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Abstract

Joint matching over a collection of objects aims at aggregating information from a large collection of
similar instances (e.g. images, graphs, shapes) to improve maps between pairs of them. Given multiple
objects and matches computed between a few object pairs in isolation, the goal is to recover an entire
collection of maps that are (1) globally consistent, and (2) close to the provided maps — and under certain
conditions provably the ground-truth maps. Despite recent advances on this problem, the best-known
recovery guarantees are limited to a small constant barrier — none of the existing methods find theoretical
support when more than 50% of input correspondences are corrupted. Moreover, prior approaches focus
mostly on fully similar objects, while it is practically more demanding to match instances that are only
partially similar to each other (e.g., different views of a single physical object).

In this paper, we propose an algorithm to jointly match multiple objects that exhibit only partial
similarities, given a few (possibly highly incomplete) pairwise matches that are densely corrupted. By
encoding a consistent partial map collection into a 0-1 semidefinite matrix, we propose to recover the
ground-truth maps via a parameter-free convex program called MatchLift, following a spectral method
that pre-estimates the total number of distinct elements to be matched. Numerically, this program can be
efficiently solved via alternating direction methods of multipliers (ADMM) along with a greedy rounding
strategy. Theoretically, MatchLift exhibits near-optimal error-correction ability, i.e. in the asymptotic
regime it is guaranteed to work even when a dominant fraction 1 − Θ

(
log2 n√

n

)
of the input maps behave

like random outliers. Furthermore, MatchLift succeeds with minimal input complexity, namely, perfect
matching can be achieved as soon as the provided maps form a connected map graph. We evaluate
the proposed algorithm on various benchmark data sets including synthetic examples and real-world
examples, all of which confirm the practical applicability and usefulness of MatchLift.

Index Terms: Joint graph matching, shape mapping, cycle consistency, dense error correction, partial
similarity, convex relaxation, spectral methods, robust PCA, matrix completion, graph clustering, ADMM,
MatchLift

1 Introduction
Finding consistent relations across multiple objects is a fundamental scientific problem spanning many fields.
A partial list includes jigsaw puzzle solving [1, 2], structure from motion [3, 4], re-assembly of fragmented
objects and documents [5, 6], and DNA/RNA shotgun assembly sequencing [7]. Compared with the rich
literature in pairwise matching (e.g. of graphs, images or shapes), joint matching of multiple objects has not
been well explored. A naive approach for joint object matching is to pick a base object and perform pairwise
matching with each of the remaining objects. However, as pairwise matching algorithms typically generate
noisy results, the performance of such approaches is often far from satisfactory in practice. This gives rise
to the question as to how to aggregate and exploit information from all pairwise maps that one computes,
in order to improve joint object matching in a consistent and efficient manner.

In this paper, we represent each object as a discrete set of points or elements, and investigate the problem
of joint matching over n different sets, for which the input / observation is a collection of pairwise maps
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computed in isolation. A natural and popular criterion to preserve the global relational compatibility is called
cycle-consistency, i.e., that composition of maps between two objects should be independent of the connecting
path chosen. Such criterion has recently been invoked in many algorithms [3,8–11] to detect outliers among
the pairwise input maps. These works have shown experimentally that one can use inconsistent cycles to
prune outliers, provided that the corruption rate is sufficiently small.

Despite the empirical advances of these works, little is known on the theoretical side, namely, under what
conditions can the underlying ground-truth maps be reliably recovered. Recent work by [12] provided the
first theoretical guarantee for robust and consistent joint matching. However, there are several fundamental
issues left unaddressed that must be faced in order to accommodate practical challenges.

1. Dense Input Errors: The state-of-the-art results (e.g. [12]) did not provide theoretical support
when more than 50% of the input matches are corrupted. This gives rise to the question regarding
their applicability in the presence of highly noisy sources, in which case the majority of the input maps
can be corrupted. Observe that as the number n of objects to be matched increases, the amount of
pairwise maps one can obtain significantly exceeds n. As a result, dense error correction is information
theoretically possible as long as the global consistency across pairwise maps can be appropriately
exploited. While one would expect an ideal algorithm to work even when most input maps are random
outliers, the challenge remains as to whether there exist computationally feasible methods that can
provably detect and separate dense outliers.

2. Partial Similarity: To the best of our knowledge, all prior approaches dealt only with a restricted
scenario where the ground-truth maps are given by full isomorphisms (i.e. one-to-one correspondences
between any two sets). In reality, a collection of objects usually exhibit only partial similarity, as in
the case of images of the same scene but from different camera positions. These practical scenarios
require consistent matching of multiple objects that are only partially similar to each other.

