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Functional Map Networks for Analyzing and Exploring Large Shape Collections
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Figure 1: We introduce a computational framework for constructing functional map networks that can be used to capture structural
similarities within heterogeneous shape collections. The shared structure emerges in the network as consistent basis functions across the
shape collection. This network representation enables many joint shape analysis tasks, including co-segmentation and shape exploration.

Abstract

The construction of networks of maps among shapes in a col-
lection enables a variety of applications in data-driven geometry
processing. A key task in network construction is to make the
maps consistent with each other. This consistency constraint, when
properly defined, leads not only to a concise representation of such
networks, but more importantly, it serves as a strong regularizer
for correcting and improving noisy initial maps computed between
pairs of shapes in isolation. Up-to-now, however, the consistency
constraint has only been fully formulated for point-based maps or
for shape collections that are fully similar.

In this paper, we introduce a framework for computing consistent
functional maps within heterogeneous shape collections. In such
collections not all shapes share the same structure — different types
of shared structure may be present within different (but possibly
overlapping) sub-collections. Unlike point-based maps, functional
maps can encode similarities at multiple levels of detail (points
or parts), and thus are particularly suitable for coping with such
diversity within a shape collection. We show how to rigorously
formulate the consistency constraint in the functional map setting.
The formulation leads to a powerful tool for computing consistent
functional maps, and also for discovering shared structures, such
as meaningful shape parts. We also show how to adapt the proce-
dure for handling very large-scale shape collections. Experimental
results on benchmark datasets show that the proposed framework
significantly improves upon state-of-the-art data-driven techniques.
We demonstrate the usefulness of the framework in shape co-
segmentation and various shape exploration tasks.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling;

Keywords: functional maps, shape analysis, shape exploration
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1 Introduction

As large on-line shape collections (e.g., Trimble 3D Warehouse)
are becoming available, there is a growing need to design effective
algorithms for organizing, searching and exploring such collections
in order to make them accessible and useful. Towards this goal,
an important task is to estimate high-quality maps connecting the
shapes. These maps enable us to transport information between the
shapes, perform joint shape understanding [Kim et al. 2012; Kim
et al. 2013; Huang et al. 2013], and design data-driven solutions to
other geometry processing tasks such as shape reconstruction [Nan
et al. 2012] and shape modeling [Funkhouser et al. 2004; Kaloger-
akis et al. 2012].

Yet there are two fundamental challenges when computing maps
within large and diverse on-line shape collections. The first chal-
lenge is finding a suitable map representation. Most previous work
has focused on building point-based maps (either point-to-point or
fuzzy) between pairs of shapes. Although point-based represen-
tations have proven to be effective on organic shape collections
(e.g., mammals and humans), they become less suitable for typical
on-line shape repositories of inanimate objects (e.g., furniture or
vehicles), which exhibit greater geometric and structural variability.

The second challenge is generating high-quality maps between
the shapes. Most existing work has focused on matching pairs
of shapes. However, these algorithms are largely designed for
matching very similar shapes, and they could easily fail when
matching typical shape pairs in heterogeneous shape collections.
Recently, there has been a series of works on data-driven shape
matching [Nguyen et al. 2011; Huang et al. 2012; Kim et al.
2012; Huang and Guibas 2013], which utilize a cycle-consistency
constraint among networks of maps (i.e., the compositions of maps
along cycles should approximate the identity map) to improve
the maps computed between pairs of shapes in isolation. These
algorithms have shown great potential in ameliorating map quality,
but all of them are limited to small-scale shape sets and/or fully
similar shapes.

To address these two challenges, we introduce in this paper a
framework for computing consistent functional maps among het-
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erogeneous shape collections. Unlike point-based maps, functional
maps equip each shape with a dual linear functional space and
encode the relations between shapes as linear operators between
these functional spaces [Ovsjanikov et al. 2012]. Although the
functional map representation was initially developed on organic
shapes, we argue that it is also quite suitable for man-made objects,
as we can easily encode part correspondences as correspondences
between the corresponding indicator functions. With appropriate
basis functions, functional maps can be represented as small-size
matrices. This enables us to apply rich and efficient linear algebra
techniques for both encoding and computing functional maps.

To apply the data-driven shape matching idea in the functional map
setting, we need to define a proper consistency criterion among
functional maps, particularly in the presence of partially similar
shapes. The common idea of constraining map compositions along
cycles to yield the identity map is only sensible on fully similar
collections. To address this fundamental issue, we propose a novel
definition of cycle-consistency via constrained matrix factorization.
Specifically, if we form a large matrix that stores individual pair-
wise functional maps in blocks, then that matrix can be factored into
the product of a matrix where each row encodes a set of consistent
latent basis functions across the input shapes, with another matrix
that stores block-wise pseudo-inverses of the first matrix. These
latent basis functions provide the vocabulary of common elements
shared between the shapes. The partial relations among shapes
are naturally encoded in this formulation — each sub-column is
filled with a zero function if that latent function does not appear or
participate on the corresponding shape. Computationally, since the
number of underlying latent basis functions is generally small, this
formulation leads to a robust framework for computing consistent
functional maps via low-rank matrix recovery techniques. Another
prominent feature of this formulation is that it enables us to develop
a multi-level algorithm that is scalable to large shape collections.

We have conducted extensive evaluation on various benchmark
datasets. Experimental results show that the proposed algorithms
significantly outperform existing data-driven shape matching tech-
niques. We also present two applications to demonstrate the useful-
ness of the resulting functional maps. The first application utilizes
the optimized latent basis functions to derive consistent segmen-
tations of the shapes into parts. The key feature of this method
is that the segmentations are completely driven by the input shape
collection — we do not need to perform initial segmentations or to
specify the number of desired segments. In the second application,
we show that the quality of the resulting functional maps enables
us to apply the shape difference operator [Rustamov et al. 2013] for
visually exploring shape collections.

Contributions. In summary, we present three major contributions
in this paper.

• The idea of using the functional map representation for match-
ing large heterogeneous man-made shape collections.

• A scalable computational framework that computes consistent
functional maps among shapes that are only partially similar.

• Several applications of such consistent functional map networks
in shape co-segmentation and interactive shape exploration.

1.1 Related Work

Map representation. Traditional shape matching methods opti-
mize point-to-point maps (continuous or discrete) between shapes.
However, these approaches are only suitable for organic shapes or
man-made shapes with small geometric variation. They become

less effective on heterogeneous shape collections that exhibit large
geometric and topological variability.

In [Ovsjanikov et al. 2012], the authors introduced the functional
map representation for matching isometric shapes. In contrast, we
focus on partially similar shapes and consistent functional maps
among many shapes in a large collection. In between point-to-point
maps and functional maps, several variations have been proposed,
such as fuzzy maps [Kim et al. 2012] or soft maps [Solomon
et al. 2012]. They encode probabilistic correspondences between
points on the shapes. In fact, fuzzy maps and soft maps can both
be considered as special cases of functional maps, by using the
hat functional basis defined at each mesh vertex. However, the
functional map representation is more general and flexible, as it
allows us to choose appropriate bases for encoding the maps.

