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Abstract

Recent advances in shape matching have shown that jointly optimizing the maps among the shapes
in a collection can lead to significant improvements when compared to estimating maps between pairs
of shapes in isolation. These methods typically invoke a cycle-consistency criterion — the fact that
compositions of maps along a cycle of shapes should approximate the identity map. This condition
regularizes the network and allows for the correction of errors and imperfections in individual maps. In
particular, it encourages the estimation of maps between dissimilar shapes by compositions of maps along
a path of more similar shapes.

In this paper, we introduce a novel approach for obtaining consistent shape maps in a collection
that formulates the cycle-consistency constraint as the solution to a semidefinite program (SDP). The
proposed approach is based on the observation that, if the ground truth maps between the shapes
are cycle-consistent, then the matrix that stores all pair-wise maps in blocks is low-rank and positive
semidefinite. Motivated by recent advances in techniques for low-rank matrix recovery via semidefinite
programming, we formulate the problem of estimating cycle-consistent maps as finding the closest positive
semidefinite matrix to an input matrix that stores all the initial maps. By analyzing the Karush-Kuhn-
Tucker (KKT) optimality condition of this program, we derive theoretical guarantees for the proposed
algorithm, ensuring the correctness of the recovery when the errors in the inputs maps do not exceed
certain thresholds. Besides this theoretical guarantee, experimental results on benchmark datasets show
that the proposed approach outperforms state-of-the-art multiple shape matching methods.

1 Introduction

Recently, there has been growing interest in jointly matching many shapes [NBCW∗11,KLM∗12,HZG∗12],
via approaches which aim at aggregating information from multiple shapes to improve the maps computed
between pairs of shapes in isolation — for brevity we will refer to this class of problems as “multiple shape
matching.”. Existing approaches typically view the shape collection as a graph whose nodes are the shapes
and whose edges are decorated with maps between the shapes. If the maps express a consistent understanding
of “what is the same” across the collection, then a cycle-consistency criterion must be met, i.e., compositions
of maps along cycles of shapes in the graph should approximate the identity map. This allows us, for example,
to replace incorrect maps between pairs of dissimilar shapes by compositions of correct maps along paths
of more similar shapes, or to fix partial map errors. Although these methods have shown great potential
in practice, they typically lack theoretical guarantees — it is not known under what conditions the ground
truth maps can be recovered.

In this paper, we introduce a novel approach with both practical applicability and theoretical justification.
We consider the problem setting where the input consists of a collection of shapes, represented as discrete
metric spaces (i.e., points with pair-wise distances), and a collection of maps computed between (a connected
subset of the) pairs of shapes. The output consists of new maps between all pairs of shapes that are (i)
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cycle-consistent and (ii) close to the original input maps. The key idea of the proposed approach is to first
formulate the multiple shape matching problem in a constrained optimization framework, and then to find an
effective convex optimization relaxation for its solution. Computationally, we solve this convex optimization
relaxation to obtain an approximate solution, which is then rounded into a feasible solution to the original
problem. Theoretically, we analyze the optimality condition of the relaxed convex problem to obtain exact
recovery conditions. In a broader picture, the proposed approach follows the general methodologies of
compressive sensing [CT05] and low-rank matrix recovery [CR09,CLMW11], which analyze and solve difficult
optimization problems using their convex relaxations.

It is quite challenging to convert the multiple shape matching problem into a constrained optimization
program, which also admits a tight convex relaxation. The proposed approach is based on establishing the
equivalence between cycle-consistent maps and the semidefiniteness of a binary matrix that stores all pairs
of maps in blocks. This allows us to convert the multiple shape matching problem into a binary semidefinite
program, which can be effectively solved via its convex relaxation (i.e., binary variables are relaxed into
real variables between 0 and 1). We analyze the Karush-Kuhn-Tucker (KKT) optimality condition of this
program, and derive upper bounds on the percentage of incorrect correspondences in the input maps so that
the ground truth maps are recovered by solving the convex relaxation.

We also evaluate the proposed approach on benchmark datasets TOSCA [BBK08], SCAPE [ASK∗05]
and SHREC07 [GBP07,KLF11]. Experimental results show that the new method outperforms state-of-art
multiple shape matching approaches [NBCW∗11,KLM∗12,HZG∗12] on these datasets.

1.1 Related work

The problem of multiple shape matching appears as a crucial step in many scientific problems including
fusing partially overlapping range scans [Hub02], assembling fractured surfaces [HFG∗06] and structure from
motion [ZKP10]. As it is beyond the scope of this paper to review all existing works, we only discuss
approaches that can be applied to 3D shapes. To facilitate the discussion, we employ the terminology
of a model graph [Hub02], whose vertices and edges represent shapes and maps between pairs of shapes,
respectively.

Almost all existing approaches follow the general methodology of applying the cycle-consistency criterion
to improve maps computed between pairs of shapes in isolation. Depending on how the cycle-consistency
criterion is applied, existing approaches fall into three categories. The first category of methods [Hub02,
HFG∗06] utilizes the fact that a collection of cycle-consistent maps can be generated from maps associated
with a spanning tree in the model graph. However, as the number of spanning trees in a graph is usually
exponential in the number of vertices, these approaches only optimize the spanning trees greedily and/or
locally, often resulting in sub-optimal solutions.

The second category of approaches [ZKP10,NBCW∗11] applies constrained optimization to select cycle-
consistent maps. These approaches are typically formulated so that the objective functions encode the
score of selected maps, and the constraints enforce the consistency of selected maps along cycles, i.e., if
the composite map along a cycle deviates from the identity map, then at least one map along this cycle is
incorrect. Once bad maps are identified, they can be replaced by compositions of other maps. The major
advantage of these methods is that the correct maps are determined globally, leading to better performance
than the first category of approaches. However, their success relies on the assumption that correct maps
are dominant in the model graph so that the small number of bad maps can be identified through their
participation in many bad cycles. In addition, as there are exponential number of cycles, how to effectively
sample cycles remains an open question.

Besides the limitations described above, a shared limitation of the first two categories of approaches is
that the resulting maps are generated by composing input maps. In other words, these approaches require the
full correctness of (a subset of) input maps, and would certainly fail if all input maps are partially incorrect
but the majority correspondences in each map are correct. The third category of methods [KLM∗12,HZG∗12]
addresses this limitation by composing correspondences to generate maps. These approaches encode maps
between pairs of shapes using a big correspondence matrix, and apply spectral techniques to improve the
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Figure 1: Basic structure of the output maps. (Left) When the sample distributions are consistent, e.g., the
input shapes are similar, or samples are given by common shape extremals, the proposed approach outputs
one-to-one maps between all the samples. (Right) Otherwise, the approach selects samples and outputs
one-to-one maps between the selected samples.

map consistency. Although producing good performance in practice, they are limited in the fact there is no
theoretical guarantee, i.e., it is not known under what conditions these approaches can recover the ground
truth maps. In contrast, the proposed approach admits precise theoretical guarantees. Experimentally, it
also modestly outperforms [KLM∗12] and [HZG∗12] on benchmark datasets.

In independent work [WS12], Wang and Singer analyzed a semidefinite programming formulation to the
problem of recovering consistent rotational transforms between rigid shapes. Their approach also recognizes
the fact that the matrix that stores pair-wise rotational transforms in blocks is semidefinite. However, we
consider a different problem in this paper, i.e., that of computing point-based maps, where the both the
formulation of the problem and the analysis of the proposed algorithm are drastically different.

We remark that although the matrix we try to recover is low-rank, it is also sparse, reflecting the
1–1 nature of shape correspondences. This means standard low-rank matrix recovery techniques [CR09,
CLMW11] do not apply well in our setting because they only work for dense matrices. The proposed
approach is made possible because we utilize special structures present in the matrix — that the diagonal
blocks are identity matrices and that off-diagonal blocks are doubly stochastic matrices.

2 Problem Statement and Overview

2.1 Terminology

Shape. Without loss of generality, we assume shapes are represented as discrete metric spaces, i.e., a shape
S is given by a set of m samples and a distance matrix dS(·, ·) that describes all pair-wise distances between
these samples. Given a triangular mesh M , we generate such a representation using the procedure described
in [LF09], which first detects extremals of Gaussian curvatures, and then applies furthest point sampling to
add the remaining samples . The distance matrix dS(·, ·) stores geodesic distances on M .

Map. A point-to-point map φ : S → S′ from a source shape S to a target shape S′ is equivalent to a set of
correspondences of the form {s, φ(s))| s ∈ Si}, where each point on the source shape appears in exactly one
correspondence. This map is one-to-one if in addition each point from the target shape appears in exactly
one correspondence.

