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Abstract

We introduce a principled approach for simultane-
ous mapping and clustering (SMAC) for establish-
ing consistent maps across heterogeneous object
collections (e.g., 2D images or 3D shapes). Our
approach takes as input a heterogeneous object
collection and a set of maps computed between
some pairs of objects, and outputs a homogeneous
object clustering together with a new set of maps
possessing optimal intra- and inter-cluster con-
sistency. Our approach is based on the spectral
decomposition of a data matrix storing all pair-
wise maps in its blocks. We additionally provide
tight theoretical guarantees for the accuracy of
SMAC under established noise models. We also
demonstrate the usefulness of our approach on
synthetic and real datasets.

1. Introduction
Establishing maps (e.g. pointwise correspondences) across
object collections is a fundamental problem spanning many
scientific domains. High-quality maps facilitating informa-
tion propagation and transformation are key to applications
ranging from 3D reconstruction with partial scans (Huber
& Hebert, 2001), data-driven geometry completion and re-
construction (Pauly et al., 2005), texture transfer (Schreiner
et al., 2004; Kraevoy & Sheffer, 2004), to comparative bi-
ology (Boyer et al., 2011; Gao et al., 2017), joint data-
analysis (Huang et al., 2011; Kim et al., 2012; Wang et al.,
2013; 2014; Huang et al., 2014), and data exploration and
organization (Kim et al., 2012; Huang et al., 2014).

High quality object maps are generally difficult to compute.
Prior work on map computation focused on optimizing maps
between pairs of objects; see (van Kaick et al., 2010) for
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a standard survey and (Kim et al., 2011; Mandad et al.,
2017) for some recent advances. Despite the significant
progress, state-of-the-art techniques tends to hit a barrier on
the quality of maps that are computed in a pairwise manner.
Building upon the availability of big-data, a recent line of
research (Kim et al., 2012; Nguyen et al., 2011; Ovsjanikov
et al., 2012; Huang et al., 2012; Huang & Guibas, 2013;
Huang et al., 2014; Chen et al., 2014; Zhou et al., 2015a;b;
Shen et al., 2016; Leonardos et al., 2017; Huang et al., 2017)
considered computing many pairwise maps jointly among
a collection of objects. The promise of these approaches
hinges upon the observation that one way to obtain a high
quality pairwise map between dissimilar objects is to choose
a path connecting these objects but consisting of consecutive
similar shapes: maps between similar objects are typically
of higher quality, and so is the resulted composed map.
From a regularization perspective, joint map computation
leverages the generic consistency of a network of maps
among multiple objects, in which composition of maps
along cycles are expected to be close to the identity map.

However, the performance of these data-driven approaches
relies predominantly on the homogeneity of the object col-
lection, i.e. the input objects fall into the same category or
sub-category (e.g. Chairs, Cars, and Human models). In
the presence of heterogeneous data, where the input objects
fall into multiple underlying categories, applying existing
data-driven approaches without the category label informa-
tion tend to produce unsatisfactory results. In this setting,
even though existing methods are able to suppress the noise
in intra-cluster maps within a single cluster, jointly com-
puted maps for the entire object collection leads are often
significantly worse. One explanation is that high fraction
of incorrect inter-cluster maps tends to “contaminate” the
regularization effect of intra-cluster maps. A natural resolu-
tion is to employ a two-stage cascadic strategy that identi-
fies the underlying clusters before computing the intra- and
inter-cluster maps. Unfortunately, such clustering requires
accurate quantification of the object similarities, which is
a difficult problem in its own right. Meanwhile, the error
produced in the clustering stage is unlikely remedied by the
consistency-based regularization.

In this paper, we propose to solve the mapping and clus-
tering problems simultaneously. Instead of explicitly re-
lying on certain pairwise similarity and/or map distortion
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Figure 1. The pairwise map distortion scores (Left) and the pair-
wise cycle-consistency scores (Right) derived from 3-cycles. The
scores are normalized by the maximum score in each matrix.

scores, we identify the underlying clusters based on the
consistency of intra- and inter-cluster maps, inspired by
the observation that maps tend to be more consistent along
cycles within a cluster than across clusters. This discrep-
ancy has been observed in many different contexts, and
appears to be a consequence of the energy landscape of
almost all optimization-based pairwise matching algorithms.
The matching energy functional between objects in the same
underlying cluster tends to have simple energy landscapes
with easily identifiable global optimums, resulting in fairly
cycle-consistent intra-cluster maps; in contrast, the highly
non-convex energy landscape for dissimilar objects from
different clusters leads to more “random” maps due to ran-
dom initialization and/or multiple strong local minimums,
for which cycle-consistency is much less often observed.
This map consistency argument is the foundation of our
simultaneous mapping and clustering (SMAC) algorithm.

1.1. Motivating Example

We validate the map consistency argument through a mo-
tivating example (see Figure 1) on a real dataset from
SHREC07 Watertight benchmark (Giorgi et al., 2007). This
dataset consists of 38 shapes: the first 18 are Human models
and the remaining 20 are Fourleg models (e.g., Horses and
Dogs). Each shape is represented as a discrete metric space
with 1024 sample points generated from farthest-point sam-
pling (Eldar et al., 1997). We compute pairwise blended
intrinsic maps (Kim et al., 2011) for all objects in this col-
lection and use these maps to compute two similarity scores
for each object pair: a map distortion score that measures
the squared sum of geodesic distortions across all point-
pairs (c.f. (Bronstein et al., 2006)), and a cycle-consistency
score that is the median value (among other options) of the
distortion scores of all 3-cycles to which the pair belongs,
where the distortion of a 3-cycle is defined as the squared
sum of the geodesic distances between each point and its
image propagated along the 3-cycle.

Figure 1 illustrates the distributions of the map distortion
scores (Left) and the cycle-consistency scores (Right) on the
38 models. The cycle-consistency scores clearly reveal the

underlying cluster structure and in fact better separates the
two clusters of models (Human vs. Fourleg) than the map-
distortion scores (intra-cluster blocks in the right figure are
darker in blue). The superior cluster separation is verified
by comparing the results of spectral clustering (Ng et al.,
2002; Lei & Rinaldo, 2015) using the two similarity scores:
spectral clustering based on the cycle-consistency scores
recovers the two underlying clusters perfectly, whereas the
same procedure using the map distortion scores incorrectly
puts two Fourleg models in the cluster of Human models.
This motivating example illustrates the effectiveness and
superiority of the map consistency score as a quantification
of object similarity.

1.2. Approach Overview

Motivated by the example above, we propose an algorithm
for simultaneous mapping and clustering (SMAC). Our
SMAC algorithm takes as input (i) an object collection that
falls into multiple clusters, and (ii) some noisy maps pre-
computed between object pairs, and outputs the underlying
clusters together with improved maps between all pairs of
objects. Our SMAC algorithm builds upon the equivalence
between map consistency and the low-rank property of a
data matrix with consistent maps in its blocks (c.f. (Huang
& Guibas, 2013)). We show that this low-rank property still
holds in the setting of multiple disjoint collections of con-
sistent intra-cluster maps, though the rank is expected to be
higher due to multiple clusters. Based on this observation,
the first step of our approach simultaneously recovers the un-
derlying clusters and intra-cluster maps by spectral decom-
position. We show that properly “rounding off” the leading
eigenvectors recovers the ground-truth clusters and intra-
cluster maps in a single pass. We then construct inter-cluster
maps from the recovered intra-cluster maps. Our theoreti-
cal analysis establishes sharp exact recovery conditions for
both steps under a fairly general noise model, using some
novel tight L∞-stability bounds for eigen-decompositions.

1.3. Related Works

Joint object matching, i.e., simultaneously estimating maps
among a collection of objects, is an emerging field across
many scientific problems. Earlier works use combinato-
rial optimizations (Nguyen et al., 2011; Kim et al., 2012;
Huang et al., 2012). More recent works (Huang & Guibas,
2013; Huang et al., 2014; Chen et al., 2014; Wang & Singer,
2013) rely on convex or non-convex optimization tech-
niques.However, all these methods assume that the under-
lying object collection is homogeneous (all objects belong
to a single category). For a heterogeneous object collec-
tion where the objects fall into multiple distinctive clusters,
existing methods usually rarely succeed in producing both
high-quality intra- and inter-cluster maps.
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Clustering and in particular spectral clustering is another
well-studied topic. We refer to (Lei & Rinaldo, 2015; Rohe
et al., 2011) for some recent advances and to (Filippone
et al., 2008; Luxburg, 2007; Fortunato, 2010) for surveys.
Our approach falls into the general category of graph-based
clustering, but the pairwise information we utilize is of
“functional” rather than “scalar” nature. Instead of the more
common approach that derives affinity scores from the pair-
wise maps for clustering, our SMAC algorithm discovers the
cluster structure based purely on the consistency of pairwise
maps and demonstrates improved empirical performance.
This strategy is reminiscent of heterogeneous multirefer-
ence alignment (Boumal et al., 2017) and simultaneous
alignment and classification (Lederman & Singer, 2016) for
synchronization problems in Cryo-Electron Microscopy; in
this context, our residue-based clustering strategy is closest
in nature to learning group actions (Gao et al., 2016).

Our approach relies on tight L∞-type bounds on leading
eigenvectors of perturbed matrices. Though the stability of
eigenvalues and eigenspaces are well-studied, element-wise
eigenvector stability appears to be a much harder problem;
see recent survey (O’Rourke et al., 2016). We introduce
new stability bounds to tackle this technical difficulty.

1.4. Mathematical Notation

We use lower bold letters a, b, c,u,v,w, · · · to denote vec-
tors, and upper letters A,B,C, · · · for matrices. For a block
matrix X ∈ Rn1m1×n2m2 , we use Xij ∈ Rm1×m2 to de-
note its ij-th block; the ij-th element of a matrix A is de-
noted as aij . With ⊗ we denote the Kronecker product. For
a symmetric matrix A ∈ Rn×n, we always sort the eigen-
values in non-increasing order, i.e., λ1(A) ≥ · · · ≥ λn(A).
Matrix norms ‖ · ‖F , ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ will be used
for a matrix A ∈ Rn1×n2 , of which ‖ · ‖2 = σmax(A) is the
maximum singular value of A, and the spectral norm ‖ · ‖2
is sometimes simplified as ‖ · ‖. We denote Pm for the set
of permutation matrices of dimension m×m.

2. Algorithm
For simplicity, we focus on describing and analyzing our
algorithm under the setting where pair-wise maps are given
by permutations. In Section 4, we show how to modify the
algorithm for partially similar objects.

We first describe the problem setup. Consider n objects
S = {S1, · · · , Sn} each represented by m points. With
G = (S, E) we denote an observation graph among S.
An initial map X in

ij ∈ Pm is pre-computed on each edge
(i, j) ∈ E using an off-the-shelf pairwise object matching
algorithm from Si to Sj . We also assume the objects in S
are partitioned into k ≥ 2 clusters, but k is unknown. Our
goal is to identify the underlying clusters, and in the mean-

Algorithm 1 PermSMAC: Simultaneously mapping and
clustering
Input: Observation graph G = (S, E) and initial pairwise

maps X in
ij , (i, j) ∈ E

Output: Underlying clusters S = c1 ∪ · · · ∪ ck and opti-
mized pairwise maps Xij , 1 ≤ i, j ≤ n

1: {Step 1} Simultaneously compute the intra-cluster
maps and extract the underlying clusters:

2: {Step 1.1} Form data matrix based on (1).
3: {Step 1.2} Compute the critical value r =

argmax
2≤i≤nm

λi−λi+1

λi+λi+1
.

4: {Step 1.3} LetU ∈ Rnm×r store the leading r eigen-
vectors of X . Compute pair-wise maps X?

ij by solving
(2)

5: {Step 1.4} Use fij(X?
ij) as the affinity score and

apply single-linkage clustering to obtain the underlying
clusters

6: {Step 2} compute the inter-cluster maps by solving (6)

while improve all pairwise maps between objects in S. As
a basis for identifying the underlying clusters, we assume
that the intra-cluster maps are more accurate (in terms of
cycle-consistency) than inter-cluster maps.

Our algorithm proceeds in two major steps. The first step
simultaneously extracts the underlying clusters and com-
putes intra-cluster maps. The second step then computes
inter-cluster maps. Now we introduce these two steps in
details. Algorithm 1 provides the pseudo code.

2.1. Step I: Extract underlying clusters and compute
intra-cluster maps.

Motivated from prior works for map synchroniza-
tion (Pachauri et al., 2013; Shen et al., 2016), we use a
block data matrix X ∈ Rnm×nm to encode the input maps:

Xij =

{
(X in

ij − 1
m11T ) (i, j) ∈ E

0 otherwise
(1)

Our approach is motivated by the empirical observation
that the leading eigen-vectors of X reveal the underlying
clusters and simultaneously denoise intra-cluster maps if
intra-cluster maps are more accurate than inter-cluster maps.
We provide the algorithmic details below; an analysis is
provided in Section 3.

Given the data matrix, we first estimates the number of
stable eigen-vectors as

r = argmax
m≤i≤nm

λi − λi+1

|λi|+ |λi+1|
.

