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Abstract

Simultaneously segmenting and labeling images is a fun-
damental problem in Computer Vision. In this paper, we
introduce a hierarchical CRF model to deal with the prob-
lem of labeling images of street scenes by several distinc-
tive object classes. In addition to learning a CRF model
from all the labeled images, we group images into clusters
of similar images and learn a CRF model from each cluster
separately. When labeling a new image, we pick the closest
cluster and use the associated CRF model to label this im-
age. Experimental results show that this hierarchical image
labeling method is comparable to, and in many cases supe-
rior to, previous methods on benchmark data sets. In addi-
tion to segmentation and labeling results, we also showed
how to apply the image labeling result to rerank Google
similar images.

1. Introduction

Simultaneous segmenting and labeling images is a fun-
damental problem in computer vision. It is the core tech-
nology of image understanding, content based retrieval and
object recognition. The goal is to assign every pixel of the
image with an object class label. Most solutions fall into
two general categories: parametric methods and nonpara-
metric methods.

Parametric methods [2, 4, 7, 12, 14, 17, 18] usually in-
volve optimizing aConditional Random Field(CRF) model
which evaluates the probability of assigning a particular la-
bel to each pixel, and the probability of assigning each pair
of labels to neighboring pixels. A parametric method usu-
ally has a learning phase where the parameters of the CRF
models are optimized from training examples, and an infer-
ence phase where the CRF model is applied to label a test
image.

In contrast to parametric methods, nonparametric meth-
ods [10, 15] do not involve any training at all. The basic
idea of these methods is to transfer labels from a retrieval

set which contains semantically similar images. Nonpara-
metric methods tend to be more scalable than parametric
methods because it is easy for nonparametric methods to
incorporate new training examples and class labels.

In this paper, we introduce a hierarchical two-stage CRF
model which combines the ideas used in both parametric
and nonparametric image labeling methods. In addition to
learning a global CRF model from all the training images,
we group training data into clusters of images with similar
spatial object class layout and object appearance, and train a
separate CRF model for each cluster. Given a test image, we
first run the global CRF model to obtain initial pixel labels.
We then find the cluster with most similar images, as shown
in Fig. 1. Finally, we relabel the input image by the CRF
model associated with this cluster. To effectively compare
and extract similar images, we introduce a new image de-
scriptor: thelabel-based descriptorwhich summarizes the
semantic information of a labeled image.

Our approach is motivated by the emergence of large
data sets of labeled images, such as Labelme data set [13].
The Labelme data set contains tens of thousands of labeled
images. It provides sufficient instances to train classifiers
for each type of images with similar spatial layout. In this
paper, we focus on images of street scenes which are the
most dominant ones in Labelme data set. However, there is
no restriction on extending our approach to handling other
types of images if more training data is available.

Experimental results show that the hierarchical two-
stage CRF model is superior to the global CRF model
learned from all training examples. Evaluations on bench-
mark data sets demonstrate that our approach is comparable,
and in many cases, superior to state-of-the-art parametric
and nonparametric approaches. In addition, we also show
promising results of applying the label-based descriptor to
compute images of similar spatial layout and re-rank similar
image results from Google Image Search.

1.1. Related Work

Parametric methods. Image labeling by optimizing a
CRF model has proven to be the state-of-the-art paramet-
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Figure 1: The pipeline of our hierarchical two-stage CRF model. Givena test image, we first run the global CRF model
trained by all training images to obtain initial pixel labels. Based on these pixel labels, we compute the label-based descriptor
to find the closest image cluster. Finally, we relabel the test image using the CRF model associated with this cluster.

ric image labeling method. Traditional CRF models [4, 14]
combine unary energy terms, which evaluate the possibility
of a single pixel taking a particular label, and pair-wise en-
ergy terms, which evaluate the probability of adjacent pix-
els taking different labels. Although these approaches work
well in many cases, they still have their own limitations be-
cause these CRF models are only up to second-order and
it is difficult to incorporate large-scale contextual informa-
tion.

