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Near-regular structures are common in manmade and natural objects. Al-

gorithmic detection of such regularity greatly facilitates our understanding

of shape structures, leads to compact encoding of input geometries, and en-

ables efficient generation and manipulation of complex patterns on both ac-

quired and synthesized objects. Such regularity manifests itself both in the

repetition of certain geometric elements, as well as in the structured arrange-

ment of the elements. We cast the regularity detection problem as an opti-

mization and efficiently solve it using linear programming techniques. Our

optimization has a discrete aspect, i.e., the connectivity relationships among

the elements; as well as a continuous aspect, i.e., the locations of the ele-

ments of interest. Both these aspects are captured by our near-regular struc-

ture extraction framework, which alternates between discrete and continu-

ous optimizations. We demonstrate the effectiveness of our framework on

a variety of problems including near-regular structure extraction, structure-

preserving pattern manipulation, and markerless correspondence detection.

Robustness results with respect to geometric and topological noise are pre-

sented on synthesized, realworld, and also benchmark datasets.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Com-

putational Geometry and Object Modeling; I.3.6 [Computer Graphics]:

Methodology and Techniques

Additional Key Words and Phrases: intrinsic near-regular structure, integer

and linear programming, pattern manipulation, markerless correspondence

1. INTRODUCTION

Global structures in the form of symmetric and near-regular repeat-
ing patterns are common in natural and manmade objects (see Fig-
ure 1). Such structures arise both from the presence of regularly
spaced repeated elements, as well as from geometric and topolog-
ical consistency in the arrangement of the elements. Discovering
such global spatial arrangements entails a holistic understanding
of object geometry that goes well beyond the detection of local-
ized features [Thompson 1945]. Moreover, regularity is often par-
tial involving only parts of an object; and approximate, in that the
consistency of the repeated elements and of their spatial relation-
ships may be imprecise. These make computational discovery of
near-regularity particularly challenging. In recent years, the prob-
lem of regularity detection of 3D geometry under rigid and isomet-
ric mappings has attracted a great deal of attention both because of
its fundamental importance in shape understanding as well as its
applications in shape matching, structure-preserving editing, and
structure-driven shape synthesis [Pauly et al. 2008; Lipman and
Funkhouser 2009; Bokeloh et al. 2010; Kim et al. 2010; Mitra et al.
2010; Mitra et al. 2012]. In this paper, we introduce a novel frame-

work to discover such near-regular structures, both in terms of the
representation of the regularity and in terms of an efficient extrac-
tion algorithm to facilitate a variety of application (see Figure 2).

Our goal is to discover near-regular repeated structures on ob-
jects. In this paper, we treat objects as surfaces, while ignoring
internal structure. We assume such surfaces to be represented as
piecewise linearly embedded meshes with the topology of a 2-
manifold. Near-regular repeated structures manifest as repeated
surface elements that are regularly arranged on the surface. We
encode and extract such structures using a mesh-like structure M
called near-regular geodesic subdivision or NRG-subdivision (see
Figure 3). The 0-dimensional elements of M, which we call lo-
cation points, are points on the surface that capture the locations
of the repeating elements of the structure; the 1-dimensional ele-
ments of M, which we call curves, are the shortest geodesic curves
on the surface that connect pairs of adjacent locations points; and
the 2-dimensional elements of M, which we call patches, are sur-
face segments that are enclosed by loops of these shortest geodesic
curves. Note that such a patch is not necessarily a topological disk,
which is a key difference between our mesh-like structure and
a standard polygonal mesh. We allow this relaxation because in
many practical applications topological noise resulting from sur-
face scans would otherwise prevent us from discovering the geo-
metric regularity of a shape. In Section 3, we formally define the
objects that constitute such a NRG-subdivision.

The central task in near-regular structure extraction is to deter-
mine a NRG-subdivision M that captures the locations of the re-
peating elements. Once their locations (i.e., the 0-dimensional en-
tities of M) are determined, the repeating elements, which we call

Fig. 1: Near-regular structures, i.e., regularly arranged near-repeated ge-

ometric elements, are commonly found in many natural and manmade ob-

jects. Automatically discovering such structures, i.e., which elements are

repeated and how they are spatially arranged, is challenging.
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Fig. 2: Various applications enabled by our near-regular structure extraction framework.

texels, can be extracted by solving a variational problem (see Sec-
tion 4.1). Note that if two texels χi and χj are adjacent, the cor-
responding 0-dimensional location points pi and pj representing
these texels must have a unique shortest curve (or geodesic) be-
tween them. We encode such a mesh-like structure as M.

We extract M by solving a constrained optimization with
both geometric and topological aspects, translating into a mixed
discrete-continuous problem involving appropriate regularity mea-
sures. On the geometry side, we compute candidate location points
as points with consistent feature descriptors. On the topology side,
we build either a triangular or a quadrilateral subdivision of the
surface using the shortest geodesic curves connecting a subset of
the candidate location points. Our formulation is in the same spirit
as the method proposed by Hays et al. [2006] for detecting texture
regularities in images, though the technical details, particularly on
the topology side, are completely different.

Our method for extracting M takes as input a connected, ori-
ented, piecewise linear 2-manifold, represented as a triangle mesh
in Euclidean space; a set of points in the mesh that we call sample
points, which is sufficiently large (see later); and a conservative es-

location point

geodesic curve

patch

texel

sample point

loop

Fig. 3: Near-regular structures detected on a scanned pineapple (see also

Figure 4). Starting from the input surface represented as a triangle mesh

S , we obtain a set of sample points (only a few shown). The extracted

NRG-subdivision is encoded as a mesh-like structure M, where the 0-

dimensional entities are called the location points (a subset of the sample

points); the 1-dimensional entities are the shortest geodesic curves connect-

ing neighboring location points; and the 2-dimensional entities are called

the patches. The patch boundaries, which we call loops, are formed by

strings of geodesic curves. Near-regularity is estimated by measuring reg-

ularity of the topological connectivity of NRG-subdivision M and an ap-

plication specific regularity of the geometric patches. The extracted NRG-

subdivision M can then be used to further extract the repeated elements,

which we call texels, as certain surface segments around the location points.

timate of the maximum geodesic distance between adjacent sample
points. (Note that we assume there is a unique shortest geodesic be-
tween any two sufficiently close (see later) sample points.) We then
enumerate all possible patches using the sample points as vertices
and the shortest geodesic curves as patch boundaries. Extracting
M then amounts to selecting the subset of patches that maximizes
a suitable regularity measure, while forming a geodesic subdivision
of the input surface. We achieve this by finding a consistent assign-
ment of indicator variables, capturing selection among the set of
candidate patches, using a sparse integer program. We solve the
integer program through a tight linear relaxation, thereby establish-
ing topological connectivity, while automatically enforcing regu-
larity of the extracted geometric subdivision. Note that we benefit
from recent advances in solving large scale sparse linear programs
that allow us to robustly and efficiently solve systems involving 50-
100k variables in the order of seconds [Grant and Boyd 2011]. We
also provide corresponding integrality conditions characterizing the
uniqueness of the proposed relaxation strategy. Furthermore, a sim-
ple modification of the above approach allows detection of partial
NRG-subdivisions covering only part of the input surface.

We apply the extraction method outlined above as follows:
First, apply the method to detect near-regular structures on input
surfaces to extract near-regular repeating elements. Starting from
an initial set of sample points with consistent feature descriptors,
we build a NRG-subdivision, use the currently detected structure
to refine the set of sample points, and extract an updated NRG-
subdivision. We iterate this procedure until the structure stabilizes,
and then compute the repeating elements using a variational formu-
lation. We also show applications to structure-aware shape editing.
Second, we extend the framework to establish a consistent structure
between two shapes, i.e., address the markerless correspondence
problem. In this scenario, the sample points, shortest geodesic
curves, and patches in the standard setting become point correspon-
dences, curve correspondences, and patch correspondences, respec-
tively. The extracted general NRG-subdivision represents a match
between a pair of extracted structures from both shapes. Experi-
mental results show that our method compares favorably against
state-of-the-art alternatives.

In summary, our main contributions are:

—a new formulation of the regularity discovery as the detection
of a partial NRG-subdivision on the underlying surface posed as
an integer programming problem, and solved using a tight and
efficient linear relaxation strategy with performance guarantees;

—a practical method with alternating topological and geometric
optimizations for extracting NRG-subdivision with only weak
restrictions on the initial sample placements; and
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—applications of the framework for near-regular structure detec-
tion, structure-preserving pattern replacement on surfaces, and
markerless correspondence extraction between shape pairs.

2. RELATED WORK

Detection of repetitions and patterns in geometric data, motivated
by a desire for better understanding and encoding of natural and
man-made objects, remains an important topic in shape analysis
since early works on allometry aimed at exploring relationship be-
tween size and shape of forms [Thompson 1945]. In this section,
we briefly discuss the relevant advances in this direction.