Cycle-consistency. Cycle-consistency refers to the fact that composite maps along cycles in the model
graph are identity maps. As we compute maps between all pairs of shapes (complete graph), it is sufficient
to only consider 1-cycles, 2-cycles and 3-cycles [NBCW∗11]:

Definition 1. Given a shape collection S = {S1, · · · , Sn} of n shapes where each shape consists of the same
number of samples, we say a map collection Φ = {φij : Si → Sj |1 ≤ i, j ≤ n} of maps between all pairs of
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shapes is cycle consistent if and only if the following equalities are satisfied:

φii = idSi
, 1 ≤ i ≤ n, (1-cycle)

φji ◦ φij = idSi
, 1 ≤ i < j ≤ n, (2-cycle)

φki ◦ φjk ◦ φij = idSi
, 1 ≤ i < j < k ≤ n, (3-cycle) (1)

where idSi
denotes the identity self-map on Si.

2.2 Input and output

The input is given by a model graph G = (S, E), where S = {S1, · · · , Sn} encodes the input shapes, and
E specifies a collection of point-to-point input maps Φin = {φin

ij : Si → Sj | (i, j) ∈ E}. Without loss of
generality, we assume E is symmetric, i.e., if (i, j) ∈ E , then (j, i) ∈ E . As above, each shape is represented
by a discrete metric space of m samples.

For the output, we would like to obtain cycle consistent one-to-one maps between all pairs of shapes.
Based on how samples are distributed on different shapes, we consider a basic setting and a generalized
setting (See Figure 1).

Basic setting. The basic setting addresses the case where sample distributions are consistent across shapes,
e.g., when input shapes are quite similar to each other (e.g., TOSCA and SCAPE). Alternatively, this setting
is also relevant when we focus on maps between extremal points which can be obtained consistently across
the shapes (c.f., [SOG09]). In this case, the output consists of cycle-consistent maps between the input
shapes Φout = {φij : Si → Sj |1 ≤ i < j ≤ n}.

Generalized setting. The generalized setting is used in the case, where input shapes exhibit larger vari-
ability (e.g., SHREC07), i.e., it is unlikely to obtain consistent sample distributions across all the shapes.
In this case, the output consists of (i) a reduced shape S′

i ⊂ Si of m0 ≤ m samples from each input shape
and (ii) a set of cycle-consistent one-to-one maps Φout = {φij : S′

i → S′
j |1 ≤ i < j ≤ n} between these

reduced shapes. For all the experiments, we set m0 = m/4. A theoretical analysis that supports this choice
is provided in the supplemental material. To avoid selecting samples that unduly aggregate on certain areas
of the the input shapes, we assume the selected samples on S1 are given by its first m0 samples, which are
distributed uniformly on S1 due to the natural of furthest point sampling.

Note that when analyzing the algorithm, we mainly focus on the basic setting. This helps us to separate
the effect of having incorrect input maps, the major focus of this paper, from the uncertainty introduced by
having inconsistent sample distributions on the shapes.

2.3 Paper organization

The remainder of this paper is organized as follows. In Section 3, we establish the important relation between
cycle-consistency and semidefiniteness. In Section 4, we present the constrained optimization formulation in
the basic setting, and describe an optimization strategy using convex relaxation. In Section 5, we analyze
this convex relaxation and provide conditions on the exact recovery of the ground truth maps. We extend
the basic setting to the generalized setting in Section 6. In Section 7, we evaluate the performance of the
proposed approach on benchmark datasets. Finally, we conclude the paper and discuss future directions in
Section 8.

3 Cycle-Consistency and Semidefiniteness

The formulation of the proposed approach is rooted in the connection between cycle-consistent maps and
the semidefinitess of the binary matrix that stores these maps in blocks. In the following, we first introduce
the matrix representation of maps. Then we describe the connection.
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Figure 2: The equivalence between cycle-consistent maps and positive semidefiniteness of the big map
collection matrix, storing these maps in blocks.

Matrix representation of maps. We present a point-to-point map φij : Si → Sj from shape Si to Sj as
a binary matrix Xij ∈ {0, 1}m×m, where Xij(s, s

′) = 1 if and only if (s, s′) ∈ φij . It is clear that each row
of Xij has exactly one entry equal to 1. In particular, if φij is a one-to-one map, then X ij is a permutation
matrix. It is well known that a permutation matrix Xij is characterized by

Xij1 = 1, XT
ij1 = 1,

where 1 represents the vector whose elements are 1. Note that in the matrix representation of maps, map
composition becomes matrix multiplication:

φjk ◦ φij = φik ⇔ XjkXij = Xik.

Consider a shape collection S = {S1, · · · , Sn}, where each shape consists of m samples. Given a complete
collection of one-to-one maps Φ = {φij , 1 ≤ i < j ≤ n}, we use a big binary matrix X ∈ {0, 1}nm×nm to
store these maps in blocks:

X =













Im X12 · · · X1n

XT
12 Im · · · · · ·
...

... Im X(n−1),n

XT
1n

... XT
(n−1),n Im













.

Note that the diagonal blocks of X are identity matrices, representing identity self-maps. Each block
Xji, j > i is given by the transpose of Xij , representing the inverse map of φij . In other words, X is
symmetric. In the following, we will call X the map collection matrix of map collection Φ.

Connection. We now describe the connection between the cycle-consistency of Φ and the low-rank and
semidefinite property of X (See Figure 2). Following a standard convention, we write X � 0 to denote that
X is positive semidefinite.

Proposition 1. The following three statements are equivalent:

1. Φ is cycle-consistent, i.e., it satisfies (1).

2. The rank of X is m, and it can be factorized as X = Y T
i Y i for one i ∈ {1, · · · , n}, where Y i is the

matrix that stores all the maps from Si in a row: Y i = (X i1, · · · ,Xin).

3. X is positive semidefinite: X � 0.

Proof: 1 ⇔ 2 : 1 ⇒ 2 is straightforward due to the the matrix expression of cycle consistency. Suppose 2 is
true. Without losing generality, we assume X = Y T

1 Y 1. Then we have

φi1φ1i = idS1 , φ1iφi1 = idSi
, 1 ≤ i ≤ n,

φij = φ1j ◦ φi1, 1 ≤ i < j ≤ n.
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It follows that ∀1 ≤ i < j ≤ n,

φij ◦ φji = φ1j ◦ φi1 ◦ φ1i ◦ φj1 = idSj
,

and ∀1 ≤ i < j < k ≤ n,
φki ◦ φjk ◦ φij = φ1iφk1φ1kφj1φ1jφi1 = idSi

.

2 ⇔ 3 : 2 ⇒ 3 is also straightforward as ∀z ∈ R
nm,

zTXz = zTY T
i Y iz = ‖Y iz‖

2
F ≥ 0.

To prove 3 ⇒ 2, we require the following lemma

Lemma 1. Suppose x ∈ R, then

A33(x) =





1 1 1
1 1 x
1 x 1



 � 0 ⇔ x = 1.

Proof: The three eigenvalues of A33(x) are given by λ1 = 1 − x, λ2, λ3 = (x+2)±
√
x2+8

2 . Setting λi ≥ 0
yields x = 1.

Let D = Diag(Im,X12, · · · ,X1n) ∈ R
nm×nm denote the block diagonal matrix that collects Im,X12, · · · ,X1n

in diagonal blocks. As X � 0, we have

X ′ = DXDT =













Im Im · · · Im

Im
. . . X1iXijX

T
1j

...
... X1jX

T
ijX

T
1i

. . .
...

Im · · · · · · Im













� 0.

Note that any principal submatrix of a positive semidefintie matrix are positive semidefinite. It follows
that the 3×3 principal submatrix of both row and column indices (s, im+s, jm+s) is positive semidefinite:

A33(X
′
ij(s, s)) =





1 1 1
1 1 X ′

ij(s, s)
1 X ′

ij(s, s) 1



 � 0.

Using Lemma 1, we have X ′
ij(s, s) = 1. Thus, X ′

ij = Im, which means Xij = XT
1iX1j . This completes

the proof.

Proposition 1 provides a simple representation of cycle-consistent maps, i.e., as a positive semidefinite
matrix X ∈ R

nm×nm, whose diagonal blocks are identity matrices, and whose off-diagonal blocks are per-
mutation matrices. If we further relax the permutation matrix constraint so that each off-diagonal block is
only a doubly stochastic matrix, i.e., each element of Xij may take real values between 0 and 1, and rows
and columns of each block of X sum to 1, then the cycle-consistency constraint becomes in fact convex.
Note that this relaxation is considered optimal since the space of doubly stochastic matrices is the smallest
convex set containing all permutation matrices.