Map network construction. How to build cycle-consistent maps
among a collection of shapes is an active research area in geometry
processing. Existing approaches have primarily focused on point-
to-point maps [Nguyen et al. 2011; Huang et al. 2012; Kim et al.
2012; Huang and Guibas 2013] and rigid/affine low-dimensional
transforms [Wang and Singer 2013]. In [Kovnatsky et al. 2013;
Bronstein et al. 2014], the authors proposed to jointly diagonalize
graph Laplacians so as to obtain common bases. However, these
works still rely on fully similar shapes.

Recently, in a computer vision setting, [Wang et al. 2013; Wang
et al. 2014] proposed a regularizer that expresses consistency as
map commutation with certain latent basis functions for the image
functional spaces. In particular, [Wang et al. 2013] addressed the
problem of image co-segmentation using functional maps under
the assumption that all images contain an entity from a common
class. Although in the full similarity case the latent basis com-
mutation constraint is similar to our cycle-consistency constraint,
this formulation only leads to an approximate solution in the partial
similarity case that [Wang et al. 2014] addressed. Such an approx-
imate solution cannot be used to develop the multi-level algorithm
proposed in this paper. More importantly, this formulation yields
non-convex optimization problems, and the proposed alternating
strategies of these works may converge to a local minimum. In
contrast, the low rank matrix recovery technique introduced in this
paper, which is based on convex optimization, delivers much better
maps in practice, as we demonstrate later.

Joint shape segmentation. Shape segmentation is one of the
fundamental tasks in geometry processing. With the emergence of
large shape collections, there is a growing interest in simultaneously
segmenting a collection of shapes (co-segmentation), enforcing the
consistency of segmentations across the shape collection in order
to improve the segmentation of individual shapes [Sidi et al. 2011;
Huang et al. 2011; Hu et al. 2012; Wang et al. 2013]. A key
task in co-segmentation is to establish good correspondences across
shapes, either explicitly or implicitly. The works of [Sidi et al.
2011; Hu et al. 2012] proposed to co-segment shapes via clustering
feature descriptors, where correspondences are established between
points with similar features. The performance of these approaches
heavily depends on various parameters including the set of features
chosen and the number of segments.

Beyond clustering-based methods, Huang et al [2011] introduced
an optimization approach that jointly estimates segment-level maps
between all pairs of shapes with the constraint that the selected
segments are similar geometrically and topologically, and form
proper segmentations on each shape. However, due to computa-
tional complexity, this approach is limited to small-scale data sets
only. Wang et al [2013] computed consistent functional maps in
the image domain and utilized sharp edges in images to generate
the final segmentations. This approach is not applicable in our
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Figure 2: Illustration of the functional map representation. (Top)
Functional maps are linear maps between functional vector spaces
defined on shapes. (Bottom) Functional maps (shown as functional
correspondences) can be derived from point (or part) correspon-
dences.

setting as sharp edges on man-made shapes may not always indicate
segment boundaries (e.g., edges along the sides of a chair leg).
In contrast, our co-segmentation approach is based on identifying
parts by observing variability within the collection. As a conse-
quence, both the part structures and the number of parts per shape
are automatically determined by the shape collection itself.

2 Consistent Functional Maps

In this section, we describe how to formulate the cycle-consistency
constraint on functional maps among partially similar shapes. We
begin with reviewing the functional map representation, with a
focus on modifications that handle partially similar shapes. Then
we discuss the cycle-consistency constraint and its properties.

2.1 Functional Map Representation

The functional map representation [Ovsjanikov et al. 2012] pro-
vides a framework for representing maps between shapes (see
Figure 2). Namely, given two shapes Si and S j, a functional map

Xi j : L2(Si) → L2(S j) is a map between spaces of integrable real-
valued functions defined on the two shapes. As pointed out in [Ovs-
janikov et al. 2012], Xi j is a linear map, and can be represented as a
finite matrix in the discrete setting. In the remainder of this paper,
we will use Xi j to represent both the linear map, and the matrix with
respect to the default basis functions of each functional space.

The functional map framework is quite flexible because corre-
spondences between points and parts are naturally encoded as
correspondences between their indicator functions. It allows us
to convert map computation into optimizing matrices and utilize
rich numerical tools solve the induced optimization problems. Note
that although the framework was originally introduced for organic
shapes, the idea nicely extends to man-made shapes, where shape
similarities are captured by matching part indicator functions. In
the following, we describe the modifications that are necessary for
handling partially similar shapes.

Rank-deficient functional maps. When Si is partially similar to
S j, Xi j is no longer a full rank matrix. Take a chair Si and a stool
S j for example. Xi j would map all functions, whose supports lie
within the back of chair Si, to a zero function on the stool S j. In
addition, the inverse of Xi j is no-longer unique. In this paper, we
choose the inverse of Xi j to be the Moore-Penrose pseudo-inverse

X+
i j := V Σ−1UT , where U,Σ,V are given by the singular value

decomposition of Xi j := UΣV T . This choice inherits several nice
properties from the full similarity case, as we show in Section 5
when using the shape difference operator [Rustamov et al. 2013]
for shape exploration.

Reduced functional spaces. An important characteristic of the
functional representation is that most interesting functions (e.g.,
indicator functions of points and parts) are well characterized
by their projections onto certain low-dimensional Laplacian
eigenspaces [Ovsjanikov et al. 2012; Wang et al. 2013]. For
shapes that admit manifold structure, we follow [Ovsjanikov
et al. 2012] and use the first K = 30 eigenvectors of the Laplace-
Beltrami (or LB) operator. For other shapes (e.g., those from
Trimble Warehouse), we replace the LB basis by the first K = 30
eigenvectors of the graph Laplacian of the graph that connects each
mesh vertex to its k-nearest neighbors (k = 12). In the remainder
of this paper, we will approximate each function by its projection
in the corresponding reduced functional space and encode it as a
vector of coefficients over that basis. Although indicator functions
are only approximate in reduced functional spaces, if necessary,
they can be rounded into exact indicator functions via appropriate
rounding procedures (see Section 4 and 5 for details).

From functional correspondences to functional maps. As de-
scribed in [Ovsjanikov et al. 2012], the functional map Xi j from
shape Si to shape S j can be computed using a set of functional
correspondences written as matrices Ci j,Di j, where each pair of
corresponding columns of Ci j and Di j represents one functional
correspondence. These functional correspondences typically come
from various shape descriptors, or from indicator functions derived
from point and part correspondences estimated between pairs of
shapes using off-the-shelf algorithms. Without losing generality,
we normalize the corresponding columns of Ci j and Di j (i.e., func-
tional correspondences) so that the columns of Ci j have the same
magnitude and the maximum singular value of Ci j is 1.

A natural way to derive the underlying functional map is to solve
the following least-square problem:

X⋆
i j = arg min

Xi j

‖Xi jCi j − Di j‖2
F , (1)

where ‖ · ‖F denotes the Frobenius norm. However, It turns out
that merely using certain functional correspondences between pairs
of shapes may not be sufficient. The least square formulation (1)
requires that functional correspondences to be clean, which is rare
in practice. To address this issue, we propose to study a proper
definition of the cycle-consistency constraint in the functional map
setting, which utilizes the map network to rectify noisy pairwise
functional correspondences.

2.2 Consistency Constraint

We begin by defining the notion of functional map network.