Shape analysis. In the case of texture and image analysis, Schaf-
falitzky and Zissermann [1999] perform edge detection to dis-
cover candidate elements and greedily grow the patterns to trans-
lational grids based on maximum likelihood estimation; Tuytelaars
et al. [2003] use a Hough transform based hashing scheme to de-
tect regular patterns in images under perspective skew; while Liu
et al. [2004] propose a user-seeded lattice extraction framework
for analyzing commonly occurring near-regular textures. Hays et
al. [2006] detect lattices of near-regular textures by alternating be-
tween a geometric step, which optimizes locations of features and
a topological step, which extracts near-regular textures from opti-
mized features. In particular, the topological step is formulated as
a higher order correspondence problem and is solved using a spec-
tral approach. Our method is conceptually similar to their method,
although the specifics of both steps are very different. Park et
al. [2009] propose a novel formulation for robust detection of 2D
lattices based on a Markov random field on candidate lattice basis
vectors obtained using point-based voting coupled with a thin-plate
spline deformation. These methods are difficult to extend for han-
dling 3D geometry, where a canonical parameterization is typically
lacking, and data is often corrupted with noise, outliers, or can be
incomplete due to occlusion artifacts.

In the context of extrinsic and intrinsic symmetry detection, var-
ious techniques have been proposed including transform domain
voting [Mitra et al. 2006], Monte Carlo sampling-based estimation
of continuous symmetry transform [Podolak et al. 2006], eigen-
analysis of the Laplace-Beltrami operator for global intrinsic sym-
metry [Ovsjanikov et al. 2008], and voting based partial intrinsic
symmetry extraction [Xu et al. 2009]. Our goal is to go beyond de-
tecting repeated patterns across texel pairs and reveal the regularity
in how the texels are laid out with respect to each other.

In terms of regularity detection, Langbein and Martin [2006] pro-
pose regularity feature trees as a concise description of symmetry
features for capturing important geometric design intent of CAD
models, while Liu et al. [2007] rely on user annotations to ini-
tiate segmentation of triangle meshes into periodic reliefs. Pauly
et al. [2008] propose a computational framework for discovering
regular or repeated structures in 3D geometries using a non-linear
optimization to search for characteristic regularity grids, involving
1-, 2-, or 3-parameters, in an appropriate transform domain. The
approach has subsequently been generalized to detect intrinsic reg-
ularity on developable surfaces [Mitra et al. 2010]. However, in
cases when the repeated patterns are small and the repetitions are
only approximate, regularities are hard to detect using transform
domain clustering, due to the lack of a reliable and stable initializa-
tion. In contrast, since we simultaneously maximize for patch reg-
ularity and connectivity regularity in the topology reconstruction
phase, we can extract NRG-subdivision even when individually the
regularity or geometric repetitions are low, e.g., the small scales of
the dragon as in Figure 2. Note that previous methods fail to de-

tect NRG-subdivision on meshes as shown in Figures 7, 6, 8, and
15. Patches, along with their repetition patterns as extracted using
our framework, can be directly used as inputs for intuitive manip-
ulation [Gal et al. 2009; Bokeloh et al. 2010], and for exploiting
subspace symmetries [Berner et al. 2011] (see also survey [Mitra
et al. 2012]).

Correspondence detection. Establishing a meaningful corre-
spondence map between a pair of shapes is one of the central
problems in geometry processing. When the models start in ar-
bitrary poses, the problem is challenging given the exponential
size of the solution space (see survey [van Kaick et al. 2011]). In
the context of isometric mappings, where pairwise geodesic dis-
tances are preserved, Angulelov et al. [2005] perform markerless
registration of mesh pairs using a joint probabilistic model over
all point-to-point correspondences assignments, seeded with spin-
image based descriptors. Lipman and Funkhouser [2009] observe
that isometric transforms are contained in the family of confor-
mal mappings, and hence conformally map shapes to the complex
plane via uniformization, and iteratively use possible assignments
of point triplets to compute aligning Möbius transforms. The can-
didate transforms are then used to vote for correspondences for the
other points. Subsequently, the method has been extended to de-
tect global intrinsic symmetry [Kim et al. 2010]. For surfaces un-
dergoing approximate isometric deformations, Tevs et al. [2009]
propose a RANSAC-based correspondence detection algorithm us-
ing geodesic distance checking to verify isometric equivalence. Re-
cently, Ovsjanikov et al. [2010] study the structure of the space of
isometric correspondences, and under mild conditions present the
surprising result that a single correspondence is sufficient to recover
isometries for entire shapes. We treat the isometric correspondence
detection problem in our NRG-subdivision extraction framework,
and demonstrate comparable performance with specialized corre-
spondence detection algorithms, even under moderate deviations
and non-trivial topological variations.

3. SAMPLE-BASED NRG-SUBDIVISION

EXTRACTION

In this section, we introduce sample-based NRG-subdivision ex-
traction, i.e., extracting a geodesic near-regular subdivision from
a candidate set of sample points on the input model. We assume
that we are given a compact, connected, oriented, triangulated sur-
face S , possibly with boundary, that is piecewise linearly embedded
in Euclidean space. We assume that S is represented as a triangu-
lar mesh (V, E ,F) where V , E , and F denote the sets of vertices,
edges, and triangular faces of S , respectively. (We will abuse no-
tation slightly and let S denote both the mesh and the underlying
surface.)

Figure 4 shows the pipeline of the proposed sample-based NRG-
subdivision extraction. The input consists of a set of sample points
Vs ⊂ V , a conservative estimate dmax of the maximum length of
(the shortest) geodesic distances between pairs of adjacent points of
the NRG-subdivision M to be extracted, and for each vertex in M,
a canonical number η of adjacent patches (e.g., η = 4 for quadrilat-
eral patches and η = 6 for triangular patches). Sample-based NRG-
subdivision extraction now proceeds in two stages: First, we gen-
erate a set of candidate patches by enumerating all possible loops
of geodesic curves, where each geodesic curve connects a pair of
sample points and its length is below dmax . Second, we seek a sub-
set of the candidate patches among those created in first step such
that (i) the candidate patches form a valid patch collection or as we
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Fig. 4: The pipeline of sample-based NRG-subdivision extraction. Starting from a set of sample points on the input oriented manifold, we
generate a set of overlapping candidate patches by connecting neighboring sample points with the shortest geodesic curves. NRG-subdivision
extraction then amounts to selecting a subset of patches to maximize an appropriately defined regularity score, subject to the subset of patches
forming a valid geodesic subvision.

call a geodesic subdivision, and (ii) the geodesic subdivision with
the highest regularity score is selected.

The rest of this section is organized as follows: In Section 3.1, we
describe how to compute candidate patches on triangular meshes;
in Section 3.2, we define geodesic subdivisions and present neces-
sary and sufficient conditions on a subset of candidate patches to
form a geodesic subdivision; in Section 3.3, we show how to for-
mulate NRG-subdivision extraction as solving an integer program;
and finally in Section 3.4, we describe how to solve the induced
integer program by solving its linear programming relaxation.

3.1 Candidate Patch Generation and Representation

Given the set of sample points Vs, our goal at this stage is to com-
pute a large collection of candidate patches bounded by curves con-
necting points from Vs. We achieve this in four steps: (a) com-
pute candidate curves; (b) assemble these curves into valid loops;
(c) perturb the loops to simplify their representation; and (d) select
as candidate patches the interiors of valid perturbed loops.

(a) Compute candidate curves. To begin, we compute a candi-
date curve set C consisting of one of two kinds of curves each hav-
ing length less than dmax between pairs of points as follows. Given
a pair of sample points v and v′ in Vs, two situations arise: Either,
(i) v and v′ do not both belong to the same connected component
of the mesh boundary ∂S and we connect them by the shortest
geodesic curve between them using the method introduced in Xin
et al. [2009]. Note that the resulting geodesic curve is a polygonal
curve that may cut through faces of S . We refer to such curves as
interior curves. Or, (ii) we connect v and v′ by the shorter path
along the (closed) boundary ∂S , arbitrarily breaking ties when the
two paths are of the same length. We refer to such curves as bound-
ary curves. The set of all those interior and boundary curves that
are each of length less than dmax together form the set C.

(b) Assemble valid loops. The next step in candidate patch gen-
eration is to assemble curves in C into closed loops. We store the
connectivity information of the candidate curves using a graph
G = (Vs, C). We orient each curve such that it always starts from
the vertex with the smaller index (i.e., the exact ordering is not im-
portant as long as it is consistent).

DEFINITION 1. We define a loop l as a geometric realization of
a simple cycle in graph G (i.e., one that never traverses the same
edge twice). Assigning each loop l an initial orientation (as one
of two possible orientations), we represent l using the following

1-chain form [Edelsbrunner and Harer 2010]:

l :=
∑

c∈l
σ(c, l) · c,

where σ(c, l) = 1 if the orientation of c agrees with that of l and
σ(c, l) = −1 otherwise.
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However, not all such
loops are valid for our pur-
pose. To define this notion,
we introduce the following
terminology. Each loop l
may cut through faces of
S so that l subdivides S
into a new polygonal mesh
S(l), which includes orig-
inal (undivided) faces of S
as well as faces that are original faces subdivided by edges of l
(see inset). These new faces inherit their orientations from the ori-
entations of the original faces in S . Now for each polygonal face
f ∈ S(l) that shares an edge with l, we say f is adjacent to the
left side of l if the orientation of f , induced by the orientation of
S , agrees with the orientation of l at each point of intersection; if
the orientations disagree at each point of intersection, we say f is
adjacent to the right side. And if neither of these holds, we say that
f is a bad face.

DEFINITION 2. A loop l is valid if the following hold: (i) The
loop is self-intersection free and simple; (ii) the loop separates
its complement in S(l) into at least two disjoint components; and
(iii) each component of S(l) \ l contains polygonal faces that are
adjacent to only one side of l.