Although Proposition 1 does not hold after this relaxation, we show in the following sections that when
enforcing the relaxed constraints to optimize the L1 distance between X and Xin (i.e, the matrix that
encodes the input maps), then there exist weak conditions under which we are able to recover the ground
truth maps, which are cycle-consistent. This is partially due to the optimality of this relaxation.
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4 Constrained Optimization and Convex Relaxation

In this section, we describe our constrained optimization formulation in the basic setting, i.e., the input is
given by maps Φin = {φin

ij : Si → Sj , (i, j) ∈ E}, and output consists of cycle-consistent maps Φout = {φij :
Si → Sj , 1 ≤ i < j ≤ n} between the input shapes. We first present the formulation in Section 4.1. Then
we describe how to solve it via its convex relaxation in Section 4.2.

4.1 Formulation

Variable parametrization and constraints. We use a map collection matrix X ∈ {0, 1}nm×nm to encode
Φout . Applying Proposition 1, we write down the following constraints that specify the cycle-consistency of
Φout :

X ∈ {0, 1}nm×nm, X � 0

Xii = Im, 1 ≤ i ≤ n

Xij1 = 1, XT
ij1 = 1, 1 ≤ i < j ≤ n (2)

Objective function. Following low-rank matrix recovery techniques [CR09,CLMW11], which evaluate the
L1-norm between the input matrix and the recovered matrix, we define our objective function so that it
sums the L1-norm between the output maps and input maps:

falign =
∑

(i,j)∈E
‖Xin

ij −X ij‖1, (3)

where ‖ · ‖1 denotes the elementwise L1-norm. As Xin
ij are binary matrices, it turns out whenever the the

elements of Xij are between 0 and 1 (i.e., when they are relaxed), we can rewrite falign as a linear function
over X:

falign =
∑

(i,j)∈E
(

∑

X in
ij
(s,s′)=0

Xij(s, s
′) +

∑

X in
ij
(s,s′)=1

(1−Xij(s, s
′))

= m|E|+ 〈eeT − 2Xin
ij ,Xij〉, (4)

where m is the number of sample points per shape, and 〈A,B〉 = Tr(ATB) denotes matrix inner product.

Constrained optimization. Combining (2) and Equation (4), we formulate the following constrained
optimization problem to recover cycle-consistent maps as:

min
X

∑

(i,j)∈E
〈eeT − 2Xin

ij ,Xij〉

s.t. (5)

X ∈ {0, 1}nm×nm,X � 0

X ii = Im, 1 ≤ i ≤ n

X ij1 = 1, XT
ij1 = 1, 1 ≤ i < j ≤ n (6)
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Figure 3: Comparison between the input maps and the optimized maps from a source shape to selected
target shapes from the SCAPE dataset. Only correspondences of the first 16 samples are shown, for clarity.

4.2 Optimization via convex relaxation

Convex relaxation. We solve (6) by solving its convex relaxation, where we allow elements of X to take
real values between 0 and 1:

min
X

∑

(i,j)∈E
〈eeT − 2Xin

ij ,Xij〉

s.t. X ≥ 0, X � 0,

Xii = Im, 1 ≤ i ≤ n

Xij1 = 1, XT
ij1 = 1, 1 ≤ i < j ≤ n (7)

Note that the constraint X ≤ 1 is removed since it can be derived from the fact that X ≥ 0 and Xij1 =
1, 1 ≤ i < j ≤ n.

Numerical optimization. For numerical optimization, we employ the alternating direction method of
multipliers technique (ADMM) [BPC∗11]. Our current implementation applies the ADMM method described
in [WGY10] for solving semidefinite programs. Due to space constraint, we defer the explicit expressions
Appendix B.

Rounding strategy. As X can take real values in (7), it is possible that the optimal solution takes real
values (the conditions that it returns integer solutions will be discussed in the next section). In this case,
we propose to use a simple greedy rounding procedure to round real value solutions into integer solutions.
Specifically, we solve a linear assignment problem to round each X1i into a permutation matrix X int

1i . The
linear programming formulation [Sch86] is given by

min
X

int

1i

< X int
1i , 1−X1i >

s.t. X int
1i 1 = 1,X int

1i

T
1 = 1, X int

1i ≥ 0. (8)
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After obtaining X int
1i , 2 ≤ i ≤ n, the map from shape Si to shape Sj is given by X int

1j X
int
1i

T
. Figure 3 shows

some representative results of our approach on the SCAPE dataset.

5 Convex Relaxation Analysis

In this section, we present conditions on Xin
ij , (i, j) ∈ E so that the underlying ground truth maps are

recovered by solving (7). We first present an exact recovery theorem that is derived from analyzing the KKT
optimality conditions. Then we show how to apply it to obtain more transparent exact recovery conditions.
Without loss of generality, we assume that the samples on each shape are numbered/ordered in a way such
that the map collection matrix Xgt of the underlying ground truth maps are given simply by

Xgt = eeT ⊗ Im, (9)

where ⊗ denotes the kronecker product.

5.1 Exact recovery theorem

We derive an exact recovery theorem by following a two-step procedure used in analyzing the exact conditions
of low-rank matrix recovery techniques [CR09,CLMW11]. Specifically, we first apply the KKT conditions
to derive an exact recovery condition formulated as the existence of certain dual variables. We then choose
appropriate dual certificates to obtain an explicit exact recovery condition, which is summarized as the major
theorem. As the derivation procedure is rather technically involved, we leave the details to the supplemental
material.

Our exact recovery condition will be expressed as the positive definiteness of a set of matrices that capture
the structure of the incorrect correspondences in the input maps Xin

ij . Specifically, we introduce m weighted

graphs Gfalse
s = (S, E false

s ), 1 ≤ s ≤ m, each of which encodes the incorrect correspondences that are related
to the s-th sample on all input shapes. To define each graph Gfalse

s , we add an edge (i, j) ∈ E false
s and define

its associated edge weight ws
ij via the following two conditions: (i) If φin

ij does not map the s-th sample of

Si to the s-th sample of Sj , we set ws
ij = 1. (ii) If φin

ij maps two or more samples (one is the s-th sample) on
Si to the s-th sample of Sj , we set ws

ij = 1/2. Now we present the major exact recovery theorem as follows:

Theorem 5.1. Define LG and LGfalse
s

as the unweighted and weighted graph Laplacians of graph G and Gfalse
s ,

respectively. Then Xgt is the unique solution to (7) if

λ2(LG − 2LGfalse
s

) > 0, 1 ≤ s ≤ m,

where λ2(A) denotes the second smallest eigenvalue of A.

5.2 Derived exact recovery conditions

In this section, we apply known results in spectral graph theory to Theorem 5.1 in order to obtain more
transparent exact recovery conditions. We consider both a deterministic setting, where G and Gfalse

s , 1 ≤ i ≤
m are fixed, and a randomized setting, where they are random graphs.

Deterministic setting. A straightforward relaxation of (5.1) is given by

λmax(LGfalse
s

) ≤ λ2(LG)/2, 1 ≤ s ≤ m. (10)

where λ2(LG) is also called the algebraic connectivity [Fie73] of graph G. As the largest eigenvalue of a
graph Laplacian is bounded by two times of the maximum (weighted) degree of its vertices, we arrive at the
following relaxed exact recovery condition:
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Corollary 1. Xgt is the unique optimal solution to (7) if

∑

(i,j)∈E false
s

(ws
ij + ws

ji)/2 <
λ2(LG)

4
,

1 ≤ i ≤ n,
1 ≤ s ≤ m.

In other words, on the average, we can tolerate a fraction of λ2(LG)/4(n− 1) incorrect correspondences
from each sample on one shape to other samples on the remaining shapes. Note that we do not require the
complete correctness of any particular input map.

When the input model graph G is a complete graph, we have λ2(LG) = n. In this case, we can tolerate 25%
incorrect correspondences. It is turns out this 25% upper bound is essentially tight. Consider the case where
the input shape collection is divided into two sets of equal size so that the 25% incorrect correspondences
only happen between shapes from different sets. Then there are 50% incorrect correspondences among the
correspondences between these two sets and if there is collusion among the incorrect correspondences it is
impossible to decide between the two options. This shows that the 25% bound is tight.

On the other hand, the probability of having such worst case scenarios is low. This motivates us to
consider the case where both G and Gfalse

s are generated by a random process. It turns out we can obtain
better bounds in such a setting.

Randomized setting. In the randomized setting, we assume that the edge set E is generated using the
Erdös-Rényi random graph model, i.e., each edge (i, j), 1 ≤ i < j ≤ N appears in E with probability of
p ∈ (0, 1), independently of all the others. We further assume that the incorrect correspondences specified
by xij(s) = 1, (i, j) ∈ E , 1 ≤ s ≤ m are also generated independently with probability q ∈ (0, 1). It is easy to
see that Gfalse

s , 1 ≤ s ≤ m also satisfy the Erdös-Rényi model but with probability pq.

