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Abstract

This paper addresses the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. The basic idea of the
approach is to find the conditions for precise merging of two B-spline curves, and perturb the control points of the curves by constrained
optimization subject to satisfying these conditions. To obtain a merged curve without superfluous knots, we present a new knot adjustment
algorithm for adjusting the end k knots of a kth order B-spline curve without changing its shape. The more general problem of merging curves

to pass through some target points is also discussed.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Approximate conversion is an important issue in data
communication between different CAD systems [1]. As
mentioned by Hoschek [2], approximate conversion
includes the following two problems:

e Degree reduction: finding a parametric curve of degree n
that approximates the given curve of degree m (n < m).
e Merging: merging as many curve segments of degree n as
possible to get one curve segment of degree m (n = m).

Degree reduction methods for Bézier, Ball, and B-spline
curves and surfaces have been extensively investigated
[3—13]. Merging is one of the main methods for data
reduction; by merging as many curve segments as possible
into one curve, the amount of geometric data needed for
communication can be reduced. In Ref. [14], we presented a
method for approximate merging of a pair of Bézier curves
using constrained optimization method. The objective of this
paper is to consider approximate merging of B-spline curves.

The approximate merging problem we address is as
follows. Given two adjacent order k B-spline curves P(#) and
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R(s) with knot vectors T = {1, #1,..., 8, ... by, ..o 1,1} and
S = {50 81505 Skseevs Spps -+ Sppi } T€Spectively, and control
points P; (i=0,1,...,n) and Rj (G=0,1,...,m) respect-
ively, find an order k B-spline curve F(x)with control points
F, (=0,1,....n4+m—k+2) and knot vector U=
{10, 11y eees B ees by By 1 = Sk 15 S ees Sqi s Where s} =
f(s;) for some linear function f, such that a suitable distance
function d(F, F) between F(u) and

_ P(u), -1 S U=t
Fu) = -1 / /
R(F W), si-1 =u=s,p

is minimized.

The basic idea of our method is to first find the conditions
for precise merging of two B-spline curves, and perturb the
control points of the curves by constrained optimization
subject to satisfying the precise merging conditions. We
then reparametrize the resulting curves using a new knot
adjustment algorithm we present. Such knot adjustment is
needed for producing a merged B-spline curve efficiently
without superfluous knots.

The remainder of the paper is organized as follows.
Section 2 presents the definition of the B-spline curves, the
de Boor algorithm, and our knot adjustment algorithm.
Section 3 describes the method for approximate merging of
a pair of B-spline curves; the more general problem of

0010-4485/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved.

PII: S0010-4485(02)00176-8


http://www.elsevier.com/locate/cad

894

approximate merging with point constraints is also dis-
cussed. Conclusions are given in Section 4.

2. B-spline curves, evaluation and knot adjustment

A B-spline curve of order k with control points P; (i =

0,1,...,n) can be defined as
P() =D PNy(t), iy S 1=ty (1)
i=0

where N;,(t)are the B-spline basis functions of order k
defined over the knot vector T = {#y,7,..., %, .. stk )
which is defined by the following recursive de Boor-Cox
formula [15]

17
N0 = .
0, Otherwise

Ay
t=t<t,

N (1) =

t—t tigg — 1
———— Ny (D + ————Ny1(D. (2)
Livk—1 — 4 Livk = liv1

The point on the curve P(7) at parameter ¢ (f € [z}, ;1)) can
be evaluated using the following de Boor algorithm

P

liqk — 1 prl

is
Pi(1) = = ligr -1

i+1>
livk = ligr

livk = ligr

and P() = P}, (0).