(c) Perturb the loops. Since geodesic curves may cut through
faces of S and thus do not necessarily consist of edges of the origi-
nal mesh S , it is inefficient to store and manipulate patches bounded
by loops of the geodesic curves. We therefore perturb each of the
valid loops generated above, so that they lie on edges of the original
mesh. For any such geodesic curve c = p1p2 · · · pm−1pm, where
each vertex pi lies either at a mesh vertex or on a mesh edge, we
create a perturbed curve c′ = p1q2 · · · qm−1pm as follows: First, all
vertices of c that lie on mesh vertices are kept fixed. Else, for each
vertex pi that lies on a mesh edge e := (v1, v2) ∈ E , we define qi
as the vertex v1 or v2 whichever is closer to pi (see Figure 5). If pi
lies at the middle point between v1 and v2, then we always define
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Fig. 5: A triangular patch with its boundary (orange), perturbed bound-

ary (blue), and the enclosed triangles (green). The perturbed boundary is

oriented based on the orientation of the underlying surface.

qi as the vertex with the smaller index to break the tie. Note that
the adjacent vertices of c′ are either connected by a mesh edge or
identical in which case we remove these identical vertices such that
c′ is given by a trace of mesh edges.

As the perturbed loop l′ of a valid loop l may contain self-
intersections, we use a region growing procedure to determine the
left and right components of l′. Based on the initial orientation of l
and the orientation of the underlying surface, region growing first
initializes two sets of triangles FL(l

′) and FR(l
′) as the triangles

that are adjacent to the left and right of the edges in l′, respectively.
Treating the mesh edges in the perturbed loop l′ as a barrier, we
then grow each triangle set separately using a breadth-first search.
The resulting triangle sets FL(l

′) and FR(l
′) are called the left and

right components of l′, respectively.

PROPOSITION 1. For each valid loop l′, the left and right com-
ponents FL(l

′) and FR(l
′) of its perturbed loop l′ satisfy

FL(l
′) ∩ FR(l

′) = ∅, FL(l
′) ∪ FR(l

′) = F .

Moreover, if both the two groups of components separated by l con-
tain at least one entire face of the original mesh, then both FL(l

′)
and FR(l

′) are non-empty.

PROOF. See Appendix A.

(d) Select candidate patches. We are now ready to define the
candidate patches that will be passed to the next stage of the NRG-
subdivision extraction algorithm. For each perturbed loop l, where
both sets FL(l) and FR(l) are non-empty, we call the set with the
smaller total area the inside of l (or, an arbitrarily one, if the areas
of the these two sets are identical.) We orient l such that its inside
is always on its left side.

DEFINITION 3. A candidate patch is the inside of a perturbed
valid loop l with non-empty interior, together with l itself.

Let a patch P be bounded by a perturbed valid loop l. Then in
what follows, we will denote the inside of l by P ◦ and the loop
l itself as the boundary BOUND(P ) of P . Note that the boundary
BOUND(P ) could be different from the topological boundary ∂P
of P for instance when P ◦ contains a hole (i.e., a component of the
boundary of S). Recall that such patches need not be topological
discs.

DEFINITION 4. For each curve c in the loop that makes up a
patch P , we say c is on the left-hand side of P if c ∈ BOUND(P )
and σ(c, BOUND(P )) = 1. Similarly, c is on the right-hand side of
P if c ∈ BOUND(P ) and σ(c, BOUND(P )) = −1.

3.2 Geodesic Subdivision

We now introduce the notion of valid patch collection. In the ab-
stract, a patch collection is very similar to a simplicial complex
(c.f., [Edelsbrunner and Harer 2010]) except that the patches in a
patch collection can be quadrilateral and not simply connected.

DEFINITION 5. A valid patch collection (MV ,MC ,MP ) is
given by a vertex set MV , a (shortest geodesic) curve set MC ,
and a set of valid patches MP such that (i) the curve set MC =
∪P∈MP

BOUND(P ) comprises all the curves in the boundaries of
patches in the patch set MP , and (ii) the vertex set MV comprises
all the end points of curves in the curve set MC .

We denote the patch collection specified by all the candidate
patches, the curves forming their boundaries, and the endpoints of
these curves from Section 3.1 as M := (MV ,MC ,MP ). Note

that MC is usually a subset of candidate curve set C since some
candidate curves may not belong to any valid loop.

Note that in a patch collection, the patches may overlap with each
other in patch interiors (see Figure 4). Now we are ready to define
a geodesic subdivision.

DEFINITION 6. We say a valid patch collection M =
(MV ,MC ,MP ) is a geodesic subdivision if for any pair of
patches Pi, Pj ∈ MP , where Pi ∩ Pj 6= ∅, then Pi ∩ Pj ei-
ther (a) consists of a single point, which is an element of MP ,
or (b) consists of an entire curve c which is an element of MC and
which is an element of BOUND(Pi) and BOUND(Pj).

DEFINITION 7. We say a geodesic subdivision M is a complete
geodesic subdivision if ∪P∈MP

P = S . Otherwise, we say M is a
partial geodesic subdivision.

Equivalent constraints. In order to be able to formulate NRG-
subdivision extraction as an integer program, we must re-phrase
the definition of a geodesic subdivision in the form of equivalent
constraints. To do so, we will need the following notions.

DEFINITION 8. For each curve c ∈ MC , denote A(c,MP ) =
{P |P ∈ MP , c ∈ BOUND(P )}. Let AL(c,MP ) ⊂ A(c,MP )
and AR(c,MP ) ⊂ A(c,MP ) be the patches on the left and
right hand sides of curve c, respectively. The boundary of a
patch collection M is then defined as BOUND(M) := {c|c ∈
MC , |AL(c,MP )| 6= |AR(c,MP )|}.

We now state in the following proposition a set of constraints such
that if they are satisfied by a valid patch collection, then that patch
collection forms a complete geodesic subdivision.

PROPOSITION 2. A valid patch collection M is a complete
geodesic subdivision of S if it satisfies the following constraints:

— Curve constraint: Each interior curve of M has the same num-
ber of patches on both its sides (left and right), i.e., for every
c ∈ MC with c 6⊂ ∂S , we have

dM(c) := |AL(c,MP )| − |AR(c,MP )| = 0. (1)

—Uniqueness constraint: The mesh face f0 with the smallest in-
dex1is contained in exactly one patch of M, i.e.,

|MP (f0)| = 1, (2)

1Actually, one can replace f0 by an arbitrary mesh face and the uniqueness

constraint has the same effect. Essentially, the curve constraint propagates

the uniqueness constraint.
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iteration# 0 iteration# 1 iteration# 2

Fig. 6: Extracted NRG-subdivision, shown in yellow, after multiple iterations. Samples are initially placed based on extremals of the heat
kernel signature maps computed with small time scale (see top left). In each iteration, the active samples, xv = 1, are marked in black, while
the inactive, xv = 0, ones are marked in red.

where MP (f) ⊂ MP denotes the set of patches that contain
face f .

PROOF. See Appendix A.

The constraints can be formulated as:

COROLLARY 1. A complete geodesic subdivision M satisfies

∀c ∈ MC :

{

|AL(c,MP )| = |AR(c,MP )| = 1, c 6⊂ ∂S
|AL(c,MP )|+ |AR(c,MP )| = 1, otherwise.

For a partial geodesic subdivision M, the curve constraints are
invalid for curves in the BOUND(M). Further, as BOUND(M) is
unknown, we cannot enforce the curve constraints exactly. Ignor-
ing the curve constraints, a sufficient set of constraints for par-
tial geodesic subdivision enforces the uniqueness constraints for
all mesh faces of S .

PROPOSITION 3. A valid patch collection M is a partial
geodesic subdivision of S if it satisfies the following uniqueness
constraints:

|MP (f)| ≤ 1, ∀f ∈ F . (3)

In practice, Equation 3 would incur a huge set of constraints,
which makes the induced optimization problem hard to solve. As
the curve constraints have the potential to propagate the uniqueness
constraints, we instead enforce the curve constraints in a soft man-
ner, i.e., minimizing the sum of dM(c) over all the curves in MC .
This strategy allows us to only consider a small subset of mesh
faces for the uniqueness constraints and leads to an optimization
problem of much smaller size, which works well in practice.

3.3 NRG-subdivision Extraction

We first present how to extract complete NRG-subdivision, then
we show how to adopt the formulation for partial NRG-subdivision
extraction. As the constraints for being a complete geodesic sub-
division have been described in Equations 1 and 2, we proceed to
introduce the objective function for evaluating the regularity score
of patch collections.

Regularity energies. We introduce two energies for evaluating
the regularity of any patch collection: the patch regularity energy
and the vertex regularity energy.

The patch regularity energy is defined in terms of a regularity
score wP for each patch P that captures the local evidence of patch
P being in the underlying NRG-subdivision. The precise expres-
sion of wP is application-specific and will be given in the next sec-
tion (see Figure 4 and Section 4). Once we have wP , we define the
patch regularity energy of a patch collection M as the sum of the
negative regularity scores of the patches in M:

Rp(M) = −
∑

P∈MP

wP . (4)

The vertex regularity energy is defined in terms of a regularity
index rM(v) for a vertex v ∈ MV , namely the deviation from the
canonical valence η (where η = 6 for triangular patches and η = 4
for quad patches). In other words

∣

∣|A(v,MP )| − η
∣

∣,

where A(v,MP ) denotes the set of patches in MP whose bound-
ary loops contain vertex v in the graph. The vertex regularity en-
ergy of a patch collection M is then given as the cumulative vertex
regularity:

Rv(M) =
∑

v∈MV

wv

∣

∣|A(v,MP )| − η
∣

∣, (5)

where wv represents the confidence of the regularity of vertex v.
For complete NRG-subdivision extraction, we set wv = 0 if v ∈
∂S , and wv = 1 otherwise.