As shown in [DJ10], under the Erdös-Rényi model, as the number of shapes n → ∞, the second smallest
and the largest eigenvalues of the Laplacian of a random graph G all converge to np with probability 1, i.e.,

λ2(LG)/np → 1, λmax(LG)/np → 1.

Applying this result on G and Gfalse
s , 1 ≤ s ≤ m, respectively, we obtain the following asymptotic result:

Corollary 2. Suppose q < 1/2. Let m be fixed, while n → ∞. Then

Pr(λ2(LG)− 2λmax(LGfalse
s

) > 0, 1 ≤ s ≤ m) → 1.

In other words, in the limiting case, we can tolerate almost 50% incorrect correspondences per sample.
Note that this 50% bound is only achieved when n → ∞. In practice, when n = 128, m = 16 and p = 0.5,
we found that (10) is satisfied with very high probability when q < 0.32.

6 Incorporating Sample Selection

In this section, we extend the constrained optimization formulation described in Section 4 to the generalized
setting, where the variables to be optimized are the selected sub-shapes S′

i ⊂ Si, |S′
i| = m0, 1 ≤ i ≤ n and

cycle-consistent one-to-one maps Φout = {φij : S′
i → S′

j , 1 ≤ i < j ≤ n} are sought between all pairs of
selected sub-shapes.

6.1 Formulation

To represent the selected sub-shapes S′
i, we associate each sample s ∈ Si, 1 ≤ i ≤ n with a binary indicator

xi,s ∈ {0, 1}, where xi,s = 1 if sample s is selected, and xi,s = 0 otherwise. With xi we denote the
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Figure 4: Comparison between the input maps and the optimized maps from a source shape to selected
target shapes from the Hand dataset, The proposed approach is able to obtain consistent correspondences
across the shapes.

binary indicator vector that collects all indicators of samples from Si. It is easy to see that the constraints
|S′

i| = m0, 1 ≤ i ≤ n are equivalent to:

1Txi = m0, 1 ≤ i ≤ n. (11)

The constraint that the selected samples on S1 are the first m0 samples is given by

x1 = (1T
m0

,0T
m−m0

)T . (12)

We still use matrix Xij ∈ {0, 1}m×m to encode the map φij between S′
i and S′

j , i.e., Xij(s, s
′) = 1 if and

only if (s, s′) ∈ φij . In this case, it is easy to see that X ij specifies a one-to-one map between S′
i and S′

j if
and only if

Xij1 = xi, XT
ij1 = xj . (13)

Using this parameterization, the map collection matrix of Φ = {φij : S′
i ↔ S′

j , 1 ≤ i < j ≤ n} is the
submatrix of X whose rows and columns are specified by xi, 1 ≤ i ≤ n. As the elements in the remaining
rows or columns of X are zero, it turns out we only need to enforce the positive semidefiniteness of X. In
summary, we have the following proposition.

Proposition 2. Suppose the indicator vector for shape S′
i is given by vector xi. Then a binary matrix

X ∈ {0, 1}nm×nm specifies a set of cycle-consistent one-to-one maps between all pairs of shapes (S′
i, S

′
j), 1 ≤

i < j ≤ n if and only if

Xii = Diag(xi), 1 ≤ i ≤ n

Xij1 = xi, XT
ij1 = xj , 1 ≤ i < j ≤ n

X � 0. (14)
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We still use falign described in (4) as the objective function to be minimized. Together with (12) and
(14), we formulate the following constrained optimization problem for the generalized setting:

minimize
X

∑

(i,j)∈E
〈11T − 2Xin

ij ,Xij〉

s.t. X � 0, X ∈ {0, 1}nm×nm, x1 = (1T
m0

,0T
m−m0

)T

Xii = Diag(xi), 1Txi = m0, 1 ≤ i ≤ n

Xij1 = xi, XT
ij1 = xj , 1 ≤ i < j ≤ n (15)

Remark 1. Based on the characteristics of the input, one may replace 11T − 2Xin
ij by other coefficient

matrices. For example, if the input samples are highly irregular, we can utilize the distance metric associated
with discrete metric spaces to define the objective

falign =
∑

(i,j)∈E
〈W ij ,Xij〉, Wij(p, p

′) = dSj
(p′, φin

ij (p)), 1 ≤ p, p′ ≤ m. (16)

6.2 Convex relaxation

Let each element of X take real values between 0 and 1, we arrive the following convex relaxation to (15):

min
X

∑

(i,j)∈E
< 11T − 2X in

ij , Xij >

s.t. X � 0, X ≥ 0, x1 = (1T
m0

,0T
m−m0

)T ,

Xii = Diag(xi), 1Txi = m0, 1 ≤ i ≤ n

Xij1 = xi, XT
ij1 = xj , 1 ≤ i < j ≤ n (17)

We adapt the rounding procedure used in the basic setting to obtain integer solutions to (15), . Given
X1j , we first solve (8) to obtain a one-to-one map X int

1j between S1 and Sj . As the first m0 samples of S1 is

fixed, the restriction of X int
1j on these fixed samples gives the selected shape S′

j ⊂ Sj as well as the one-to-one
map between S′

1 and S′
j . Figure 4 and Figure 5 shows some representative results on the Hand and Human

datasets, respectively.

7 Experimental Evaluation

7.1 Experimental setup

Datasets. We have evaluated the proposed approach on three popular shape matching benchmark datasets:
TOSCA [BBK08], SCAPE [ASK∗05] and SHREC07 [BBK08, KLF11]. Each dataset consists of one or
multiple categories of similar shapes. Shapes in the TOSCA and SCAPE benchmark are generated by
deforming template meshes, so we directly use the corresponding vertices as ground truth for evaluation.
The SHREC07 benchmark consists of shapes that are triangulated differently. Following the setup in [KLF11,
HZG∗12], we choose 11 categories from SHREC07, where point-based maps are meaningful, and evaluate
against sparse manual correspondences as provided in [KLF11].

Input maps. We use blended intrinsic maps [KLF11] to establish initial maps between pairs of shapes.
As blended intrinsic maps generate dense vertex-based correspondences, we snap them into point-to-point
maps between the selected samples [HZG∗12]. Moreover, as the edge set E , which specifies the pairs of
shapes for computing initial maps, is adjustable, we consider a complete setting and a sparse setting. In the
complete setting, we let E connect all pairs of shapes. In the sparse setting, we let E connect each shape
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Figure 5: Consistent correspondences across the Human dataset. Matched points share the same color and
radius.

with its k-nearest neighbor shapes (k = 5 in this paper) in terms of the intrinsic D2-descriptor [OFCD02] (a
histogram of squared geodesic distances between pairs of points).

Sampling. Shapes in each category of TOSCA and SCAPE represent the same object, so we place m = 64
samples on each shape and compute full one-to-one maps between these samples, i.e., we use the basic setting
of Section 2.2. In contrast, shapes in each category of SHREC07 exhibit large geometric variance. In this
case, we generate m = 128 samples on each shape and compute one-to-one maps between m0 = 32 selected
samples from each shape, as described in Section 6. The influences on using different number of samples will
be discussed later in Section 7.4.

Baseline. We compare the proposed approach with three existing approaches: optimized composite maps
(OCM) [NBCW∗11], fuzzy correspondences (FC) [KLM∗12] and hub-and-spoke network (HAS) [HZG∗12].
Note that both FC and HAS are sample based. As suggested by [HZG∗12], we used 512 samples for these
two methods. To make a fair comparison between the proposed approach and previous approaches, we
extrapolate sample based maps into vertex based maps, and compare the quality of the induced vertex based
maps (See Figure 6). Given a sample based map φij : Si → Sj , we define the corresponding vertex based
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Figure 6: (Left) Color-coded correspondences between 32 sample points. (Right) Interpolated correspon-
dences between vertices (256 are shown here).

map φij : Mi → Mj as:

φij(v) = arg min
v′∈Mj

∑

s∈Si

e
−

d2
Mi

(v,s)

2σ2
i d2Mj

(v′, φij(s)), v ∈ Mi, (18)

where σi := mins6=s′∈Si
dMi

(s, s′).

Evaluation metrics. Denote Cgt
ij ⊂ Mi × Mj, 1 ≤ i 6= j ≤ N as the ground-truth correspondences. For

the maps φij , 1 ≤ i 6= j ≤ N generated by each method, we collect statistics of geodesic error of each

correspondence (vi, vj) ∈ Cgt
ij :

egeo(φij , (vi, vj)) = dMj
(vj , φij(vi)).

Following [KLF11], we report the percentage of correspondences pǫ whose geodesic error is smaller than ǫ
times the mean of the maximum pairwise geodesic distance on each shape. When reporting pǫ, we primarily
focus on two values for ǫ, a generous ǫ = 0.16, which we take to capture the global accuracy of a method, and
a tight ǫ = 0.02, which captures its local accuracy. We provide the plots of pǫ against ǫ in the supplemental
material.