3. Incomplete Input Maps: Computing pairwise maps across all object pairs are often expensive,
sometimes inadmissible, and in fact unnecessary. Depending on the characteristics of input sources,
one might be able to infer unobserved maps from a small sample of noisy pairwise matches. While [12]
considered incomplete inputs, the tradeoff between the undersampling factor and the error-correction
ability remains unknown.

All in all, practical applications require matching partially similar objects from a small fraction of densely
corrupted pairwise maps — a goal this paper aims to achieve.

1.1 Contributions
This paper is concerned with joint object matching under dense input errors. Our main contributions in this
regard are three-fold.

1. Algorithms: Inspired by the recent evidence on the power of convex relaxation, we propose to solve the
joint matching problem via a semidefinite program called MatchLift. The algorithm relaxes the binary-
value constraints, and attempts to maximize the compatibility between the input and the recovered
maps. The program is established upon a semidefinite conic constraint that relies on the total number
m of distinct elements to be matched. To this end, we propose to pre-estimatem via a spectral method.
Our methodology is essentially parameter free, and can be solved by scalable optimization algorithms.

2. Theory: We derive performance guarantees for exact matching. Somewhat surprisingly, MatchLift
admits perfect map recovery even in the presence of dense input corruptions. Our findings reveal the
near-optimal error-correction ability of MatchLift, i.e. as n grows, the algorithm is guaranteed to work
even when a dominant fraction – more precisely, a fraction 1 − Ω

(
log2 n√

n

)
– of the inputs behave as

random outliers. Besides, while the presence of partial similarity unavoidably incurs more severe types
of input errors, MatchLift exhibits a strong recovery ability nearly order-wise equivalent to that in the
full-similarity scenario, as long as the fraction of each object being disclosed is bounded away from
zero. Finally, in many situations, MatchLift succeeds even with minimal input complexity, in the sense
that it can reliably fill in all unobserved maps based on very few noisy partial inputs, as soon as the
provided maps form a connected graph. This is information theoretically optimal.
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3. Practice: We have evaluated the performance of MatchLift on several benchmark datasets. These
datasets include several synthetic examples as well as real examples from several popular benchmarks.
Experimental results on synthetic examples corroborate our theoretical findings. On real datasets,
the quality of the maps generated by MatchLift outperforms the state-of-the-art object matching and
graph clustering algorithms.

1.2 Prior Art
There has been numerous work studying the problem of object matching, either in terms of shape mapping,
graph matching, or image mapping, which is impossible to enumerate. We list below a small sample of
development on joint object matching, as well as its relation and distinction to the well-renowned graph
clustering problem.

• Object Matching. Early work on object matching focused primarily on matching pairs of objects in
isolation (e.g. [13–15]). Due to the limited and biased information present in an isolated object pair,
pairwise matching techniques can easily, sometimes unavoidably, generate false correspondences. Last
few years have witnessed a flurry of activity in joint object matching, e.g. [9–12], which exploited the
global cycle-consistency criterion to prune noisy maps. The fundamental understanding has recently
been advanced by [12]. Nevertheless, none of the prior work have demonstrated provable recovery ability
when the majority of input maps/correspondences are outliers, nor were they able to accommodate
practical scenarios where different objects only exhibit partial similarity. Recent work [16] employed
spectral methods for denoising in the full-similarity case. However, the errors considered therein are
modeled as Gaussian-Wigner additive noise, which is not applicable in our setting. Another line of
work [17, 18] proposed to recover global rigid transform between points via convex relaxation, where
the point coordinates might only be partially observed. While this line of work is relevant, the problem
considered therein is more specialized than the point-based joint matching studied in this paper; also,
none of these paradigms are able to enable dense error correction.

• Matrix Completion and Robust PCA. In a broader sense, our approach is inspired by the pioneer-
ing work in low-rank matrix completion [19,20] and robust principal component analysis [21–25], which
reveal the power of convex relaxation in recovering low-dimensional structures among high-dimensional
objects. In fact, the ground truth herein is equivalent to a block-constant low-rank matrix [26], as oc-
curred in various graph-related problems. Nevertheless, their theoretical analyses fail to provide tight
bounds in our setting, as the low-rank matrix relevant in our cases is highly sparse as well. That said,
additional structural assumptions need to be incorporated in order to achieve optimal performance.

• Graph Clustering. The joint matching problem can be treated as a structured graph clustering (GC)
problem, where graph nodes represent points on objects and the edge set encodes all correspondences.
In this regard, any GC algorithm [27–32] provides a heuristic to estimate graph matching. Neverthe-
less, there are several intrinsic structural properties herein that are not explored by any generic GC
approaches. First, our input takes a block-matrix form, where each block is highly structured (i.e.
doubly-substochastic), sparse, and inter-dependent. Second, the points belonging to the same object
are mutually exclusive to each other. Third, the corruption rate for different entries can be highly non-
symmetric – when translated into GC languages, this means that in-cluster edges might suffer from an
order-of-magnitude larger error rate than inter-cluster edges. As a result, the findings for generic GC
methods do not deliver encouraging guarantees when applied to our setting. Detailed theoretical and
empirical comparisons are provided in Sections 4 and 5, respectively.