Many researchers have considered variants of traditional
CRF models to improve their performance. In [6], Kohli et
al. proposed to use higher order potentials for improving the
labeling consistency. Another line of research focuses on
exploring the object class co-occurrence [2, 7, 12, 17, 18].
In particular, Ladický et al. [7] introduced a co-occurrence
model that can be efficiently optimized using graph-cuts.

Our approach also falls into the category of paramet-
ric image labeling methods, but it has notable differences
from previous approaches. Instead of improving the CRF
model used in labeling, we try to divide training images into
groups of visually and semantically similar images such that
traditional CRF models could have better fits on each of
them. Note that learning CRF models from clusters of sim-
ilar images implicitly includes high-level statistics such as
high-order potentials and object class co-occurrence.
Nonparametric methods. The key components of non-
parametric methods are how to find the retrieval set which
contains similar images, and how to build pixel-wise or
superpixel-wise links between the input image and images
in the retrieval set. In [10], Liu et al. introduced SIFT
Flow to establish pixel-wise links. Since SIFT Flow works
best when the retrieval set images are highly similar to the
input image in spatial layout of object classes, Tighe and
Lazebnik introduced a scalable approach that allows more
variation between the layout of the input image and images
in the retrieval set [15]. Moreover, both methods utilize a
MRF model to obtain the final labeling result. The differ-
ence is that the approach of [15] works at super-pixel level
which turns out to be more efficient than the approach of
[10] which is pixel-wised.

Like most nonparametric methods, our approach also ex-
tracts information from images with similar spatial layout

of object classes and object appearances. However, the fun-
damental difference is that we pre-compute classifiers for
groups of similar images. This gives us freedom in design-
ing suitable classifiers at the learning phase and saves the
inference time.

2. Image Labeling Using Standard CRF

In this section, we describe the CRF model used for la-
beling images of street scenes. This CRF model serves as
the building block for the hierarchical CRF model to be in-
troduced in next Section. Our CRF model is similar to the
ones used in [4] and [14]. However, we use different fea-
tures for both the unary and pair-wise potentials which are
more suitable for images of street scenes.

As there are many different objects in street scene im-
ages, it is quite challenging to classify all of them. In this
paper, we choose five distinctive super-classes: sky, archi-
tecture, plant, road and misc. Each super-class contains sev-
eral different objects. Please refer to Table1 for details.

super-classes objects
sky sky, cloud

architecture building, wall, hill, bridge,· · ·
plant tree, grass, flower,· · ·

ground road, street, sidewalk, water, earth,· · ·
misc people, car, animal, bicycle,· · ·

Table 1: Objects in each super-class.

The motivation of introducing super-classes is three-
fold. First, the position, shape and appearance of these five
super-classes primarily determine the semantic information
of a street scene image. Second, maintaining a small set of
super-classes reduces the training time which, on the other
hand, enables us to incorporate more information for clas-
sification. Third, if necessary, one can still apply another
layer of other classification method to distinguish the ob-
jects within each super-class.

The training and testing images used in this paper come
from the Labelme data set [13]. We manually collect all
the labeled images that were taken outdoor and contain at
least two labels from the set ofsky, building, tree, street. As
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Figure 2: We label image at the super-pixel level. (Left)
Input image. (Right) Its super pixels.N (s) denotes the
neighboring super-pixels (colored in green) of a super-pixel
s (colored in black).

many images from Labelme data sets are partially labeled,
we only keep those images which have at least two different
labels. This is because we need different labels within each
image to extract contextual information for training. In to-
tal we have collected 3303 images. We randomly subdivide
these images into a training set, a validation set and a test-
ing set which contain, 1712 images, 301 images and 1100
images, respectively.