Definition 1. A functional map network is defined as a connected
directed graph G = (F ,E), whose vertices F = {F1, · · · ,FN} are
functional vector spaces, and each edge (i, j) ∈ E is decorated with
a linear functional map Xi j : Fi → F j. Moreover, the edges come in
symmetric pairs, i.e., (i, j) ∈ E if and only if ( j, i) ∈ E .

In the full similarity case, [Wang et al. 2013] proposed to formulate
the cycle-consistency constraint as the fact that every function,
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Figure 3: Illustration of the cycle-consistency constraint in the
partial case. (Top) Point-based maps. (Bottom) Functional Maps.

when transported along a loop, should go back to the original
function. In the partial similarity case, the technical challenge
is to model the shared sub-spaces between different functional
spaces. In the case of point-based maps (i.e., functional spaces are
characterized by hat functions on points), we can define the cycle-
consistency constraint as the fact that a point, when transferred
along a loop, either disappears due to partial similarity or goes
back to the original point (see Figure 3 for illustration). To handle
general functional maps, we extend this idea to consider latent
orthogonal basis functions, as detailed below.

Definition 2. A functional map network G is cycle-consistent,
if there exists orthogonal basis Bi =

(
bi1, · · · ,bidim(Fi)

)
for each

functional space Fi so that

Xi1i2
bi1 j = bi2 j′ or 0 ∀1 ≤ j ≤ dim(Fi1

), ∃ j′, (2)

Xik i1
· · ·Xi1i2

bi1 j = bi1 j or 0 ∀ 1 ≤ j ≤ dim(Fi1
),

(i1 · · · iki1) ∈ L(G),
(3)

where L(G) denotes the set of all loops of G .

Here bases bi j, which are expected to be indicator functions of
shape parts, are extensions of hat functions; (2) extends the map
constraint, where point-wise correspondences are replaced by func-
tional correspondences; (3) is the consistency criterion in the func-
tional setting. Note that the orthogonal constraint on bases bi j is not
mandatory. However, enforcing it strengthens the cycle-consistency
constraint for correcting noisy pair-wise maps. Moreover, it also
allows us to derive an equivalent but concise formulation (see
Appendix A for the proof), which leads to effective optimization
algorithms.

Proposition 3. A functional map network G is consistent, if and
only if there exist row-orthogonal matrices Yi = (yi1, · · · , yiL)

T ∈
R

L×dim(Fi), 1 ≤ i ≤ N such that

Xi j = Y+
j Yi, ∀(i, j) ∈ G . (4)

It is clear that matrices Yi also specify maps between pairs of shapes
that are not neighbors in the original network:

Xi j = Y+
j Yi, ∀(i, j) /∈ G . (5)

If we now let X be a big matrix that encodes the pair-wise map
matrices in blocks, then we can express the relation between X and
matrices Yi as

X :=






X11 · · · XN1

..

.
. . .

..

.
X1N · · · XNN




 =






Y+
1

..

.

Y+
N






(
Y1 · · · YN

)
.

(6)

Discussion. We can interpret Yi and the factorization in (6) as
follows. The rows of Y = (Y1, · · · ,YN) essentially describe a latent
functional space L , such that Yi represents the map from each func-
tional space Fi to this latent space, and Y+

i characterizes the inverse

map. In addition, each row of Y represents a set of consistent basis
functions across the shape collection. Note that making the rows
of Yi orthogonal is important in the partial similarity case. This
forces some of these rows to be zero, characterizing the fact that
the corresponding consistent basis does not appear on shape Si.

Moreover, the latent spaces L essentially encode distinct shared
structures across the shapes. As a consequence, for a collection
of related shapes, the dimension of L is much smaller than the
dimension of X , indicating X is generally a low-rank matrix. This
low-rank property exhibits two characteristics that are useful for
encoding and computing maps. First, it allows us to concisely
encode the maps among a shape collection by simply storing Y ,
which is of much smaller size. Second, it motivates us to adapt
robust low-rank matrix recovery techniques to estimate X from
noisy initial functional correspondences.

Finally, as we operate within reduced functional spaces, where the
original functions are only approximated by their projections, the
constraint that the rows of each Yi are orthogonal to each other is
only approximately satisfied. Thus when computing Yi, we only
enforce this orthogonality constraint in a soft manner.

3 Algorithm

In this section, we present algorithms that start from noisy func-
tional correspondences between pairs of shapes and output con-
sistent functional maps encoded as latent basis functions (i.e.,
Xi j = Y+

j Yi). Because of scalability concerns, we introduce two
algorithms. The first algorithm (called the single-level algorithm)
deals with shape collections of moderate size (e.g., dozens of
shapes). The multi-level algorithm is designed to handle large
shape collections. It builds a hierarchical structure among the input
shapes, so that the single-level algorithm can be performed in a
distributed manner.

3.1 Single-Level Map Computation

Input. The input to the single-level algorithm consists of noisy
functional correspondences (Ci j,Di j), (i, j) ∈ G presented between
pairs of shapes as specified by a graph G . For example, these
initial functional correspondences could come from point or part
correspondences estimated using off-the-shelf pair-wise matching
algorithms [Huang et al. 2008; Kim et al. 2011; Huang et al.
2011]. As the single-level algorithm deals with shape collections
of moderate size, we let the graph G connect all pairs of shapes.
However, one can also choose to only connect shapes with similar
shape descriptors [Kim et al. 2012].

Algorithm overview. The technical challenges of computing
consistent functional maps are how to handle (i) outliers in the
input functional correspondences and (ii) the additional constraints
presented in the factorization (6). The key idea of the proposed
algorithm is to address these two challenges in two steps (see
Figure 4). In the first step, inspired by recent successes of low-rank
matrix recovery techniques [Candès et al. 2011; Wang and Singer
2013], we treat the input functional correspondences as noisy mea-
surements of the entries of the map matrix X , and compute X by
recovering a low-rank matrix. This robust formulation enables
us to compute X only from mostly inliers in the input functional
correspondences, and thus the resulting X is close to admitting the
factorization (6). In the second step, we proceed to compute the
factorization by optimizing a small perturbation of X .

Map computation via low-rank matrix recovery. Adopting the
robust principal component analysis (or RPCA) framework [Candès
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Figure 4: Map Computation Pipeline. The single-level map construction algorithm consists of two steps. The first step takes a shape
collection and (noisy) initial functional maps between pairs of shapes as input and solves a low-rank matrix recovery problem to correct
pair-wise maps. The second step then extracts consistent basis functions from optimized pair-wise maps.

et al. 2011; Wang and Singer 2013], we formulate the following
convex program to compute the map matrix:

X⋆ = arg min
X

‖X‖⋆ + λ
∑

(i, j)∈G

‖Xi jCi j − Di j‖2,1. (7)

The objective function essentially consists of two types of matrix
norms. The first component is called the trace-norm defined as
‖X‖⋆ =

∑

i σi(X), where σi(X) are singular values of X . As dis-
cussed in depth in [Candès et al. 2011], the trace-norm is a convex
proxy for the rank of a matrix. The second component utilizes the
L2,1 norm, i.e., ‖A‖2,1 =

∑

i ‖ai‖, where ai are columns of matrix
A. This L2,1 norm, which is a special group-lasso objective [Yuan
and Lin 2006], prioritizes the fact that the optimal value of X is
insensitive to outlier functional correspondences. An alternative is
to use the element-wise L1 norm. However, we found that the L2,1

norm delivers slightly better results. A similar idea is used in [Wang
and Singer 2013] for synchronizing rotations.