Here we search within the range of [m,nm], as we expect
multiple underlying clusters. Let U ∈ Rnm×r store the
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top r eigen-vectors of X , and divide U into n matrices
U1, . . . , Un of shape m×r such that U = (UT1 , · · · , UTn )T .
We then compute the estimated map X?

ij along each edge
(i, j) ∈ E by solving a linear assignment problem, i.e.,

X?
ij = min

X∈Pm

fij(X), fij(X) := ‖X · Ui − Uj‖2F (2)

for all 1 ≤ i, j ≤ n. Note that (2) admits an exact solution
via linear assignment. In fact,

X?
ij = argmin

X∈Pm

‖XUi − Uj‖2F (3)

= argmin
X∈Pm

(‖Ui‖2F + ‖Uj‖2F − 2〈XUi, Uj〉) (4)

= argmax
X∈Pm

〈X,UjUTi 〉. (5)

Intuitively, UjUTi provides an approximation of the underly-
ing map Xij , and the linear assignment procedure projects
this approximation onto the space of permutations.

For clustering, we treat the residual score fij(X?
ij), 1 ≤

i, j ≤ n as the distance measure between Si and Sj , and
apply single-linkage clustering (Gower & Ross, 1969) to
obtain the underlying clusters. We set k = [ r

m−1 ] as the
number of desired clusters.

Empirically, we found that when the input inter-cluster maps
are inaccurate, the quality of estimated inter-cluster maps
appear to be much more noisy than estimated intra-cluster
maps. This motivates us to re-estimate inter-cluster maps as
a second step, described in Section 2.2 below.

2.2. Step II: Estimate inter-cluster maps.

We estimate the inter-cluster maps between each pair of
clusters independently. Specifically, consider two clusters
cs and ct . Let Sis ∈ cs and Sit ∈ ct be a pair of objects
selected from each cluster, respectively. We optimize the
inter-cluster map X inter

st , represented as a pairwise object
map Xisit , by solving the following linear assignment:

X inter
st = argmin

X∈Pm

∑
i∈cs,j∈ct,(i,j)∈E

‖X −XjitX
in
ij Xiis‖1

= argmax
X∈Pm

∑
i∈cs,j∈ct,(i,j)∈E

〈X,XjitX
in
ij Xiis〉. (6)

Note that it is possible to jointly optimize X inter
st among all

pairs of clusters. However, since the number of clusters is
usually significantly smaller than the size of each cluster,
we found the gain of doing so is insignificant.

3. Analysis
We first describe our noise model in Section 3.1. We then
analyze our method under this model and present the exact

recovery conditions for both underlying clusters and the
pairwise maps in Section 3.2. Our analysis is based on a
set of new stability bounds of eigen-decompositions. The
proofs of all Lemma’s and Theorem’s with technical details
can be referred to in the supplemental material.

3.1. Model for Analysis

We consider two models, one for the pairwise map and
the other one for the observation graph and the underlying
cluster structure.

Map model. We generalize the map model described
in (Shen et al., 2016) to multiple clusters: Suppose there
are k underlying clusters. With cs, 1 ≤ s ≤ k we denote
the vertex indices of the s-th cluster. In other words, we
have {1, · · · , n} = c1 ∪ c2 ∪ · · · ∪ ck. Given an observation
graph, the input pairwise maps are independent, and they
follow

X in
ij =

{
Im with probability ηij
UPm

with probability 1− ηij

where UPm
denotes a random permutation matrix satisfying

E[UPm
] =

1

m
11T . (7)

ηij depends on the edge type: ηij = p if (i, j) is an
intra-cluster edge, i.e., (i, j) ∈ E ∩ (∪1≤s≤kcs × cs), and
ηij = q if (i, j) is an inter-cluster edge, i.e., (i, j) ∈
E ∩ (∪1≤s6=t≤kcs × ct). We assume p > q.
Remark 1. Note that one can also generalize the model by
assuming there exist underlying permutations Pi, 1 ≤ i ≤ n,
so that the ground-truth map Xij = PjP

T
i . Nevertheless,

it turns out that the two models are identical (Shen et al.,
2016) . Hence we adopt the simpler form for convenience.

Model for the observation graph and clusters. To obtain
concise and interpretable exact recovery conditions, we
are particularly interested in analyzing our algorithm when
the observation graph and underlying clusters are generated
from the following established model: assume n = n0k, and
the size of each underlying cluster |cs| = n0, 1 ≤ s ≤ k;
the observation graph is generated from the Erdős-Rényi
G(n, t) with edge selection probability t. However, the
stability bounds we introduce in the supplemental material
can be used for analyzing more general noisy models, e.g.,
sizes of the underlying clusters are different.

3.2. Map and Cluster Recovery

We begin by analyzing the leading eigenvalues and eigen-
vectors of E[X] to gain insights on the necessary conditions
for map and cluster recovery. To make our discussion more
general, we first assume the underlying cluster and the obser-
vation graph are fixed. Consider then the following (p, q)-
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reweighted normalized adjacency matrix A(p, q) ∈ Rn×n:

(A(p, q))ij =

 p (i, j) ∈ E ∩ ∪1≤s≤m(cs × cs),
q (i, j) ∈ E ∩ ∪1≤s 6=t≤m(cs × ct).
0 otherwise

(8)
It is clear that

E[X] = A(p, q)⊗ (Im −
1

m
11T )

and thus the non-zero eigenvalues of E[X] are non-zero
eigenvalues ofA(p, q) with multiplicitym−1. Furthermore,
let ( 1√

m
1, Hm) be an orthonormal basis for Rm. Then

the leading k(m − 1) eigenvectors of E[X] are given by
Sk ⊗Hm. This leads two conditions on the eigenvalues and
eigenvectors of A(p, q) for map and cluster recovery:

• Eigenvalue separation. Since our method leverages
the largest eigengap, we assume that λk(A(p, q)) −
λk+1(A(p, q)) has the largest eigengap. Define

γ =

max
1≤i6=k≤n−1

λi(A(p, q))− λi+1(A(p, q))

λk(A(p, q))− λk+1(A(p, q))
,

Then a necessary condition for map recovery is γ < 1.

• Eigenvector separation. We further assume that the
underlying clusters can be recovered by reading off
the rows of Sk. Formally, consider rows of Sk as
coordinates of the corresponding objects, and define

dintra = max
1≤s≤k

max
i,j∈cs

‖(ei − ej)
TSk‖, (9)

dinter = min
1≤s<t≤k

min
i∈cs,j∈ct

‖(ei − ej)
TSk‖. (10)

dintra and dinter essentially measure the maximum dis-
tance within each cluster and the minimum distance be-
tween different clusters, respectively. Thus, a necessary
condition for cluster recovery is that dintra < µ · dinter
for some small constant µ.

Under these two conditions, it is easy to see that when
X ≈ E[X], we have Ui ≈ (eTi Sk) ⊗ Hm and UjUTi ≈
(eTj SkS

T
k ei)(Im− 1

m11T ). It follows that both the underly-
ing clusters and intra-cluster maps can be exactly recovered.

These two separation conditions are quite general. In fact,
they hold for the noisy model described in Section 3.1. To
gain some further insight, one can show that (c.f. (Le et al.,
2017)) with high probability

λ1(A(p, q)) =


q + p−q

k +O( 1√
nt

) i = 1
p−q
k +O( 1√

nt
) 2 ≤ i ≤ k

O( 1√
nt

) k + 1 ≤ i ≤ n

indicating that γ = o(1). Moreover, under this model

A(p, q) ≈ (p− q)Ik ⊗ (11T ) + q(11T ).

If p and q are well-separated, the top k eigenvectors of
A(p, q) approximate Ik⊗1, meaning dintra ≈ 0 and dinter ≈
1. Now we formally state the exact recovery conditions:

Theorem 3.1. (Intra-Cluster and Map Recovery) Assume
t = Ω( log(n)

n ). Consider the noise model described in
Section 3.1. There exists an absolute constant cintra such
that PermSMAC recovers the underlying intra-cluster maps
and the underlying clusters with high probability if

p− q ≥ cintrak

√
log(n)

nt
. (11)

Remark 2. Note that the gap between p and q is used to
ensure the recovery of the underlying clusters. Moreover,
the recovery rate matches the information theoretic lower
bound established in (Chen et al., 2016) up to O(

√
log(n),

indicating the tightness of our condition for PermSMAC.

The following theorem provides an exact recovery condition
for the inter-cluster maps. Compared with the previous
lower bound, the lower bound on q for inter-cluster map
recovery is significantly cruder. This shows the advantage
of recovering inter-cluster maps as a separate step.

Theorem 3.2. There exists an absolute constant cinter > 0,
so that when

q ≥ cinterk

√
log(n)

n2t
,

PermSMAC recovers the underlying inter-cluster maps with
high probability.

4. Partial Matching
In this section we extend the algorithm to handle partially
(as opposed to fully) similar objects. Each input object Si
(1 ≤ i ≤ n) in this setting has mi ∈ N+ points, where the
mi’s vary across the collection. Consequently, the pairwise
maps X in

ij ∈ {0, 1}mj×mi are no longer permutation ma-
trices since some rows and columns may only contain zero
elements. We propose the following modified algorithm for
SMAC in this partial matching setting.

Step I: Extract underlying clusters and compute intra-
cluster maps. Forming the data matrix and leading eigen-
vector computation stay the same as in the full matching
setting, except we replace X in

ij − 1
m11T by X in

ij in (1).
The first difference occurring in the partial matching set-
ting is that we cannot apply (2) to obtain pair-wise maps
and affinity scores for clustering. Our strategy is to apply
single linkage clustering on the rows of U . Specifically,
the distance measure between two points p, p′ is given by
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‖up − up′‖2, where up is the corresponding row of p in U .
The number of output clusters is set as r. Each output clus-
ter of this single-linkage procedure collects a set of matched
points among the input objects. We merge two clusters if the
objects they belong to overlap. Suppose we finally obtain
k clusters c1, · · · , ck. For each cluster ci, we introduce a
binary matrix Yi ∈ {0, 1}ni×ri , whose columns encode the
enclosed point clusters. Then it is easy to see that the blocks
of YiY Ti describe intra-cluster maps. Note that ri = m in
the full setting, but in the partial setting ri is usually larger
than max1≤i≤nmi, due to partial similarity.

Step II: Compute inter-cluster maps. In the partial set-
ting, we encode the inter-cluster map from cluster cs to
cluster ct as a matrix Xst ∈ {0, 1}rt×rs . Consider a object
pair (i, j) ∈ E , where i ∈ cs and j ∈ ct. With Ei,s and Ej,t
we denote the index matrices that extract the correspond-
ing blocks in Ys and Yt. It is easy to see that the entries
Y Tt Ej,tX

in
ij E

T
i,sYs provide cues for the inter-cluster map

Xst. Similar to the full map setting, we compute

Cst =
∑

i∈cs,j∈ct,(i,j)∈E

Y Tt Ej,tX
in
ij E

T
i,sYs.

Since the inter-cluster maps may not be permutation ma-
trices either, we apply a simple thresholding to obtain the
inter-cluster maps:

Xst = Cst > βst,

where βst is set as 0.9 times the maximum element of Cst
in our experiments.

5. Experimental Results
In this section, we evaluate our approach on both synthetic
(Section 5.1) and real datasets (Section 5.2 and Section 5.3).
For baseline comparison, we consider state-of-the-art ap-
proaches for clustering and joint mapping in each domain.

5.1. Experimental Results on Synthetic Instances

We apply the model described in Section 3 to generate the
synthetic data sets for our experiments. Below we summa-
rize how the procedure depends on the model parameters:

• The observation graph G. We employ a standard two-
community stochastic block model (Abbe et al., 2016)
which enables us to fully control the vertex degree
and the spectral gap. We use this model to generate
three observation graphs G1,G2,G3. All of them have
n = 300 vertices, but the vertex degrees and spectral
gaps vary. Specifically, G1 is the clique graph. G2
is a sparse graph, whose average vertex degree is 50
and the spectral gap is 0.1. The average vertex degree
and spectral gap of G3 are 50 and 0.5, respectively. In

our experiment, we treat G1 as the default observation
graph. We also study the influence of the observation
graphs on the performance of our algorithm.

• Number of clusters k. Without loss of generality, we
allocate each object into a underlying cluster with prob-
ability 1

k . For each observation graph, we generate and
fix one underlying cluster throughout our experiments.

• Other parameters m, γ, p, q. We fix the number of
points on each object as m = 30. In the partial match-
ing setting, we follow the protocol (Chen et al., 2014)
to generate the input objects so that the expected size
of each object is mγ. We sample the ratio of correct
inter-cluster maps q = exp(− i

10 ), 15 ≤ i ≤ 50. Since
p > q, we sample the ratio of correct intra-cluster maps
so that p− q = i

100 , 1 ≤ i ≤ 30.

We now study the empirical phase transition curves when
varying p and q under different k, γ and observation graphs.

Varying k. The first two rows of Figure 2 show the phase
transition curves of map and cluster recovery for k = 2, 4, 6.
Across all configurations, our approach tolerates a signif-
icant portion of noise in the input maps. The fraction of
noise that our approach can handle reduces as k increases,
which is consistent with the exact recovery conditions in
Section 3. In addition, phase transitions with respect to map-
ping recovery and cluster recovery roughly align. The subtle
differences are two-fold: when p and q are close, cluster
recovery breaks as there is no cue for clustering; likewise,
map recovery breaks when q approaches 0.

Versus mapping only. Figure 2 compares our approach to
state-of-the-art map recovery technique (Huang & Guibas,
2013). SMAC clearly exhibits a clear advantage in the
regime, where q is small and p is significantly larger than q.
This is expected through our exact recovery condition.