Note that the patch and vertex regularity are not mutually inde-
pendent as higher patch regularity drives each vertex to take the
canonical valence η. In practice, however, we found that incorpo-
rating the vertex regularity term increases robustness.

Constrained optimization formulation. By combining Equa-
tions 1–5, we arrive at the following constrained optimization
for complete NRG-subdivision extraction as minimization of
Rp(M) + λvRv(M) as:

min
M⊂M

− ∑

P∈MP

wP + λv

∑

v∈MV

wv

∣

∣|A(v,MP )| − η
∣

∣

so that, |MP (f0)| = 1,
|AL(c,MP )| − |AR(c,MP )| = 0, ∀c ∈ CI ,

(6)
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where CI = {c|c ∈ MC , c 6⊂ ∂S}. Note that the curve con-
straint should hold for all curves in the curve set CI because
|AL(c,MP )| = |AR(c,MP )| = 0, ∀c /∈ MC . The parameter λv

controls the importance of vertex regularity (λv = 1 in our tests).

Integer program formulation. The above optimization effec-
tively amounts to extracting a suitable subset from patches MP .
We parameterize an arbitrary patch collection M by associating
with each patch P ∈ MP a binary indicator zP , where zP = 1 if
P ∈ MP , and zP = 0 otherwise.

In terms of the patch indicators, the patch regularity term defined
in Equation 4 becomes

Rp(M) = −
∑

P∈MP

wP zP . (7)

To formulate the vertex regularity term, we associate each sample
v ∈ MV with a binary indicator xv where xv = 1 if v ∈ MV and
xv = 0 otherwise. Combining both the patch indicators and vertex
indicators, we rewrite the cumulative vertex regularity energy as,

Rv(M) =
∑

v∈MV

wv

∣

∣

∣

∣

∑

P∈A(v,MP )

zP − ηxv

∣

∣

∣

∣

. (8)

Note that the vertex indicators are determined by the patch indica-
tors, since xv = maxP∈A(v,MP ) zP . As the vertex regularity term

pushes xv = 0 if zP = 0 ∀P ∈ A(v,MP ), we relax these
constraints as the following inequalities:

zP ≤ xv, ∀P ∈ MP , ∀v ∈ {v|P ∈ A(v,MP )}. (9)

Using these patch indicators, we rewrite the constraints in Equa-
tions 1 and 2 respectively as,

∑

P∈AL(c)

zP =
∑

P∈AR(c)

zP , ∀c ∈ CI , and
∑

P∈MP (f0)

zP = 1,

(10)
where we have shortened AL(c,MP ) and AR(c,MP ) as AL(c),
AR(c), respectively to simplify the notation.

Finally, combining Equations 7–10, we can convert the con-
strained optimization problem described in Equation 6 as solving
the following integer program:

min
zP ,xv∈{0,1}

− ∑

P∈MP

wP zP + λv

∑

v∈MV

wv|
∑

P∈A(v,MP )

zP − ηxv|

so that, zP ≤ xv, ∀P ∈ MP , ∀v ∈ {v|P ∈ AP (v)},
∑

P∈AL(c)

zP =
∑

P∈AR(c)

zP , ∀c ∈ CI ,
∑

P∈MP (f0)

zP = 1.

(11)

Partial NRG-subdivision extraction. In the case of partial
NRG-subdivision extraction, curves that lie on the boundary of the
underlying NRG-subdivision no longer satisfy the curve constraint.
Hence, we reformulate the curve constraint as an energy term

Rc(M) =
∑

c∈CI

wc

∣

∣

∣

∣

∣

∣

∑

P∈AL(c)

zP −
∑

P∈AR(c)

zP

∣

∣

∣

∣

∣

∣

, (12)

where wc denotes our estimate on the possibility of curve c lying
in interior of the underlying NRG-subdivision. We estimate wc as

wc = min(wL
c , w

R
c ),

where wL
c = maxP∈AL(c) wP and wR

c = maxP∈AR(c) wP . In-
tuitively, a curve c is likely to be in the interior of the underlying
NRG-subdivision if there are regular patches on both sides of c re-
sulting in higher wc.

Further, the vertex regularity term should only count interior ver-
tices of the underlying NRG-subdivision. Using the curve interior
weight, we modify the vertex interior weights in Equation 5 as

wv = min
c∈A(v,MC)

wc,

where A(v,MC) denotes the set of incident curves at v.
As the curve constraints have the potential to propagate the

uniqueness constraints, we observed that it is sufficient to enforce
the uniqueness constraints at a subset of mesh faces:

∑

P∈MP (f)

zP ≤ 1, ∀f ∈ F∗, (13)

where F∗ ⊂ F . Empirically, we found choosing F∗ as a uniform
sampling of F of size 0.05|F| to be sufficient.

Combining Equations 7, 8, 12, and 13, we arrive at the follow-
ing integer program formulation for partial NRG-subdivision ex-
traction:

min
zP ,xv∈{0,1}

− ∑

P∈MP

wP zP + λv

∑

v∈MV

wv|
∑

P∈A(v,MP )

zP − ηxv|

+ λc

∑

c∈CI
wc|

∑

P∈AL(c)

zP − ∑

P∈AR(c)

zP |

so that, zP ≤ xv, ∀P ∈ MP , ∀v ∈ {v|P ∈ A(v,MP )},
∑

P∈MP (f)

zP ≤ 1, ∀f ∈ F∗,

(14)
where λc controls the importance of curve constraints (λc = 0.5
in our tests). The user can prescribe a preference for small but very
regular partial NRG-subdivision, or larger but approximate partial
NRG-subdivision by controlling the parameter λv .

3.4 Linear Programming Relaxation

We solve the integer programs formulated as Equations 11 and 14
using linear programming relaxation (LPR), wherein binary indica-

Fig. 7: NRG-subdivision extracted on the dragon model. The extracted quad

structure has a lower regularity score compared to the triangular near-

regular mesh shown in Figure 2-left.
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tors are allowed to take real values in the interval [0, 1]. We prefer
using linear relaxations as opposed to other integer program solvers
due to the following reasons: (i) linear relaxations generate large-
scale sparse linear programs that can be efficiently solved using
interior-point methods [Boyd and Vandenberghe 2004; Grant and
Boyd 2011]; (ii) typically require on the order of seconds to solve
systems involving 50-100k variables; and (iii) the linear relaxations
of our integer programs are usually tight.

Integrality conditions. In the Appendix, we present condi-
tions when the LPRs return integer solutions, for both complete
NRG-subdivision extraction (see Equation 17) and partial NRG-
subdivision extraction. For complete NRG-subdivision extraction,
the integrality condition implies that if the underlying NRG-
subdivision M∗ has the smallest patch regularity energy and regu-
lar interior vertices (or the vertex regularity is dropped), then solv-
ing the linear programming relaxation returns an integer solution
that identifies this NRG-subdivision M∗. On the other hand, if the
vertex regularity and patch regularity adversely compete against
each other, then the LPR of Equation 11 can yield fractional so-
lutions, in which a rounding procedure has to be applied. Simi-
larly, for partial NRG-subdivision extraction, the integrality con-
dition means that the relaxation discovers the underlying partial
NRG-subdivision if the vertex regularity, curve constraints and the
patch regularity are mutually consistent.

In practice, for the examples shown in this paper, we found that
the LRPs yield integer solutions. This is because the sample points
come from feature extraction and candidate patches usually have
high regularity scores. We also tested the LPRs on synthetic data
sets, where we perturb the sample points from their ground-truth
positions. Experimental results show that the LPRs still generate
integer solutions if the perturbation is less than half of the sampling
density (see Section 5).

Rounding strategy. In the presence of real-valued solutions, we
use an iterative procedure to round them into integer solutions. The
basic idea is to maintain two sets of patches, F1 and the remaining
unclaimed patches. The set F1 includes all the patches whose indi-
cators are fixed at 1, i.e., the currently selected patches. In each step,
we identify the maximum indicator variable z∗, among the patches
neighboring to the patches already in F1. We expand F1 to include
the face corresponding to z∗. We then modify the linear relaxation
to remove the indicator z∗ and solve the updated LPR. Note that in
the first step, if F1 is empty, z∗ is extracted as the maximum among
all the face indicators.

This rounding strategy does not, however, guarantee an optimal
integer solution. Moreover, it is also possible that the reduced linear
program becomes infeasible at some point, if the wrong patches
are selected. In our tests we did not encounter such a situation. In
general, an optimal integer solution can be found using branch-and-
bound methods [Schrijver 1986]. But the worse case complexity of
a branch-and-bound method is exponential.