7.2 Analysis of results

Table 1 and Figure 7 collect the statistics of the proposed approach on benchmark datasets. In the following,
we break down in more detail the observed performance. As in [HZG∗12], we divide the 11 categories of
SHREC07 into a NonSym group (i.e., Armadillor, Fourleg, Fish, Hand and Human), where input maps are
not seriously influenced by the underlying symmetries of the shapes (blended intrinsic maps [KLF11] are
resilient to reflectional intrinsic symmetries), and a Sym group (i.e., Ant, Bird, Glasses, Plane, Plier and
Teddy), where a significant portion of the input maps are affected by shape symmetries.

TOSCA and SCAPE. The proposed approach generates nearly perfect results on the TOSCA and SCAPE
datasets, i.e., p0.16 = 100% on both datasets. This is expected because shapes in each category are quite
similar to each other so that the input maps are of high quality, i.e., pinput

0.16 = 83.4% for TOSCA and

pinput
0.16 = 86.1% for SCAPE. Moreover, the performance on the SCAPE dataset is slightly better than the

performance on TOSCA. This is due to a data-driven effect [KLM∗12], i.e., SCAPE contains many more
shapes than each category of the TOSCA dataset.

SHREC07-NonSym. The proposed approach generates similar results on the non-symmetric categories
of the SHREC07 benchmark. On three categories, Human, Fourleg and Armadillo, p0.16 = 100%, i.e.,
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Figure 7: Comparison among optimized composite maps [NBCW∗11], fuzzy correspondences [KLM∗12],
hub-and-spoke network [HZG∗12] and the proposed approach (SDP). The input maps are given by blended
intrinsic maps [KLF11].

the ground truth correspondences are approximately fully recovered. The Fish and the Hand datasets are
more challenging due to large geometric variance present in both datasets. Still, over 90% of ground truth
correspondences are approximately recovered.

SHREC07-Sym. Similar to other approaches, the performance of the proposed approach drops on cat-
egories where the input maps are seriously affected by underlying global symmetric transforms and the
ambiguities they introduce. This is because cycle-consistent maps can commute with global symmetric
transforms, e.g., one can flip the maps between one shape and the remaining shapes without breaking the
cycle-consistency constraint.

Sparse versus Complete. Overall, the proposed algorithm generates similar results in the complete graph
and the sparse graph settings. The subtle differences between these two settings can be explained as follows.
As the quality of input maps in the sparse graph setting is generally higher than that in the complete graph
setting, the performance of the proposed approach in the sparse graph setting is overall slightly higher than
the complete graph setting. One exception is the SCAPE dataset, where all shapes are very similar to each
other. In that case, having a dense graph provides more high-quality routing options to establish maps
between pairs of shapes than having a sparse graph, helping the results.

Timing. Based on a MATLAB implementation of the ADMM algorithm, on a machine with QuadCore
3.2GHZ Intel CPU and 12GB main memory, our approach took 20m12s on the average to process a dataset
of 20 shapes with 128 samples each. The most time-consuming part is the eigen-decomposition of a matrix
of dimension NM ×NM at each iteration. In the future, we plan to improve the computational efficiency
by utilizing the relations between the eigen-decompositions at consecutive iterations.
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Samples Complete Graph Sparse Graph
#Shapes Input Selected pin0.16 p0.16 pin0.16 p0.16

TOSCA <20 64 64 83.1 100 84.1 100

SCAPE 71 64 64 77.2 100 83.2 99.1

Armadillor 20 128 32 71.2 100 74.2 100
Fish 20 128 32 60.4 85.2 71.3 100

Fourleg 20 128 32 67.5 100 71.9 100
Hand 20 128 32 60.1 87.9 63.2 88.1

Human 18 128 32 74.5 100 79.1 100

Ant 20 128 32 54.1 77.1 58.1 79.1
Bird 20 128 32 57.1 78.4 59.1 81.4

Glasses 20 128 32 45.1 67.1 51.1 73.4
Plane 20 128 32 58.1 78.1 60.1 80.2
Plier 20 128 32 60.1 79.1 61.9 81.2
Teddy 20 128 32 61.1 81.1 64.1 83.1

Table 1: The performance of the proposed approach on benchmark datasets. We report p0.16 as a represen-
tative to access of the global behavior of the proposed approach.

SDP Baseline

Global (p0.16) Complete Sparse Complete Sparse
TOSCA 100 100 97.6 [NBCW∗11] 97.2 [HZG∗12]

SCAPE 100 99.1 100 [NBCW∗11] 99.3 [HZG∗12]

NonSym 94.6 97.4 90.3 [HZG∗12] 90.5 [HZG∗12]

Sym 79.3 80.2 77.2 [HZG∗12] 78.5 [HZG∗12]

Local (p0.02) Complete Sparse Complete Sparse
TOSCA 34.1 35.7 37.5 [NBCW∗11] 38.4 [HZG∗12]

SCAPE 41.2 42.1 48.6 [KLM∗12] 44.4 [HZG∗12]

NonSym 32.3 35.2 37.5 [HZG∗12] 39.1 [HZG∗12]

Sym 33.1 31.1 32.8 [HZG∗12] 31.9 [HZG∗12]

Table 2: Comparison between the proposed approach and the baseline approaches in terms of local (p0.02)
and global accuracy (p0.16). Due to space constraint, we only show the best baseline algorithm for each
dataset.

7.3 Comparison

Table 2 and Figure 7 present the comparisons between our approach and the three baseline algorithms. For
each algorithm, we report both its local accuracy p0.02 and its global accuracy p0.16.

Global accuracy. The global accuracy of the proposed approach is better than all baseline algorithms. On
NonSym, the proposed approach yields p0.16 = 94.2(95.1) in the complete(partial) graph setting, while the
best baseline algorithm HAS [HZG∗12] yields p0.16 = 90.3(90.5) respectively. Note that this is a little sur-
prising. because HAS incorporates additional higher-order regularization constraints, e.g., that neighboring
vertices should be mapped to neighboring vertices, in the optimization process.

Local accuracy. The local accuracy of the proposed approach is somewhat worse than the baseline algo-
rithms. For example, in the complete graph setting of the SCAPE dataset, p0.02 = 48.6 for OCM [NBCW∗11],
while p0.02 = 41.2 for the proposed approach. This is expected due to sampling aliasing, as we use a much
smaller number of samples than the baseline algorithms for computing the maps. However, in practice, one
can improve the local accuracy of the resulting maps by applying non-rigid registration post facto.
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Figure 8: Influence of varying the number of samples m. (a) Vary m in the basic setting. We show the
SCAPE dataset as the representative. (b) Fix the number of selected samples m0 = 32 and vary m in the
generalized setting. We show the averaged result on SHREC07-NonSym as the representative.

7.4 Influence of sampling density

Basic setting. Figure 8(a) shows the performance of our approach when using different number of samples
m. For simplicity, we use the SCAPE dataset with complete graph G as the representative. It is easy to see
that the global behavior of the method becomes steady when m > 32. Moreover, using more samples always
improves the local behavior of our approach. However, the improvement of using more samples from using
64 samples is not significant.

Generalized setting. We study the performance of our approach by fixing m0 = 32 and varying m. In this
case, we use the NonSym group as the representative (See Figure 8(b)). Although the worst case analysis
(See the supplemental material) suggests that we should choose m > 4m0, we found that m can be made
smaller in practice. On the NonSym group, the method becomes steady when m ≥ 96.

8 Conclusions and Future Work

In this paper we have introduced a novel convex optimization framework for the problem of producing globally
cycle-consistent maps between shapes in a collection, starting from maps computed between pairs of shapes
in isolation. The presented approach formulates this multiple shape matching problem as a binary semi-
definite program, and solves it through its convex relaxation. By analyzing the KKT optimality condition of
this convex relaxation, we have provided upper bounds on the percentage of incorrect correspondence from
each sample on one shape to samples on the remaining shapes, so that this convex relaxation is guaranteed
to recover the ground-truth maps. Experimental results demonstrate that the presented approach improves
on than state-of-art multiple shape matching methods on benchmark datasets.

There are ample opportunities for future research. We would like to extend the presented technique to
handle shapes that are partially similar, e.g., range scans of a moving object. A potential approach is to
augment the samples on each shape with pseudo samples, which represent the missing part of each shape.
The presented approach can then be applied on the augmented samples. Moreover, the presented approach
builds on sample-based surface representations. It would be interesting to explore how to apply the key idea
to other surface and map representations, e.g., functional maps [OBCS∗12].

Acknowledgements. This work was supported by NSF grants CCF 1011228, CCF 1161480, DMS 1228304,
AFOSR grant 1156110-1-TACAD, MURI grant N00014-13-1-0341, a Google Research Award, and the Max

17



Planck Center for Visual Computing and Communications. The authors would also like to thank Yuxin
Chen, Xiaodong Li, Raif Rustamov, Hao Su and the anonymous reviewers for the helpful suggestions and
comments.