To compute the derivatives of a B-spline curve, by letting
P? = P;, and writing

n

POty = P(t) = > PN, (),
i=0

we get (see p. 97 in Ref. [15])

n—I
POG) = PNy i), )
=0
where
P, I1=0
Pl=1 k-1 (5)

——— P — P, >0

livk = lip
Suppose two kth order B-spline curves P(¢) and R(s)with
knot vectors T = {fo,t1,.... 0 ccstyo-.o, iy} and S =
{505 815 wvvs Sks e »Suik} are to be merged. In our
merging algorithm, after perturbing the control points to
satisfy precise merging conditions, we adjust the knot
vectors of the curves. Specifically, we adjust the last k
knots of the curve P(r) so that they match k knots of the
curve R(s); that is, the knot vector of P(#) must be adjusted
from T to Tl = {to, ST y RNy SR tn+1’sk’sk+1’ ...,S2k72}.
Although this knot adjustment can be achieved by first
clamping T, and then unclamping it to T [15], for
efficiency, we propose a new general algorithm to directly

s Spps oo

r=0,i=0,1,...

r=12,.k—Li=j—k+1,.,j—r
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adjust the knot vector T to T, = {#tg,t(, ..., ts ooos Ly Lyt 1
Bugs o Iy} Whete 1y S 60 < Sty St

Suppose the new curve defined on the new knot vector T,
is denoted by Q(#)with control points Qy, Qy, ..., Q,. Since
the shape of the curve remains unchanged, we have P(¢) =
Q). We claim that Q; =P;,, 0 =i=n—k+ 2, and the
other Q;,n — k + 3 = i = n can be computed recursively by
Algorithm 1. The correctness proof is given in Appendix 1.

Algorithm 1. Computing the new control points after
knot adjustment from T to T,

1. Compute P!,_,.,,1=1,2,....k — 1 by Eq. (5).

2. LetQ, _, =P _, ., forl=0,1,....k—1.

3. Compute QY for n — k+3 =< i < n by (see top row of
Fig. 1)

Lrey — 4
Q== QN+ Qi
(6)

i=n—k+3, n—k+4,...n [=01,...

’n_l’

which can be derived from Eq. (5)
4. LetQ,=P;fori=n—k+2,and Q; = Q’ forn — k +

3=i=n.

,n

3)

Fig. 2 shows the results of adjusting the knot vectors
of two cubic B-spline curves. The original control
polygons are shown in solid line, while the new control
polygons are shown in dotted line. In Fig. 2(a), the
knot vector is adjusted from {0,0,0,0,0.5,1,1,1,1} to
{0,0,0,0,0.5,1,1.3,1.3,1.3}. In Fig. 2(b), is adjusted to
{—0.6,—-04,-0.2,0,0.5,1,1.5,1.6,1.7}.

3. Merging by constrained optimization

Suppose P(r) and R(s) are two B-spline curves to be
approximately merged. Let R(s) be a B-spline curve
with control points R; (i=0,1,...,m) and knot vector

0 0 0 0 0

O 2 Ouiss = Qs & - > 0y o 0,
1 1 1 1

Oir = Cues 2 O -2 O

S

2 2
Orirr = Oogn —

A A

- : - n—k+4

/

k-2 2
Ol = Qs

o/

n—k+2

;../
7

Fig. 1. Recursive computation of Q; = Q?, i=n—k+2,..,n
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Fig. 2. Two examples of knot adjustment of B-spline curves.

S = {505 S1seeerSkseees Sy oees Sk }- Without loss of general-
ity, we suppose that the order of R(s) is also k, and 7,,, | =
S¢—1- To obtain a good parametrization for the merged
curve, we perform a linear transformation f on the knot
vector S such that

arc length of P(¢) over [t,, 2,411  t4y — 1,

arc length of R(s) over [s, — sp_1] S — Sp—1
3.1. Conditions for precise merging

We first derive the conditions for the curves P(¢) and R(s)
to be precisely merged into one B-spline curve. We let the
curves share common derivatives, that is, to precisely merge
at P(z,.1) = R(s,—1), we need

PO(t,.1) = RV (s, ), [=0,1,....k—2,
i.e.
k—1-1
Z PINSici(tus) = D RINZ g5 ),
i=n—k+1 i=0 (7)
1=0,1,...k—2,

where N; k(t) ka(s) are B-spline basis functions defined on
the knot vectors T and S, respectively. According to Eq (6),
P! and R! in Eq. (7) can be rewritten as Din e+l % P and
Z b(l)R respectively, where afjl) and b( can be
computed by Algorithms 2 and 3, respectively.