Varying observation graph. Figure 3 shows phase transi-
tion curves of map and cluster recovery when varying the
observation graphs (k = 2, γ = 1). Our approach tolerates
a larger fraction of incorrect maps for larger vertex degrees.
Moreover, when vertex degrees are comparable, a small
spectral gap means higher recovery rate.

Varying γ. Figure 4 shows the phase transition curves
when varying the overlapping ratio γ. We again show three
configurations, i.e., γ = 1, γ = 0.8 and γ = 0.6. Still, our
approach can tolerate a large rate of noise in the input maps.
Moreover, the rate reduces as γ becomes smaller. This is
expected, as low overlapping ratio introduces weak signal
for mapping and cluster recovery.
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Figure 2. Phase transition curves when varying q and p− q under
different configurations of k. The first and second rows show
mapping and cluster recovery of PermSMAC, respectively. The
third row shows mapping recovery of (Huang & Guibas, 2013). (a)
k = 2. (b) k = 4. (c) k = 6. Red means more success.

5.2. Experimental Results on 3D Shapes

We proceed to evaluate SMAC on 3D shapes. We consider
two datasets for this task. The first dataset collects four cate-
gories of 3D shapes from SHREC07-Watertight (Giorgi
et al., 2007), namely, Human, Fourleg, Armadillo and
Teddy. These categories appear to have both similar global
structures and local geometric details. However, the inter-
category variability is salient. The second dataset is more
fine-grained. It has 10 underlying shape collections from
FAUST training dataset (Bogo et al., 2014), where each col-
lection consists of different poses of the same human subject
(10 poses per collection). For evaluating shape maps, we
follow the protocol of (Kim et al., 2011) by collecting statis-
tics on the geodesic distortion of predicted correspondences
with respect to human annotated feature correspondences.

Mapping performance. Figure 5(c) plots the accuracy of
predicted correspondences of our approach versus the in-
put. For a detailed assessment, we separate the statistics of
intra-cluster maps and inter-cluster maps. We consider two
approaches for baseline comparison: the first applies (Huang
& Guibas, 2013) to the entire dataset, and the second ap-
plies (Huang & Guibas, 2013) to each category in isolation
then applies the third step of our approach to compute inter-
cluster maps. The second baseline may be considered as
a performance upper bound. Our proposed SMAC is sig-
nificantly better than mapping without clustering (which is
seriously affected by the noise in inter-cluster maps) and
competitive against the second baseline.
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Figure 3. Phase transition curves of map recovery and cluster re-
covery when varying the observation graph. The top row shows
mapping recovery, and the bottom row shows cluster recovery.
(a)G1. (b) G2. (c)G3.
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Figure 4. Phase transition curves of map recovery and cluster re-
covery when varying the overlapping ratio. The top row shows
mapping recovery, and the bottom row shows cluster recovery.
(a)γ = 1. (b) γ = 0.8. (c)γ = 0.6.

Clustering performance. As shown in Table 1, our
approach correctly identifies all underlying clusters in
SHREC07 and FAUST. We also applied two baseline clus-
tering approaches on the same dataset. The first approach
performs k-means on the spectral shape descriptors (Rusta-
mov, 2007). This approach only yields 84.6% and 72.0%,
respectively. The second approach utilizes the mapping
distortion as an affinity measure and applies spectral cluster-
ing. This approach yields 94.9% and 74.0%, respectively,
which are better than the first baseline. However, our ap-
proach is still better, which shows the advantage of using
the cycle-consistency constraint for clustering.

5.3. Experimental Results on 2D Images

Finally, we evaluate our approach on two datasets of 2D
images. The first dataset (Figure 6(Left)) consists of 600
internet images of Notre Dame. These images naturally
fall into 3 categories, each of which collects images from
a similar camera pose (Snavely et al., 2006). The second
dataset (Figure 6(Right)) collects 600 internet images of 4
landmark churches in Europe (Amiens Cathedral (200 im-
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Figure 5. Experimental results on 3D shapes. We consider two
datasets: (left) Human/Fourleg/Armadillo/Teddy, and (right) Dif-
ferent poses of xxx human subjects. For each dataset, we show
(top) snapshots of each dataset, and (bottom) error distribution of
predicted intra-cluster and inter-cluster shape maps.

SHREC07 FAUST Notre Dame Church
SMAC 100% 94.0% 99.3% 96.1%
Distort. 94.9% 74.0% 94.3% 91.9%
Descrip. 84.6% 72.0% 84.3% 86.7%

Table 1. Classification accuracy of our method and baseline ap-
proaches on the four datasets show in Figure 5 and Figure 6. Dis-
tort. and Descrip. stand for using the pairwise mapping distortion
score and global object descriptor for clustering, respectively.

ages), York Minster (200 images), Duomo (100 images) and
Westminster Abbey (100 images)). As inter-cluster maps
do not make much sense here, we only evaluate clustering
results and intra-cluster maps in this experiment. We sample
400 SIFT features (Lowe, 2004) for each image and apply
SIFT flow (Liu et al., 2011) to establish pairwise correspon-
dences between the features. We manually mark feature
correspondences for evaluation.

Mapping performance. Figure 6 compares our approach
with the two baseline approaches introduced in Section 5.2.
The relative performance is consistent. Specifically, due to
the small-overlapping region across different clusters, inter-
cluster maps are rather noisy, so applying joint-mapping
directly leads to sub-optimal results. In addition, our ap-
proach is competitive against the approach of computing
intra-cluster and inter-cluster maps in a sequential manner.

Clustering performance. Finally, we evaluate our ap-
proach in terms of clustering accuracy. We choose two base-
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Figure 6. Experimental results on 2D images. We consider two
datasets: (Left) Internet images of Norte Dame from three diverse
camera poses, and (Right) Internet images of five churches from
similar view points. Visualization is the same as Figure 5.

line approaches, where the first baseline approach performs
k-means on image descriptors. In this case, we employ
GIST (Oliva & Torralba, 2001). The second baseline uses
the residual of SIFT flow as the affinity score for clustering.
As shown in Table 1, our approach leads to a clustering
accuracy of 99.3% and 96.1% on Notre Dame and Church,
respectively. They are higher than those of the top perform-
ing baselines, i.e., 94.5% and 92.1%, respectively.

6. Conclusions
We have introduced SMAC for simultaneously computing
consistent maps across a heterogeneous data collection and
identifying the underlying clusters. The key idea is to lever-
age the higher self-consistency within intra-cluster maps
than inter-cluster maps. Enforcing this variation of consis-
tency allows us to denoise the input maps in a sequential
manner while simultaneously identifying the underlying
cluster structures. The approach is based on spectral de-
composition, for which we provided tight exact recovery
conditions for both the input maps and the underling clus-
ters. Experimental results on synthetic data sets justify our
exact recovery conditions, and experimental results on real
data sets demonstrate the efficacy of our approach.
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Abstract

This document contains all the proofs to the main paper on SMAC: Simultaneous Mapping and
Clustering Using Spectral Decomposition.

1 Organization of the Supplemental Material

We organize our paper’s supplemental material as follows. In Section 2, we present a set of tools for analyzing
the stability of leading eigen-vectors of a perturbed data matrix. These stability bounds are expressed with
respect to the algebraic constants of the original matrix and the perturbation matrix. In Section 3, we study
how these stability bounds shape out under different noise models of the perturbation matrix. We then use
these results to analyze the exact recovery conditions of PermSMAC in Section 4.

2 Stability of Eigen-decomposition in the Deterministic Setting

In this Section, we present our framework for analyzing the stability of eigen-decompositions. The framework
is based on a few key lemmas regarding the stability of eigenvalues and eigenvectors (Section 2.1). Their
proofs are deferred to Sections 2.2- 2.5.

2.1 Key Lemmas

Given a symmetric matrix A ∈ Rn×n, we are interested in controlling the stability of the leading eigenvectors
of a symmetric block matrixA⊗(Im− 1

m11T ) ∈ Rnm×nm under a symmetric block noise matrixN ∈ Rnm×nm.
To state the eigen-decomposition stability problem. Let λi, 1 ≤ i ≤ n and si, 1 ≤ i ≤ n be the eigenvalues

and corresponding eignevectors of A, respectively. Similarly, let µi, 1 ≤ i ≤ nm and ui, 1 ≤ i ≤ nm be the
eigenvalues and corresponding eigenvectors of A = A ⊗ (Im − 1

m11T ) + N , respectively. We are interested
in bounding the difference between λi, 1 ≤ i ≤ k and µ(i−1)m+j , 1 ≤ i ≤ k, 1 ≤ j ≤ m as well as the
difference between the column space (s1, · · · , sk) ⊗ Hm and that of Uk(m−1) = (u1, · · · ,uk(m−1)), where

Hm ∈ Rm×(m−1) is a basis matrix of I − 1
m11T . For convenience, we use Sk = (s1, · · · , sk) to denote the

leading k eigenvectors of A, and use Sk = (sk+1, · · · , sn) to collect its remaining eigenvectors. First, we
present the following result regarding eigenvalue stability:

∗huangqx@cs.utexas.edu
†liangzx96@gmail.com
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Lemma 2.1. (Eigenvalue Stability.) Denote E11 = (Sk ⊗Hm)TN(Sk ⊗Hm). Suppose

‖N‖+ ‖E11‖ < λk − λk+1,

then we have for every 1 ≤ i ≤ k, 1 ≤ j ≤ m− 1, p = (i− 1)(m− 1) + j,

− ‖E11‖ ≤ σp − λi ≤ ‖E11‖+
‖N‖+ ‖E11‖
λi − λk+1

(‖N‖ − ‖E11‖). (1)

Proof: See Section 2.2.

Remark 1. Note that (1) is tighter than the well-known Weyl’s inequality |λ1 − σi| ≤ ‖N‖, as

‖E11‖+
‖N‖+ ‖E11‖
λi − λk+1

(‖N‖ − ‖E11‖) < ‖E11‖+ (‖N‖ − ‖E11‖) = ‖N‖.

In particular, as ‖E11‖ � ‖N‖ in most cases, so our bound is significantly better than the Weyl’s inequality
when ‖N‖+ ‖E11‖ � λk − λk+1.

Moreover, our result is also tighter than that of [Eldridge et al., 2018], which introduces a similar stability
bound:

−‖E11‖ ≤ σp − λi ≤ ‖E11‖+
‖N‖2

λi − λk+1 − ‖N‖+ ‖E11‖
.

(1) is tighter as λi − λk+1 − ‖N‖+ ‖E11‖ ≤ λi − λk+1 and ‖N‖2 − ‖E11‖2 ≤ ‖N‖2.

Remark 2. To gain additional intuitions on (1), let us consider the special case where k = m = 1, and
let λi(A) be the i-th greatest eigenvalues of symmetric matrix A. For the matrix function A(t) = A + tN
depending on the parameter t with 0 ≤ t ≤ 1, let λi(t) = λi(A(t)), and ui(t) corresponds to eigenvalue
λi(t). First of all, it is easy to show that (e.g., through differentiating A(t)u1(t) = λ1(t)u1(t) and utilizing
‖u(t)‖ = 1)

λ′1(t) = u1(t)TA′(t)u1(t) = u1(t)TNu1(t). (2)

Recall that E11 = STk NSk = u1(t)TNu1(t) is a scalar in this special case. Hence the first order expansion
of λ1(t) is λ1(t) ≈ λ(A) + tE11. We now proceed to differentiate (2), which gives

λ′′1(t) = u′1(t)TNu1(t) + u1(t)TNu′1(t) = 2u1(t)TNu′1(t). (3)

Note that the expression of u′1(t) is given by

u′1(t) =

n∑
i=2

ui(t)
TNu1(t)

λ(t)− λi(t)
ui(t).

Substituting it into formula (3) yields the second order approximation of λ(t) would be

λ1(t) ≈ λ1(A) + E11t+

n∑
i=2

|ui(t)TNu1(t)|2

λ1(A)− λi(A)
t2,

or loosely speaking,

λ1(t) ≈ λ1(A) + E11t+

n∑
i=2

|ui(t)TNu1(t)|2

λ1(A)− λ2(A)
t2,

in which

n∑
i=2

|ui(t)TNu1(t)|2 =

n∑
i=1

∣∣ui(t)T (Nu1(t)
)∣∣2 − (u1(t)TNu1(t)

)2
= |Nu1(t)|2 − E2

11

≤ ‖N‖2 − ‖E11‖2.
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Thus the second-order Taylor expansion of λ(t) implies

‖E11‖+
‖N‖2 − ‖E11‖2

λ1(A)− λ2(A)

is a good approximation for |λ1(A+N)− λ1(A)|, which is exactly what we proposed in formula (1).
However, it must be pointed out that this expansion is just an approximation rather than a real bound

but it provides a good insight why (1) comes out. Besides, it would also be hard to generalize this expansion
idea to k > 1 since ‖E11‖ will no longer be a scalar if k > 1.

To characterize the difference between Sk ⊗ Hm and Uk(m−1) := (u1, · · · ,uk(m−1)), we consider the
following decomposition of Uk(m−1):

Uk(m−1) = (Sk ⊗Hm)X + Y,

where
X ∈ Rk(m−1)×k(m−1), STk Y = 0.