Similar to [4], we also over-segment each image and la-
bel it at the super-pixel level. We use the method introduced
in [19] for computing super-pixels. WithIs we denote the
set of superpixels of imageI. We typically use 400 super-
pixels for one image. For each superpixels ∈ Is, we com-
pute a set of neighboring super-pixelsN (s). N (s) includes
two types of super-pixels: those that are adjacent tos and
those that are not adjacent tos but in its neighborhood. The
second type of neighboring super-pixels are used to incor-
porate contextual information at a larger scale (See Fig.2).

The goal in image labeling is to asso-
ciate each super-pixels with a label cs ∈
{sky, archiecture, plant, ground,misc}. Each super-
pixel has a vector of unary featuresxs, which includes
color, positions and local gradient information. In addition,
for each pair of neighboring super-pixels(s, s′) where
s′ ∈ N (s), we define a vector of pairwise featuresyss′ .
Then, computing all image labels involves minimizing the
following objective function

E(c, θ) =
∑

s∈Is

(E1(cs;xs, θ1)+
∑

s′∈N (s)

E2(cs′ , cs;yss′ , θ2)).

(1)
where the unary termE1 measures the consistency between
the featurexs of super-pixels and its labelcs, the pair-wise
termE2 measures consistency between neighboring super-
pixel labelscs and cs′ , given pairwise featureyss′ . The
model parameters areθ = (θ1, θ2, λ) (λ is defined in the
termE2, as shown in Eq.2).

The objectiveE(c, θ) is optimized using the efficient
quad-relaxation technique described in [9]. The resulting
labelingc implicitly defines a segmentation of the input im-
age, with segment boundaries lying between each pair of

adjacent super-pixels. In the remainder of this section, we
will discuss the unary and pairwise energy terms in details.

2.1. Unary Energy Term

The unary energy term evaluates a classifier. The clas-
sifier takes the feature vectorxs of a super-pixel as input,
and returns a probability distribution of labels for that super-
pixel: P (c|x, θ1). Same as in [14], we use JointBoost clas-
sifier [16]. Then, the unary energy of a labelcs is equal to
its negative log-probability:

E1(cs,x, θ1) = − logP (cs|xs, θ1).

Features. We use HSV color, image location of the
super-pixel center and SIFT feature descriptors [8, 10] at
scales2i where4 ≤ i ≤ 7 to form a basic517-dimensional
feature vectorxs per super-pixels. Note that using multiple
scales is to account for the varying size of the same object
in different images.
Feature vectors. We could take this517-dimensional
feature vector into the JointBoost learning process. How-
ever, we found that a better strategy is to augment these
feature vectors with those ones that are likely to separate
each pair of different classes. A candidate feature vector
which tends to separate two classes is the vector connecting
two feature vectors with one from each class. Therefore, for
each pair of classesc andc′, we randomly pickN pointspi

from classc andN pointsqi from classc′, and add the first
n(n = 15) eigenvectors of

Mcc′ =

N∑

i=1

(pi − qi) · (pi − qi)
T

as additional feature vectors. Experimental results show
that adding these additional 150 feature vectors from 10 dif-
ferent pairs of classes (out of 5 classes) increases the pixel-
wise classification accuracy by4%.

Fig. 3 shows some classification result of applying the
unary classifier. The unary classifier is able to obtain the
outline of each object. However, there are still plenty of
mis-classified pixels. This is because the unary term does
not consider the consistency of labels across neighboring
super-pixels and the spatial relationship between different
objects. For example, in Fig.3(a), the unary classifier mis-
classifies several super-pixels of the architecture class as the
sky class. However, this issue can be resolved if we know
that sky object is more coherent and a sky object is very
unlikely to be under a building object.

2.2. Pairwise Energy Term

The goal of introducing the pair-wise energy term is to
take contextual information into account. Similar to the
unary energy term, the pairwise energy term also evaluates a

1955



Figure 3: Representative classification results on testing images from Labelme data set. The hierarchical CRF model yields
more accurate and cleaner results than the standard CRF model on various scenes. (1st-row) Input images. (2nd-row to
5nd-row) Classification results using the global unary classifier, the global CRF model, the corresponding closest cluster
unary classifier and the closest cluster CRF model, respectively.