Algorithm 2. Computing a\”, n—k+1=<i=n—1,

n—k+1=j=n0=l=k-—-2

lj’

1. Forn—k+1=j=n,letpy,pi,...

0, i#j
pi:8ij:{ N
I, i=j

, P, be scalars, and

2. Let
Di» forl=20
pi=1 k-

_ p,fl) forl >0
livk = li

(Pis1 —
3. Leta) =pln—k+l=i=n-10=I=k-2

Algorithm 3. Computing bfj), O=i=k—-1—-10=
j=k—-1,0=l=k—-2.

1. For0=j=k—1,let py,py,-...

0, i*j
p,:%:{ N
1, i=j

, P, be scalars and

2. Let
Di» forl=0
pi=1 k-1

-1 -1 :
Piy1 —pi ), forl>0
Sitk = Sitl

3. Lethy =pl,0=i=k-1-1L0=<I=<k-2.

Then the precise merging conditions in Eq. (7) can be
rewritten as

> (5

()NH - z(fn+1))

Jj=n—k+1 \i=n—k+1
k—1-1
Z( D> BNk i(Si- o) =0, ©)
Jj=0 i=0
[=0,1,....k — 2.

3.2. Merging by constrained optimization

To merge two arbitrary curves P(¢) and R(s), we first
perturb their control points so that the curves can be
precisely merged. We achieve this by minimizing the total
perturbation of the control points subject to the precise
merging constraints Eq. (8). Let the perturbation of the
control points of P(r) and R(s) be denoted by e€;=
{€/,€,€} i=n—k+2,n—k+3,...n and §={5},5,8},
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i=0,1,....k—2 respectively.1 That is, the modified
curves are

n

P()=> PNJ(t)=> R+ e)N(0), 1 =t=t,,,
=0 =0

and

R) =D RN =D R+ 8N,  si1 =5=s,41,
i=0 i=0

and the precise-merging conditions from Eq. (8) become

n n—I
Z ( Z ag)NzE—l,kl(tnﬂ))(Pj—i—ej)

Jj=n—k+1 \i=n—k+1
k=1 fk—1—1
-y ( > bE?NfH,k_z(sk_o)(Rﬁ 8)=0, ©)
j=0 \ i=0
[=0,1,....,k—2.

More generally, we consider the approximate merging
problem in which the merged curve is constrained to pass
through some target points on the original curves. This can
be achieved by adding point constraint conditions as
follows

> PNLp= D PiteNi@). j=0.1..g

i=n—k+1 i=n—k+1

k—1 k—1

D RN =D R+ 8)Nji(s).  j=0.1,....h.
i=0 i=0

where 4, j=0,1,...,g and 5, j=0,1,...,h are parameters
of the target points on P(¢) and R(s), respectively.2 So we

have

n

> eNL()=0, j=0.1,....g. (10)
i=n—k+1

k—1

D ENj(s)=0, j=0.1,....h. (11)
i=0

We determine €; §; by setting the optimization objective
O(fl‘, 8]) as

n

k=2
MinO(e,8)= > &+ 8, (12)
i=n—k+2 Jj=0

' From precise merging conditions, only k — 1 control points are
involved in each curve, see Eq. (7). Thus, for convenience in subsequent
derivation, we just set ¢, =0 (i=0,1,....n—k+1) and ;=0 (i=
k—1,k—2,...,m).