In [Candès et al. 2011], the authors analyze the robustness of the
basic RPCA formulation, where the L2,1 norm is replaced by the
element-wise L1 norm. They prove that, for a fixed parameter

λ = 1/
√

DK, where D is the expected vertex degree of graph G1,
RPCA recovers with high probability the ground-truth low-rank
matrix if the fraction of entry-wise outliers is below a constant
(20% − 30% in practice). In our experiments, we found that this
robust recovery applies to the general formulation in (7) as well,

i.e., with λ = 1/
√

D2, we can recover cycle-consistent maps if the
fraction of outlier functional correspondences is below a constant.

For optimization, we employ the alternating direction method of
multipliers (or ADMM) described in [Wen et al. 2010]. On a
standard PC, it takes about 200 seconds to process a matrix of
dimension 900 (30 shapes and 30 functional basis per shape).
Please refer to the supplemental material for the algorithmic details.

Latent basis function extraction. In practice, due to (i) the partic-
ular noise behavior of the functional correspondences, and (ii) the
fact that we do not force the factorization of (6) in (7), the recovered
matrix X is typically close to, but does not necessarily admit a
factorization as (6). To address this issue, we solve an optimization
problem whose objective is to compute a small perturbation of X so
that it admits the factorization:

∑

1≤i, j≤N

‖X⋆
i j −Y+

j Yi‖2
F + µ

N∑

i=1

∑

1≤k<l≤L

(yT
ikyil)

2, (8)

where the first term penalizes the perturbation, and the second term
ensures the row-orthogonal property of Yi. In our experiments, we
choose µ = 100. We also found that the optimal solution of Y is
insensitive to the particular choice of µ as X⋆ is usually close to
admitting a factorization (6). The initial values and dimensions

1 The analysis assumes a generic random model (see [Candès et al. 2011]).
2 The new λ reflects the difference between the L2,1 norm and the entry-

wise L1 norm.

of Yi (which also determine the dimension of the latent space) are
given by the SVD of X⋆, which is exact if X⋆ admits the low-rank
factorization:

(Y1, · · · ,YN) = Σ
1
2 V, X⋆ ≈ UΣV, (9)

where we remove the singular values of X⋆ that are smaller than
σmax(X

⋆)/10. In other words, U,Σ,V only contain the remaining
singular values and corresponding vectors.

As (8) consists of non-linear least squares, we employ the Gauss-
Newton method. The key technical step is to derive the derivative of
the pseudo-inverse of a matrix with respect to the matrix itself. As
the expression is rather complicated, we have placed the technical
details in the supplemental material.

3.2 Multi-Level Map Computation

For collections with more than several hundred shapes, performing
the map correction step, i.e., solving (7), tends to be intractable.
To address this issue, we introduce a scalable approach, which
constructs a hierarchical structure among the input shapes. This
hierarchical structure allows us to perform the single-level algo-
rithm recursively but only on a smaller number of shapes or latent
shapes each time. For simplicity, we describe the algorithm with
two levels. The extension to multiple levels is straightforward.

As illustrated in Figure 5, the basic idea is to decompose the input
shape collection into sub-collections S1, · · · , SN , and then apply
the single-level algorithm on each sub-collection Sk to generate
the corresponding latent functional space Lk and the latent maps
Yi,k : Fi → Lk . These latent functional spaces can be considered as
the functional space associated with each sub-collection. We then
apply the single-level algorithm on these latent spaces to generate
a unified latent space L and the latent maps Y k : Lk → L at the

F jFi
Xi j

Y j,l

LlLk

Yi,k

Xkl

Y k Y l

L

Figure 5: Map data structure of the multi-level map construction
algorithm.
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second level. With this map structure, we can write the latent map
from each shape to the unified latent space as

Yi = Y kYi,k : Fi → L, ∀Si ∈ Sk, 1 ≤ k ≤ N. (10)

The remainder of this section describes the details about how to
generate the sub-collections and how to generate initial maps at the
second level (in order to apply the single-level algorithm).

Sub-collection generation. Ideally, each sub-collection should
only contain very similar shapes. However, thanks to the robustness
of the joint map computation procedure, we can afford less than
perfectly homogeneous sub-collections, and it is sufficient to use a
generic shape descriptor, such as D2 [Osada et al. 2002], to group
shapes together. Specifically, we build a k-nearest neighbor graph
with respect to the D2 shape descriptor and apply region growing to
divide the input shape collection into sub-collections of size around
30. In the experimental evaluation section, we will show that the
quality of the resulting maps is insensitive to sub-collection size.

Joint map optimization at the second level. The joint map
optimization procedure is mostly similar to that of the single-level
algorithm, except for the computation of initial maps between latent
spaces. Note that for each pair of shapes Si ∈ Sk, S j ∈ Sl , we
can write down the function map between them in terms of the
functional map X kl from Lk to Ll :

Xi j = Y+
j,lXklYi,k. (11)

This motivates us to compute X
init

kl using the functional correspon-
dences between shapes in Sk and shapes in Sl :

X
init

kl = arg min
Xkl

∑

(Si ,S j)∈Sk×Sl

‖Y+
j,lX klYi,kCi j − Di j‖2,1. (12)

In our experiments, we employ the CVX software [Grant and Boyd
2011] for optimization.

Since obtaining initial functional correspondences between all pairs
of shapes in Sk × Sl is expensive, we only optimize (12) with 60
randomly picked shape pairs for all of our experiments.

After computing initial maps between latent spaces, we feed them
into the single-level map optimization algorithm to compute the
unified latent space and the associated latent maps.

4 Experimental Evaluation

In this section, we evaluate the proposed data-driven functional map
construction pipeline on benchmark datasets and compare it against
state-of-the-art data-driven shape matching techniques. In addition,
we also show that the proposed approach is insensitive to various
parameters (e.g., the number of basis functions).

4.1 Experimental Setup

Datasets. We consider three popular datasets to evaluate the per-
formance of data-driven shape matching techniques (see Figure 6):
SHREC07-UnSym [Huang et al. 2012], BCHP13 [Kim et al. 2013]
and CoSeg12 [Wang et al. 2012]. These datasets are chosen to
include both man-made and organic shape collections with varying
in-class variation. Specifically, SHREC07-UnSym contains 5 cat-
egories of organic shapes (Armadillo, Fourleg, Hand, Human and
Fish), where initial maps are given by blended intrinsic maps [Kim
et al. 2011]. BCHP13 contains 4 categories of man-made shapes
(Bicycle, Chair, Helicopter and Plane), and the initial maps are
derived from pair-wise non-rigid matching [Huang et al. 2008].
These two datasets are provided with manual point-wise correspon-
dences for evaluation. CoSeg12 is a dataset for evaluating shape

SHREC07-UnSym BCHP13 CoSeg12

Figure 6: Experimental Evaluation. We perform experimental
evaluation on three benchmark datasets: SHREC07-Unsym [Giorgi
et al. 2007], BHCP13 [Kim et al. 2013] and CoSeg12 [Wang
et al. 2012]. Each benchmark contains multiple shape collec-
tions, and each shape collection is provided with either point-
wise (SHREC07-Unsym and BHCP13) or segment-level (CoSeg12)
ground truth correspondences for evaluation.

co-segmentation. We choose two representative collections (Chair
(400 shapes) and Vase (300 shapes)) for evaluating the quality of
segment-level correspondences. As initial maps are not given in
advance, we perform pair-wise shape co-segmentation [Huang et al.
2011] to generate part-wise initial correspondences.