JointBoost classifier. The pairwise energy of a pair of labels
cs andcs′ is equal to

E2(cs, cs′ ,yss′ , θ2) = −λ logP (cs, cs′ |yss′ , θ2). (2)

whereλ controls the contribution of the pairwise term. We
learnλ using the validation data set by trying differentλ

and picking theλ with the smallest testing error.
In our implementation, we define the pairwise feature

yss′ = (xs,xs′). Again we use the technique described in
the previous section to incorporate additional feature vec-
tors for training.

The difference between our pairwise energy term and the
one used in [14] is that we actually evaluate the complete
distribution of labels of pairs of neighboring super-pixels.
This enables us to incorporate the contextual information of
different objects.

Fig 3 shows the comparison between using unary clas-
sifier and using CRF. It is clear that running the CRF with
pairwise term results in much more coherent results.

3. Image Labeling Using Hierarchical CRF

The performance of a CRF model relies on the classifica-
tion accuracy of the classifiers used to define both the unary
and pairwise terms. One possibility of improving the classi-
fication accuracy is to use classifiers that are more powerful
than Jointboost classifiers. However, these classifiers such
as non-linear kernels usually drastically increase the train-
ing time. Moreover, they don’t utilize the special structure
existing in images of street scenes.

Our approach is motivated by the fact that images of
street scenes can be divided into clusters of images with
similar global layout and appearance. For example, images
within one cluster may have sky on the top, buildings in
the middle and roads on the bottom. Images within another
cluster may have trees on the top and roads on the bottom.
If we only take a look at images within each cluster, the
object classes have roughly fixed spatial relationship and
global appearance. In other words, the complexity and di-
versity of images within each cluster are reduced such that
a standard CRF model is able to fit them very well.

Following the above discussion, we introduce a hierar-
chical two-stage CRF model for image labeling. In the
learning phase, we first train a standard CRF model from all
the training images. In the following, we will call this CRF
model the global CRF model. Then we subdivide all the
training images into clusters of images with similar global
layout and appearance. We learn a separate CRF model for
each cluster using the images within that cluster.

The key to make this two-stage CRF model work is to
cluster images in a semantically meaningful way, which
captures the distribution structure of street scene images.
We introduce the label-based descriptor which summarizes
the semantic information of labeled images, given the initial
labeling from the global CRF model.

When applying this hierarchical CRF model to label a
new image, we first run the global CRF model to obtain the
initial pixel labels of this image. Based on these pixel labels,
we then compute the corresponding label-based descriptor
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and use it to find the closest cluster. Finally, we run the
CRF model associated with that cluster to relabel the input
image.

In the remainder of this section, we will introduce the
label-based descriptor and how to use it for image cluster-
ing.

3.1. Label-based Descriptor

In this section, we consider the problem of computing
a compact representation, called label-based descriptor,for
labeled images. By labeled image, we mean each pixel is
labeled as one of thek object classesL = {ck}. Note that
k = 5 in this paper.

The semantic information of an image is captured by the
position, appearance and shape of each object in this image.
Although it is easy to extract this semantic information from
a labeled image, we have to summarize it in a compact way.
Furthermore, as every image labeling method is subject to
classification errors, another issue of designing label-based
descriptor is how to make it robust against errors in pixel
labels.

To encode the positional information of each object class
in a given imageI, we subdivideI into a uniformnp × np

grid. Within each grid cellgij , we evaluate the distribution
pijk of each object classck ∈ L. We collect all the cell cov-
erage information into a vectordp

I of lengthKn2
p. Picking

the grid size valuenp is a tradeoff between descriptiveness
and stability of this representation. A bignp would make
d
p
I capture the positional information more precisely, while

a smallnp would makedp
I less sensitive to image displace-

ment and classification errors. For all the experiments listed
in this paper, we setnp = 4.