4. APPLICATIONS

We show two applications of the sample-based NRG-subdivision
extraction approach. First, we describe how to apply it to detect
near-regular structures on 3D shapes, e.g., scales on dragon models.
Second, we introduce an extension to establish markerless point
based correspondences between 3D shapes.

input model

edited model

NR-mesh + 

extracted patterns

candidate vertices/edges

Fig. 8: Detecting near-regular patterns on a surface. (Top) Input model;

feature samples extracted using the local extrema of heat kernel signature

maps, and candidate edges formed by connecting neighboring samples; ex-

tracted NR-mesh with detected base element. (Bottom) Edited model with a

replaced base element.

4.1 Near-Regular Structure Extraction

Recall that a near-regular structure on a surface S consists of a set
of repeating elements or texels {Xi} and a NRG-subdivision M
that captures of the positions of repeating elements. In this sec-
tion, we formally define these repeating elements as texels, each
of which represents a submesh of S . To efficiently extract these
texels, we assume that the geometric shapes of texels are approxi-
mately related to each other by similarity transformations (as is the
case for all examples shown in this paper). Note that in contrast to
Pauly et al. [2008], our NRG-subdivision are not required to man-
ifest as regular grids in a transformation domain having 1-, 2-, or
3-parameter generators.

NRG-subdivision extraction. First, we extract the underlying
NRG-subdivision M using the method presented in Section 3. For
initial sample points Vs, we use the local maxima of heat kernel sig-
nature (HKS) maps [Sun et al. 2009], i.e., kt(x, x), x ∈ S , where
kt(·, ·) denotes the heat-kernel operator (i.e., how one unit of heat
diffuses across the surface), and t represents the scale of the HKS.
Please refer to the original paper for computational details. In our
implementation, we use a small value of t = ds/2, where ds is the
averaged distance between each sample point to its closest neigh-
bors. In this case, the corresponding HKS map is known to be re-
lated to isometry-invariant Gaussian curvatures [Sun et al. 2009]. In
our tests, we set the maximum length of a shortest geodesic curve
dmax = 3ds.

In the context of NRG-subdivision extraction, the regularity
score wP of each P is assigned as a combination of two factors:
shape score sshape(P ) and the edge consistency score sedge(P ), i.e.,

wP = sshape(P ) · sedge(P ).

The shape score measures the deviation of patch P from a regular
configuration, and is defined as sshape(P ) = exp(−a2

P /2σ
2),where

aP is the maximum deviation of the angles of its vertices from the
regular angle α (α = π/3 for triangles and α = π/2 for quads;
σ = π/4 in all our examples). The angle at each vertex is defined
as the angle between the two geodesic curves intersecting at this
vertex. Edge consistency encodes the similarity of local geometry
at the connected points, and is measured as the minimum consis-
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tency of its edges sedge(P ) = minc∈BOUND(P )(1− d(c)), where d(c)
denotes the normalized heat kernel signature difference at the end
points of curve c [Sun et al. 2009].

We solve for NRG-subdivision with triangular or quadrilateral
patches. In most cases, however, the type of the pattern is unknown
to start with. Therefore, we build two sets of candidate patches, one
containing triangular patches and another containing quadrilateral
patches. We run the detection procedure separately on both can-
didate sets and retain the NRG-subdivision with the higher regu-
larity score (compare Figures 2 and 7). For NRG-subdivision with
multiple connected components, i.e., patches in different compo-
nents do not intersect, we select per connected component. In this
case, we may have both triangular and quadrilateral patches on one
model (see Figure 9).

In certain scenarios, only a handful of reliable features may
be available, for example many of the scales on the Stanford-
dragon are imperfect (see Figure 6) resulting in unstable local fea-
tures. Starting with a dense set of sample points, it is computa-
tionally expensive to include all the potential features. Instead, we
progressively extract the NRG-subdivision. Starting from a small
set of salient, yet reliable, features we build a temporary NRG-
subdivision. Here the saliency of a sample is defined as the av-
eraged HKS difference to its neighboring vertices. Based on the
learned structure, we prune sample points that are covered by
patches of the learned structure and append the input set of sample
points to include neighboring samples (whose geodesic distance to
vertices of the learned structure is less than 2 times the averaged
distance between adjacent vertices). We rerun the method on the
enriched set of sample points to obtain a refined NRG-subdivision.
Thus, we use the partial (global) patterns to effectively make use of
even low strength local geometric features.

Texel extraction. We initialize the texels Xi as the surface
Voronoi regions centered around the extracted points pi, i.e., the
0-dimensional entities of the NRG-subdivision M. We then use an
alternating optimization procedure to refine the texels.

In each iteration, we first keep the texels and compute the rel-
ative similarity transformation Ti that aligns the shape of a base
texel, say X0, with that of each other texel Xi. To compute Ti, we
first apply iterative closest point-to-plane (ICP) registration [Chen
and Medioni 1992] to solve for the relative similarity transforma-
tion T i→j between each pair of neighboring texels (Xi,Xj) ∈ NT .
Here we say two texels are neighbors if the points that capture their
positions are connected by an edge in M. Then, we compute Ti as,

min
{Ti}

∑

(Xi,Xj)∈NT

‖Tj − T i→jTi‖F (15)

Fig. 9: Our formulation handles detection of different NRG-subdivisions,

quadrilateral and triangular patterns in this case, in a common framework.

with T0 being set to the identity transform and ‖.‖F denoting
Frobenius norm. We use the Gauss-Newton method described
in [Krishnan et al. 2005] to solve Equation 15. Note that instead
of restricting the transformations to lie on any predefined grid, us-
ing the data we recover an appropriate regular connecting structure
connecting among the texel-pairs, possibly with missing elements.

We now use transformations T−1
i to bring all the texels Xi to

the local coordinate system of X0, and take the union of the trans-
formed texels as the new base-texel, while keeping the correspon-
dence fixed. We trim the base texel by removing boundary planar
regions to retain only the characteristic geometry. Next, for each
instance i, we transfer back the base texel using each Ti, apply
ICP registration with the surface S , and trim out a texel estimate.
Individual texel centers pi are computed using respective texel es-
timates, and their surface Voronoi regions used as the updated Xi.
We alternate between updating aligning transformations and texel
recomputation. In practice, we found the transformations become
steady after 3-5 iterations.

4.2 Markerless Correspondence Extraction

We adapt our framework for regularity detection to establish corre-
spondences between two connected and oriented triangular meshes
by extracting a canonical regular structure across the two shapes.
The basic idea is to define the correspondence structure between
two surfaces as a hyper NRG-subdivision, whose vertices, curves,
and patches are vertex correspondences, curve correspondences,
and patch correspondences, respectively.

Hyper-patch collection. We construct a hyper-patch collection
H = (HV ,HC ,HP ) between a pair of input surface meshes S and
T . We start by placing uniformly spaced samples on both shapes, S
and T , using HKS seeded farthest-point sampling to produce sam-
ple sets VS and VT , respectively. We apply the procedure described
in Section 3 to generate candidate curves and candidate triangular
patches on both shapes.

a

b

c

(a,p)

(a,q)

(a,r)

(b,p)

(b,r)

(c,p)

(c,q)

(c,r)

p

q

r

(b,q)

S

T

H

Fig. 11: Correspondence detection between two oriented manifold meshes

S, T amounts to NRG-subdivision extraction on a hyper-patch collection

H. We insert hyper-patch (P,P ′) := ((a, p), (b, q), (c, r)), if patches P =
(a, b, c) and P ′ = (p, q, r) match the orientations of S and T , respectively.

Hyper-patch (P,P ′) is oriented based on orientations of S and T .

For each pair of sample points v ∈ VS and v′ ∈ VT , we create
a hyper-vertex (v, v′) ∈ HV . Consistency of descriptor values, if
they can be reliably computed on the respective meshes, is used
to prune the hyper-vertex set. In this paper, we only connect each
vertex to its 20-nearest neighbors on the other shape in terms of the
HKS maps (see Section 4.1).

For each pair of hyper-vertices (v1, v
′
1) and (v2, v

′
2), where

there exist shortest geodesic curves c12 = (v1, v2) and c′12 =
(v′1, v

′
2) connecting them, we introduce a hyper-curve (c12 =

(v1, v2), c
′
12 = (v′1, v

′
2)) ∈ HC if the geodesic distances are such

that d((c, c′)) := |gS(v1, v2) − gT (v′1, v
′
2)| is within twice the av-

erage sampling spacing, with gX (p, q) denoting the geodesic dis-
tance between points p and q on manifold X . Note that the two
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iteration# 0 iteration# 1 iteration# 2 iteration# 3HKS maps

source target

Fig. 10: Markerless correspondence detection between a pair of faces. Our method alternates between topological and geometric optimiza-
tion to produce a consistent mesh structure across the face pairs. This example is challenging due to lack of any dominating or locking
features on the faces. We use HKS maps (left) to compute weights for evaluating candidate correspondence pairs (see Section 4.2).

end “points” of this hyper-curve are hyper-vertices (v1, v
′
1) and

(v2, v
′
2).

For each triplet ((v1, v
′
1), (v2, v

′
2), (v3, v

′
3)), we check if either

(i) P = (v1, v2, v3) and P ′ = (v′1, v
′
2, v

′
3) construct 2 valid patches

on S and T , respectively, or (ii) P = (v1, v3, v2) and P ′ =
(v′1, v

′
3, v

′
2) construct valid patches on S and T , respectively. If yes,

we add the suitable triplet (P,P ′) to the hyper-patch set HP with
the associated orientation. Otherwise, we do not include the hyper-
patch (see Figure 11). Note that the boundary BOUND(P,P ′) of
this hyper-patch is given by ((vi, vj), (v

′
i, v

′
j)), ij ∈ {12, 23, 31}.