As described in Section 2.1, we pre-compute K = 30 basis func-
tions on each shape. The initial functional correspondences are gen-
erated by placing 60 uniform samples on each shape and converting
each point-wise correspondence into a functional correspondence.
As a result, the functional correspondences between each pair of
shapes is given by a pair of 30 × 60 matrices (Ci j,Di j).

Baseline methods. We compare the proposed approach with ex-
isting top performing data-driven shape matching techniques. For
organic shapes (i.e. SHREC07-UnSym), we compare with [Nguyen
et al. 2011] and [Huang and Guibas 2013], which exhibit the best
local and global accuracy, respectively. For man-made shapes (i.e.,
CoSeg12 and BCHP13), we compare with [Huang et al. 2013]
and [Kim et al. 2013], which deliver the best performance on
man-made shapes. We also compare the proposed approach with
Wang et al. [2013], which formulates cycle-consistency as a regu-
larization term, and performs alternating optimization to optimize
the functional maps. To show the effectiveness of enforcing the
factorization (6) via (8), we also evaluate the maps obtained from
the low-rank matrix recovery step in (7) (referred as Low-rank) and
from dropping the orthogonality constraint (referred as Non-ortho).

Evaluation protocols. We apply different evaluation metrics to
assess the quality of a shape matching method given point-based
or segment-based ground-truth correspondences. In the presence of
point-based ground-truth correspondences, we apply the protocol
described in [Kim et al. 2011], which plots the percentage of cor-
respondences whose deviations from ground-truth correspondences
fall within a varying threshold. The functional maps are converted
to point-to-point maps using the procedure in [Ovsjanikov et al.
2012] (i.e., picking the target point with the highest score).

For evaluation with segment-based correspondences, we propose
to evaluate the inner product of segment indicator functions which
is applicable to both point-based and functional maps. Consider a
map Xi j from Si and S j and a ground-truth segment correspondence
(s, s′) ⊂ Si × S j. Suppose Xi j maps segment s ⊂ Si to segment
s′′ ⊂ S j, we define the alignment error between map Xi j and seg-
ment correspondences (s, s′) as

e(Xi j, (s, s′)) = 1 − 〈 fs′ , fs′′ 〉
〈 fs′ , fs′ 〉

1
2 〈 fs′′ , fs′′ 〉

1
2

, (13)

where 〈·, ·〉 denotes the inner product on shapes, and fs denotes
the indicator function for a segment s on the corresponding mesh.
For function maps, we compute the indicator function f s′′ = Xi j f s,
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Figure 7: Benchmark Evaluation. Comparison between the proposed algorithm and baseline algorithms on each benchmark dataset. A
higher curve means better performance. Our approach is seen to be superior to state-of-the-art data-driven shape matching algorithms in
terms of both local and global accuracy. Here ”Low-rank” corresponds to the functional maps obtained by performing low-rank matrix
recovery, and ”Non-ortho” corresponds to the functional maps obtained by dropping the orthogonality term.

where f s ( f s′′ ) is the projection of fs ( fs′′ ) in the reduced space Fi

(F j). The evaluation is shown by plotting the percentage of corre-
spondences whose alignment errors are below a varying threshold.

4.2 Analysis of Results

Figure 7 shows the comparison between our approach and base-
line algorithms. The overall performance of our approach is sig-
nificantly better than that of existing data-driven shape matching
techniques. The results are analyzed in detail below.

Global behavior. The proposed approach can significantly improve
the map quality. On both SHREC07-UnSym and HCBP13, it
approximately recovers all ground-truth correspondences. More-
over, we find that the global behavior of the proposed approach
is governed by the low-rank matrix recovery step. This shows
the robustness of the formulation. It is important to note that the
proposed approach is slightly better than [Huang and Guibas 2013],
which is also robust to noisy input maps. This is because the
formulation in [Huang and Guibas 2013] is sample-based, and is
thus affected by the consistency of samples across different shapes.

Local behavior. Thanks to the continuous nature of functional
maps, our approach is significantly better than existing approaches
in terms of local accuracy. Even without the local optimization
step, the local accuracy of the proposed approach is comparable to
the best existing techniques. This behavior justifies the advantage
of utilizing functional maps for matching heterogeneous shape
collections.

Segment-based maps. As shown in Figure 7(c), utilizing func-
tional maps to compute and encode segment-level correspondences
exhibits clear advantage over previous techniques. For example,
93.2% segment correspondences computed by our approach have
alignment error less than 0.5. While with the same threshold,
the best previous technique [Huang et al. 2013] only achieved
83.3%. This ability of capturing consistent segment level cor-
respondences serves as a strong foundation for co-segmentation,
which we demonstrate in the next section.

Comparison with Wang el.al [2013]. As illustrated in Figure 7,
although the methods of Wang el.al [2013] improve from the initial
maps, the quality of the maps computed using the proposed low-
rank matrix recovery technique is significantly better than these
methods. This is due to the fact these alternating formulations
do not enforce exact cycle-consistency, and the alternating strategy
tends to arrive at local minima.

4.3 Discussion

Aligning functional correspondences is crucial. An alternative
strategy to compute X is to first compute an initial functional map
between each pair of shapes using (1), and then apply the robust
principal component analysis (or RPCA) formulation [Candès et al.
2011]. As shown in Figure 8(a), the formulation of aligning func-
tional correspondences via the L2,1-norm is crucial, since outlier
functional correspondences are isolated in the objective function.

The orthogonality constraint improves map quality. As shown
in Figure 8, enforcing the orthogonality constraint among rows of
each Yi improves the map quality, particularly on man-made shape
collections BCHP13 and CoSeg12. As discussed in Section 2.2,
this is due to the fact that the orthogonality constraint helps identify
partial similarities across shapes.

Insensitivity to basis dimension. Figure 8(a) shows the results of
using different number of bases, i.e., K = 10, 20, 60. We can see
that increasing the basis dimension from 10 to 20 can substantially
improve the performance of the algorithm, while the improvement
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Figure 8: Alternative Formulations and Parameters. This figure
shows the performance of using alternative formulations and pa-
rameters on each dataset. RPCA: Applying RPCA[Candès et al.

2011] on the initial pair-wise functional maps estimated from noisy
functional correspondences (i.e, using (1)). K: the dimension of the
functional space on each shape. M: group size at the first level for
the multi-level construction approach (only applied on CoSeg12).
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gained from using 60 basis functions is not that salient. This is
due to the nature of the Laplacian basis, i.e., the low-frequency
signal of a function can be captured by its projection in the space
spanned by the first few Laplacian basis functions. On the other
hand, one does not need a lot of basis functions to obtain an accurate
approximation.

