main failure cases:

* Producing animations that fail to depict the description for rare activities

* Producing animations that are physically impossible

Future work:

* Improve our loss function to capture more semantic meaning

» Explore physically-based controller approaches to generate more realistic animations
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