2 Note that the total number of point constraints for two curves should be
less than k — 1, otherwise the solution of the equation system does not exist.

and define the Lagrange function as

n

k=2 k=2 n n—I
L= Z EI+ZSJ+Z/\I( Z ( Z agj{)Nl?‘-f'l,kl(tn-f—]))
=0 =0

i=n—k+2 J j=n—k+1 \i=n—k+1

j=0 \ i

k=1 fk—=1-1
X(P;+€)— Z( bg)Nﬂl,kl(SkO)(R/'i‘@))
=0

k—1
‘o‘ika(s,-)),
0

=

8 n h
3ne( 3 M) 3 b
=0 '

i=n—k+1 Jj=0
(13)

where A;=[A},A},A}] are the Lagrange multipliers. By setting
aL/de!, OLIY€], OLIY€;, IL/DS}, aua&;, aL/8&;, aLIdA;, AL/A,
9L/3 X} to zero, and writing the derived equations in vector form,
we obtain a system of linear equations, which includes Eqgs. (9)—
(11), and the following two equations

=2 n=l g
2e=—Y Azag)Ngl,k—l(fnJrl)+Z/\k—1+jNiTk(fj),
1=0 j=n—k+1 j=0 (14)

n—k+2=i=n,

K2kl h S
28=> > MNBPNZ (5o 1)+ D NeggriNik(s)),

=0 =0 j=0 (15)
0=j=k-2.

By solving the linear system, the constrained optimization
solution can be obtained.

After obtaining two modified curves that can be precisely
merged, we let

TneW: {tO’tl7""tk""’tmtn+l :Sk—l7sk’sk+l""’Sin""’sm+k}

be the knot vector of the merged curve to be constructed.
Using Algorithm 1, we adjust the knot vector T of curve f’(t)
10 T/ = {19, t1seeertprevvstysts1 »SksSiq15+++552k—2 } and the knot
vector S of curve R(s) to 8'={lty_tirsistpslnss =
Sk—1>SksSka1s---sSmak }» Tespectively. For simplicity, we still
denote the control points after knot adjustment as P, i=
0,1,....n; li,, i=0,1,...,m. Since lA’(t) and ﬁ(s) satisfy the
precise merging conditions, i.e. they have common
derivatives at parameter ¢, =s;,_;, we conclude that the
control points of the merged curve are

(Po. Py By i1 P2 =Ro.P, s =R,.... P,

:ﬁkfz,ﬁkfl,...,ﬁm}.

3.3. Error estimation and examples

B-spline curves of order 4 are among the most commonly
used parametric curves in shape design. Here, we give an
error analysis for merging two B-spline curves of order 4;
error analysis for order 2 and 3 curves can be similarly
derived. For higher-order curves, it seems hard to obtain
explicit estimation.
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Fig. 3. Approximate merging of two clamped B-spline curves.

Theorem 1. Suppose P(t) and R(s) are two fourth-order B-
spline curves, and t, 4 ==
have the following estimation

Intks So = **° = Sk—1, We

3 uA 1 (uy+A)4+u A +u?
Ip—Fll<> =L |iq |4 -~ TS T
4u1+A1 ! 3 (’/tl_|_Al)2
X(M1A1”d2”+ |M1 _A1|||d1H), (16)
3 uA 1 (uy +A)>+u Ay +ub
IR-Fll<> =L gl — "= 2
4M1+A1 ! 3 (M1+A1)2
X(M1A1||d2”+ |M1 _Al |||d1”), (17)

where Uy =rtyy1 — Iy, Al =Sk 7 Sk—1> dl = P(l)(tn+1) - R(l)
2 2
(—1)s dzzp( )(tn+l)_R( )(Sk—l), ||P—F||=max,e[,k7h,”+]]

IP(r) —F(@)ll, and IR —Fll=maxc, . 1IR(6) = Ft, 4 +9)l.

A proof of Theorem 1 is given in Appendix B.

We give some examples to illustrate our method. Figs. 3
and 4 show some examples of merging clamped and
unclamped B-spline curves, respectively. The original
curves are rendered in solid line, and the new merged
curves are rendered in dotted line. In Fig. 3(a), the knot
vectors of the original curves are both [0,0,0,0,0.5,1,1,1,1],
and that of the merged curve is [0,0,0,0,0.5,1,1.48588,1.972,
1.972,1.972,1.972], and in Fig. 3(b), the knot vectors of
the original curves are both [0,0,0,0,0.33,0.67,1,1,1,1], and

Fig. 4. Approximate merging of two unclamped B-spline curves.