Similar to the positional information, we encode the ap-
pearance information by evaluating the mean colorcijk =
(rijk, gijk, bijk) of each object classck within each cellgij .
To stabilize the mean color statistics, we scale each mean
colorcijk aspijkcijk. Again, all mean colorscijk are col-
lected into a vectordc

I of length3Kn2
p.

Finally, we write down the label-based descriptor of im-
ageI asdI = (dp

I , wcd
c
I) wherewc weighs the importance

of the appearance information. We setwc = 1 by default.
As we chooseK = 5 in this paper, the dimension of a label-
based descriptor is320.

3.2. Image Clustering

We cluster the training examples based on their label-
based descriptors. For partially labeled images, we run the
root CRF to obtain labels for unlabeled pixels. Using the
label-based descriptor, each training image is represented as
a point inRN whereN is the dimension of the label-based
descriptor.

Instead of clustering using the original label-based de-
scriptors, we found that it is better to first reduce the dimen-

sionality of label-based descriptors. Clustering in the pro-
jected space reduces the chance of obtaining clusters as iso-
lated points. In our implementation, we use singular value
decomposition to reduce the dimension of the label-based
descriptors toM (M=2 in this paper). WithdI we denote
the projected label-based descriptor of each imageI.

We employ the mean-shift clustering algorithm [1] to
group images into clusters. Suppose the mean-shift cluster-
ing returnsK clusters of imagesCi where1 ≤ i ≤ K. For
each clusterCi, we compute its barycentermi and variance
σi as

mi =

∑
I∈Ci

dI

|Ci|
, σi = ρ(

∑
I∈Ci

(dI −mi)(dI −mi)
T

|Ci|
),

whereρ(A) evaluates the maximum eigenvalue of a matrix
A.

To ensure that each cluster includes sufficient number
of training images, we enlarge each clusterCi by including
every imageI whose association weight toCi

w(I, Ci) = exp(−
‖dI −mi‖2

2σ2
i

) < δ.

In this paper, we setδ = 0.1.
For each clusterCi, we learn a CRF model from its en-

closed training images. The association weightw(I, Ci) of
each imageI naturally describes how close this image is to
clusterCi, so we weight the labeled instances byw(I, Ci)
when learning the CRF model.

Fig 1 shows the pipeline of image labeling using the hi-
erarchical CRF model, Given an input imageI, we first
optimize the global CRF to obtain initial pixel labels. We
then compute its label-based descriptor using these initial

Figure 4: 1702 training images are partitioned into 8 clus-
ters based on label descriptors.
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(a)

Per. Misc Sky Arch. Plant Ground
Misc 15.9 72.3 0.0 5.2 7.4 15.1
Sky 14.2 0.0 97.9 1.5 0.6 0.0

Arch. 30.9 2.3 4.2 81.4 6.9 5.2
Plant 20.0 0.3 2.0 2.6 87.5 7.6

Ground 19.0 3.5 0.3 6.9 3.2 86.1

(b)

Unary CRF
He et al. 82.4 89.5

Shotton et al. 85.6 88.6
Global 83.2 86.8

Hierarchical 86.1 90.7

(c)

Sky Vertical Ground
Sky 0.84/0.78 0.16/0.22 0.0/0.0

Vertical 0.06/0.09 0.91/0.89 0.03/0.02
Ground 0.0/0.0 0.07/0.1 0.93/0.90

(d)

Per. Misc Sky Arch. Plant Ground
Misc 3.1 71.8 0.1 9.2 4.4 14.5
Sky 25.0 0.7 92.2 5.7 0.8 0.4

Arch. 48.3 4.3 3.2 83.1 4.2 5.2
Plant 4.8 0.3 3.3 13.3 75.5 7.6

Ground 18.8 6.2 0.4 4.8 3.4 85.2

(e)

Per. Misc Sky Arch. Plant Ground
Misc 4.9 65.6/76.5 0.9/0.5 14.9/10.2 3.5/3.5 15.1/9.3
Sky 14.5 0.4/0.2 93.3/94.0 3.0/2.7 2.6/2.7 0.7/0.4