1.3 Organization
The rest of the paper is organized as follows. Section 2 formally presents the problem setup, including the
input model and the expected output. Our two-step recovery procedure – a spectral method followed by
a convex program called MatchLift – is described in Section 3. A scalable alternating direction method of
multipliers (ADMM) together with a greedy rounding strategy is also introduced in Section 3. Section 4
presents the main theoretical performance guarantees for our method under a natural randomized model.
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All proofs of the main theorems are deferred to the appendices. We introduce numerical experiments demon-
strating the practicability of our method in Section 5, as well as empirical comparison with other best-known
algorithms. Finally, Section 6 concludes the paper with a summary of our findings.

2 Problem Formulation and Preliminaries
This section presents the problem setup for matching multiple partially similar objects, and introduces an
algebraic form for representing a collection of pairwise maps.

2.1 Terminology
Below we formally define several important notions that will be used throughout this paper.

• Set. We represent objects to be matched as discrete sets. For example, these sets can represent the
vertex sets in the graph matching problem, or encode feature points when matching images.

• Partial Map. Given two discrete sets S and S ′, a subset φ ⊂ S × S ′ is termed a partial map if each
element of S (resp. S ′) is paired with at most one element of S ′ (resp. S) — in particular, not all
elements need to be paired.

• Map Graph. A graph G = (V, E) is called a map graph w.r.t. n sets S1, · · · ,Sn if (i) V :=
{S1, · · · ,Sn}, and (ii) (Si,Sj) ∈ E implies that pairwise estimates on the partial maps φij and φji
between Si and Sj are available.

2.2 Input and Output
The input and expected output for the joint object matching problem are described as follows.

• Input (Noisy Pairwise Maps). Given n sets S1, · · · ,Sn with respective cardinality m1, · · · ,mn

and a (possibly sparse) map graph G, the input to the recovery algorithm consists of partial maps
φin
ij ((i, j) ∈ G) between Si and Sj estimated in isolation, using any off-the-shelf pairwise matching

method. Note that the input maps φin
ij one obtain might not agree, partially or totally, with the

ground truth.

• Output (Consistent Global Matching). The main objective of this paper is to detect and prune
incorrect pairwise input maps in an efficient and reliable manner. Specifically, we aim at proposing
a tractable algorithm that returns a full collection of partial maps {φij | 1 ≤ i, j ≤ n} that are (i)
globally consistent, and (ii) close to the provided pairwise maps – and under some conditions provably
the ground-truth maps.

As will be detailed later, the key idea of our approach is to explore global consistency across all pairwise
maps. In fact, points across different objects must form several clusters, and the ground-truth maps only
exhibit in-cluster edges. We will introduce a novel convex relaxation tailored to the structure of the input
maps (Section 3) and investigate its theoretical performance (Section 4).

2.3 Joint Matching in Matrix Form
In the same spirit as most convex relaxation techniques (e.g., [12, 30]), we use matrices to encode maps
between objects. Specifically, we encode a partial map φij : Si 7→ Sj as a binary matrix Xij ∈ {0, 1}|Si|×|Sj |
such that Xij(s, s

′) = 1 iff (s, s′) ∈ φij . Valid partial map matrices Xij shall satisfy the following doubly
sub-stochastic constraints:

0 ≤Xij1 ≤ 1, 0 ≤X>ij1 ≤ 1. (1)
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Symbol Description
1 ones vector: a vector with all entries one

Xij (i, j)-th block of a block matrix X.
〈A,B〉 matrix inner product, i.e. 〈A,B〉 = tr

(
A>B

)
.

diag(X) a column vector formed from the diagonal of a square matrix X
Diag(x) a diagonal matrix that puts x on the main diagonal

ei ith unit vector, whose ith component is 1 and all others 0

⊗ tensor product, i.e. A⊗B =


a1,1B a1,2B · · · a1,n2

B
a2,1B a2,2B · · · a2,n2B

...
...

...
...

an1,1B an1,2B · · · an1,n2
B


Ωgt,Ω

⊥
gt support of Xgt, its complement support

Tgt, T
⊥
gt tangent space at Xgt, its orthogonal complement

PΩgt , PΩ⊥gt
projection onto the space of matrices supported on Ωgt and Ω⊥gt,
respectively

PTgt
, PT⊥gt

projection onto Tgt and T⊥gt , respectively

Table 1: Summary of Notation and Parameters

We then use an n × n block matrix X ∈ {0, 1}N×N to encode the entire collection of partial maps
{φij | 1 ≤ i, j ≤ n} over {S1, · · · ,Sn}:

X =


Im1

X12 · · · X1n

X21 Im2
· · · X2n

...
...