The hyper-patches that are adjacent to the left and right sides of
each hyper-curve are defined accordingly.

DEFINITION 9. A hyper-patch collection H = (HV ,HC ,HP )
is a hyper-geodesic subdivision if the intersection each pair of
hyper-patches in HP is (i) empty, or (ii) a hyper-curve in HC , or
(iii) a hyper-vertex in HV .

Based on the deviation of curve-wise geodesic distances we as-
sign weight of hyper-patch (P,P ′) as

w(P,P ′) = exp(− max
(c,c′)∈BOUND(P,P ′)

d((c, c′))2/2σ2),

where we set parameter σ = max(c,c′)∈HC
d((c, c′))/2 in our tests.

Hyper NRG-subdivision extraction. Global correspondence
detection now amounts to compute a NRG-subdivision H from H.
Accordingly, we modify the uniqueness constraint as

|HP (f1)| = |HP (f2)| = 1,

where f1 and f2 are arbitrary faces on S and T , respectively. Here
HP (fi) ⊂ HP denotes the hyper-patches that contain fi on each
surface. In the case of partial correspondence extraction, we modify
the uniqueness constraints as

|HP (f)| ≤ 1, ∀f ∈ F∗
S ∪ F∗

T ,

where F∗
S and F∗

T are uniform face samples of S and T , re-
spectively. The corresponding integer programming formulations
and linear programming relaxations are adapted accordingly. Note
that for non-rigid shape matching, vertex regularity for NRG-
subdivision extracted from H is irrelevant, and hence the vertex
regularity term is ignored.

Geometric optimization and re-sampling. The original sam-
plings of the source and target meshes are performed indepen-
dently, oblivious of the underlying correspondence. As a result, the
extracted NRG-subdivision correspondence is typically imprecise
due to sampling artifacts. We use the correspondence extracted in

2We mean they are vertices of a patch in the clock-wise orientation.

the topological optimization step to align the source shape with the
target shape using non-rigid registration [Wand et al. 2007], and
project the sample positions from the deformed source S to rede-
fine sample locations on the undistorted target T . Note that at this
stage, only those points that are covered by the extracted NRG-
subdivision from the source shape participate, affecting regions of
the target sample distribution.

We treat the new positions as landmarks, and use farthest point
sampling to add additional samples, typically 5% of the current
sample count. As farthest point sampling is more accurate given
reliable landmarks, the NRG-subdivision extracted typically grows
across iterations. This process is terminated once the near-regular
structure stops growing, typically in 2-4 iterations (see Figure 10).

5. EVALUATION AND DISCUSSION

We evaluated our approach on a variety of input models, both syn-
thetic and real-world and of varying quality and complexity. Our
framework is directly applicable for a large set of challenging prob-
lems. While for some of the presented problem instances special-
ized solutions exist, in other scenarios we are not aware of other
successful attempts, e.g., extraction of patterns on the dragon mod-
els (see Figures 2 and 6), or automatic correspondence detection
across meshes with different topology (see Figure 12).

Fig. 12: Automatic correspondence detection between two hand poses of

varying topology. We simultaneously optimize over sample point placements

and connectivity extraction to find a consistent topology across the two hand

poses. The algorithm selects the open-hand connectivity as a persistent ex-

planation for both the poses. (Top) We use the inferred correspondence to

create shape space interpolation of the hand poses [Kilian et al. 2007].
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genus 0 genus 1 genus 2 genus 3

additional cand.

tex. elements

perturbed

tex. elements

scaled

texture elements

with 

geometric noise partial pattern

Fig. 13: Detected NRG-subdivision on synthesized models with varying

genus, perturbed textured elements, and in presence of geometric noise (see

also Figure 14).

NRG-subdivision extraction. We first tested the stability of our
NRG-subdivision extraction procedure on a dataset with available
ground truth (see Figure 13-top). The dataset consists of four mod-
els with genus ranging from 0 and 3. For each model, we generate
both a triangular NRG-subdivision and a quad NRG-subdivision,
using periodic global parameterization [Ray et al. 2006]. Given
modified texture elements as input, we evaluate the performance
of our method by comparing the detected NRG-subdivision with
the corresponding known ones (i.e., ground-truth information).

We consider combinations of five modifications to the original
set of texture elements as input test datasets (see Figure 13-bottom):
(i) we add random texture elements; (ii) we perturb each texture el-
ement from its original position in a random direction by a random
geodesic distance in [0, δ], where the displacement ratio δ controls
the level of perturbation; (iii) we scale each texture element by a
random variable in [smin, 1] to account for the variation in real pat-
terns; (iv) we add geometric noise of size ǫ in the normal direction
of the underlying model, and finally (v) we crop out a portion of
texture elements to generate cases for partial NRG-subdivision de-
tection. Note that the first two modifications simulate uncertainties
arising from feature detection and/or sampling methods.

For each pattern, we used five different combination of modi-
fications listed above instead of trying all possible combinations.
In test (a) and test (b), we added 100% and 200% random texture
elements, respectively. In test (c), we built on test (b) and scaled
texture elements such that smin = 0.5. In test (d), we built on
test (c) and added ǫ = 1% noise to the underlying model. Finally,
in test (e), we created a partial pattern from test (d) where 50% per-
cent of the texture elements are removed. In each test scenario, we
used δ from 0 to 0.5s where s is the sampling density of the under-
lying pattern. In our experiment, we made 20 different choices for δ
and generated 20 patterns for each fixed set of modification param-
eters. We evaluate the performance of our method in terms of the
detection ratio (#correct −#incorrect)/#groundtruth. As the de-
tected pattern might contain additional texture elements, we align
the detected pattern with the original pattern by snapping each tex-
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Fig. 14: The pattern detection ratio versus the texture element displacement

ratio on various scenarios. Statistics are collected on the near-regular pat-

terns shown in Figure 13 (see text for more details).

ture element to the closest original texture element. Figure 14 plots
the detection ratio versus the displacement ratio δ.

Our detection method does a perfect job when the texture el-
ements are near-regular, e.g., δ < 0.2s. However, the detection
ratio deteriorates with increasing displacement ratio as the resul-
tant placement of texture elements progressively becomes arbitrary.
Overall, the detection ratio on the quadrilateral NRG-subdivision is
higher than that of triangular NRG-subdivision, particularly when
the displacement ratio is relatively small. This can be understood
from the fact that regularity constraints on quadrilateral patches are
stronger than that on triangular patches. In other words, when dis-
placement ratio is small, it is easier to find incorrect regular tri-
angular patches that include additional texture elements than for
quad-pattern detection, since quad patches require coincidence of
four texture elements.

NRG-subdivision editing. Extracting NRG-subdivision from
surfaces greatly simplifies structure-preserving editing and manip-
ulations, which are otherwise difficult to perform. In order to edit
a NRG-subdivision, we first establish a dense correspondence be-
tween each texel Xi and the base texel X0. We use Ti to initially
align texel Xi to the base texel X0, and apply non-rigid registra-
tion [Wand et al. 2007] to improve the alignment. For each point in
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12 • Huang, Guibas, Mitra

Fig. 15: (Top) Detected NRG-subdivision on gargoyle and knot models with

extracted patched highlighted in blue. (Bottom) Edited models obtained by

mutually swapping the detected base texels, while retaining original repeti-

tion structures with corresponding deformations.

texel Xi, we take its closest point on the aligned copy of X0 as its
corresponding point.

We now describe two structure-preserving manipulations. (i) We
modify the base texel X0, while preserving the original NRG-
subdivision and use Laplacian surface editing [Sorkine et al. 2004]
to transfer the edits back onto each texel using the extracted Ti.
Figures 2 and 8 show typical example modifications where we re-
place the scales and the spiral hair patterns, respectively on the two
dragon models with a circular hair pattern. Similarly, Figure 15
shows the result of swapping the base texels between the detected
NR-structures extracted from the two models. In this example,
the correspondences between the two base texels are computed by
mapping each of them onto a canonical disc [Floater 2003]. (ii) We
also reduce the number of repetitions while preserving the repeti-
tion structure to shrink the dragon (see Figure 2-top).

Markerless correspondence extraction. We extensively tested
our global correspondence detection method on three bench-
mark data sets, namely SCAPE [Anguelov et al. 2005],
SHREC07 [Giorgi et al. 2007], and TOSCA [Bronstein et al. 2008].
We compare our correspondence detection results with available
ground truth in Table I, and refer to the supplementary materi-
als for results on all the 190 models. Overall, the performance of
our method is comparable to or slightly better than Mobius voting
[Lipman and Funkhouser 2009; Kim et al. 2010] in terms of both
geodesic error of correspondences and the averaged percentage of
model areas that are in correspondence.

First, we tested our approach on the TOSCA high-resolution
benchmark, which consists of 80 objects classified into 7 classes,
with objects in the same class having a common triangulation, thus
providing a ground truth for comparison. For each object class, we
select the first object and match it against all the others in this class.
Note that consistent correspondences are obtained by fixing the
sample points on the selected object. As objects in the same class
contain similar sets of local features, our method finds very high
quality correspondences. In a more challenging test, we matched 5
different animal models (see Figure 16).