References

[ASK∗05] Anguelov D., Srinivasan P., Koller D., Thrun S., Rodgers J., Davis J.: Scape: shape
completion and animation of people. In ACM SIGGRAPH 2005 Papers (2005), SIGGRAPH
’05, pp. 408–416.

[BBK08] Bronstein A., Bronstein M., Kimmel R.: Numerical Geometry of Non-Rigid Shapes, 1 ed.
Springer Publishing Company, Incorporated, 2008.

[BPC∗11] Boyd S., Parikh N., Chu E., Peleato B., Eckstein J.: Distributed optimization and
statistical learning via the alternating direction method of multipliers. Found. Trends Mach.
Learn. 3, 1 (Jan. 2011), 1–122.

[CLMW11] Candès E. J., Li X., Ma Y., Wright J.: Robust principal component analysis? J. ACM
58, 3 (June 2011), 11:1–11:37.

[CR09] Candès E. J., Recht B.: Exact matrix completion via convex optimization. Found. Comput.
Math. 9, 6 (Dec. 2009), 717–772.

[CT05] Candes E. J., Tao T.: Decoding by linear programming. Trans. Inf. Theor. 51, 12 (Dec.
2005), 4203–4215.

[DJ10] Ding X., Jiang T.: Spectral distributions of adjacency and laplacian matrices of random
graphs. Annals of Applied Probability 20(6) (2010), 2086–2117.

[Fie73] Fiedler M.: Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal 23 (1973),
298–305.

[GBP07] GIORGI D., BIASDTTI S., PARABOSCHI L.: Shrec: shape retreval contex: Watertight
models track, 2007.

[HFG∗06] Huang Q.-X., Flöry S., Gelfand N., Hofer M., Pottmann H.: Reassembling fractured
objects by geometric matching. ACM Trans. Graph. 25, 3 (2006), 569–578.

[Hub02] Huber D.: Automatic Three-dimensional Modeling from Reality. PhD thesis, Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, December 2002.

[HZG∗12] Huang Q.-X., Zhang G.-X., Gao L., Hu S.-M., Butscher A., Guibas L.: An optimiza-
tion approach for extracting and encoding consistent maps in a shape collection. ACM Trans.
Graph. 31, 6 (Nov. 2012), 167:1–167:11.

[KLF11] Kim V. G., Lipman Y., Funkhouser T.: Blended intrinsic maps. ACM Trans. Graph. 30,
4 (Aug. 2011), 79:1–79:12.

[KLM∗12] Kim V. G., Li W., Mitra N., DiVerdi S., Funkhouser T.: Exploring collections of 3d
models using fuzzy correspondences. In ACM SIGGRAPH 2012 papers (2012), SIGGRAPH
’12.

[LF09] Lipman Y., Funkhouser T.: Mobius voting for surface correspondence. ACM Trans. Graph.
28, 3 (July 2009), 72:1–72:12.

[NBCW∗11] Nguyen A., Ben-Chen M., Welnicka K., Ye Y., Guibas L.: An optimization approach
to improving collections of shape maps. In Eurographics Symposium on Geometry Processing
(SGP) (2011), pp. 1481–1491.

18



[OBCS∗12] Ovsjanikov M., Ben-Chen M., Solomon J., Butscher A., Guibas L.: Functional maps:
a flexible representation of maps between shapes. ACM Trans. Graph. 31, 4 (July 2012), 30:1–
30:11.

[OFCD02] Osada R., Funkhouser T., Chazelle B., Dobkin D.: Shape distributions. ACM Trans.
Graph. 21 (October 2002), 807–832.

[Sch86] Schrijver A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New
York, NY, USA, 1986.

[SOG09] Sun J., Ovsjanikov M., Guibas L.: A concise and provably informative multi-scale signature
based on heat diffusion. In SGP (2009), pp. 1383–1392.

[WGY10] Wen Z., Goldfarb D., Yin W.: Alternating direction augmented Lagrangian methods for
semidefinite programming. Math. Prog. Comp. 2, 3-4 (2010), 203–230.

[WS12] Wang L., Singer A.: Exact and stable recovery of rotations for robust synchronization.

[ZKP10] Zach C., Klopschitz M., Pollefeys M.: Disambiguating visual relations using loop con-
straints. In CVPR (2010), pp. 1426–1433.

A A Support for the Choice of m0 = m/4 in the Generalized Setting

In this section, we provide a support for the choice of m0 = m/4 by analyzing geodesic distortions of one-
to-one maps between discrete metric spaces. Without losing generality, we use M,M ′, · · · to denote the
original shapes. Accordingly, we denote their discrete metric spaces as S, S′. We begin with introducing
several definitions, then we present the major result of the section.

Definition 2. We define the sampling density of a discrete metric space S as

δS = min
s,s′∈S

dM (s, s′),

where dM (·, ·) denotes the geodesic distance on M .

Definition 3. We define the covering radius of a discrete metric space S as

rS = max
p∈M

min
s∈S

dM (p, s).

It is easy to see that if discrete metric spaces are generated using furthest point sampling, then the
sampling density of using m samples is identical to the covering radius of using m+ 1 samples.

δS∪{p} = rS ,

where p is the next sample on S produced by furthest point sampling.

Consider two approximately isometric shapes, i.e., a source shape M and a target shape M ′. Denote
f : M ↔ M ′ as the underlying bijective map between them. We model the approximate isometry as the fact
that there exists small values of ǫ1, ǫ2 such that

(1− ǫ1)dM ′(f(s), f(s′))− ǫ2 ≤ dM (s, s′) ≤ (1 + ǫ1)dM ′ (f(s), f(s′)) + ǫ2, ∀s, s′ ∈ M.

Under this model, we have the following proposition.

Proposition 3. Suppose S and S′ are the discrete metric spaces of shapes M and M ′, respectively. Suppose

δS > 2(1 + ǫ1)rS′ + ǫ2.

Then there exists a map φ : S1 → S2 such that (i) φ : S ↔ φ(S) is a well-defined one-to-one map, and (ii)
φ is close to the underlying map between Mand M ′:

dM ′(φ(s), f(s)) ≤ rS′ , ∀s ∈ S.
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Proof: The proof is straight-forward. We simply define φ as follows

φ(s) := arg min
s′∈S′

d(s′, f(s)).

By the definition of rS′ , it is clear that

dM ′(φ(s), f(s)) ≤ rS′ , ∀s ∈ S.

It remains to prove that ∀s1 6= s2, φ(s1) 6= φ(s2). Suppose there exist s1 6= s2 such that φ(s1) = φ(s2). Then
we have

δS ≤ dS(s1, s2) ≤ (1 + ǫ)dS′(f(s1), f(s2)) + ǫ2

≤ (1 + ǫ)(dS′(f(s1), φ(s1)) + dS′(f(s2), φ(s2))) + ǫ2

≤ 2(1 + ǫ)rS′ + ǫ2 < δS ,

which results in a contradiction.

As the discrete metric spaces are generated using furthest point sampling. In practice, we found that the
sampling density on a 2-manifold is decreased by half if we increase the number of samples by four times.
In practice, we also found that ǫ1 and ǫ2 are rather small. This means that Proposition 1 is satisfied if
m > 4m0, which gives a theoretical support for the choice of m0 = m/4.

Note that Proposition 1 is derived from a worst-case analysis. In practice, m can be made smaller than
4m0. Please refer to the main paper for an experimental analysis of the choice of m with fixed m0.

B Numerical Optimization Using ADMM

Notations. To simplify the expression, we agree with the following notations. Define A : Rn×n− > R
k as

a matrix linear operator. Its conjugate operator is given by A∗ such that

〈A(bsX),x〉 = 〈X ,A∗(x)〉, ∀X ∈ R
n×n,x ∈ R

k.

Denote(·)+ as the non-negative matrix operator, i.e., it applies x+ = max(x, 0) element-wise.

Simplified program. The optimization problem we are trying to solve is given by

minimizeX
∑

(i,j)∈E
〈11T − 2Xin

ij ,Xij〉

subject to X � 0,

X ≥ 0,

Xii = Diag(xi), (1 ≤ i ≤ n)

1Txi = m0,xi ≤ 1 (1 ≤ i ≤ n)

Xij1 = xi, XT
ij1 = xj , (1 ≤ i < j ≤ n)

x1 = (1T
m0

,0T
m−m0

)T . (19)

Before proceeding, we present an equivalent program to (19), which has much fewer number of equality
constraints, i.e., the equality constraints Xij1 = xi,X

T
ij1 = xj , 1 ≤ i < j ≤ n are absorbed.
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Proposition 4. (19) is equivalent to the following convex program

minimize
∑

(i,j)∈E
〈11T − 2X in

ij , Xij〉

subject to

[

m0 xT

x X

]

� 0,

X ≥ 0,

Xii = Diag(xi), (1 ≤ i ≤ n)

1Txi = m0,xi ≤ 1 (1 ≤ i ≤ n)

x1 = (1T
m0

,0T
m−m0

)T . (20)

where x = (xT
1 , · · · ,x

T
n )

T .