. . .
...

Xn1 · · · · · · Imn

 , (2)

where mi := |Si| and N :=
∑n
i=1mi. Note that all diagonal blocks are identity matrices, as each object is

isomorphic to itself.
For notational simplicity, we will use X in throughout to denote the collection of pairwise input maps,

i.e. each obtained pairwise estimate φin
ij is encoded as a binary map matrix X in

ij ∈ {0, 1}
mi×mj obeying the

constraint (1). Some other useful notation is summarized in Table 1.

3 Methodology
This section presents a novel methodology, based on a theoretically rigorous and numerically efficient frame-
work.

3.1 MatchLift: A Novel Two-Step Algorithm
We start by discussing the consistency constraint on the underlying ground-truth maps. Assume that there
exists a universe S = {1, · · · ,m} of m elements such that i) each object Si is a (partial) image of S; ii) each
element in S is contained in at least one object Si. Then the ground-truth correspondences shall connect
points across objects that are associated with the same element.

Formally speaking, let the binary matrix Y i ∈ {0, 1}mi×m encode the underlying correspondences be-
tween each point and the universe, i.e. for any si ∈ Si and s ∈ S,

Y i(si, s) = 1, iff si corresponds to s.

This way one can express
X = Y Y >
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with Y = (Y >1 , · · · ,Y >n )>, which makes clear that

rank(X) = m.

This is equivalent to the graph partitioning setting with m cliques. Consequently, a natural candidate is to
seek a low-rank and positive semidefinite (PSD) matrix to approximate the input. However, this strategy
does not effectively explore the sparsity structure underlying the map collection.

To obtain a more powerful formulation, the proposed algorithm is based on the observation that even
under dense input corruption, we are often able to obtain reliable estimates on m – the universe size, using
spectral techniques. This motivates us to incorporate the information of m into the formulation so as to
develop tighter relaxation. Specifically, we lift X with one more dimension and consider[

m 1>

1 X

]
=

[
1>

Y

] [
1 Y >

]
� 0, (3)

which is strictly tighter than merely imposing X � 0. Intuitively, the formulation (3) entitles us one
extra degree of freedom to assist in outlier pruning, which turns out to be crucial in “debiasing” the errors.
Encouragingly, this tightened constraint leads to remarkably improved theoretical guarantees, as will be
shown in Section 4. In the following, we formally present our two-step matching procedure.

• Step I: Estimating m. We estimate m by tracking the spectrum of the input X in. According to
common wisdom (e.g. [33]), a block-sparse matrix X in must first be trimmed in order to remove the
undesired bias effect caused by over-represented rows / columns. One candidate trimming procedure
is provided as follows.

– Trimming Procedure. Set dmin to be the smallest vertex degree of G, and we say the a vertex
is over-represented if its vertex degree in G exceeds 2dmin. Then for each overrepresented vertex
i, randomly sample 2dmin edges incident to it and set to zero all blocks X in

ij associated with the
remaining edges.

With this trimming procedure, we propose to pre-estimate m via Algorithm 1.

Algorithm 1 Estimating the size m of the universe S

1) trim X in, and let X̃
in

be the output.
2) perform eigenvalue decomposition on X̃

in
; denote by λi the ith largest eigenvalue.

3) output: m̂ := arg maxM≤i<N |λi − λi+1|, where M = max{2,max1≤i≤nmi}.

In short, Algorithm 1 returns an estimate of m via spectral methods, which outputs the number of
dominant principal components of X in.

• Step II: Map Recovery. Now that we have obtained an estimate on m, we are in position to present
our optimization heuristic that exploits the structural property (3). In order to guarantee that the
recovery is close to the provided maps φin

ij , one alternative is to maximize correspondence agreement
(i.e. the number of compatible non-zero entries) between the input and output. This results in an
objective function: ∑

(i,j)∈G

〈X in
ij ,Xij〉.

Additionally, since a non-negative map matrix X is inherently sparse, it is natural to add an `1
regularization term to encourage sparsity, which in our case reduces to

〈1 · 1>,X〉.
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Since searching over all 0-1 map matrices is intractable, we propose to relax the binary constraints.
Putting these together leads to the following semidefinite program referred to as MatchLift :

(MatchLift) maximize
X∈RN×N

∑
(i,j)∈G

〈X in
ij ,Xij〉 − λ〈1 · 1>,X〉

subject to Xii = Imi
, 1 ≤ i ≤ n,

X ≥ 0,[
m 1>

1 X

]
� 0. (4)

Remark 1. Here, λ represents the regularization parameter that balances the compatibility to the
input and the sparsity structure. As we will show, the recovery ability of MatchLift is not sensitive to
the choice of λ. By default, one can set

λ =

√
|E|

2n
, (5)

which results in a parameter-free formulation.