Sparse initial functional correspondences are sufficient. As the
low-rank recovery formulation implicitly propagates maps among
the shape collection, we find that using sparse initial functional
correspondences is sufficient. As shown in Figure 8(b), the perfor-
mance of using 15 functional correspondences per pair of shapes is
similar to that of using 60 functional correspondences. This agrees
with the common knowledge in compressive sensing [Candès et al.
2006] and low-rank matrix recovery [Candès et al. 2011] — sparse
or low-rank signals can be recovered from sparse samples.

Insensitivity to sub-group size. To test the sensitivity of the sub-
group size Ns in the multi-level construction algorithm, we have
measured the performance on CoSeg12 under four different values
Ns = 10, 20, 30, 50 (See Figure 8(b)). We can see that the quality of
the resulting maps is insensitive to the sub-group size. The subtle
difference is due to the limitation in the current shape grouping
step — as D2 is not discriminative enough, a small sub-group may
contain very different shapes so that the noise level in the pair-wise
initial maps exceeds what can be handled in the data-driven stage.

Running time. In terms of running time, the bottleneck of the
proposed consistent functional map recovery technique is the low-
rank matrix recovery. For a shape collection with 30 shapes and 30
basis functions per-shape, the low-rank matrix recovery step takes
196 seconds on a single 3.2G HZ core. The refinement step takes
64 seconds. For larger shape collections, the time complexity of the
low-rank matrix recovery step roughly scales in the order of O(M3),
where M is the dimension X . The cubic order comes from the
complexity of performing a SVD at each iteration of the ADMM.
In the future, we plan to explore various ways to improve the
efficiency of the ADMM solver such as performing partial SVDs
to explore the low-rank nature of X (c.f. [Wen et al. 2010]).

5 Applications

5.1 Co-Segmentation

A straightforward application of computing consistent basis func-
tions is shape co-segmentation. Essentially we can group consistent
basis functions into consistent functional subspaces, where each
subspace corresponds to a set of consistent parts across shapes.

Algorithm. Intuitively, we should group two latent basis functions
(or groups of latent basis functions) if they co-exist on the same set
of shapes. We thus define a merging score between two groups of
latent functions I, J ⊂ {1, · · · , L} (specified by basis indices) as

score(I, J) = n(I ∪ J)/max(n(I), n(J)), (14)

where n(I) denotes the number of shapes that contain I. It is clear
that if I and J always co-exist, then score(I, J) = 1. On the other
hand, if score(I, J) is small, then I and J correspond to different
parts. To compute consistent subspaces, we simply start from
individual basis functions and iteratively group the two subsets I
and J with the largest value of score(I, J) until this value is smaller
than 0.9.

After determining the set of consistent functional subspaces, we
proceed to generate consistent segmentations. This is done by
converting the induced functional subspaces associated with each
shape into corresponding segments. As the functional subspaces

Figure 9: Co-segmentation result on the Vase dataset from [Wang
et al. 2012].

are consistent, we perform this conversion on each shape indepen-
dently by solving a standard multi-cut problem. Specifically, let
Fi,1, · · · ,Fi,Li

be the functional subspaces associated with shape Si,
and introduce a random variable zp ∈ 1, · · · ,Li for each face p on
Si, where zp = l if and only if p belongs to the segment associated
with Fi,l. We then optimize these random variables by minimizing
a combination of unary and pair-wise potentials:

minimize
zp,p∈Si

∑

p∈Si

φ(zp) +
∑

p′∈A(p)

φ(zp, zp′ ) (15)

where A(p) denotes the adjacent faces of p. Here each unary term
measures the projection distance between the corresponding face
indicator function and subspaces:

φ(zp = l) = ‖ fp − f Fi.l
p ‖, (16)

where fp denotes the face indicator function of p, and f Fi.l
p denotes

its projection on Fi,1. The pair-wise term is similar to the ones used
by other shape segmentation techniques (e.g. [Sidi et al. 2011]),
which prefers that segment boundaries fall on sharp edges:

φ(zp, zp′ ) = − log(θ(p, p′))δ(zp − zp′ ), (17)

where θ(p, p′) denotes the angle between p and p′. We apply tree-
reweighted BP [Szeliski et al. 2008] to solve this MRF problem.

Results. Figure 1 and Figure 9 show the co-segmentation results
on two large shape collections Chair and Vase from [Wang et al.
2012]. As we are able to obtain high-quality functional maps across
each shape collection, the resulting segmentations are consistent
and agree with the underlying part structures. Table 1 compares the
segmentation accuracy of various approaches. We can see that the
proposed approach is superior to state-of-the-art techniques [Sidi
et al. 2011] and [Kim et al. 2013] on these two datasets. This shows
the advantage of using consistent functional bases across the shape
collection to derive consistent segmentations.

Note that the success of the proposed approach relies on the fact that
(i) the shape collection is large so that data-driven shape matching
helps establish high-quality functional maps across the shape col-
lection, and (ii) the variation in the shape collection is significant,
so that segments can be identified because they are missing on
certain shapes. On the other hand, the performance of our approach
drops on homogenous shape collections. This is expected, since
our approach would return each shape as a single segment if all
input shapes were the same. In other words, our approach is less
competitive on shape collections of small size and variation (see
Table 1).
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Sidi Hu Kim-Auto Kim-Man FMap

Chairs(400) 80.2 N/A 91.2 96.9 98.1
Vase (300) 69.9 N/A 85.6 81.2 94.3

Lamps 94.3 90.7 95.2 97.6 96.1
Candelabra 84.4 93.9 82.4 87.9 93.1

Chairs 84.8 89.6 97.6 98.4 93.9
Vase 87.4 80.2 81.3 83.2 88.5

Guitars 97.2 98.0 88.5 96.5 93.4
Goblets 98.2 99.2 97.6 98.1 91.2

FourLegged 77.3 88.7 86.9 87.1 74.8

Table 1: Segmentation Accuracy. Each entry records fraction
of area that was labeled correctly by a segmentation technique.
We compare to the consistent segmentation techniques by Sidi et
al. [2011], Hu et al. [2012] and Kim et al. [2013] (With both

automatic initialization and manual initialization).

5.2 Exploring Shape Collections

Another application of constructing a consistent functional map
network is to use the shape difference operator [Rustamov et al.
2013] for shape exploration. In [Rustamov et al. 2013], the authors
demonstrated a few browsing operations on fully similar organic
shapes. We show that with the functional maps generated by the
proposed algorithms, we can perform similar operations on shape
collections that exhibit large variation and partial similarity.

Shape Differences in Map Networks. The shape difference op-
erator [Rustamov et al. 2013] provides a flexible framework for
comparing shapes with respect to different measures and at different
scales. Specifically, let X12 : F1 → F2 be a functional map from
shape S1 and S2. Suppose matrices H1 and H2 encode the inner
products of functions with respect to a given surface measurement
on S1 and S2, respectively. The shape difference operator (itself a
self-map on S1) associated with X12 is defined as

D1,2 := H−1
1 XT

12H2X12. (18)

Note that although [Rustamov et al. 2013] only considers isomor-
phic functional maps, it can be shown that (18) is also proper on
rank-deficient functional maps (see Appendix B for details).