Proof: We first prove that

X � 0,

Xij1 = 1, XT
ij1 = 1. (1 ≤ i < j ≤ n)

Xii = Diag(xi), (1 ≤ i ≤ n)
1Txi = m0, (1 ≤ i ≤ n)

⇔

[

m0 xT

x X

]

� 0,

Xii = Diag(xi), (1 ≤ i ≤ n)
1Txi = m0. (1 ≤ i ≤ n)

⇒: Any any vector y = (y0,y
T
1 , · · · ,y

T
n )

T , we have

yT

[

m0 xT

x X

]

y = m0y
2
0 + 2

n
∑

i=1

xT
i yi +

∑

1≤i,j≤n

yT
i Xijyj

=
∑

1≤i,j≤n

(yi +
m01

n
)TXij(yj +

m01

n
)

≥ 0.

It follows that

[

m0 xT

x X

]

� 0.

⇐: Let D =

(

1 0
0 In ⊗ 1

)

∈ R
(nm+1)×m. Introduce Y = DT

(

m0 xT

x X

)

D ∈ R
(n+1)×(n+1). It is easy

to see that Y � 0 and Y (i, i) = Y (1, i) = 1, 1 ≤ i ≤ n+ 1. Applying Lemma 1, we have that

Y = m011
T .

Denote r = rank

([

m0 xT

x X

])

. As

(

m0 xT

x X

)

� 0, we can find a matrix Z = (z,Z1, · · · ,Zn) ∈

R
r×(nm+1) with z ∈ R

r,Zi ∈ R
r×n, 1 ≤ i ≤ n such that

(

m0 xT

x X

)

= ZTZ.

It follows from that

DT

(

m0 xT

x X

)

D = (ZD)T (ZD) = m011
T .

Simple algebraic manipulation indicates that: there exists a unitary matrix U ∈ R
r×r such that

UZD = e1 · 1
T ,

⇒ [Uz,UZ11, · · · ,UZn1] = e1 · 1
T ,
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which immediately follows that
Zi1 = z, 1 ≤ i ≤ n.

One can then derive

Xij1 = ZT
i Zj1 = ZT

i z = xi,

XT
ij1 = ZT

j Zi1 = ZT
j z = xj ,

which concludes the proof.

ADMM. Let us convert (20) into the standard form of semidefinite programs:

minimize 〈W ,X〉 dual variables

subject to A(X) = b, y

diag(X) ≤ 1, z ≥ 0

X � 0, Y � 0

−X ≤ 0, Z ≥ 0 (21)

where A(X) = b encapsulate all equality constraints, e.g., Xii = diag(xi), 1Txi = m, 1 ≤ i ≤ n. Note that
these linear constraints are nicely decoupled.

Let y, z(≥ 0),Y (� 0),Z(≥ 0) be the dual variables of A(X) = b, diag(X) ≤ 1, X � 0 and −X ≤ 0,
respectively. The Lagrangian multiplier of (21) is then given by

L = 〈W,X〉 − 〈Y ,X〉 − 〈Z,X〉

+ 〈A(X)− b,y〉+ 〈diag(X)− 1, z〉

= −bTy − 1T z+ 〈W − Y −Z +A∗(y) + Diag(z),X〉

Following [WGY10], we write down the augmented lagrangian of L to be minimized as

L′ = bTy + 1T z+ 〈Y +Z −A∗(y) − Diag(z)−W ,X〉

+
1

2µ
‖Y +Z −A∗(y) −Diag(z)−W ‖2F ,

Here µ is a parameter, whose value is increased during the optimization process.

We optimize L′ by alternating the optimizations of y, z, Y and Z independently, and then update the
primal variable X. Initially, we set y0 = z0 = 0 and X0 = Y 0 = Z0 = 0. At iteration k + 1, we perform
the following alternating direction optimizations in order :

yk+1 = argmin
y

L′(y, zk,Y k,Zk,Xk)

= (AA∗)−1(A(Y k +Zk + µXk − zk −W )− µb)

zk+1 = argmin
z

L′(yk+1, z,Y k,Zk,Xk)

= (diag(Y k +Zk + µXk −A∗(yk+1)−W )− µ1)+

Zk+1 = argmin
Z

L′(yk+1, zk+1,Y k,Z,Xk)

= (A∗(yk+1) + Diag(zk+1) +W − Y k − µXk)+

Y k+1 = argmin
Y

L′(yk+1, zk+1,Y ,Zk+1,Xk) = QΣ+Q
T,

where Q and Σ are given by the spectral decomposition of

V k+1 = W +A⋆(yk+1) + Diag(zk+1)−Zk+1 − µXk

= QΣQT.
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Finally, Xk+1 is updated as

Xk+1 = Xk + (W − Y k+1 −Zk+1 +A⋆(yk+1) + Diag(zk+1))/µ

= (V k+1 − Y k+1)/µ = −Q(−Σ)+Q
T/µ.

For all the experiments, we set µ = 1, and increase µ = µ ∗ 1.02 after each iteration. We set the
stoppage criterion as ‖Xk+1 −Xk‖F ≤ 10−4. In practice, we found that 400-600 iterations are sufficient for
convergence. As the equality constraints are nicely decoupled, which admit effective prefactorization, the
most time-consuming operation of this ADMM is computing the spectral decomposition of V k+1.

C Proof of Theorem 5.1

In this section, we present the derivation of Theorem 5.1 in the main text. For convenience, let us reintroduce
the convex program to be analyzed as follows:

minimize
∑

(i,j)∈E
〈11T − 2Xin

ij ,Xij〉

subject to X ≥ 0,

X � 0,

Xii = Im, (1 ≤ i ≤ n)

Xij1 = 1, XT
ij1 = 1. (1 ≤ i < j ≤ n) (22)

Furthermore, we assume the map collection matrix of the underlying ground truth maps is given by

Xgt = (eeT)⊗ Im.

The derivation of Theorem 5.1 proceeds in two steps. In the first step, we analyze the KKT optimality
conditions of (22), and derive exact recovery conditions via the existence of dual certificates. Then in the
second step, we choose appropriate dual certificates to derive Theorem 5.1.

To simplify the notations, we introduce matrices W ij ∈ R
m×m, 1 ≤ i ≤ j ≤ n, where W ij = (211T −

Xin
ij −Xin

ji

T
), (i, j) ∈ E , and otherwise W ij = 0. This allows us to rewrite the objective function in (22) as

falign =
∑

1≤i<j≤n

〈Wij , Xij〉.

C.1 Optimality Condition via Dual Certificates

The goal of this section is to derive a sufficient condition on W ij , 1 ≤ i < j ≤ n such that Xgt is the unique
optimal solution to (22). We achieve this goal by analyzing the KKT optimality conditions of (7). Note
that even though KKT conditions are only necessary conditions in general, when applied on semi-definite
programs, they typically indicate sufficient conditions by changing certain greater or equal relations, i.e., ≥,
into greater relations, i.e., >.

Let Y � 0 and Zij ≥ 0, uij , vij , 1 ≤ i < j ≤ n be the dual variables of the constraints X � 0,
−Xij ≤ 0, Xij1 = 1, XT

ij1 = 1, 1 ≤ i < j ≤ n, respectively. We obtain the following necessary KKT

conditions such that Xgt = (11T)⊗ Im is an optimal solution to (22):

W ij − Y ij −Zij − 1uT
ij − vij1

T = 0, (1 ≤ i < j ≤ n) (23)

Zij ≥ 0, diag(Zij) = 0, (1 ≤ i < j ≤ n) (24)
n
∑

j=1

Y ij = 0, (1 ≤ i ≤ n) (25)

Y � 0. (26)
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Denote V m = Im − 1
m11T, it is easy to see that (23) is equivalent to

V mY ijV m = V m(W ij −Zij)V m. (1 ≤ i < j ≤ n) (27)

In other words, if (27) is true, we can always choose uij ,vij such that (23) is satisfied. Combing (27) and
(25), we obtain the following necessary optimality condition for Xgt:

(In ⊗ V m)L(In ⊗ V m) � 0, (28)

where L is a matrix of n× n blocks, and its (i, j)-th block is given by

Lij =











−
∑

k 6=i

Lik i = j

V m(W ij −Zij)Vm i < j

LT
ji j > i

We want to point out there exist implicit constraints on Zij , i.e., the diagonal blocks Lii have to be
symmetric.