In other words, (Sk ⊗Hm)X is the projection of Uk(m−1) onto the column space of Sk ⊗Hm, and Y is the

projection of Uk(m−1) onto the dual space Sk ⊗Hm. Intuitively, we say Uk(m−1) is stable if Y is small and
X is close to a unitary matrix (which defines all orthogonal basis of a linear space). The following Lemma
provides a bound on the difference between X and a unitary matrix:

Lemma 2.2. (Controlling X.) Denote E11 = (Sk⊗Hm)TN(Sk⊗Hm). Suppose λk−λk+1 > ‖N‖+‖E11‖.
Then there exists a unitary matrix R ∈ O(k(m− 1)) so that

‖X −R‖ ≤ 1−

√
1−

(
‖N‖

λk − λk+1 − ‖E11‖

)2

. (4)

In particular,

‖X −R‖ ≤ ‖N‖2

(λk − λk+1 − ‖E11‖)2
. (5)

Proof: See Appendix 2.3.
It is easy to derive an upper bound on ‖Y ‖ using Lemma 2.2. However, our analysis requires bounding

individual blocks Yi, 1 ≤ i ≤ n, making such bounds insufficient for our purpose. To this end, we introduce
the following expression of Y , from which we will derive block-wise bounds.

Lemma 2.3. (Controlling Y .) Denote Σi = diag(σ(i−1)(m−1)+1, · · · , σi(m−1)), 1 ≤ i ≤ k, Λ = diag(λk+1, · · · , λn),

and Sk = (sk+1, · · · , sn). Let

Bi = (Sk ⊗Hm)(λiI − Λ⊗ Im−1)−1(Sk ⊗Hm)T , 1 ≤ i ≤ k. (6)

Suppose ‖N‖+ ‖E11‖ < λk − λk+1, then

Yi := (y(i−1)m+1, · · · ,yim) =

∞∑
l=0

(
(I −BiN)−1Bi

)l+1
N
(
Sk ⊗Hm

)
Xi(λiIm − Σi)

l. (7)

Proof: See Appendix 2.4.

We now present the last lemma which applies (7) to obtain a L∞-type bound on blocks of Yi. Specifically,
let Eb = eb ⊗Hm ∈ Rn(m−1)×(m−1). The following Lemma provides a way to bound ‖ETb Y ‖:

Lemma 2.4. (Bounding L∞-norm of Y) Given i ∈ {1, · · · , k}. Let Bi be defined by (6). Suppose there
are small constants ε1, ε2, ε3, δ < 1 such that the following four conditions are satisfied:

• ‖Bi‖‖N‖ ≤ ε1.
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• ‖Bi‖‖λiIm − Σi‖ ≤ ε2.

• ∃j0 ≥ 0, m0 ≥ 0, s.t., ∀ 0 ≤ j ≤ j0, il ≥ 0, 1 ≤ l ≤ j + 1, where 0 ≤
∑j+1
l=1 il ≤ m0,

max
1≤b≤n

‖ETb (BiN)i1Bi · · · (BiN)ij+1BiN(Sk ⊗Hm)‖ ≤ ε3‖Bi‖j · δ
∑j+1
l=1 il+1. (8)

• ε2 + δ < 1.

Then

max
1≤b≤n

‖ETb Yi‖ ≤ ‖Xi‖ ·
(

ε1
1− ε1 − ε2

·
(

(
ε2

1− ε1
)j0+1 + (

ε1
1− ε2

)m0

)
+

δ

1− ε2 − δ
ε3

)
. (9)

Proof: See Appendix 2.5.

Remark 3. As we will see later, the dominant term in (8) is ‖ET1 BNS‖, which can be controlled using
standard concentration bound. The technical difficulty is how to extend it to high order moments. Later
we will show how to achieve this goal by controlling power moments. Note that (8) does not incur a strong

bound. For example, in randomized models we consider in this paper, ‖B‖‖N‖ = O
(

1√
log(n)

)
. However,

the right-hand side of (8) only decays at a geometric rate.

Remark 4. It turns out the major task in terms of controlling eigen-decomposition stability is to provide
bounds on E11, N and the left-hand sides in (8). This is the goal of the next two sections.

2.2 Proof of Lemma 2.1

Denote Λk = (λ1, · · · , λk) and Λk = (λk+1, · · · , λn). It is clear that we can decompose A as

A = SkΛkS
T
k + SkΛk S

T

k .

For convenience we set p = (i−1)(m−1)+j and define Lm = Im− 1
m11T . To control |λi−σ(i−1)(m−1)+j |, 1 ≤

i ≤ k, 1 ≤ j ≤ m− 1, we consider an eigen-decomposition of A⊗ Lm +N with respect to basis spanned by
Sk ⊗Hm and Sk ⊗Hm. Introduce matrices

E11 = (Sk ⊗Hm)TN(Sk ⊗Hm),

E21 = (Sk ⊗Hm)TN(Sk ⊗Hm),

E22 = (Sk ⊗Hm)TN(Sk ⊗Hm).

Using unitary matrix S ⊗Hm to change the basis for matrices A⊗ Lm and N , respectively, we obtain that

(S ⊗Hm)T (A⊗ Lm)(S ⊗Hm) =

[
Λk 0
0 Λk

]
⊗ Im−1

(S ⊗Hm)TN(S ⊗Hm) =

[
E11 ET21

E21 E22

]
Observe that the matrix A⊗ Lm +N − µI is congruent to

B(µ) =

[
Λk ⊗ Im−1 + E11 − µI + ET21(µI − Λk − E22)−1E21 0

0 Λk ⊗ Im−1 + E22 − µI

]
and has the same inertia as well, which can be verified from the identity

(S ⊗Hm)T (A⊗ Lm +N − µI)(S ⊗Hm)

=

[
Λk ⊗ Im−1 + E11 − µI ET21

E21 Λk ⊗ Im−1 + E22 − µI

]
=

[
I P
0 I

]−1 [
Λk ⊗ Im−1 + E11 − µI + ET21(µI − Λk ⊗ Im−1 − E22)−1E21 0

0 Λk ⊗ Im−1 + E22 − µI

] [
I 0
PT I

]−1

,
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in which P = ET21(µI − Λk ⊗ Im−1 − E22)−1. Hence by letting µ = σp we have λp(A⊗ Lm +N − σpI) = 0
and then λp(B(σp)) = 0, and further more

σp = λp

([
Λk ⊗ Im−1 0

0 Λk ⊗ Im−1 + E22

]
+

[
E11 + ET21(σpI − Λk ⊗ Im−1 − E22)−1E21 0

0 0

])
.

However, the Weyl’s inequality told that

σp − λi = σp − λp(Λ⊗ Im−1) ≥ λmin

([
E11 + ET21(σpI − Λk ⊗ Im−1 − E22)−1E21 0

0 0

])
≥ min{λmin

(
E11 + ET21(σpI − Λk ⊗ Im−1 − E22)−1E21

)
, 0}

≥ −‖E11‖ (10)

in which we used the fact that σp − Λk ⊗ Im−1 − E22 is positive definite, and

σp − λi = σp − λp(Λ⊗ Im−1) ≤ λmax
([
E11 + ET21(σpI − Λk ⊗ Im−1 − E22)−1E21 0

0 0

])
≤ ‖E11 + ET21(σpI − Λk ⊗ Im−1 − E22)−1E21‖

≤ ‖E11 + ET21

(
(σp − λk+1)I − E22

)−1
E21‖ (11)

It remains to bound ET21(σpI − Λk ⊗ Im−1 − E22)−1E21. Towards this end, we consider an arbitrary value
µ > λmax(N). It is clear that

µI −
[
E11 ET21

E21 E22

]
(12)

is a positive definite matrix, and µI − E22 is also positive definite. From the identity

µI −
[
E11 ET21

E21 E22

]
=

[
I Q
0 I

]−1 [
µI − E11 − ET21(µI − E22)−1E21 0

0 µI − E22

] [
I 0
QT I

]−1

in which Q = ET21(E22 − µI)−1, we can see that µI −E11 −ET21(µI −E22)−1E21 is positive definite as well.
Applying it to (12), we obtain that

µI − E11 − ET21(µI − E22)−1E21 � 0,

or equivalently,
E11 + ET21(µI − E22)−1E21 � µI. (13)

Similarly, for µ < λmin(N), we have

E11 + ET21(µI − E22)−1E21 � µI. (14)

Letting µ→ ‖N‖ and µ→ −‖N‖ respectively, we obtain that

ET21(‖N‖I − E22)−1E21 � ‖N‖I − E11,

ET21(‖N‖I + E22)−1E21 � ‖N‖I + E11.

Here the second inequality arise by taking negative of (14).
As thus for any non-negative number α, β, we have

E11 + ET21

(
α(‖N‖I − E22)−1 + β(‖N‖I + E22)−1

)−1
E21 � (α+ β)‖N‖I + (1 + β − α)E11.

If we in addition have

ET21

(
(σp − λk+1)I − E22

)−1
E21 � ET21

(
α(‖N‖I − E22)−1 + β(‖N‖I + E22)−1

)−1
E21, (15)
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for some α, β ≥ 0, then we reach an upper bound

λmax

(
E11 + ET21

(
(σp − λk+1)I − E22

)−1
E21

)
≤ (α+ β)‖N‖+ |1 + β − α|‖E11‖ (16)

To ensure inequality (15), we need to show that the following inequality

1

σp − λk+1 − x
≤ α

‖N‖ − x
+

β

‖N‖+ x

holds for every eigenvalue x of E22, or in a stronger sense, for all −‖N‖ ≤ x ≤ ‖N‖. Define

θ = β/α, ε = ‖N‖, a = ‖E11‖

and then the above condition changes to

α ≥ ε2 − x2

(σp − λk+1 − x)
(
(1 + θ)ε+ (1− θ)x

)
for all −ε ≤ x ≤ ε. Hence we can take α as

αθ = max
−ε≤x≤ε

ε2 − x2

(σp − λk+1 − x)
(
(1 + θ)ε+ (1− θ)x

)
=

ε

(σp − λk+1)(1 + θ)
max
−1≤x≤1

1− x2

(1− ε
σp−λk+1

x)(1 + 1−θ
1+θx)

and substitute it into inequality (16) we obtain

λmax

(
E11 + ET21

(
(σp − λk+1)I − E22

)−1
E21

)
≤ (1 + θ)αθε+ |1 + (θ − 1)αθ|a.

But it is easy to see that αθ ≤ α0 ≤ 2ε
σp−λk+1+ε ≤

2ε
λk−λk+1

≤ 1, so the absolute value sign can be removed

from the inequality above, and substitute the expression of αθ into it:

λmax

(
E11 + ET21

(
(σp − λk+1)I − E22

)−1
E21

)
≤ (1 + θ)αθε+ (θ − 1)αθa+ a (17)

To simplify our computation, we introduce the following trigonometric function notations:

sinφ =
1− θ
1 + θ

, −π
2
≤ φ ≤ π

2
;

sinψ =
ε

σp − λk+1
, 0 ≤ ψ < π

6
;

sinω =
a

ε
, 0 ≤ ω ≤ π

2
(18)

Applying proposition 1 under these notations, we can rewrite αθ as

αθ =
sinψ

1 + θ
· 1

cos2 φ−ψ
2

, (19)

and substitute it into (17) to obtain

λmax

(
E11 + ET21

(
(σp − λk+1)I − E22

)−1
E21

)
≤ (1 + θ)αθε+ (θ − 1)αθa+ a

= a+
ε sinψ

cos2 φ−ψ
2

(1− sinω sinφ) (20)

6



By optimizing over θ, namely over φ, and applying proposition 2, we have

λmax

(
E11 + ET21

(
(σp − λk+1)I − E22

)−1
E21

)
≤a+ ε sinψ min

−π/2≤φ≤π/2

1− sinω sinφ

cos2 φ−ψ
2

=a+ ε
sinψ cos2 ω

1 + sinω sinψ

=‖E11‖+
‖N‖2 − ‖E11‖2

σp − λk+1 + ‖E11‖

≤‖E11‖+
‖N‖2 − ‖E11‖2

λi − λk+1
, (21)

where in the last step we used the fact σp − λi ≥ −‖E11‖ that has been proved before.

Proposition 1. Given two real number α, β with −π2 ≤ α, β ≤
π
2 , we have

max
−1≤x≤1

1− x2

(1 + x sinα)(1 + x sinβ)
=

1

cos2 α+β
2

Proof. It is trivial when x = ±1 so we always assume −1 < x < 1 in the following. Taking transformation

x = 1−p2
1+p2 , p ∈ R\{0}, we have

(1 + x sinα)(1 + x sinβ)

1− x2

=
1

4

[
(1− sinα)p+ (1 + sinα)p−1

] [
(1− sinβ)p+ (1 + sinβ)p−1

]
=

1

4

[
(1− sinα)(1− sinβ)p2 + 2(1− sinα sinβ) + (1 + sinα)(1 + sinβ)p−2

]
≥ 1

2
(1− sinα sinβ + cosα cosβ)

=
1

2

(
1 + cos(α+ β)

)
= cos2 α+ β

2
.

The proposition follows immediately.

Proposition 2. Given φ, ψ, ω as define in (18), we claim that

min
−π/2≤φ≤π/2

1− sinω sinφ

cos2 φ−ψ
2

=
cos2 ω

1 + sinω sinψ

Proof. Note that

1− sinω sinφ

= 1− sinω sin(φ− ψ + ψ)

= 1− sinω (sinψ cos(φ− ψ) + cosψ sin(φ− ψ))

= 1− sinω

(
sinψ

(
cos2 φ− ψ

2
− sin2 φ− ψ

2

)
+ 2 cosψ sin

φ− ψ
2

cos
φ− ψ

2

)
.