Arch. 41.5 4.8/3.5 2.4/2.3 81.1/84.0 7.2/5.8 4.5/4.4
Plant 12.3 2.4/2.4 3.3/3.3 11.3/9.3 79.1/81.1 3.9/3.9

Ground 26.8 6.3/4.9 0.8/0.8 3.9/3.4 3.2/3.1 85.8/87.8

Table 2: Statistics of our method on various data sets. (a) Confusionmatrix of the hierarchical CRF model on the Group
3, 7 and 17 of the MSRC data set [14]. (b) Comparison of classification accuracy with He et al. [4] and Shotton et al. [14]
on the Sowerby data set. (c) Confusion matrices of our method(Left) and surface context [5] (Right). (d) Confusion matrix
of the hierarchical CRF model on category street, insidecity, highway and tallbuilding of the SIFTFLOW data set [15]. (e)
Confusion matrices of the standard CRF model (Left) and the hierarchical CRF model (Right) on 1100 testing images from
Labelme data set.

pixel labels and find its corresponding clusterCi that has
the biggest association weightw(I, Ci). Finally, we re-label
the input image by running the CRF model associated with
clusterCi. Fig 4 demonstrates the clusters generated from
our training images.

A critical issue in mean-shift clustering is to set the pa-
rameterσ. σ controls the granularity of the clustering. Us-
ing a small number of clusters would make the CRF model
of each cluster under-fitted while using a large number of
clusters would make the CRF model of each cluster over-
fitted. Thus, we computeσ such that it results in clusters
that maximize the classification accuracy of the hierarchical
CRF model. In our implementation, we choose8 candidate
σs that are uniformly sampled betweend16 andd

2 whered is
the diameter of the projected label-based descriptors of all
training images. We pickσ as the one that leads to the high-
est classification accuracy. In our experiments, the optimal
value ofσ = d

8 .
There are two heuristics that could accelerate the speed

of running the hierarchical CRF model. First, as the global
CRF model is only used to find the corresponding cluster of
each input image, we can use fewer stumps for Jointboost
classifiers of both the unary term and the pairwise term. Ex-
perimental results show that reducing the number of stumps
of both classifiers by34 only reduces the pixel-wise classifi-
cation accuracy by0.05%. Second, when optimizing the
CRF model, one can start from the labeled result of the
global CRF model. In average, this saves the total running
time of optimizing the hierarchical CRF by15%.

4. Experimental Results

We have evaluated the performance of both the standard
CRF model and the hierarchical CRF model on the 1100

testing images described above. Table2(e)shows the confu-
sion matrices of both methods and Fig.3 shows some repre-
sentative results. It is clear that the hierarchical CRF model
is superior to the standard CRF model. The pixel-wise clas-
sification accuracy of the hierarchical CRF model is85.7%
while that of the standard CRF model is83.2%.

Although the hierarchical CRF model improves the clas-
sification accuracy of all the classes, the improvement on
the misc class is significantly larger than improvements on
the other four classes. This is because the misc class is more
complex than the other four classes in appearance, shape
and spatial positions. The standard CRF model, although
performs well on the other four classes, is not discrimina-
tive enough to classify the misc class. However, looking at
the misc class within images of each cluster, since these im-
ages already have similar global appearance, the variance in
shape, appearance and spatial position appears to be small.
Thus, the performance of the CRF model associated with
each cluster is much better than that of the standard CRF

Figure 5: Example results of our method on the MSRC data
sets.
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model.
Evaluation. We have compared our results with those of
He et al [4] and those of Shotton et al.[14] on the Sowerby
data set used in [4]. As shown in Table.2(b), the standard
CRF model is slightly worse than their methods. This is be-
cause the standard CRF model is trained from a wide range
of images while the images in the Sowerby data set has re-
stricted global appearance. However, the hierarchical CRF
model, which learns a CRF model from the most similar
cluster of images, turns out to be better than their methods.