Denote V n,m = Inm − 1
n11

T ⊗ Im. It is easy to see that the eigenvalues of L are zero in the union of
null spaces

Nn,m = {y|(In ⊗ V m)y = 0 or V n,my = 0}.

In turns out that if we force L to be positive definite in the dual space N⊥
n,m, i.e., the remaining eigenvalues

of L are positive, then (28) becomes sufficient.

Lemma 2. Let Rm×m
+/d denote the space of m×m matrices, whose entries are positive, and whose diagonal

entries are zero. Then Xgt is the unique optimal solution to (22) if there exist dual certificates Zij ∈
R

m×m
+/d , 1 ≤ i < j ≤ n such that Lii, 1 ≤ i ≤ n are symmetric and

yTLy > 0, ∀0 6= y ∈ N⊥
n,m.

To prove Lemma 2, we show that a small feasible perturbation of Xgt would always increase the value
of the objective function falign. We first present three useful propositions.

Proposition 5. A small feasible perturbation ∆ to Xgt , i.e., Xgt + ∆ is feasible, satisfies the following
constraints:

∆ii = 0, (1 ≤ i ≤ n) (29)

∆ji = ∆T
ij , Im +∆ij ≥ 0, (1 ≤ i < j ≤ n) (30)

∆ij1 = 0, ∆T
ij1 = 0, (1 ≤ i < j ≤ n) (31)

V n,m∆V n,m � 0. (32)

Proof: (29) to (31) are obvious. To prove (32), it is easy to see that ∀y1 ∈ R
m:

V n,m∆V n,m(1⊗ Im)y1 = 0.

It follows that we only need to prove that ∀y ∈ R
nm, where (1T ⊗ Im)y = 0,

yTV n,m∆V n,my ≥ 0.

In fact, as Xgt +∆ ≥ 0, we have

0 ≥ yT(Xgt +∆)y

= yT((11T)⊗ Im + ((11T)⊗ Im)∆ +∆
(

(11T)⊗ Im)− ((11T)⊗ Im)∆((11T)⊗ Im)
)

y

+ yTV n,m∆V n,my

= yTV n,m∆V n,my.
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Proposition 6. Suppose a matrix A ∈ R
n×n is positive definition on a subspace U ∈ R

n, i.e.,

yTAy > 0, ∀0 6= y ∈ U .

Then for all non-zero semi-positive definition matrix B � 0 whose column space C(B) ⊆ U ,

〈A,B〉 > 0.

Proof: Suppose the dimension of U is m ≤ n. Consider an orthonormal decomposition of

A = (U1,U2)Diag(σ1, · · · , σn)(U 1,U2)
T,

where U1 is an orthonormal basis of U . As A is positive definite on U , it follows that σi > 0, 1 ≤ i ≤ m. As
C(B) ⊆ U , we have BU2 = 0. It follows that

〈A,B〉 = Trace(AB) = Trace((U 1,U2)Diag(σ1, · · · , σn)(U 1,U2)
TB)

= Trace(Diag(σ1, · · · , σn)(U 1,U2)
TB(U1,U2))

= Trace(Diag(σ1, · · · , σm)UT
1 BU1)

=

m
∑

i=1

σi(U
T
1 BU1)ii.

As σi > 0, (UT
1 BU1)ii > 0, 1 ≤ i ≤ m. It means that 〈A,B〉 ≥ 0, and the equality is satisfied if and

only if (UT
1 BU1)ii = 0, 1 ≤ i ≤ m, which is equivalent to UT

1 BU1 = 0. Together with BU2 = 0 we have
(U1,U2)

TB(U 1,U2) = 0, which ends the proof.

Proposition 7.

V n,m∆V n,m = 0 ↔ V n,m = 0.

Proof: Denote

∆i· =
1

n

n
∑

j=1

∆ij , ∆·j =
1

n

n
∑

i=1

∆ji, ∆·· =
1

n2

n
∑

i=1

n
∑

j=1

∆ij . (33)

Then V n,m∆V n,m = 0 yields

0 = (V n,m∆V n,m)ij = ∆ij −∆i· −∆·j +∆··, 1 ≤ i ≤ j ≤ n. (34)

As the diagonal blocks of ∆ are zero, i.e., ∆ii = 0, 1 ≤ i ≤ n, we have

∆·· = ∆i· +∆·i, 1 ≤ i ≤ n.

Summing the two sides of the equation above from 1 to n, we have n∆·· = 2n∆··, which results in ∆·· = 0.

According to (30), we have ∆i· = ∆
T

·i . Together with ∆i· + ∆·i = 0, we obtain ∆i· = ∆·i = 0. It follows
from (34) that ∆ij = 0.

Proof of Lemma 2: Suppose ∆ 6= 0. According to Proposition 7 we have V n,m∆V n,m 6= 0. Based on
(31), it is easy to see that the column space of V n,m∆V n,m lies in the space N⊥

n,m. Applying Proposition 6
on L and V n,m∆V n,m, we have

0 < 〈L,V n,m∆V n,m〉

=

n
∑

i=1

〈Lii, (V n,m∆V n,m)ii〉+
n
∑

i=1

∑

j 6=i

〈Lij , (V n,m∆V n,m)ij〉

=

n
∑

i=1

∑

j 6=i

〈V m(Zij −W ij)V m,−∆i· −∆·i +∆··〉

+

n
∑

i=1

∑

j 6=i

〈V m(W ij −Zij)V m,∆ij −∆i· −∆·i +∆··〉.
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Applying (31), we have
V m∆ij = ∆ijV m = ∆ij , 1 ≤ i, j ≤ n.

If follows that

0 <

n
∑

i=1

∑

j 6=i

〈(Zij −W ij),−∆i· −∆·i +∆··〉

+

n
∑

i=1

∑

j 6=i

〈(W ij −Zij),∆ij −∆i· −∆·j +∆··〉

= 2
n
∑

i=1

∑

i<j

〈W ij −Zij ,∆ij〉

As Im+∆ij ≥ 0, it means the off-diagonal entries of ∆ij are non-negative. As Zij ∈ R
m×m
+/d , i.e, its diagonal

entries are zero, and its off-diagonal entries are non-negative, we have

〈Zij ,∆ij〉 ≥ 0, 1 ≤ i < j ≤ n.

This means

0 <

n
∑

i=1

∑

i<j

〈W ij ,∆ij〉,

which ends the proof.

C.2 Choosing dual certificates.

Note that any choose of Zij , (i, j) ∈ E such that Lii, 1 ≤ i ≤ n are symmetric would lead to an exact recovery
condition.

In this paper, we choose Zij = Z ′
ij +Z ′

ji, 1 ≤ i < j ≤ n as

Z ′
ij =

{

Im − 2Diag(wij) + ŵijŵ
T
ij −X in

ij (i, j) ∈ E
0 otherwise,

where wij ∈ R
m denotes the vector that collects edge weights ws

ij , 1 ≤ s ≤ m. Note that we set ws
ij = 0 if

(i, j) /∈ E false
s . Vector ŵij = wij > 0 denotes the binary vector that specifies the positiveness of each element

of wij .

It is easy to see that Z ′
ij ≥ 0,Diag(Z ′

ij) = 0, ∀(i, j) ∈ E , and

Lij = V m(211T −X in
ij −Xin

ji −Zij)Vm

= −2V mDiag(1− (wij +wji)/2)V m − V m(ŵijŵ
T
ij + ŵjiŵ

T
ji)V m, ∀(i, j) ∈ E ,

and Lij = 0 otherwise. As Lij is symmetric, it means that this particular choose of Zij is valid.

Note that V m(ŵijŵ
T
ij + ŵjiŵ

T
ji)V m � 0, it means that we can drop this term to obtain a slightly weaker

exact recovery condition, which is summarized below

Corollary 3. Define block Laplacian matrix Ld ∈ R
nm×nm as

Ld
ij =

{ ∑

k 6=i

Diag(1− (wik +wki)/2) i = j

−Diag(1− (wik +wki)/2) i 6= j

Then Xgt is the unique optimal solution to (7) if

yTLdy > 0, ∀0 6= y ∈ N⊥
n,m.
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Proof of Theorem 5.1 We prove that the condition of Corollary 3 is satisfied. Suppose this is not the
case, then ∃0 6= y ∈ N⊥

n,m such that

Ldy 6= 0.

Reshape y into a m× n matrix Y = (y1, · · · ,ym)T, we have

(LG − 2LGfalse
s

)ys 6= 0, eTyi = 0, 1 ≤ s ≤ m.

As λ2(LG − 2LGfalse
s

) > 0 and λ1(LG − 2LGfalse
s

) = 0, it follows that ys = cs1. Together with 1Tys = 0 we
obtain cs = 0, 1 ≤ s ≤ m, which violate 0 6= y.
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