Remark 2. Careful readers will note that the set of doubly stochastic constraints (1) can be further
added into the program. Nevertheless, while enforcement of these constraints (1) results in a strictly
tighter relaxation, it only leads to marginal improvement when (4) is present. As a result, we remove
them for the sake of computational efficiency. We note, however, that in the scenario where m is
difficulty to estimate, imposing (1) will “become crucial in allowing a constant fraction (e.g. 50%) of
error rate, although dense error correction might not be guaranteed.

This algorithm, all at once, attempts to disentangle the ground truth and outliers as well as predict un-
observed maps via convex relaxation, inspired by recent success in sparse and low-rank matrix decomposi-
tion [21, 22]. Since the ground truth matrix is simultaneously low-rank and sparse; existing methodologies,
which focus on dense low-rank matrices, typically yield loose, uninformative bounds in our setting.

Finally, we note that our matching algorithm and main results are well suited for a broad class of
scenarios where each pairwise input can be modeled as a (partial) permutation matrix. For instance, our
setting subsumes phase correlation [34], angular synchronization [35], and multi-signal alignment [36] as
special cases.

3.2 Alternating Direction Methods of Multipliers (ADMM)
Most advanced off-the-shelf SDP solvers like SeDuMi or MOSEK are typically based on interior point meth-
ods, and such second-order methods are unable to handle problems with large dimensionality. For practical
applicability, we propose a first-order optimization algorithm for approximately solving MatchLift, which is
a variant of the ADMM method for semidefinite programs presented in [37]. Theoretically it is guaranteed
to converge. Empirically, it is often the case that ADMM converges to modest accuracy within a reasonable
amount of time, and produces desired results with the assistance of appropriate rounding procedures. This
feature makes ADMM practically appealing in our case since the ground-truth matrix is known to be a 0-1
matrix, for which moderate entry-wise precision is sufficient to ensure good rounding accuracy. The details
of the ADMM algorithm are deferred to Appendix A.

3.3 Rounding Strategy
As MatchLift solves a relaxed program of the original convex problem, it may return fractional solutions.
In this case, we propose a greedy rounding method to generate valid partial maps. Given the solution X̂ to
MatchLift, the proposed strategy proceeds as in Algorithm 2. One can verify that this simple deterministic
rounding strategy returns a matrix that encodes a consistent collection of partial maps. Note that vTi denotes
the ith row of a matrix V .

7



Algorithm 2 Rounding Strategy

initialize compute the top r eigenvalues Σ = diag(σ1, · · · , σr) and eigenvectors U = (u1, · · · ,ur) of X̂,
where r is an estimate of the total number distinctive points to be recovered. Form V = UΣ

1
2 .

repeat
1) Let O be a unitary matrix that obeys Ov1 = e1, and set V ← V O>.
2) For each of the remaining rows vi belonging to each set Sj (i ∈ Sj), perform

vi ← e1, if 〈vi,v1〉 > 0.5 and i = arg max
l∈Sj
〈vl,v1〉 .

3) All indices i obeying vi = e1 are declared to be matched with each other, and are then removed.
Repeat 1) for the next row that has not been fixed.

until all the rows of V have been fixed.

4 Theoretical Guarantees: Exact Recovery
Our heuristic algorithm MatchLift recovers, under a natural randomized setting, the ground-truth maps even
when only a vanishing portion of the input correspondences are correct. Furthermore, MatchLift succeeds
with minimal input complexity, namely, the algorithm is guaranteed to work as soon as those input maps
that coincide with the ground truth maps form a connected map graph.

4.1 Randomized Model
In the following, we present a natural randomized model, under which the feature of MatchLift is easiest to
interpret. Specifically, consider a universe [m] := {1, 2, · · · ,m}. The randomized setting consider herein is
generated through the following procedure.

• For each set Si (1 ≤ i ≤ n), each point s ∈ [m] is included in Si independently with probability pset.

• Each X in
ij is observed / computed independently with probability pobs.

• Each observed X in
ij coincides with the ground truth independently with probability ptrue = 1− pfalse.