When computing the shape difference operators between all pairs
of shapes in a shape collection, it is expensive to apply (18) due to
the cost in either computing or storing Xi j. However, it turns out
that in a consistent functional map network G , the shape difference
operators can be easily computed using the embedding maps and
their inverses Yi,Y

+
i , 1 ≤ i ≤ N. Specifically, let Hi specify the

inner product of a given measure on shape Si, we can write the
shape difference operator between S j and Si as

Di, j = H−1
i XT

i j H jXi j = (H−1
i Y T

i )
︸ ︷︷ ︸

HL ,i

(Y+
j

T
H jY

+
j )

︸ ︷︷ ︸
HLL , j

Yi. (19)

In particular, if we are interested in the shape difference between S j

and Si within a region of interest (ROI) (specified by the indicator
function g) on Si , then the corresponding difference vector is

Di, jg = HL,iHLL, j(Yig). (20)

As the vector Yig is independent of shape S j, computing Di, jg for
each shape S j only needs two matrix-vector multiplications. This
enables us to apply the shape difference operator to explore large
shape collections as demonstrated below.

Shape Exploration. The dataset we use is a large-scale hetero-
geneous chair dataset (8401 shapes) that merges all chair shapes
in [Huang et al. 2013] and [Kim et al. 2013]. For map computation,
we applied a three-level procedure, where each group at each level
(except the top level) has 30 shapes or 30 latent functional spaces

Shape difference operator

Alignment error

Shape difference operator

Alignment error

Query

Query

Figure 10: Shape Retrieval. This figure shows the shape retrieval
results on a rocking chair and a cantilever chair with user specified
ROIs. We can see that the shape difference operator returns more
meaningful results than the approach based on rigid alignment
error [Kim et al. 2012].

(each of which corresponds to a group of shapes). The computation
was parallelized on a machine with 32G Memory and 12-core 3.2G
HZ CPU. The total running time was 32 hours and 42 minutes.
Note that the shape difference operator is defined with respect to a
measure on each shape. Unless otherwise specified, we assume the
default measure is the area measure.

As a sanity check, we first show that the shape difference operator
can retrieve similar shapes. The input to each retrieval task is a ROI
on a query shape Si. With g we denote the corresponding projected
indicator function. The retrieval procedure then computes for each
other shape S j the corresponding shape difference vector Di jg using
(20) and sort the shapes based on distances ‖Di, jg − g‖. Figure 10
shows the retrieval results of two query shapes: a cantilever chair
and a rocking chair. It is clear that the retrieved shapes all belong
to the same class. We have compared to the retrieval technique
described in [Kim et al. 2012], which measures the extrinsic dis-
tance between rigidly aligned ROIs. We can see that the extrinsic
distance based approach is sensitive to deformations in shapes, and
may return shapes from different classes.

The second example demonstrates that we can extrapo-
late/interpolate the difference between the corresponding regions
of a shape pair. As described in [Rustamov et al. 2013], the basic
idea is to look for shapes S j whose shape difference vectors Di, jg
stay close to the line between the g and Di,i′g. Figure 11 illustrates
the results of interpolating/extrapolating a Windsor chair with 4
beams and another Windsor chair with 6 beams. Note that to make
interpolation/extrapolation insensitive to the radius of each beam,
we utilize the mean curvature function when defining the inner
product, i.e., 〈 f , g〉 =

∫
f (x)g(x)|H(x)|dx, where H(x) is the mean

curvature at point x. As shown in Figure 11, we can see that shapes
S j, whose shape difference vectors Di jg are close to the middle
point of (g + Di,i′g)/2, are Windsor chairs of 5 beams. Similarly,
we can obtain Windsor chairs with around 8 beams, by extracting
shape difference vectors that are close to 2Di,i′g − g.

The third example shows a new application of the shape difference
operator in classifying shapes with respect to a ROI. The idea
is to define a feature descriptor for each shape by combining its
shape difference vectors from a number of landmark shapes. In
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Figure 11: Shape Interpolation/Extrapolation. Black dots repre-
sent the source (4 beams) and target (6 beams) shapes, and gray
dots represent interpolated and extrapolated results. The location
of each dot is parameterized by its distance to the line that connects
the source and target shapes as well as its projection on the line.

Fourleg

Folding
Rocking

Disc

Swivel

X-chair

ZigZag

Landmark shapes

Si1

Si2

Si3

Figure 12: Shape Classification. Classifying shapes based on de-
scriptors that combine shape difference vectors to landmark shapes.
We use the standard K-means for clustering. The resulting clusters
nicely capture the underlying classes.

the example shown in Figure 12, we pick three landmark shapes
Si1, Si2, Si3 with different chair legs. The feature vector for shape
S j is then given by (Di1, jg,Di2, jg,Di3, jg). Figure 12 shows the
K-means classification results on 21 shapes from seven classes,
i.e, Swivel, Fourleg, Rocking, Folding, Zigzag, Disc and X-chair.
We can see that the underlying classes are nicely captured by the
clusters.

6 Conclusions and Future Work

In this paper, we have introduced an algorithm for computing cycle-
consistent functional maps among shape collections that exhibit
large variation and partial similarity. The framework can be ap-
plied at multiple levels, making it scalable for large collections.
Experimental results on benchmark datasets show the advantages
of the functional representation over point-based representations
for capturing various types of similarities across diverse shape
sets. The usefulness of the presented approach is demonstrated in
applications of co-segmentation and shape collection exploration.

There are many future directions to explore. For example, it would
be interesting to study additional applications that are enabled by

consistent functional map networks, e.g., fine-grained categoriza-
tion and shape recognition, all of which require good correspon-
dences across shapes. As the functional map representation is
quite flexible, another direction is to apply it on other types of
data, such as 3D scenes, medical and biological data, and even
between different modalities of data (e.g., images and shapes). The
challenges are how to construct meaningful functional spaces and
how to compute the initial functional correspondences.
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A Proofs of Propositions 3

Proof of proposition 3. Suppose Proposition 3 is true. Then we
can construct the basis Bi of each Fi by removing the zero rows
in Yi. In this case, it is clear that each pair-wise functional map Xi j

would map bik to its corresponding basis function of F j if it exists or
otherwise to the zero function in F j. Moreover, it is easy to see that
each basis function, when transported along any loop, only arrives
at the corresponding basis function, or the zero function.

Now suppose the conditions in Definition 2 are satisfied. Then we
can build a graph, whose vertices are basis functions on all input
shapes, and we connect two vertices with an edge if they can be
matched via compositions of the pair-wise functional maps. Now
if we consider the disconnected components of this graph, it is
easy to see that each component is a clique due to transportability
of connectivity. On the other hand, each component can have
at most one basis function in each component, since otherwise
a basis function, when transformed along a loop, may result in
another basis function. This means that we can generate matrices
Yi by filling in appropriate zero functions, so that each row of Y
corresponds to one clique.

B Shape Difference via Rank-Deficient Maps

To show that (18) applies to rank-deficient functional maps as well,
we prove that the inverse and composition of shape difference oper-
ators, are properly defined. For simplicity, we consider functional
basis on S1 and S2 such that H1 and H2 are identity matrices. In
this case, the shape difference operators between them are given by

D1,2 = XT
12X12 and D2,1 = X+

12

T
X+

12. It is easy to see that D1,2 and
D2,1 are related to each other as follows:

D+
1,2 = X+

12D2,1X12, D+
2,1 = X12D1,2X+

12. (21)

In fact, let us consider the SVD of X12 = UΣV T . Then

X+
12D2,1X12 = X+

12X+
12

T
X+

12X12 = V Σ+UTUΣ+V TV Σ+UTUΣV T

= V Σ+2
V T = (V Σ2V T )+ = D+

1,2.