Next, we tested on the SCAPE data set, which contains meshes
of a single person in a wide range of poses. Our method is still

Cat Dog Wolf Horse Centaur Gorillas Female Male SCAPE

pm 96.4 95.4 99.6 94.7 93.6 95.6 94.9 95.6 92.1

egeo 1.5 1.3 0.7 1.4 1.6 1.3 1.1 0.9 2.1

Table I. : Statistics on different object classes from the TOSCA and SCAPE

benchmarks. Here, pm represents the averaged percentage of model areas

that are in correspondence, and egeo represents averaged geodesic error

of correspondences with respect to percentage of the averaged bounding

boxes of available ground truth.

able to find consistent correspondences between the template and
all example poses (see Figure 2 and supplementary material). In
case of large deformations between the template model and the ex-
ample poses, in some cases we observe slippage across featureless
regions, e.g., elbow regions.

Finally, we have tested our method on the human and four legged
classes from the SHREC07 watertight dataset, which is particularly
interesting because objects differ significantly even in the same se-
mantic class. This challenges the sampling stage of our approach.
We obtained high quality correspondences even in this case. In
our experiments, the method typically converges in two iterations.
In the second pass, the correspondences serves as landmarks for
additional samples that subsequently help recover correspondence
across thin parts (see Figure 17).
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Fig. 17: Global correspondence detection involving models with thin fea-

tures can require multiple iterations, with initial partial correspondence

helping to adaptively sample for subsequent iterations.

Performance. Since we only connect neighboring points, the size
of the patches is linear in the number of input points. For sparse lin-
ear programs, linear programming converges in O(

√
n) time; each

time we solve a sparse linear system it takes O(n3/2), with n be-
ing the number of input samples. We use the CVX package [Grant
and Boyd 2011]. In practice, solving the LPRs using interior point
method requires about 30-50 iterations. In Table II, we list the run-
ning times for the various examples.

Limitations. Our algorithm is based on an integer programming
formulation and naturally inherits some of its limitations. Since
we solve for linear programming relaxations, handling very large
point sets, involving 100k-s of variables, can become intractable.
Such scenarios can occur for detection of higher order relations,
e.g., global correspondence.

Additionally, in absence of distinctive or characteristic features,
the sample points can slide along the mesh surface without affect-
ing the regularity score, for example, near the elbow of the human
models, or other thin structures (see supplementary material). In
absence of additional information, such slippage of nodes or asso-
ciated base patches is unavoidable (see also [Mitra et al. 2010]).
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template

model

Fig. 16: Inter-class global correspondence detection across five animals in the TOSCA dataset (see supp. for complete results).

Finally, our framework cannot directly handle scanned point
clouds as we require an initial oriented manifold surface to orient
the candidate patches created for NRG-subdivision extraction.

6. CONCLUSIONS

We presented linear programming formulations for solving com-
plete and partial near-regular structure detection. Our method op-
timizes for both topological connectivity and geometric placement
to efficiently extract regular structures. We introduced integrality
conditions for the associated linear programs, and empirically jus-
tified the effectiveness of the geometric relaxation, which is based
on heuristic measures. We evaluated the robustness of our method
on synthetic test cases and large collections of benchmark datasets,
in presence of geometric and topological noise. We presented ap-
plications to NRG-subdivision detection on surfaces, structure-
preserving manipulations, and markerless correspondence extrac-
tion.

Our framework for structure detection on 3D geometry and also
on abstract simplicial complexes promises several interesting re-
search avenues:

—Our method works with any computable definition of regularity
of patches and vertices. This naturally allows users to encode ap-
plication specific regularity measures, e.g., for constrained and
fabrication-aware meshing and structure-aware shape process-
ing.

—The ability to automatically establish global correspondences
across large collections of object collections holds the promise
to learn variations in shape families and intuitively navigate the
resultant shape spaces.

|MV | |MC | |MP | n∗
P

tpre tlp n t

knot 280 1320 1720 160 74.2s 15.1s 1 89.4s

gargoyle 916 2164 1530 23 232.1s 14.1s 1 246.2s

chin-drag. 108 348 272 49 151.2s 0.9s 1 152.1s

xyz-drag. 327 3482 1918 114 232.1s 21.6s 1 253.7s

Stan-drag. 1742 6276 5480 1335 121.4s 55.1s 3 529.5s

xyz-statue. 1265 5346 3480 855 321.4s 76.1s 2 794.5s

|VK| |EK| |FK|
face 311 1378 785 70 92.2s 7.1s 4 90.2s

hand 382 4875 3927 284 145.6s 45.2s 4 764.4s

TOSCA 314 2871 3582 382 140.9s 75.3s 2 448.8s

SCAPE 360 2521 3897 392 191.1s 92.1s 2 586.4s

SHREC07 486 6571 5582 350 150.9s 280.3s 2 882.8s

Table II. : Timing with 2.4GHz Intel CPU with 6GB RAM; n∗
P : num-

ber of patches/patch-correspondences in the extracted NRG-subdivision,

tpre : preprocessing time including descriptor computation and construct-

ing simplicial complex, tlp : averaged time for solving linear program at

each iteration, n: number of total geometry optimization iterations, and

t: total time.

APPENDIX

A. PROPOSITION PROOFS

A.1 Sketch proof of proposition 1

The basic idea of the proof is to consider a continuous family of
loops that interpolates the original loop and the perturbed loop,
and study the change of the components that are separated by
these loops. Denote the original loop as l = p1 · · · pnp1. Let
l′ = p′1 · · · p′np′1 be the perturbed loop where p′i ∈ V is the per-
turbed vertex of pi. (Duplicated vertices are not removed.) De-
note l(t) = q1(t) · · · qn(t)q1(t), 0 ≤ t ≤ 1 as the continuous
family of loops that linearly interpolate between l and l′, where
qi(t) = (1− t)pi + tp′i. It is easy to see that l(t) lies on S .

LEMMA 1. If l is valid, then for any t ∈ [0, 1), l(t) is also
valid.

PROOF. It is easy to see that the order of the vertices of l(t) on
each edge is the same as that of l(0) = l. It follows that l(t) is self-
intersection free, and the topological structure of the mesh obtained
by cutting S by l(t) is the same as that of the mesh obtained by
cutting S along l, which ends the proof.

Let Left(l(t)) and Right(l(t)) be the left and right compo-
nents of l(t) in the mesh S(l(t)), respectively. Denote c(f) as the
barycenter of each face f ∈ F . Let

F̂L(l(t)) = {f |f ∈ F , c(f) ∈ Left(l(t))}
F̂R(l(t)) = {f |f ∈ F , c(f) ∈ Right(l(t))}

be the set of triangles whose centers belong to Left(l(t)) and
Right(l(t)), respectively. It is easy to see that for t ≥ 3/4,

F̂L(l(t)) and F̂R(l(t)) are fixed, and

F̂L(l(t)) ∪ F̂R(l(t)) = F , F̂L(l(t)) ∩ F̂R(l(t)) = ∅.
It remains to prove:

LEMMA 2. Let t ≥ 3/4 be a constant, F̂L(l(t)) = FL(l(1))

and F̂R(l(t)) = FR(l(1)), where FL(l(1)) and F(l(1)) are given
by the region-growing procedure described in Section 3.

PROOF. First, we have F̂L(l(t)) ⊂ FL(l(1)). This is because
different connected components (where adjacent faces share edges)

of F̂L(l(t))contains faces that are adjacent to the left side of l(1),
and faces in the same connected component can be reached from
each other using the region-growing process. It remains to prove

F̂R(l(t)) ∩ FL(l(1)) = ∅. Suppose ∃f ∈ F̂R(l(t)) ∩ FL(l(1)).
Then f is connected via adjacent faces to a face that is adjacent to

the left of l(1), which also belongs to F̂L(l(t)). This means f ∈
F̂R(l(t)) ∩ F̂L(l(t)), which ends the proof.
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A.2 Sketch proof of proposition 2

The basic idea is to cut the original mesh S into a new mesh S ′

using the boundary loops of patches in MP , and then prove that
the curve constraints imply that the covering number of each face
f ∈ S ′, i.e., the number of patches in MP that f belongs to, is
fixed for adjacent faces.

As we will see later, the proof requires that patches in MP are
non-degenerate, i.e., their boundaries are free of self-intersections.
Similar to the proof of proposition 1, we thus consider patches
formed by loops that are not fully perturbed. More precisely, for
each patch P ∈ MP , consider a family of components P (t), 0 ≤
t ≤ 1 on S defined by the family of loops that interpolates
BOUND(P ) and the unperturbed loop of BOUND(P ). Note that the
curve constraints on components in MP (t) := ∪P∈MP

P (t) are
inherited from MP . As for t > 3/4, P (t) and P cover the same
set of barycenters of faces in S, it remains to prove that each face
barycenter appears in MP (t) a constant number of times3.

Let S ′ be the triangle mesh generated by cutting the original
mesh S using all boundary loops of P (t) ∈ MP (t). For each face
f ∈ S ′, we define its covering multiplicity cover(f) as

cover(f) =
∑

P (t)∈MP (t)

Id(f ∈ P (t)),

where Id(f ∈ P (t)) = 1 if and only if f ∈ P (t).
Given two adjacent faces f and f ′ in S ′ that share an edge e, we

have

cover(f)− cover(f ′) =
∑

f∈P (t),f ′/∈P (t)

1−
∑

f ′∈P (t),f /∈P (t)

1.