Define p = tan φ−ψ
2 . p can be taken over interval [tan(−π/4 − ψ/2), tan(π/4 − ψ/2)] as taking φ over

[−π/2, π/2]. Some trigonometric calculation shows that [tan(−π/4 − ψ/2), tan(π/4 − ψ/2)] is equal to
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[− cosψ
1−sinψ ,

cosψ
1+sinψ ]. Using the identity we just proved, we have

1− sinω sinφ

cos2 φ−ψ
2

=p2 + 1− sinω
(
(1− p2) sinψ + 2p cosψ

)
=(1 + sinω sinψ)p2 − 2p sinω cosψ + (1− sinω sinψ)

We can see it is a quadratic function about p, so it has a minimum at p0 = sinω cosψ
1+sinω sinψ . It is clear that

− cosψ
1−sinψ ≤ p0 ≤ cosψ

1+sinψ , hence p0 can be certainly taken. Further more, this quadratic function has a

minimum value cos2 ω
1+sinω sinψ on this point, which completes our proof.

2.3 Proof of Lemma 2.2

Also denote I − 1
m11T as Lm. We only prove the first inequality, since the second inequality can be inferred

from
1−

√
1− u2 ≤ u, −1 ≤ u ≤ 1.

Multiply both sides of(
A⊗ Lm +N

)(
(Sk ⊗Hm)X + Y

)
=
(
(Sk ⊗Hm)X + Y

)
Σ

by (Sk ⊗ Lm)T , yielding

(Sk ⊗Hm)T (A⊗ Lm +N)((Sk ⊗Hm)X + Y ) = (Sk ⊗Hm)TY · Σ

⇔ (Sk ⊗Hm)TN((Sk ⊗Hm)X + Y ) = (Sk ⊗Hm)TY · Σ−
(
(SkΛ)⊗Hm

)T
Y. (22)

Now we prove the following proposition, which will be used later:

Proposition 3. Denote Λ = diag(λ1, · · · , λk) and Σ = diag(σ1, · · · , σn). Suppose λ1 ≥ · · ·λk > σ1 ≥ · · · ≥
σn, then for any Y ∈ Rn×k, we have

‖Y Λ− ΣY ‖ ≥ (λk − σ1)‖Y ‖.

Proof: Without losing generality, we can assume σn ≥ 0, since we can always shift λi, 1 ≤ i ≤ k and
σj , 1 ≤ j ≤ n by the same amount without changing the value of Y Λ − ΣY and λk − σ1. With this
assumption, the proof directly follows from triangle inequality:

‖Y Λ− ΣY ‖ ≥ ‖Y Λ‖ − ‖ΣY ‖ ≥ ‖Y (λkIk)‖ − ‖(σ1In)Y ‖ = (λk − σ1)‖Y ‖.

Now let us come back to the proof of Lemma 2.2. Since the columns of Uk(m−1) = (Sk ⊗Hm)X + Y are
orthogonal, we have

‖N‖ ≥ ‖(Sk ⊗Hm)TN‖ ≥ ‖(Sk ⊗Hm)TN((Sk ⊗Hm)X + Y )‖

= ‖(Sk ⊗Hm)TY · Σ−
(
Λ⊗ Im−1

)
·
(
Sk ⊗Hm

)T
Y ‖

≥ min
1≤i≤km

|σi − λk+1|‖
(
Sk ⊗Hm

)T
Y ‖ (Applying Proposition 3)

= min
1≤i≤km

|σi − λk+1|‖Y ‖

≥ (λk − λk+1 − ‖E11‖)‖Y ‖, (23)

where the last equality is due to Lemma 2.1.
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As V TV = XTX + Y TY = Ik(m−1). It follows that√
1−

(
‖N‖

λk − λk+1 − ‖E11‖

)2

≤
√

1− ‖Y ‖2 = σmin(X) ≤ σmax(X) ≤ 1.

Let X = VXΣXW
T
X be the SVD of X. Define R = VXW

T
X . We have

‖X −R‖ = ‖VXΣXW
T
X − VXWT

X‖
≤ ‖ΣX − I‖

≤ 1−

√
1−

(
‖N‖

λk − λk+1 − ‖E11‖

)2

,

which ends the proof.

2.4 Proof of Lemma 2.3

First, we have

(Sk ⊗Hm)
(
λiI − Λ⊗ Im−1 − E22

)−1
(Sk ⊗Hm)T

= (Sk ⊗Hm)(λiI − (Λ⊗ Im−1))−
1
2

(
I − (λiI − (Λ⊗ Im−1))−

1
2 (Sk ⊗Hm)TN(Sk ⊗Hm)(λiI − (Λ⊗ Im−1))−

1
2

)−1

·

(λiI − (Λ⊗ Im−1))−
1
2 (Sk ⊗Hm)T

=

∞∑
k=0

(
(Sk ⊗Hm)(λiI − (Λ⊗ Im−1))−1(Sk ⊗Hm)TN

)k
(Sk ⊗Hm)(λiI − (Λ⊗ Im−1))−1(Sk ⊗Hm)T

= (I −BiN)−1Bi,

in which
Bi = (Sk ⊗Hm)(λiI − Λ⊗ Im−1)−1(Sk ⊗Hm)T

In the above argument, since

‖(λiI − (Λ⊗ Im−1))−
1
2 (Sk ⊗Hm)TN(Sk ⊗Hm)(λiI − (Λ⊗ Im−1))−

1
2 ‖ ≤ ‖N‖

λk − λk+1
< 1,

we can safely apply Taylor expansion.
Now let us consider each column of Y . Denote p = (i − 1) · (m − 1) + j. By solving linear system for

X,Y , we have

yp =(Sk ⊗Hm)
(
σpI − (Λ⊗ Im−1 + E22)

)−1
(Sk ⊗Hm)TN(Sk ⊗Hm)xp

=(Sk ⊗Hm)
(
λiI − (Λ⊗ Im−1 + E22)− (λi − σp)I

)−1
(Sk ⊗Hm)TN(Sk ⊗Hm)xp

=

∞∑
k=0

(Sk ⊗Hm)
(

(λiI − (Λ⊗ Im−1 + E22))−1
)k+1

(Sk ⊗Hm)TN(Sk ⊗Hm)xp(λi − σp)k

=

∞∑
k=0

(
(Sk ⊗Hm)

(
λiI − ((Λ⊗ Im−1) + E22)

)−1
(S ⊗Hm)T

)k+1

N(Sk ⊗Hm)xp(λi − σp)k (24)

=

∞∑
k=0

(
(I −BiN)−1Bi

)k+1

N(Sk ⊗Hm)xp(λi − σp)k
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Like before, from ‖N‖+ ‖E11‖ < λk − λk+1 it is easy to check that

(λi − σp)‖(Sk ⊗Hm)
(
λiI − (Λ⊗ Im−1 + E22)

)−1
(Sk ⊗Hm)T ‖

≤(λi − σp)‖
(
λiI − (Λ⊗ Im−1 + E22)

)−1‖

≤‖E11‖ ×
1

λi − λk+1 − ‖N‖

≤ ‖E11‖
λk − λk+1 − ‖N‖

< 1,

which shows that the power series above would be surely convergent.
Putting this in the matrix form leads to

Y·,i =

∞∑
l=0

(
(I −BiN)−1Bi

)l+1

N(Sk ⊗Hm)X·,i(λiI − Σ
(i)
k )l.

2.5 Proof of Lemma 2.4

First of all, since ‖BiN‖ ≤ ‖Bi‖ · ‖N‖ < 1, it is clear that

(I −BiN)−1Bi =
∑
j≥0

(BiN)jBi. (25)

Consider the following three terms:

δ1 :=
∑

j≥j0+1

((I −BiN)−1Bi)
j+1N(Sk ⊗Hm)Xi(λiIm − Σi)

j .

δ2 :=

j0∑
j=0

∑
m≥m0+1

∑
∑j+1
l=1 il=m

( j+1∏
l=1

(BiN)ilB
)
N(Sk ⊗Hm)Xi(λiIm − Σi)

j .

δ3 :=

j0∑
j=0

m0∑
m=0

∑
∑j+1
l=1 il=m

( j+1∏
l=1

(BiN)ilB
)
N(Sk ⊗Hm)Xi(λiIm − Σi)

j . (26)

It is clear that
Yi = δ1 + δ2 + δ3.

Now we bound ETb δk, 1 ≤ k ≤ 3. First of all, we have

‖ETb δ1‖ ≤ ‖δ1‖ ≤
∑

j≥j0+1

‖(I −BiN)−1Bi‖j+1‖N‖‖Sk ⊗Hm‖‖Xi‖‖λiIm − Σi‖j

≤
∑

j≥j0+1

( ‖Bi‖
1− ‖Bi‖‖N‖

)j+1‖N‖‖Sk ⊗Hm‖‖Xi‖‖λiIm − Σi‖j

=
‖Bi‖‖N‖‖X‖
1− ‖Bi‖‖N‖

∑
j≥j0+1

(‖Bi‖‖λiIm − Σi‖
1− ‖Bi‖‖N‖

)j
=

ε1
1− ε1 − ε2

·
( ε2

1− ε1

)j0+1

‖Xi‖. (27)
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Similarly,

‖ETb δ2‖ ≤ ‖δ2‖ ≤
j0∑
j=0

∑
m≥m0+1

∑
∑j+1
l=1 il=m

( j+1∏
l=1

(‖Bi‖‖N‖)il‖Bi‖
)
‖N‖‖Xi‖‖λiIm − Σi‖j

=

j0∑
j=0

∑
m≥m0+1

∑
∑j+1
l=1 il=m

(
‖Bi‖m+j+1‖N‖m+1

)
‖Xi‖‖λiIm − Σi‖j

=

j0∑
j=0

∑
m≥m0+1

Cjm+j

(
‖Bi‖m+j+1‖N‖m+1

)
‖Xi‖‖λiIm − Σi‖j

=

j0∑
j=0

(‖Bi‖‖λiIm − Σi‖)j
∑

m≥m0+1

Cjm+j

(
‖Bi‖‖N‖

)m+1‖Xi‖

≤ ‖Xi‖
∑

m≥m0+1

εm+1
1

j0∑
j=0

εj2C
j
m+j . (28)

Since when −1 < x < 1,

1

(1− x)j+1
=

∞∑
m=0

xmCmm+j .

It follows that

‖ETb δ2‖ ≤ ‖Xi‖
∑

m≥m0+1

εm+1
1

j0∑
j=0

εj2C
j
m+j

≤ ‖Xi‖
∑

m≥m0+1

εm+1
1

1

(1− ε2)m+1

= ‖Xi‖
( ε1

1− ε2
)m0 ε1

1− ε1 − ε2
. (29)

We use a similar strategy to bound δ3. In fact,

‖ETb δ3‖ ≤
j0∑
j=0

m0∑
m=0

∑
∑j+1
l=1 il=m

‖ETb
( j+1∏
l=1

(BiN)ilBi

)
N(Sk ⊗Hm)‖‖Xi‖‖λiIm − Σi‖j

≤
j0∑
j=0

m0∑
m=0

∑
∑j+1
l=1 il=m

‖Bi‖jε3δm+1‖Xi‖‖λiIm − Σi‖j

≤ ‖Xi‖ε3
j0∑
j=0

εj2

m0∑
m=0

Cjm+jδ
m+1

= ‖Xi‖ε3
m0∑
m=0

δm+1

j0∑
j=0

Cjm+jε
j
2

≤ ‖Xi‖ε3
m0∑
m=0

δm+1 1

(1− ε2)m+1

≤ δ

1− ε2 − δ
· ε3 · ‖Xi‖. (30)

Combing (27), (29) and (30), we have

max
1≤b≤n

‖ETb Yi‖ ≤ ‖Xi‖ ·
(

ε1
1− ε1 − ε2

·
(

(
ε2

1− ε1
)j0+1 + (

ε1
1− ε2

)m0

)
+

δ

1− ε2 − δ
ε3

)
,

which ends the proof.
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3 Stability of Eigen-decomposition in Randomized Noise Models

3.1 Key Lemmas

The next Lemma provides various bounds regarding the random matrix model discussed above: Given a
constant c ≥ 1. Suppose dmin ≥ 2c log(n) and n ≥ 10. Consider a random matrix N ∈ Rnm×nm whose
blocks are given by

Nij =

{
1√
didj

Xij (i, j) ∈ E
0 otherwise

where Xij , (i, j) ∈ E are independent random matrices that satisfy

E[Xij ] = 0, ‖Xij‖ ≤ Kij ,

where Kij , (i, j) ∈ E are positive constants. Let K = max
(i,j)∈E

Kij , then

Lemma 3.1. With probability at least 1− m
n2c ,

‖N‖ ≤ CK√
dmin

for some absolute constant C.

Lemma 3.2.

Given l positive integer t1, . . . , tl, and suppose l ≤ logn
log logn , dmin > log n, define a vector ω as

ωi =
1√
di

∑
j∈N (i)

1√
dj
,

and setting a constant ‖B‖ω associated to B and ω as

‖B‖ω := ‖abs(B) · ω‖∞

in which abs(B) is obtained by taking absolute values elementwisely from B, then we have

‖(eTi ⊗ Im)

l∏
j=1

(
(Btj ⊗ Im)N

)
Sk‖∞ ≤

(√ log n

dmin
· CK

)l
· ‖B‖ω · ‖B‖t−l/2−1

∞ · ‖B‖l/2max ·

√
dmin

|E|
‖Uk‖

≤

(√
log n

dmin
CK

)l
‖B‖t−l/2∞ ‖B‖l/2max

√
dmax

|E|
‖Uk‖ (31)

with probability exceeding 1 − n−1/l. Recall that in our random model we have Sk = s ⊗ Uk. Note that we
put no special assumption on B here. Namely, B could be different from Bi defined in Section (2.1).