Fig. 5. Approximate merging with point constraints.

that of the merged curve is [0,0,0,0,0.33,0.67,
1,1.338,1.675, 2.012,2.012,2.012,2.012]. In Fig. 4(a), the
original knot vectors are [0,0,0,0,0.5,1,1.2,1.4,1.6] and [0,0,
0,0,0.5,1,1,1,1], and the resulting one is [0,0,0,0,0.5,1,1.523,
2.045,2.045,2.045,2.045]. In Fig. 4(b), the original knot
vectors are [0,0,0,0,0.33,0.67,1,1.2,1.4,1.6] and
[-0.3, — 0.2, — 0.1,0,0.33,0.67,1,1,1,1], and the resulting
one for the merged curve is [0,0,0,0,0.33,0.67,1,1.342,
1.684,2.025, 2.025,2.025,2.025].

To increase the accuracy of merging, we can add
geometric constraints, i.e. constraining the resulting curve
to pass through some target points on the original curves.
Fig. 5 shows the effect of merging with point constraints,
the knot vectors of the original two curves are both
[0,0,0,0,0.33,0.67,1,1,1,1], the constrained points are
P(0.75) and Q(0.25), which are marked as squares in figure.

4. Conclusion and future works

This paper presents an algorithm for approximate
merging of two B-spline curves. We derive the precise
merging conditions by letting the curves share common
derivatives. The curves are modified by constrained
optimization to satisfy the precise merging conditions. By
applying the knot adjustment algorithm, the control points
of the merged curve can be directly obtained from those of
the curves satisfying precise merging conditions. The
resulting merged curve has no superfluous knots.

We have used ‘Discrete coefficient norm’ in L, sense in
this paper, as in Ref. [14], but merging with the ‘squared
difference integral norm’ is also possible. As a future work,
merging of multiple B-spline curves and of surfaces can be
further investigated.
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Appendix A. Correctness proof of the knot
adjustment algorithm

By the recursive definition of P! and Q! in Egs. (5) and
(6), respectively, it is sufficient to prove that (I) Q; = P; for
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i=n—k+1;(I)Q 1, =P, forl=01,...k—2.
We prove them for two possible cases.

(@) n = 2k — 2, i.e. at least k curve segments.

From the local property of B-spline curves, for ¢ €
[#5,2,+1), only k basis functions N;x(¢), i=s—k+1,...,s
are non-zero, i.e.

P(y= > PNy,
. i=sTk+]

Let N, ,(t) denote the B-spline basis functions defined on the

knot vector T,. From the construction of the knot vectors T

and T,, we have N (t) = Ny (1), s —k+1 =i < s, for all

s=n-—k.

Consider the first B-spline curve segment in [#;,_1, #;]. We
have N (f) = Nyi(t), 0=i=<k—1 (note n=2k—2);
hence we get Q; = P;,0 =i = k — 1. By applying the same
argument to the intervals ¢ € [t,t,,] for k —2 =5 =
n —k+ 1l.wehaveQ,; = P;fori = n — k + 1.Thus(I)istrue.

Next we show that (II) is true. We first consider the first
derivative of the B-spline curves. For the segment

t e [ts7ts+1)' (Al)

[ty—ks2tarssl, PO =Q@) yields PP =QV().
Hence, from Eq. (4), we have
n—k+1 | n—k+1 .
> PNy (= > QN
i=n—2k+3 i=n—2k+3

By applying the same argument as for segment ¢t € [f;_1, ;]
above, it is obvious that N;,_,(f) = ]V,-,k_l(t) for n — 2k +
3=i=n—k+ 1. We therefore conclude that Q,',,kH =
P,ll—k+1~ Analogously, for subsequent segments,
w35 t—pads oos s L], we have Q) puy =Py,
[=0,1,...,k— 1. Since

i _ Dol = by—kt 241 (141 !
Qo= —7—7—"1""Q 41 T Qs>

k—1—-1
[1=0,1,..,k—2,
fho — b,
P = +]1€ — _lerzH P+ P
[=0,1,....k—2,

and #,., =t,.,, we conclude Q) , , =P, ., [=
0,1,....k— 2.