• Each observed but incorrect X in
ij is independently drawn from a set of partial map matrices satisfying

EX in
ij =

1

m
1 · 1>, if X in

ij is observed and corrupted. (6)

Remark 3. The above mean condition (6) holds, for example, when the augmented block (i.e. that obtained
by enhancing Si and Sj to have all m elements) is drawn from the entire set of permutation matrices or
other symmetric groups uniformly at random. While we impose (6) primarily to simplify our presentation
of the analysis, we remark that this assumption can be significantly relaxed without degrading the matching
performance.
Remark 4. We also note that the outliers do not need to be generated in an i.i.d. fashion. Our main results
hold as long as they are jointly independent and satisfy the mean condition (6).

4.2 Main Theorem: Near-Optimal Matching
We are now in position to state our main results, which provide theoretical performance guarantees for our
algorithms.

Theorem 1 (Accurate Estimation of m). Consider the above randomized model. There exists an absolute
constant c1 > 0 such that with probability exceeding 1− 1

m5n5 , the estimate on m returned by Algorithm 1 is
exact as long as

ptrue ≥
c1 log2 (mn)
√
npobspset

. (7)
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Proof. See Appendix B.

Theorem 1 ensures that one can obtain perfect estimate on the universe size or, equivalently, the rank
of the ground truth map matrix via spectral methods. With accurate information on m, MatchLift allows
perfect matching from densely corrupted inputs, as revealed below.

Theorem 2 (Exact and Robust Matching). Consider the randomized model described above. There
exist universal constants c0, c1, c2 > 0 such that for any

c1

(
pobs

m
+

√
pobs log(mn)

np3
set

)
≤ λ ≤

√
pobs log (mn)

pset
, (8)

if the non-corruption rate obeys

ptrue >
c0 log2 (mn)
√
npobsp2

set

, (9)

then the solution to MatchLift is exact and unique with probability exceeding 1− (mn)
−3.

Proof. See Appendix C.

Note that the performance is not sensitive to λ as it can be arbitrarily chosen between Θ
(√

pobs

n

)
and

Θ(
√
pobs). The implications of Theorem 2 are summarized as follows.

1. Near-Optimal Recovery under Dense Errors. Under the randomized model, MatchLift succeeds
in pruning all outliers and recovering the ground truth with high probability. Somewhat surprisingly,
this is guaranteed to work even when the non-corrupted pairwise maps account for only a vanishing
fraction of the inputs. As a result, MatchLift achieves near-optimal recovery performance in the
sense that as the number n of objects grows, its outlier-tolerance rate can be arbitrarily close to 1.
Equivalently speaking, in the asymptotic regime, almost all input maps – more precisely, a fraction

1− Ω

(
log2 n√

n

)
(10)

of inputs – can be badly corrupted by random errors without degrading the matching accuracy. This
in turn highlights the significance of joint object matching: no matter how noisy the input sources are,
perfect matching can be obtained as long as sufficiently many instances are available.

To the best of our knowledge, none of the prior results can support perfect recovery with more than
50% corruptions, regardless of how large n can be. The only comparative performance is reported for
the robust PCA setting, where semidefinite relaxation enables dense error correction [24,25]. However,
their condition cannot be satisfied in our case. Experimentally, applying RPCA on joint matching is
unable to tolerate dense errors (see Section 5).

2. Exact Matching of Partially Similar Objects. The challenge for matching partially similar objects
arises in that the overlapping ratio between each pair of objects is in the order of p2

set while the size of
each object is in the order of pset. As correct correspondences only come from overlapping regions, it
is expected that with a fixed pfalse, the matching ability degrades when pset decreases, which coincides
with the bound in (9). However, the order of fault-tolerance rate with n is independent of pset as long
as pset is bounded away from 0.

3. Minimal Input Complexity. Suppose that pset and pfalse are both constants bounded away from
0 and 1, and that m = nO(poly log(n)). Condition (9) asserts that: the algorithm is able to separate
outliers and fill in all missing maps reliably with no errors, as soon as the input complexity (i.e. the
number of pairwise maps provided) is about the order of npoly log(n). Recall that the connectivity
threshold for an Erdős–Renyi graph G(n, pobs) is pobs >

logn
n (see [38]). This implies that MatchLift

allows exact recovery nearly as soon as the input complexity exceeds the information theoretic limits.
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4.3 Comparison with Prior Approaches
Our exact recovery condition significantly outperforms the best-known performance guarantees, including
various SDP heuristics for matching problems, as well as general graph clustering approaches when applied
to object matching, detailed below.

• Semidefinite Programming: The SDP formulation proposed by Wang and Singer [17] admits exact
recovery in the full-similarity setting when ptrue > c1 for some absolute constant c1 ≈ 50% in the
asymptotic regime. One might also attempt recovery by minimizing a weighted sum of nuclear norm
and `1 norm as suggested in matrix completion [19] and robust PCA [21,22]. In order to enable dense
error correction, robust PCA requires the sparse components (which is X in − Xgt here with Xgt

denoting the ground truth) to exhibit random signs [24, 25]. This cannot be satisfied in our setting
since the sign pattern of X in−Xgt is highly biased (i.e. all non-negative entries of X in−Xgt lying in
the support of Xgt have negative signs, while all non-negative entries of X in−Xgt outside the support
of Xgt have positive signs).