Lemma 3.3. Given noise matrix N under the model in (3.1), and

K ≤ 1

C

√
dmin

‖Bi‖ · ‖Bi‖∞ · log n
,

then we have the block-wise bound on Yi

max
1≤b≤n

‖(eTb ⊗ Im)Yi‖ ≤
‖Bi‖ω
‖Bi‖∞

√
dmin

|E|
≤

√
dmax

|E|

with probability exceeding 1 − 1
nc for some absolute constant C depending on c. Recall that Bi and Yi were

given by

Bi :=
(
Sk(λiI − Λ)−1S

T

k

)
⊗ Im,
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Yi := (y(i−1)m+1, · · · ,yim) =

∞∑
l=0

(
(I −BiN)−1Bi

)l+1
N(Sk ⊗ Im)Xi(λiIm − Σi)

l,

in Section (2.1) respectively, where 1 ≤ i ≤ k.

3.2 Proof of Lemma 3.1

We provide a bound for ‖N‖ by giving an estimation of E[tr(N b)] for even positive integers b.

Proposition 4. Given two positive integer b, w such that 1 ≤ w ≤ b
2 + 1, let G be a undirected complete

graph of w vertices then the number of cycles of length b in G satisfying the following properties can be
bounded above by Cbbb/2 (or equivalently C ′bb/2+1−ww! for some slightly different absolute constant C ′) for
some absolute constant C:

• No self-loop in the cycle;

• Each vertex of G appears;

• Each edge appearing in the cycle would appear at least two times.

Proof. Define the following variables associated to w vertices:

• The degrees (not consider the multiplicity of edge) of w vertices d1, . . . , dw in the cycle, which is actually
the degree of some vertex in the induced undirected graph by the cycle;

• The multi-degrees of w vertices D1, . . . , Dw in the cycle, which is actually the number of times some
vertex appears in the cycle sequence.

We say a leg in the cycle is innovative if the undirected edge of that leg didn’t arose before when traversing
the cycle, and non-innovative if otherwise. It is clear that

d1 + · · ·+ dw = 2j, D1 + · · ·+Dw = b, dt ≤ Dt.

Thus the number of the possibilities of {Dt} could be bounded by 2b, so it suffices to consider only fixed
{Dt}. Define Tp such that Tp/p is the number of vertices with multi-degree p, or equivalently, the number
of vertices in the cycle having multi-degree p. It is clear that

∑∞
p=1 Tp = b.

We try to show that it is possible to reconstruct the cycle by recording a group of arrays. In detail,
supposing some valid cycle is i1 → i2 → · · · → ib → i1, define an array α of length b such that αt := 1 if
itit+1 (ib+1 = i1 here) is innovative while αt := 0 if otherwise, then the following arrays would be recorded:

• A non-negative integer array c of length w such that q = c1 + · · ·+ cw ≤ b (to be modified);

• A bit array v = v1 . . . vb of length b, in which there are exactly q ones and b− q zeros. vt will be forced
to be 1 if αt = 1.

• Non-negative integer E, which is in fact an encoding of the cycle using some method we would show
in the following.

We define E by
E = L+ LmaxM

in which Lmax :=
(

q
c1,...,cw

)
, and L and M are non-integer numbers which will be defined next.

To define L, an integer array u would be introduced which is of length q with t appearing exactly ct
times for 1 ≤ t ≤ w. L is simply the encoding of u, thus it could be bounded by

0 ≤ L < Lmax :=

(
q

c1, . . . , cw

)
≤ Cb1

qq

cc11 . . . ccww

for some absolute constant C1 from the Stirling’s formula and the condition q ≤ b.

13



Now we would describe how to calculate the number M from the known cycle and all other information
stored. First decode u from L and c1, . . . , cw. Let m1 = i1 − 1, m1,max = w. Consider 1 ≤ t ≤ b − 1 and
suppose i1 → · · · → it is known. If vt = 1 is the l-th one in v (l ≤ q), ul will be used to indicated the
multi-degree of vertex it+1, thus a integer mt+1 such that 0 ≤ mt+1 < Tul/ul can uniquely determine it+1.
In this case let mt+1,max = Tul/ul. If vt = 0, from the definition of v the leg itit+1 must be a non-innovative
leg. Thus an integer mt+1 such that 0 ≤ mt+1 < dit ≤ Dit can uniquely determine it+1. In this case let
mt+1,max = Dit . In the end, encode M as

M = m1 +m2m1,max + · · ·+mbmb−1,max . . .m1,max.

From the construction of M , clearly we can reconstruct the original cycle from M together with all other
stored information D,v, c, L. On the contrary, given one cycle, for each valid v we can find such a (unique)
M(v) and E(v) depending on v since u can be completely determined by v and the cycle.

Here we would construct a special v and show that E(v) is small enough to carry our proof forward. Let
v be all blanks except on the position vt such that αt = 1 (vt will be forced to set as 1 in such case). As for
all other non-innovative legs itit+1, we set vt := 1 if b/Dit+1

< Dit while vt := 0 if otherwise. Clearly

M < Mmax := m1,max . . .mb,max.

For each degree value p, the term Tp/p will appear cp times in the sequence mt,max from the definition, and
further more we denote by fp the number of times that the degree p appears in the sequence mt,max. By
such a construction, we have

E(v) < LmaxMmax

≤ Cb1
qq

cc11 . . . ccww
× w

∏
itit+1

innovative

TDit+1

Dit+1

∏
itit+1

non-innovative

min{Dit , b/Dit+1}

= Cb1
qq

cc11 . . . ccww
× w

(
w∏
p=1

(Tp/p)
cp

)
·

(
w∏
p=1

pfp

)

= Cb2

(
w∏
p=1

(q/p)cp

)
·

(
w∏
p=1

(Tp/cp)
cp

)
·

(
w∏
p=1

pfp

)

≤ Cb3

(
w∏
p=1

(b/p)cp

)
·

(
w∏
p=1

pfp

)
(32)

= Cb3
∏
itit+1

innovative

b

Dit+1

∏
itit+1

non-innovative

min{Dit , b/Dit+1
}

= Cb3

b∏
t=1

√
bDit

Dit+1

∏
itit+1

innovative

√
b

DitDit+1

∏
itit+1

non-innovative

min

{√
b

DitDit+1

,

√
DitDit+1

b

}

≤ Cb3b
b/2

∏
itit+1

innovative

√
b

DitDit+1

∏
itit+1

non-innovative

min

{√
b

DitDit+1

,

√
DitDit+1

b

}
(33)

≤ Cb3b
b/2

for some slightly different absolute constants C2, C3, in which (32) comes from the fact that (Tp/cp)
cp ≤ eTp/e

and T1 + . . . Tw = q ≤ b. To explain the last step in the transformation above, consider each edge {r, s} in
the cycle. It have been given that {r, s} will appear at least 2 times in the cycle, supposing it appears exact
k ≥ 2 times, then it will contribute a factor√

b

DrDs
min

{√
b

DrDs
,

√
DrDs

b

}k−1

≤ 1
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to the formula (33).
In this way, we can always encode the cycle into a tuple (D,v, c, E) for some v such that E < Cb3b

b/2

for some absolute constant C3. The total number of such tuples can be clearly bounded by Cbbb/2 for some
slightly different absolute constant C.

In the end, by Stirling’s formula we can write the ratio between bb/2 and bb/2+1−ww! as

bb/2

bb/2+1−ww!
≤ Cb4

(
b

w

)w
for some absolute constant C4. However simple calculus gives that (b/w)w ≤ ew/e ≤ eb/e. Hence the number
of valid cycles can be also bounded by C ′bb/2+1−ww! for some slightly different constant C ′.

Proposition 5. Suppose S(n) is the set consisting of all permutations on {1, . . . , n}. Let (i1, i2), . . . , (ib, i1)
be a cycle of length b in the graph. Let e1, . . . , ej are the j distinct undirected edges appearing in the cycle,
with occurrence times α1, . . . , αj, and f1 . . . , fw are the w distinct vertices appearing in the cycle, with
occurrence times β1, . . . , βw. Suppose all α are at least 2, then we have

E
σ∈US(n)

[Nσ(i1)σ(i2) . . . Nσ(ib)σ(i1)] ≤
Kb−2j

db−w+1
min (n− 1) . . . (n− w + 1)

Proof. Define G as a graph such that (s, t) is an edge of G if and only if (fs, ft) appears in the cycle
(i1, . . . , ib, i1). We have

E
σ∈US(n)

[Nσ(i1)σ(i2) . . . Nσ(ib)σ(i1)]

≤ E
σ∈US(n)

[|Nσ(i1)σ(i2) . . . Nσ(ib)σ(i1)|]

≤ E
σ∈US(n),X

[
1

dβ1

σ(f1) . . . d
βw
σ(fw)

|Xσ(e1)|α1 . . . |Xσ(ej)|
αj

]

≤ Kα1+···+αj−2j E
σ∈US(n)

[
1

dβ1

σ(f1) . . . d
βw
σ(fw)

E
X

[X2
σ(e1) . . . X

2
σ(ej)

]

]

≤ Kα1+···+αj−2j E
σ∈US(n)

[
1

dβ1

σ(f1) . . . d
βw
σ(fw)

δ(σ; 1, . . . , w)

]
,

in which δ(σ; p1, . . . , pl) := 1 if correspondingXσ(fps ),σ(fpt )
are non-zero for all (ps, pt) ∈ G, and δ(σ; p1, . . . , pl) :=

0 otherwise. It is easy to see that if δ(σ;P ) = 1 for some σ then all subset P ′ ⊆ P also satisfy δ(σ;P ′) = 1. It

suffices to bound Eσ∈US(n)

[
d−β1

σ(f1) . . . d
−βw
σ(fw)δ(σ; 1, . . . , w)

]
. To use induction to achieve this end, we relax our

assumption such that now we have not a cycle but just a connected graph consisting of w vertices f1, . . . , fw
with degrees β1, . . . , βw. We can find a vertex such that the graph is still connected after removing this
vertex. Without loss of generality, suppose it is fw, and one of its adjacent vertices is fw−1. Fixing σ(fw−1),
there are at most dσ(fw−1) choices for σ(fw) to make δ(σ; 1, . . . , w) not vanish. Thus we have

E
σ

[
1

dβ1

σ(f1) . . . d
βw
σ(fw)

δ(σ; 1, . . . , w)

]

≤ E
σ(f1),...,σ(fw−1)

[
d−β1

σ(f1) . . . d
−βw−1

σ(fw−1)δ(σ; 1, . . . , w − 1) E
σ(fw)

[
d−βrσ(fw)δ(σ;w − 1, w)

]]
≤ d−βwmin E

σ(f1),...,σ(fw−1)

[
dσ(fw−1)

n− w + 1
d−β1

σ(f1) . . . d
−βw−1

σ(fw−1)δ(σ; 1, . . . , w − 1)

]
≤ 1

dβrmin(n− w + 1)
E
σ

[
d−β1

σ(f1) . . . d
−βw−2

σ(fw−2)d
−βw−1+1
σ(fw−1) δ(σ; 1, . . . , w − 1)

]
.
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Observe that the last line has the form of recursion in the sense that we now have a connected graph
consisting of f1, . . . , fw−1 with degrees β1, . . . , βw−2, βw−1 + 1, hence we obtain that

E
σ

[
1

dβ1

σ(f1) . . . d
βw
σ(fw)

δ(σ; 1, . . . , w)

]
≤ 1

dmin
β1+···+βw−w+1(n− 1) . . . (n− w + 1)

=
1

db−w+1
min (n− 1) . . . (n− w + 1)

Proposition 6.

E[tr(N b)] ≤ Cb n

d
b/2
min

for some absolute constant C.

Proof. We have

E[tr(N b)] =
∑

1≤i1,...,ib≤n

E[Ni1i2 . . . Nibi1 ], (34)

which is a sum over all cycles i1 → · · · → ib → i1 of length b. According to the independence of Nij , all
terms are zero but those terms in which every {is, is+1} appears at least two times. Consider cycles with w
distinct vertices and j distinct edges appearing. Let V(b, w, j) be the set of all such cycles. Using Proposition
4, |V(b, w, j)| will be bounded by

Cb1b
b/2+1−ww!×

(
n

w

)
= Cb1b

b/2+1−wn(n− 1) . . . (n− w + 1)

where C1 is an absolute constant. While Proposition 5 gives the expected contribution to sum (34) over
cycles of the certain shape, which means∑

(i1,...,ib)∈V(b,w,j)

E[Ni1i2 , . . . Nibi1 ]

= E
σ∈US(n)

 ∑
(i1,...,ib)∈V(b,w,j)

E[Nσ(i1)σ(i2) . . . Nσ(ib)σ(i1)]


=

∑
(i1,...,ib)∈V(b,w,j)

E
σ∈US(n)

[Nσ(i1)σ(i2) . . . Nσ(ib)σ(i1)]

≤ Cb1b
b/2+1−wn(n− 1) . . . (n− w + 1)× Kb−2j

db−w+1
min (n− 1) . . . (n− w + 1)

≤ Cb1nd
−b/2
min ×

(
K2b

dmin

)b/2−w+1

≤ Cb
n

d
b/2
min

for some absolute constant C in which we used the fact that j ≥ w − 1 and b = O(log n),K = O
(√

dmin
logn

)
.