Consider the curves l(t) (in boundary loops of MP (t)) that contain
e. As components P (t) are non-degenerate, it is easy to see that
due to the curve constraints,

∑

f∈P (t),f ′/∈P (t)

1 and
∑

f ′∈P (t),f /∈P (t)

1

are equal to the total number of components that are adjacent to
the left and right of these curves (the order does not matter). In
other words, we have cover(f) = cover(f ′). As S ′ is connected,
cover(f) is a constant, which ends the proof.

B. INTEGRALITY CONDITIONS

Let us start with understanding the solution space of the linear re-
laxation of Equation 11.

DEFINITION 10. We say a patch collection4 M is valid if

|AL(c,M)| = |AR(c,M)|, ∀c ∈ CI ∩M
for complete NRG-subdivision extraction and

max(|AL(c,M)|, |AR(c,M)|) = 1, ∀c ∈ M
for partial NRG-subdivision extraction.

LEMMA 3. Let U denote the set of valid patch collections.

For each M ∈ U , denote yM = (xM; zM) ∈ [0, 1]|MP |+|MV |

where xM and zM collect vertex indicators and patch indicators
of M, respectively. For each v ∈ MV , let yv = (ev;0) ∈
[0, 1]|MP |+|MV | where ev denotes the standard basis. Suppose x

3If necessary, we can always slightly perturb the barycenter of a triangle

such that it does not lie on any boundary of P (t).
4Note that each patch can repeat multiple times in this case.

and z form a feasible solution to the linear relaxation of Equa-
tion 11 or Equation 14. Then y = (z;x) can be decomposed as

y =
∑

M∈U+

tMyM +
∑

v∈MV

tvyv, (16)

where U+ ⊂ U is a subset of valid patches, tM are positive and tv
are non-negative.

PROOF. The proof is as follows: y can be represented as a linear
combination of basic feasible solutions, which are given by either
valid patch collections or individual vertices. We refer to [Schrijver
1986] for details about the properties of linear programs.

Complete NRG-subdivision Extraction. The following theo-
rem presents an integrity condition for complete NRG-subdivision
extraction setting.

THEOREM 1. A solution to the linear relaxation of Equa-
tion 11, which is described by a valid patch collection M∗ ∈ U ,
is the unique optimal solution if

Rp(M∗) + λvE(M∗)

m(M∗)
<

Rp(M) + λvEM∗(M)

m(M)
, ∀M ∈ U\{M∗},

(17)
where m(M) denotes the number of times that M covers the un-
derlying surface S and

E(M∗) = Rv(M∗) + ηm(M∗)
∑

v∈S+

wv,

EM∗(M) =
∑

v∈S+∩M
(η + rM(v))wv −

∑

v∈S−∩M
rM(v)wv, (18)

where S+(S−) = {v|v ∈ M∗, rM∗(v) > (<)0} denotes the set of
positive(negative) singular vertices of the patch collection M∗.

PROOF. Suppose instead the optimal solution is given by

y =
∑

M∈U+

tMyM +
∑

v∈MV

tvyv.

Let us consider the restricted linear program where U+ in the de-
composition of the patch indicator vector y (See Equation 16) is a

subset of U = U+ ∪ {M∗}. Note that both yM∗ and y are feasible
solutions of this restricted linear program.

Substituting Equation 16 into Equation 11, we can reformulate
the restricted linear program by treating tM and tv as variables:

min
∑

M∈U

Rp(M)tM + λv

∑

v∈MV

|
∑

M∈U

rM(v)tM − ηtv|

s.t.
∑

M∈U

m(M)tM = 1,

∑

M∈U,v∈M

tM + tv ≤ 1, ∀v ∈ MV

0 ≤ tM, tv, ∀M ∈ U , v ∈ MV . (19)

It remains to prove that t∗, which is given by

t∗M =

{

1/m(M∗) M = M∗

0 otherwise
, tv = 0, ∀v ∈ MV ,

is the optimal solution to Equation 19. In this case, y cannot be the
optimal solution since t∗ is a better solution.
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We complete the proof by contradiction. In fact, we only need
to prove t∗ is a strict local minimum since Equation 19 is a con-
vex program and every strict local minimum of a convex optimiza-
tion problem is also the global minimum [Boyd and Vandenberghe
2004]. Suppose there exists a better feasible solution t 6= t∗ where

‖t− t∗‖∞ < 1/(max
v∈Vs

∑

M∈U

|rM(v)|+ η).

First of all, it is easy to see that
∑

M∈U

rM(v)tM − ηtv ≥ 0(≤ 0), ∀v ∈ S+(S−).

Thus, the objective value of Equation 19

≥
∑

M∈U

Rp(M)tM + λv

∑

v∈S+∪S−

wv|
∑

M∈U

rM(v)tM − ηtv|

≥
∑

M∈U

Rp(M)tM − λv

∑

v∈S−
wv

∑

M∈U

rM(v)tM

+ λv

∑

v∈S+

wv(
∑

M∈U

rM(v)tM − ηtv)

≥
∑

M∈U

Rp(M)tM − λv

∑

v∈S−
wv

∑

M∈U

rM(v)tM

+ λv

∑

v∈S+

wv(
∑

M∈U

rM(v)tM − η(1−
∑

M,v∈M
tM))

=
∑

M∈U

tM(Rp(M) + λvEM∗(M))− ηλ
∑

v∈S+

wv

> (Rp(M∗) + λvE(M∗))/m(M∗)− ηλv

∑

v∈S+

wv

=
∑

M∈U

Rp(M)t∗M + λv

∑

v

wv|
∑

M∈U

rM(v)t∗M − ηt∗v|,

which is a contradiction.

COROLLARY 2. Suppose there exists a valid patch collection
M∗ such that λvRv(M∗) = 0, e.g. either the vertex regularity
term is not omitted or the vertex regularity of M∗ is zero. Then
M∗ is the unique optimal solution to the linear relaxation of Equa-
tion 11 if

Rp(M∗)/m(M∗) < Rp(M)/m(M), ∀M ∈ U \ {M∗}.

Theorem 1 and Corollary 2 indicate that the linear relaxation of
Equation 11 tends to return integer indicators if the vertex regular-
ity term is consistent with the patch regularity term. On the other
hand, the linear relaxation could return real indicators if these two
terms adversely compete with each other.

Partial NRG-subdivision Extraction. The following theorem
presents an integrality condition for partial NRG-subdivision ex-
traction.

THEOREM 2. Suppose σ(·) : F0 → R
+ denotes an arbitrary

positive function on face samples F0. Then a valid patch collec-
tion M∗ is the unique optimal solution to the linear relaxation of
Equation 14 if

Rp(M∗) +E ′(M∗) <
Rp(M) +E ′

M∗(M)

γM∗(M)
, ∀M ∈ U \ {M∗}

(20)

where,

E ′(M∗) = λvE(M∗) + λcRc(M∗),

E
′
M∗(M) = λvEM∗(M) + λc

∑

c∈M∗
wc|dM∗(c)|dM(c)

and

γM∗(M) =
∑

f∈F0
M∗∩M

σ(f)/
∑

f∈F0
M∗

σ(f),

where F0
M denotes the set of face samples that are covered by M.

PROOF. The proof is about similar to the proof of Theorem 1.
Since U is finite in the partial NRG-subdivision extraction setting,
we directly write down the equivalent linear programming formu-
lation to Equation 14 as

min
∑

M∈U
Rp(M)tM + λv

∑

v∈MV

wv|
∑

M∈U
rM(v)tM − ηtv|

+ λc

∑

c∈CI

wc|
∑

M∈U
dM(c)tM|

s.t.
∑

M∈Uf

tM ≤ 1, ∀f ∈ F0,

∑

M∈U,v∈M
tM + tv ≤ 1, ∀v ∈ MV

0 ≤ tM, tv, ∀M ∈ U , v ∈ MV , (21)

where Uf denotes the set of proper patch collections that cover face
f . Second, we have

∑

M∈U
γM∗(M)tM

=
∑

M∈U

∑

f∈F0
M∗∩M

tMσ(f)/
∑

f∈F0
M∗

σ(f)

=
∑

f∈F0
M∗

σ(f)(
∑

M∈Uf

tM)/
∑

f∈F0
M∗

σ(f)

≤ 1.

Finally, for any feasible solution t 6= t∗ where

‖t− t∗‖∞ ≤ 1/max(max
c∈CI

∑

M∈U
|dM(c)|, max

v∈MV

∑

M∈U
|rM(v)|),

we find that the objective value of Equation 21

≥
∑

M∈U
Rp(M)tM − λc

∑

c,dM∗ (c)<0

wc

∑

M
dM(c)tM

+ λc

∑

c,dM∗ (c)>0

wc

∑

M
dM(c)tM − λv

∑

v∈S−
wv

∑

M∈U
rM(v)tM

+ λ
∑

v∈S+

wv(
∑

M∈U
rM(v)tM − η(1−

∑

M,v∈M
tM))

=
∑

M∈U
tM(Rp(M) +E

′
M∗(M))− ηλv

∑

v∈S+

wv

>
∑

M∈U
γM∗(M)tM(Rp(M∗) +E ′(M∗))− ηλv

∑

v∈S+

wv

≥ (Rp(M∗) + µRc(M∗) + λRv(M∗)),

which ends the proof.
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