We have also tested our method on the MSRC data set.
In this experiment, we only tested three groups of images
which are related to images of street scenes (See Fig.5 for
example results). Table2(a)shows the confusion matrix of
the hierarchical CRF model. On these three groups of im-
ages, the pixel-wise classification accuracy of our method
is 84.5%, which is very competitive to the performance of
Shotton et al. [14].

Moreover, we have compared our method with the sur-
face context method [5] which segments an image into three
classes: sky, vertical and ground. To make this comparison,
we combine the plant class and the arch class as the vertical
class. In addition, we include the misc class into the ground
class. On the benchmark data set provides in [5], we im-
proved the pixel-wise classification accuracy from [5] by
3.7% (See Table2(c) for details).

Finally, we evaluated our method on the SIFTFLOW
data set [15]. Table2(d)shows the confusion matrix of our
method. Compared with the nonparametric method intro-
duced in [15], our method shows similar results on sky and
road classes, and better results on misc, plant and architec-
ture classes (See Fig.6 for selected results).
Timing. Using our Matlab implementation, labeling a
test image of size450×600 takes about 30 seconds on a ma-
chine with 2.2GHZ CPU. On average, computing the super-
pixels takes 8 seconds, computing the descriptors takes 10
seconds, and solving the CRF takes about 6 seconds each.

5. Application to Computing Similar Images

In this section, we show one application of the label-
based descriptor for image comparison. The label descrip-
tor defined in Section.3 does not consider the shape of each
object, which is highly sensible to human eyes. Thus, we
augment the label-based descriptor to take this information
into account.

To capture the shape information, we evaluate the orien-
tation distribution of the boundaries between each pair of
different objects. For stability concern, we use a coarse grid
ne × ne (ne = 2 in this paper) and usenb (nb = 4 in
this paper) bins for orientation. For efficiency, we count on
the pairs of adjacent superpixels with different object labels.
The edge orientation of each such pair is perpendicular to
the centroid of the superpixels. All the counts are collected

Figure 6: Comparison between our method (Third row) and
the SuperParsing method [15] (Second row) on the SIFT-
Flow data set.

into a vectorlb of sizeK(K−1)
2 nb × n2

e = 160. The dimen-
sion of an augmented label-based descriptor becomes480.
We weight the edge part as0.01 by default.

An application of the label-based descriptor is refining
image search result. Taking Google Similar Image Search
for example, it returns about 400 similar images for a query
image. However, in many cases these images are not neces-
sarily similar in appearance to the query image. We rerank
these images by distances of their label descriptors to the
label-based descriptor of the query image. As shown in
Fig. 7, the re-ranking result obtained using label-based de-
scriptor is significantly better than the original rank pro-
vided by Google Similar Image Search.

Another possibility of reranking these images is to use
the gist descriptor [11]. However, the gist descriptor can
only find very similar images. This behavior has been
pointed out in [3] where a query image is searched within
several millions of images to ensure that the gist descrip-
tor could return similar images. Our label-based descrip-
tor, which extracts image semantics, is able to find similar
images in a wide range. We believe that this descriptor is
beneficial to several applications such as image completion,
similar images browsing and image tag transfering.

6. Conclusion

In this paper, we present an approach to segment images
of street scenes into regions of sky, architecture, plant, road
and misc. We introduced a novel hierarchical two-stage
CRF model based on learning the CRF models from clusters
of images with similar object appearance and spatial object
class layout. For image clustering, we introduced the label-
based descriptor which summarizes the semantic informa-
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(a) (b)

Figure 7: Application of the label descriptor to reranking Google similar images. Google similar image returns about 400
images for a query image. We run both the label-based descriptor and the Gist descriptor ro rerank these images. Note that
the label descriptor can find more semantically similar images than the Gist descriptor which only finds very similar images.

tion of a labeled image. We have evaluated our approach on
benchmark data sets. The results are comparable to, and in
many cases, superior to the state-of-the-art methods.
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