Theorem 3.1. Suppose K = O
(√

dmin
logn

)
, then

‖N‖ ≤ C√
dmin

holds with high probability for some absolute constant C.

16



Proof. Setting b = 4dlog ne which is an even number, we write the constant in Proposition (6) as C1 here,
then the Proposition 6 together with the Markov’s inequality gives

Pr

[
‖N‖ > 3C1√

dmin

]
= Pr

[
‖N‖b > 3bCb1

d
b/2
min

]

≤ n

3b
<

1

n4
.

Hence ‖N‖ ≤ C√
dmin

with high probability in which C = 3C1 is an absolute constant.

3.3 Proof of Lemma 3.2

Proof. First we have

‖B‖ω = ‖abs(B) · ω‖∞ ≤ ‖ω|‖∞‖B‖∞ ≤
√
dmax

dmin
‖B‖∞

Hence it suffices to prove (31) by showing that

‖(eT1 ⊗ Im)

l∏
j=1

(
(Btj ⊗ Im)N

)
Sk‖∞ ≤

(√ log n

dmin
· CK

)l
· ‖B‖ω · ‖B‖t−l/2−1

∞ · ‖B‖l/2max ·

√
dmin

|E|
‖Uk‖ (35)

holds with probability exceeding 1 − 1
nc . Denote by a

(j)
pq the element of matrix Btj in p-th row and q-th

column. In this way, we can expand the left side of (35) as∥∥∥∥∑
α,β

a
(1)
1α1

Nα1β1a
(2)
β1α2

. . . a
(l)
βl−1αl

Nαlβl(sβlUk)

∥∥∥∥ (36)

in which we used the fact that Sk = s⊗ Uk. Here the summation is taken over all possible integer arrays α

and β which are both of length l. Recall that sβl =
√

dβl
|E| and Np,q = 1√

dpdq
Xp,q if (p, q) ∈ E while Np,q = 0

otherwise. We thereby denote by H as the set consisting of all pairs (α,β) such that (αj , βj) ∈ E for all j.
Hence it suffices to prove that

1√
|E|

∥∥∥∥∥∥
∑

(α,β)∈H

a
(1)
1,α1

a
(2)
β1,α2

. . . a
(l)
βl−1,αl√

dα1dβ1 . . . dαl−1βl−1
dαl
·Xα1β1 . . . XαlβlUk

∥∥∥∥∥∥
≤
(√ log n

dmin
· CK

)l
· ‖B‖ω · ‖B‖t−l/2−1

∞ · ‖B‖l/2max ·

√
dmin

|E|
‖Uk‖, (37)

or in a stronger sense, ∥∥∥∥∥∥
∑

(α,β)∈H

a
(1)
1,α1

a
(2)
β1,α2

. . . a
(l)
βl−1,αl√

dα1
dβ1

. . . dαl−1
dβl−1

dαl
·Xα1β1

. . . Xαlβl

∥∥∥∥∥∥
≤Cl(log n)l/2 · ‖B‖ω · ‖B‖t−l/2−1

∞ · ‖B‖l/2max· (38)

since ‖Xpq‖ ≤ K for all p, q. To this end, we employ the power moment method, which needs us to show

E


∥∥∥∥∥∥∥
 ∑

(α,β)∈H

2k∏
r=1

a
(1)
1,α1

a
(2)
β1,α2

. . . a
(l)
βl−1,αl√

dα1dβ1 . . . dαl−1
dβl−1

dαl
·X

α
(r)
1 β

(r)
1
. . . X

α
(r)
l β

(r)
l

2k
∥∥∥∥∥∥∥


≤(log n)kl · ‖B‖2kω · ‖B‖2kt−kl−2k
∞ · ‖B‖klmax· (39)
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holds for all integer k such that kl ≤ O(log n). The left side of (39) can be furthermore relaxed and expanded
to

∑
(α̂,β̂)∈H2k

2k∏
r=1

∣∣a(1)

1,α
(r)
1

a
(2)

β
(r)
1 ,α

(r)
2

. . . a
(l)

β
(r)
l−1,α

(r)
l

∣∣√
d
α

(r)
1
d
β
(r)
1
. . . d

α
(r)
l−1

d
β
(r)
l−1

d
α

(r)
l

·

∣∣∣∣∣E
[

2k∏
r=1

X
α

(r)
1 β

(r)
1
. . . X

α
(r)
l β

(r)
l

] ∣∣∣∣∣ (40)

where α̂ = (α(1), . . . ,α(2k)), β̂ = (β(1), . . . ,β(2k)). Here H2k is defined such that (α̂, β̂) ∈ H2k if and only if

(α(r),β(r)) ∈ H. An important observation is that E[Xα1β1
. . . Xαlβl ] is non-zero if and only if all unordered

pairs {αj , βj} will appear at least two times among these 2k pairs since all Xpq are independent for distinct

{p, q} and E[Xpq] = 0. Let J2k ⊆ H2k be the set consisting of all (α̂, β̂) such that every (α
(r)
j , β

(r)
j ) would

appear at least two times among these 2kl unordered pairs, which means it suffices to prove that

∑
(α̂,β̂)∈J2k

2k∏
r=1

∣∣a(1)

1,α
(r)
1

a
(2)

β
(r)
1 ,α

(r)
2

. . . a
(l)

β
(r)
l−1,α

(r)
l

∣∣√
d
α

(r)
1
d
β
(r)
1
. . . d

α
(r)
l−1

d
β
(r)
l−1

d
α

(r)
l

≤ (log n)kl · ‖B‖ω · ‖B‖2kt−kl−2k
∞ · ‖B‖2klmax. (41)

To estimate the sum in the left side of (41), we introduce the concept of summing graph.

Definition 1. A summing graph Gs = (Vs, E1, E2) is formally defined as following:

1. Vs contains 1 + n nodes, in which one node is special and called the root node while the remaining n
nodes are used to represent n variables that we are summing over. In fact, the root node represents the

fixed index 1 in a
(1)

1,α
(r)
1

in (41).

2. E1 is a undirected edge set on vertex set Vs. If (u, v) ∈ E1, then the variables represented by u, v are
adjacent in G.

3. E2 is an undirected labeled edge set on vertex set Vs and E2 can contain multiple edges. Each edge in
E2 has the form (p, q, n) where p, q is the end node while n is an integer label.

A summing graph Gs combined with a vector θ can induce a sum Σ(Gs,θ) as defined below:

Σ(Gs,θ) =
∑

v∈U(Gs)

∏
(p,q,n)∈E2

[Bn]vp,vq/F (v,θ)

in which we define

U(Gs) = {v ∈ {1, . . . , n}|Vs| : for every (p, q) ∈ E1, vp, vq are adjacent in G},

F (Gs,v,θ) =
∏
p∈Vs

1

d
θp/2
vi

∏
p/∈Vs

1

d
θp/2
min

.

Return to the original problem. For some (α̂, β̂) ∈ J2k, we can divide all 2kl terms of form {α(r)
j , β

(r)
j }

into a number of groups such that each group includes the same unordered pairs. By the definition of J2k

each group has a size of at least 2. Without loss of generality we could assume all groups are of size 2 or 3.
For example, if some {p, q} occurs 7 times among 2kl unordered pairs, we can divide these 7 terms into 3
groups of size 2, 2, 3 respectively. Let the number of groups with size 2 be kl−3u, then the number of groups
with size 3 would be 2u since there are 2kl terms in total. To obtain identical relations between ordered
pairs (α

(r)
j , β

(r)
j ), we can use a bit string of length 2kl to indicate whether the corresponding (α

(r)
j , β

(r)
j ) has

the same order as its first appearance. Fixing u, the number of possible groupings would be

(2kl)!

2kl−3u62u(kl − 3u)!(2u)!
=

(2kl)!

2kl4.5u(kl − 3u)!(2u)!
.

For some grouping configuration with kl − u groups together with a 2kl bit string like mentioned above, a
summing group G1 could be constructed as below:
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• V(G1) has 2(kl−u)+1 nodes. In particular, one of them represents 1, which is the root node, while each
of others represents exactly one element in kl − u groups. More precisely, each node can be regarded

as a set of variables of form α
(r)
i or β

(r)
i so that all variables in the same node are forced to have the

same value.

• The edge joining nodes representing α
(r)
i , β

(r)
i would be in E1(G1) for all possible i, r. Thus each node

except the root node is associated with exact one edge in E1(G).

• Starting from an empty E2(G1), add a labeled edge (β
(r)
i , α

(r)
i+1, i+1) for all possible β

(r)
i , α

(r)
i+1, and add

a labeled edge (root, α
(r)
1 , 1) for all possible α

(r)
1 . Recall that E2(G1) is a unordered edge set containing

multiple edges.

• θ1 is defined as an integer vector of the same length as the number of nodes in G1. Let θ1,0 be 0 for

root node 0, and θ1,p be the number of times that variable represented by node p appears in α
(r)
i and

β
(r)
i except β

(r)
l . It is clear that θ1,p ≥ 2 for node p where p is not the root node and does not contain

variable of form β
(r)
l . Hence there are at most 2k indices p such that θp = 1.

In this way, we can easily verify that

∑
(α̂,β̂)∈J2k

2k∏
r=1

∣∣a(1)

1,α
(r)
1

a
(2)

β
(r)
1 ,α

(r)
2

. . . a
(l)

β
(r)
l−1,α

(r)
l

∣∣√
d
α

(r)
1
d
β
(r)
1
. . . d

α
(r)
l−1

d
β
(r)
l−1

d
α

(r)
l

≤
∑
G1

Σ(G1,θ1)

in which G1 is taken over all possible configurations of grouping.
Next, we will provide an estimation on Σ(G1,θ1) by induction where G1 contains 2(kl − u) + 1 nodes.
Claim:

Σ(G1,θ1) ≤ ‖B‖2kω · ‖B‖2kt−kl−2k
∞ · ‖B‖klmax · d

−(l−1)k−u
min .

Proposition 7. We can remove some edges from E2(G1) to obtain a graph G2 satisfying

• G2 is a tree with edge set E1(G2) ∪ E2(G2).

• E2(G2) does not contain multiple edges any more.

• Except the root node, each node in G2 is associated with exactly one edge in E1.

Define the difference between two graphs G and G′ as

∆(G′,G) :=
∑

(p,q,n)∈E2(G′)\E2(G)

n

for graph G ⊆ G′, then we have

Σ(G1,θ1) ≤ ‖B‖∆(G1,G2)
max Σ(G2,θ2).

Since there are 2kl edges in E2(G1) but only kl − u edges in E2(G2), we have

∆(G1,G2) ≥ kl + u.

In the following, we will construct a sequence of summing graphs G2, . . . ,Gm in a inductive way, where
Gm is a summing graph with only one node, the root node. Specifically, we impose an inductive assumption
which holds for G1 and G2: Gz is a tree over edge set E1(Gz) ∪ E2(Gz) for z = 2, . . . ,m.

Suppose Gz(z ≥ 2) is given and has more than one nodes, then we can choose from tree Gz a leaf node πz
which is not the root node. By inductive assumption there exists some τz with (πz, τz) ∈ E1(Gz) and some
νz with (τz, νz) ∈ E2(Gz), and Gz+1 is still a tree where Gz+1 is obtained by removing {πz, τz} and their
associated edges from Gz. There are two possible bounds:
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1. θz,τz ≥ 2. In this case, let θz+1 be the same as θz on all components except θz+1,τz = θz,τz − 2. Then
we have

Σ(Gz,θz) =
∑

v∈U(Gz)

∏
(p,q,n)∈E2(Gz)

∣∣[Bn]vp,vq
∣∣/F (Gz,v,θz)

≤
∑

v∈U(Gz+1)

∑
vτz

∑
vπz∈N (vτz )

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣ ∣∣[Bn(τz,νz)]vτz ,vνz

∣∣/(F (Gz+1,v,θz+1)dvτz

)

≤
∑

v∈U(Gz+1)

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣

F (Gz+1,v,θz+1)

∑
vτz

∑
vπz∈N (vτz )

1

dτz

∣∣[Bn(τz,νz)]vπz ,vνz
∣∣

=
∑

v∈U(Gz+1)

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣

F (Gz+1,v,θz+1)

∑
vτz

∣∣[Bn(τz,νz)]vπz ,vνz
∣∣

≤
∑

v∈U(Gz+1)

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣

F (Gz+1,v,θz+1)
‖B‖∆(Gz,Gz+1)

∞

= Σ(Gz+1,v,θz+1)‖B‖∆(Gz,Gz+1)
∞

2. It is trivial that θz,πz ≥ 1 and θz,τz ≥ 1. So we can always let θz+1 be the same as θz on all components
except θz+1,πz = θz,πz − 1 and θz+1,τz = θz,τz − 1. Then we have

Σ(Gz,θz) =
∑

v∈U(Gz)

∏
(p,q,n)∈E2(Gz)

∣∣[Bn]vp,vq
∣∣/F (Gz,v,θz)

≤
∑

v∈U(Gz+1)

∑
vτz

∑
vπz∈N (vτz )

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣ ∣∣[Bn(τz,νz)]vτz ,vνz

∣∣/(F (Gz+1,v,θz+1)
√
dτzdπz

)

≤
∑

v∈U(Gz+1)

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣

F (Gz+1,v,θz+1)

∑
vτz

∑
vπz∈N (vτz )

1√
dτzdπz

∣∣[Bn(τz,νz)]vπz ,vτz
∣∣

=
∑

v∈U(Gz+1)

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣

F (Gz+1,v,θz+1)

∑
vτz

ωτz
∣∣[Bn(τz,νz)]vπz ,vνz

∣∣
≤

∑
v∈U(Gz+1)

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣

F (Gz+1,v,θz+1)
‖B‖∆(Gz,Gz+1)−1

∞ ‖B‖ω

= Σ(Gz+1,θz+1)‖B‖∆(Gz,Gz+1)−1
∞ ‖B‖ω

Since at first θ2,p ≥ 1 for all non-root nodes p and θz+1,p < θz,p happens only if node p is removed from
Gz, the second bound always works. Besides, we have bounds

Σ(Gz,θz) ≤ Σ(Gz+1,θz+1)‖B‖∆(Gz,Gz+1)−1
∞ min{‖B‖∞, ‖B‖ω} (42)

if θz,τz ≥ 2.