(b) n < 2k — 2, i.e. fewer than k segments.

From the equations

and (fi, —

g )k = 1= 1) = (tig — Ly )k = 1= 1)

for i=n—k+1, we know that, to prove (I) Q;,=P;
for i=n—k+1 and () Q,_ ., =P, ., for
1=0,1,...,k — 2, itis sufficient to show that Q) = P} (0 <
I=k—1).

We first prove Qg = P,. For the B-spline curves P(r)
and Q(#), we insert multi-knots in the spans [¢,,f,,] and
[#), 7,11, respectively, for 2k — 2 — n times, and obtain a
new curve P(f) with control points P; (0 =i =< 2k — 2),
and another new curve Q(7) with control points Q; (0 =
i =2k —2). Since knot insertion does not change the
shape of the curves, we have P(f) = Q(f). Investigating
P(t) and Q(¢) from the viewpoint of knot adjustment, we
conclude that P, = Q, by part (a) of the correctness
proof. From the knot insertion formula by Boehm (see p.
141 in Ref. [15]), we have P, = P,, Qy = Q,, thus P, =
Q. By similar discussion for the curves P?(r) and Q?(z),
1=1,2,....,k— 1, we have Q) =P, (1 ==k — 1). This
completes the proof.

Appendix B. Proof of Theorem 1

Proof. Let the perturbation of the control points P,_,,
P, ,P,incurve P(r) and Ry, R, R, in R(s) be €, €,, € and
€ 8;, 6, respectively. Due to the precise merging condition,
we have

Al—e

€ — €)

=d, B1
“ A, (B1)
6_62_62_61 82_61_€_A2
u; utu, A+ 4 4, _ d,. (B2)
Uy A,
Let 611:1, aZZAl/(M1+A1), 613:M1/(M1+A1) as =
Af(uy +uwp),  as=1+(A/(u; +uy)), ag=1+ /(A +

A5)), a;=u;/(A; + 4,), we can rewrite formulas (B1) and
(B2) in matrix form as follows

€
€ A
a 0 —day; —aj 0 il 2 dl
|1 €& | = u1+ 1
0 ay —as ag —ay

5, uAydy +(uy —Apd,

Qi = %Q§“+Qﬁ, [=0,1,...k—2, 5,

P, = %Pf*' +P,  1=01,..k-2, and (B3)
€ a)(af + a3 +ag +a3) ay(asag — aas)
€1 as(azag — asas) ay(ai +a3 +a3) A,
€ |= % —ay(az + a3 +ag +a3) — as(azag — ayas) —ay(azag — azas) — as(a; + a3 +a3) |- w+4 , (B4
0 —ay(ai+a} + di +a2) — aglasag — aras) —as(asag — aras) — ag(at +a3 +a3) uAjdy +(uy — Apd,

) —az(azag — aas)

—az(ai +a; +a3)
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where
D=(a; +d}+ag+a3)(a; +a3+a3) — (azas — azas)’.

By simple deduction, we have
al(aﬁ+a§+a§+a%)
> | - |l —a (a3 +as +as+a3)—
max(lay(azas — asas)\,| — ay(ay+as+ag+a7) —as(azas
2, 2, 2, 2
—ayas)l,| = as(a; +a5+ag+a7) — aglazas — aas)l,|
—a;(azag — azas))),

ay(@i+as+ag+ai) _3

D 4’
ay(a} +d3+d3) _ 1
D T 2442
a;(a +d3+ad3) _ 1
D S 2442
ay(azas — ayas)+as(ai +a3+a3) _1taa; +a3
D B 3 ’
ay(azas — a,as)+ag(at +a3+aj) _ 1+axa; +a3
D B 3 ’
ay(azag —aras)| _ 1
D -3

By substituting the above inequalities into Eqgs. (B3) and (B4),
we obtain Eqgs. (16) and (17). This completes the proof. [J
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