In other words, D+
1,2 is identical to D2,1 with respect to a generalized

similarity transformation.

To check the composition property, let us consider three shapes
S1, S2, S3, functional maps X12, X23, and the composed map X23X12.
Then the induced shape difference operator is

D1,3 = XT
12XT

23X23X12 = XT
12XT

23X23X+
12

T
XT

12X12

= XT
12D2,3X+

12

T
D1,2,

which means D1,3 is equal to D2,3D1,2 up to a generalized similarity
transformation provided by X12.
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1 ADMM for Low-rank Matrix Recovery

For effective optimization, we utilize an equivalent formulation of
the trace-norm (cf. [Candes and Plan 2011]):

‖X‖⋆ =
1

2
minimize

W1,W2

〈I,

(

W1 X

XT W2

)

〉

subject to

(

W1 X

XT W2

)

� 0, (1)

where 〈·, ·〉 denotes the matrix inner product.

To simplify the notations, we denote X =

(

W1 X

XT W2

)

and

rewrite the optimization problem as follows:

minimize
∑

(i, j)∈G

Ni j
∑

k=1

‖yi jk‖+ λ ′〈I,X〉

subject to P ji(X)ci jk − di jk = yi jk,
1 ≤ k ≤ Ni j,
(i, j) ∈ G

X � 0, (2)

where λ ′ = λ/2, P ji(X) is a linear operator that selects the block
X ji.

Introducing dual variables zi jk and S � 0 for constraints

P ji(X)ci jk − di jk = yi jk and X � 0, respectively, we write down the
Lagrangian of (2) as

∑

(i, j)∈G

Ni j
∑

k=1

(‖yi jk‖+ 〈zi jk, P ji(X)ci jk − di jk − yi jk〉) + 〈λ ′I − S,X〉

=−
∑

(i, j)∈G

Ni j
∑

k=1

〈di jk, zi jk〉+ 〈λ ′I +
∑

(i, j)∈G

Ni j
∑

k=1

P ⋆
ji(zi jkcT

i jk)− S,X〉

+
∑

(i, j)∈G

Ni j
∑

k=1

min
yi jk

(‖yi jk‖ − 〈zi jk, yi jk〉). (3)

It is easy to see that

min
yi jk

‖yi jk‖ − 〈zi jk, yi jk〉 =

{

−∞ ‖zi jk‖ > 1
0 otherwise.

Thus, to make (3) well defined, we must have ‖zi jk‖ ≤ 1. This
allows us to write down the dual problem of (2) as the following

constrained optimization problem:

minimize
∑

(i, j)∈G

Ni j
∑

k=1

〈zi jk,di jk〉

subject to S − λ ′I −
∑

(i, j)∈G

Ni j
∑

k=1

P ⋆
ji(zi jkcT

i jk) = 0

‖zi jk‖ ≤ 1, (i, j) ∈ G , 1 ≤ k ≤ Ni j,

S � 0. (4)

As described in [Wen et al. 2010], we consider the following aug-
mented Lagrangian problem in order to solve (4):

minimize
∑

(i, j)∈G

Ni j
∑

k=1

〈zi jk,di jk〉

+ 〈X , S − λ ′I −
∑

(i, j)∈G

Ni j
∑

k=1

P ⋆
ji(zi jkcT

i jk)〉

+
1

2µ
‖S − λ ′I −

∑

(i, j)∈G

Ni j
∑

k=1

P ⋆
ji(zi jkcT

i jk)‖
2
F

subject to ‖zi jk‖ ≤ 1, (i, j) ∈ G , 1 ≤ k ≤ Ni j,

S � 0, (5)

where µ is a decaying regularizing parameter. In our experiments,
we set µ (0) = 0.1 , and µ (t+1) = 1.1 · µ (t) during the optimization
process.

In the same spirit as [Wen et al. 2010], we employ the alternating
direction method, which alternates between optimizing zi jk and S,

and updating the primal variable X . Let Zi j = (zi j1, · · · , zi jNi j
). At

iteration t + 1, when S and X are fixed, we can optimize each Zi j

independently via

Z
(t+1)
i j = arg min

‖zi jk‖≤1, 1≤k≤Ni j

〈Zi j,Di j − P ji(X
(t)
)Ci j〉+

1

2µ
‖S

(t)
ji − Zi jC

T
i j‖

2
F .

(6)
We apply the barrier method [Boyd and Vandenberghe 2004] to
solve the dual program of this convex program efficiently.

When Z
(t)
i j are fixed, following [Wen et al. 2010], we can write down

the optimal value of S and the value of the primal variable X at the
next iteration as

[S(t+1),−µX
(t+1)

] = decomp(λ ′I +
∑

(i, j)∈G

P ⋆
ji(Z

(t+1)
i j CT

i j)− µX
(t)
),

(7)
where

[A,B] = decomp(C) ⇔ A + B = C, A,−B � 0.

The sub-optimizations problems (7) and (6) are iterated until con-
vergence. Typically only 50-100 alternating iterations are sufficient
for convergence.



2 Gauss-Newton Method for Latent Basis Re-

covery

We begin with introducing the differential of Moore-Penrose pseu-
doinverse as summarized in the following proposition (c.f. [Con-
stales 1998]).
Proposition 1. Given a matrix A ∈ R

n×m of rank r. Let A =

U

(

Σ 0
0 0

)

V T be the full SVD of matrix A ∈ R
n×m, i.e., U ∈

O(n),V ∈ O(m) , and Σ = diag(σ1, · · · , σr), σi > 0. Let D be

the perturbation of A parameterized as D = U

(

D11 D12

D21 D22

)

V T .

Then the differential of (A + D)+ with respect to D is well-defined
if D22 = 0, and the first-order approximation of (A + D)+ with re-
spect to D is given by

(A + D)+ ≈ A+ + V

(

−Σ−1D11Σ−1 Σ−2D21
T

D12
T Σ−2 0

)

UT

Now we discuss the details of the Gauss-Newton method. Suppose

the current latent basis are Y
(t)
i , 1 ≤ i ≤ N. To compute Y

(t+1)
i , we

optimize a small perturbation dY
(t)
i of Y

(t)
i so that the following ob-

jective function is minimized

f =
∑

(i, j)∈G

‖X⋆
i j − Y+

j Yi − dY+
j Yi − Y+

j dYi‖
2
F

+µ
∑

k,l

(yT
iky jl + dyT

iky jl + yT
ikdy jl)

2 + γ

N
∑

i=1

‖dYi‖
2
F , (8)

where both dY+
j and dYi are parameterized using Prop.1. In this

case, f is a quadratic function and can be optimized by solving a
linear system. Note that we have added a small regularization term

γ
N
∑

i=1

‖dYi‖
2
F to prevent from obtaining degenerate solutions.

When solving the induced linear system, we find that it is more
efficient to just use the block-diagonal of the left hand side of the
system. More precisely, all terms that are related to multiplications
of dYi and dY j are dropped. This can be considered as a general-
ized Jacobian iteration, which leads to a series of small-scale linear
systems.
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