• Graph Clustering: Various approaches for general graph clustering have been proposed with theo-
retical guarantees under different randomized settings [28,29,31]. These results typically operate under
the assumption that in-cluster and inter-cluster correspondences are independently corrupted, which
does not apply in our model. Due to the block structure input model, these two types of corrup-
tions are highly correlated and usually experience order-of-magnitude difference in corruption rate (i.e.
(1− ptrue) m−1

m for in-cluster edges and (1− ptrue) 1
m for inter-cluster edges). To facilitate comparison,

we evaluate the most recent deterministic guarantees obtained by [31]. The key metric Dmax therein
can be easily bounded by Dmax ≥ 1 − ptrue due to a significant degree of in-cluster edge errors. The
recovery condition therein requires

Dmax <
1

m+ 1
, ⇒ ptrue >

m

m+ 1
,

which does not deliver encouraging guarantees compared with ptrue > Θ
(

log2 n√
n

)
achieved by MatchLift.

5 Experimental Evaluation
In this section, we evaluate the performance of MatchLift and compare it against [29] and other graph
matching methods. We consider both synthetic examples, which are used to verify the exact recovery
conditions described above, as well as popular benchmark datasets for evaluating the practicability on real-
world images.

5.1 Synthetic Examples
We follow the randomized model described in Section 4 to generate synthetic examples. For simplicity, we
only consider the full observation mode, which establishes input maps between all pairs of objects. In all
examples, we fix the universe size such that it consists of m = 16 points. We then vary the remaining
parameters, i.e., n, pset and pfalse, to assess the performance of an algorithm. We evaluate 31 × 36 sets of
parameters for each scenario, where each parameter configuration is simulated by 10 Monte Carlo trials.
The empirical success probability is reflected by the color of each cell. Blue denotes perfect recovery in all
experiments, and red denotes failure for all trials.

Figure 1(a) illustrates the phase transition for pset = 0.6, when the number of objects n and pfalse vary.
We can see that MatchLift is exact even when the majority of the input correspondences are incorrect (e.g.,
75% when n = 150). This is consistent with the theoretical result that the lower bound on ptrue for exact
recovery is O(log2 n/

√
n).

Figure 1(c) shows the phase transition for n = 100, when pset and pfalse vary. We can see that MatchLift
tolerates more noise when pset is large. This is also consistent with the result that the error-correction ability
improves with pset.
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Figure 1: Phase Transition Diagrams of the proposed approach (MatchLift) and [29]. We can see that
MatchLift can recover the ground-truth maps even the majority of the input correspondences are wrong,
while the exact recovery of [29] requires that the percentage of incorrect correspondences is less than 50%.
(a-b) pset = 0.6. (c-d) n = 100.
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Figure 2: A small benchmark called Building created for matching multiple images with partial similarity.
Manually labeled feature points are highlighted.

Figure 3: A small benchmark called Chair created for matching multiple images with partial similarity.
Manually labeled feature points are highlighted.

In comparison, Figure 1(b) and Figure 1(d) illustrate the phase transition diagrams achieved by the
algorithm proposed in [29]. One can see that MatchLift is empirically superior, as [29] is unable to allow
dense error correction in our case.

5.2 Real-World Examples
We have applied our algorithm on six benchmark datasets, i.e., CMU-House, CMU-Hotel, two datasets
(Graf and Bikes) from [39]1 and two new datasets (referred as Chair and Building, respectively) designed
for evaluating joint partial object matching. As shown in Figures 2 and 3, the Building data set contains 16
images taken around a building [4], while the Chair data set contains 16 images of a chair model from different
viewpoints. In the following, we first discuss the procedure for generating the input to our algorithm, i.e.,
the input sets and the initial maps. We then present the evaluation setup and analyze the results.

• Feature points and initial maps. To make fair comparisons with previous techniques on CMU-
House and CMU-Hotel, we use the features points provided in [15] and apply the spectral matching

1available online: robots.ox.ac.uk/ vgg/research/affine

12



Input MatchLift RPCA LearnI LearnII
House 68.2% 100% 92.2% 99.8% 96%
Hotel 64.1% 100% 90.1% 99.8% 90%

Table 2: Matching performance on the hotel and house datasets. We compare the proposed MatchLift
algorithm with Robust PCA (RPCA) and two learning based graph matching methods: LearnI [45] and
LearnII [15].

algorithm described in [40] to establish initial maps between features points. To assess the perfor-
mance of the proposed algorithm with sparse input maps, we only match each image with 10 random
neighboring images.