Σ(Gm,θm) = dmin
−

∑
i θm,i/2.

Now let’s calculate
∑
i θm,i. Initially we have∑

i

θ2,i =
∑
i

θ1,i = 2k(2l − 1).

The inductive steps give
∑
i θz+1,i =

∑
i θz,i − 2 and there are kl − u inductive steps in total. Hence∑

i

θm,i = 2k(2l − 1)− 2(kl − u) = 2kl − 2k + 2u,
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which means Σ(Gm,θm) = d−kl+k+u
min .

Note that there are at most 2k nodes p with θ2,p = 1, which means the bound (42) holds for all inducative
steps except 2k steps. In this way, together with the fact ‖B‖max ≤ ‖B‖∞ and ∆(G1,Gm) = t, Σ(G1,θ1)
could be expressed as

Σ(G1,θ1) ≤
(
‖B‖ω
‖B‖∞

)2k

‖B‖∆(G1,G2)
max ‖B‖∆(G2,Gm)

∞ Σ(Gm,θm)

≤
(
‖B‖ω
‖B‖∞

)2k

‖B‖klmax‖B‖∆(G1,Gm)−kl
∞ d−kl+k+u

min

≤ ‖B‖2kω ‖B‖klmax‖B‖t−kl−2k
∞ d

−k(l−1)+u
min

For Gm which contains a single root node, we have

Σ(Gm,θm) = dmin
−

∑
i θm,i/2 = dmin

−k(l−1)−u,

where the last equation comes from the fact
∑
i θ1,i = 2k(2l− 1) and

∑
i θz+1,i =

∑
i θz,i − 2 if and only an

edge in E2(Gz) was removed, but there are exact kl − u edges in E2(G1) so that∑
i

θm,i =
∑
i

θ1,i − 2(kl − u) = 2kl − 2k + 2u.

Note that the third cases would appear at most 2k times and the second cases appear exactly kl times,
which means

Σ(G1,θ1) ≤ ‖B‖klmax‖B‖2kω ‖B‖∆(G1,Gm)−kl−2k
∞ Σ(Gm,θm)

Return to calculate (41). We have

∑
(α̂,β̂)∈J2k

2k∏
r=1

∣∣a(1)

1,α
(r)
1

a
(2)

β
(r)
1 ,α

(r)
2

. . . a
(l)

β
(r)
l−1,α

(r)
l

∣∣√
d
α

(r)
1
d
β
(r)
1
. . . d

α
(r)
l−1

d
β
(r)
l−1

d
α

(r)
l

≤
∑
G1

Σ(G1,θ1)

=
∑
u≥0

∑
|V(G1)|=kl−u+1

Σ(G1,θ1)

≤ ‖B‖2kω ‖B‖klmax‖B‖t−kl−2k
∞ d

−k(l−1)
min

∑
u≥0

(2kl)!

2kl4.5u(kl − 3u)!(2u)!
d−umin

For the last line above, we have

(2kl)!

(kl − 3u)!(2u)!dumin

≤ (2kl)!

(kl − 3u)!(2u)!(kl)u
≤ (Ckl)kl

for some absolute constant C. Thus

∑
(α̂,β̂)∈J2k

2k∏
r=1

∣∣a(1)

1,α
(r)
1

a
(2)

β
(r)
1 ,α

(r)
2

. . . a
(l)

β
(r)
l−1,α

(r)
l

∣∣√
d
α

(r)
1
d
β
(r)
1
. . . d

α
(r)
l−1

d
β
(r)
l−1

d
α

(r)
l

≤ (C log n)kl‖B‖2kω ‖B‖klmax‖B‖t−kl−2k
∞ d

−k(l−1)
min

for some absolute constant C.
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3.3.1 A Lower Bound on ‖B‖∞
In the simple case, it is clear that B = L†, BL = I − ssT , Bs = 0. In the following I will explore the
relationship between ‖B‖∞ and dmax/dmin. Without loss of generality, suppose d1 = dmax and d2 = dmin,
then consider the vector which is a linear combination of the first column of L denoted as col1(L) and s:

v = col1(L)− 1− 1/
√
d1d2√

d1 +
√
d2

s.

In this way, it can be easily verified that

‖v‖∞ =

√
d2 + 1/

√
d2√

d1 +
√
d2

and
Bv = Bcol1(L) = col1(I − ssT ),

so

‖Bv‖∞ ≥ 1− d1

|E|
≥ 1

2

since |E| ≥ 2d1. Hence we have

‖B‖∞ ≥
√
d1 +

√
d2

2(
√
d2 + 1/

√
d2)
≥ 1

4

√
d1

d2
≥ 1

4

√
dmax

dmin
.

3.4 Proof of Lemma 3.3

Suppose

K ≤ C1

√
dmin

‖Bi‖ · ‖Bi‖∞ · log n
,

the inequality (31) turns into

‖(eTb ⊗ Im)

l∏
j=1

((B
tj
i ⊗ Im)N)Sk‖∞ ≤ Cl‖Bi‖t−l∞

√
dmin

|E|
‖Uk‖.

Thus we have

‖(eTb ⊗ Im)(BiN)i1Bi . . . (BiN)ij+1BiN(Sk ⊗ Im)‖ ≤

√
dmin

|E|
‖Uk‖ · ‖Bi‖j∞(C1C)

∑j+1
l=1 il+1.

On the other hand, by choosing small enough absolute constant C1, we have

‖Bi‖‖N‖ ≤ ‖Bi‖
C2K√
dmin

≤ 1

10
,

‖Bi‖‖λiIm − Σi‖ ≤ ‖Bi‖‖N‖ ≤
1

10
.

Thus applying Lemma 2.4 provides the desired conclusion.

4 Proof of Exact Recovery Conditions Under the Full Setting

4.1 Proof of Theorem 3.1

We prove Theorem 3.1 by establishing the concentration under the un-normalized data, i.e., which is identical
to set di = nt. To begin with, let us rewrite the data matrix under the proposed model of mapping and
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observation graph. Since we assume the observation graph and the input pair-wise maps are generated
through independent procedures, it follows that

Xij =
1

nt
·

 Im − 1
m11T with probability ηijt

UPm − 1
m11T with probability (1− ηij)t

0 with probability (1− t)
(43)

Here ηij , 1 ≤ i, j ≤ n form a matrix (p− q)(Ik ⊗ (11T )) + q11T .
(43) gives rise to

E[Xij ] =
ηij
n

(Im −
1

m
11T ), (44)

and

Nij := Xij − E[Xij ] =
1

nt
·


(1− ηijt)(Im − 1

m11T ) with probability ηijt
UPm − 1

m11T − ηijt(Im − 1
m11T ) with probability (1− ηij)t

−ηijt(Im − 1
m11T ) with probability (1− t)

(45)

It is obvious that Nij1 = 0 and NT
ij1 = 0. Moreover,

‖Nij‖ ≤
1 + ηijt

nt
≤ 2

nt
.

Decompose X = E[X] +N , it follows that

E[X] =
1

n

(
(p− q)(Ik ⊗ (11T )) + q(11T )

)
⊗ (Im −

1

m
11T ). (46)

Following the convention of notation, let

A =
1

n

(
(p− q)(Ik ⊗ (11T )) + q(11T )

)
.

It is easy to check that the rank of A is k, and its top k eigenvalues are given by

λ1(A) = q +
p− q
k

, λi(A) =
p− q
k

, 2 ≤ i ≤ k. (47)

Let ( 1√
k
1, Hk) be an orthonormal basis for Rk, then it is easy to see that the corresponding top k eigenvectors

of A are given by

Sk =

√
k

n
1⊗

( 1√
k

1, Hk

)
.

Moreover,

SkS
T

k = (In0
− 1

n0
11T )⊗ Ik.

To apply Lemma 3.3, it is easy to see that

B1 =
1

q + p−q
k

(In0
− 1

n0
11T )⊗ Ik,

and

Bi =
k

p− q
(In0
− 1

n0
11T )⊗ Ik, 2 ≤ i ≤ k.

Denote

T = (In0
− 1

n0
11T )⊗ Ik.

It is easy to check that
‖T‖ω = 2, ‖T‖∞ = 2, ‖T‖max = 1.

Applying Lemma 3.3, we obtain the following stability bound on the top k(m− 1) eigen-vectors of X:
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Lemma 4.1. Let U = (U
T

1 , · · · , U
T

n )T be the top k(m− 1) eigen-vectors of X. Then there exists a rotation
matrix R ∈ O(k(m− 1)) and a universal constant c, so that when

p− q ≥ ck
√

log(n)

nt
,

we have w.h.p,

max
1≤i≤n

‖Ui − (eTi Sk ⊗Hm) ·R‖ ≤ 1

6
· 1√

n
. (48)

Complete the proof of Theorem 3.1. Since the spectral norm bounds the difference between the
corresponding rows, it follows from Lemma 4.1 that (1) the distance between the corresponding elements
between each pair of objects in the embedding space is upper bounded by 1/3, (2) dintra < 1/3, and (3)
dinter > 2/3. This means both the intra-cluster maps and the underlying clusters can be recovered, which
ends the proof.

4.2 Proof of Theorem 3.2

We prove a stronger recovery condition for inter-cluster maps. Note that inter-cluster map recovery solves
the following linear assignment:

Xst = argmax
X∈Pm

〈X,Cst〉, Cst =
∑

(i,j)∈E,i∈cs,j∈ct

XjitX
in
ij Xisi. (49)

We prove a stronger exact recovery condition as follows. To begin with, we define the minimum number
of inter-cluster edges between one pair of clusters as.

Ninter = min
1≤s<t≤k

Nst, Nst := |{(i, j)|(i, j) ∈ E , i ∈ cs, j ∈ ct}|. (50)

Lemma 4.2. Given an absolute constant cinter > 0. Suppose the intra-cluster rate q and Ninter satisfy the
following constraint:

q ≥

√
cinter log(n)

Ninter
.

Then we have with probability at least 1− m2k2

n
cinter

8
,

min
1≤a≤m

Cst(a, a) > max
1≤a6=b≤m

Cst(a, b), 1 ≤ s 6= t ≤ k. (51)

Proof: First of all, it is easy to check that

E[Cst(a, b)] =

{
1
m (1− q) + q a = b

1
m (1− q) a 6= b

We apply union bounds by showing that with probability at least 1− m2k2

n
cinter

8
, we have

min
1≤s6=t≤k,1≤a≤m

Cst(a, a) >
1

m
(1− q) +

q

2
, (52)

max
1≤s6=t≤k,1≤a6=b≤m

Cst(a, b) <
1

m
(1− q) +

q

2
. (53)

Note that each diagonal elementXjitX
in
ij Xisi(a, a) is a random Bernoulli random variable with probability

1−q
m + q, we can apply lower Chernoff bound to obtain a lower tail bound on Cst(a, a), which is

Pr[Cst(a, a) ≤ Nst(
1− q
m

+ q − q

2
)] ≤ exp(− Nstq

2

8(q + 1−q
m )

) ≤ exp(− Ninterq
2

8(q + 1−q
m )

). (54)
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Similarly, each off-diagonal element XjitX
in
ij Xisi(a, b) is a random Bernoulli random variable with probability

1−q
m , we can apply upper Chernoff bound to obtain a upper tail bound on Cst(a, b), which is

Pr[Cst(a, b) ≤ Nst(
1− q
m

+
q

2
)] ≤ exp(− Nstq

2

8( q6 + 1−q
m )

) ≤ exp(− Ninterq
2

8( q6 + 1−q
m )

). (55)

Since q =
√
cinter

log(n)
Ninter

. It follows that combing (54) and (55) lead to

Pr[Cst(a, a) ≤ Nst(
1− q
m

+ q − q

2
)] ≤ exp(−cinter log(n)

8
) ≤ 1

n
cinter

8

(56)

Pr[Cst(a, b) ≥ Nst(
1− q
m

+
q

2
)] ≤ 1

n
cinter

8

(57)

Applying union bounds (56) and (57), we have that the inter-cluster maps can be recovered with probability

at least 1− m2k2

n
cinter

8
.

Since the observation graph is generated from the Erdős-Rényi model G(n, t). It is easy to check that

the number of inter-cluster edges between a pair of clusters concentrates at [n
2t

2k2 ,
2n2t
k2 ] with overwhelming

probability (for example using Chernoff bound), which ends the proof.
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