(a) (b)

Figure 4: A map between dense SIFT feature points (a) is converted into a map between sampled feature
points (b.

• To handle raw images in Chair, Building, Graf and Bikes, we apply a different strategy to build feature
points and initial maps. We first detect dense SIFT feature points [41] on each image. We then apply
RANSAC [42] to obtain correspondences between each pair of images. As SIFT feature points are
over-complete, many of them do not appear in the resulting feature correspondences between pairs of
views. Thus, we remove all feature points that have less than 2 appearances in all pair-wise maps. We
further apply farthest point sampling on the feature points until the sampling density is above 0.05w,
where w is the width of the input images. The remaining feature points turn out to be much more
distinct and thus are suitable for joint matching (See Figure 4). For the experiments we have tested,
we obtain about 60− 100 features points per image.

• Evaluation protocol. On CMU-House and CMU-Hotel, we count the percentage of correct feature
correspondences produced by each algorithm. On Chair, Building, Graf and Bikes, we apply the metric
described in [43], which evaluates the deviations of manual feature correspondences. As the feature
points computed on each image do not necessarily align with the manual features, we apply [44] to
interpolate feature level correspondences into pixel-wise correspondences for evaluation.

• Results. Table 2 shows the results of various algorithms on CMU-House and CMU-Hotel. We can see
that even with moderate initial maps, MatchLift recovers all ground-truth correspondences. In contrast,
the method of [29] can only recover 92.2% and 90.1% ground-truth correspondences on CMU-House
and CMU-Hotel, respectively. Note that, MatchLift also outperforms state-of-the-art learning based
graph matching algorithms [15,45]. This shows the the advantage of joint object matching.

Figure 5 and Figure 6 illustrate the results of MatchLift on Chair, Building, Graf and Bikes. As these
images contain noisy background information, the quality of the input maps is lower than those on
House and Hotel. Encouragingly, MatchLift still recovers almost all manual correspondences. Moreover,
MatchLift significantly outperforms [29], as the fault-tolerance rate of [29] is limited by a small constant
barrier.

Another interesting observation is that the improvements on Graf and Bikes (each has 6 images) are
lower than those on Chair and Building (each has 16 images). This is consistent with the common
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Figure 5: Comparisons between the input maps and the output of MatchLift on six benchmark datasets:
(a) CMU Hotel, (b) CMU House, (c) Chair, (d) Building, (e) Graf, and (f) Bikes. The optimized maps
not correct incorrect correspondences as well as fill in missing correspondences (generated by paths through
intermediate shapes). One representative pair from each dataset is shown here.
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Figure 6: Percentages of ground-truth correspondences, whose distances to a map collection are below a
varying threshold ε.

knowledge of data-driven effect, where large object collections possess stronger self-correction power
than small object collections.

6 Conclusions
This paper delivers some encouraging news: given a few noisy object matches computed in isolation, a
collection of partially similar objects can be accurately matched via semidefinite relaxation – an approach
which provably works under dense errors. The proposed algorithm is essentially parameter-free, and can be
solved by ADMM achieving remarkable efficiency and accuracy, with the assistance of a greedy rounding
strategy.

The proposed algorithm achieves near-optimal error-correction ability, as it is guaranteed to work even
when a dominant fraction of inputs are corrupted. This in turn underscore the importance of joint object
matching: however low the quality of input sources is, perfect matching is achievable as long as we obtain
sufficiently many instances. Also, while partial matching may incur much more severe input errors than
those occurring in full-similarity matching, in many situations, the recovery ability of our algorithm is nearly
the same as that in the full-similarity case (up to some constant factor). In a broader sense, our findings
suggest that a large class of combinatorial / integer programming problems might be solved perfectly by
semidefinite relaxation.
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A Alternating Direction Method of Multipliers (ADMM)
This section presents the procedure for the ADMM algorithm. For notational simplicity, we represent the
convex program as follows:

minimize
X

〈W ,X〉 dual variable

subject to A(X) = b, yA

X ≥ 0, Z ≥ 0

X � 0, S � 0

where we denote X :=

[
m 1>

1 X

]
. The matrices and operators are defined as follows

(i) W encapsulate all block coefficient matrices W ij for all (i, j) ∈ G;

(ii) A(X) = b represents the constraint that Xii = Imi (1 ≤ i ≤ n) and the constraint X =

[
m 1>

1 X

]
;

(iii) The variables on the right hand, i.e., yA,Z and S, represent dual variables associated with respective
constraints.

The Lagrangian associated with the convex program can be given as follows

L =
〈
W ,X

〉
+
〈
yA,A(X)− b

〉
− 〈Z,X〉 −

〈
S,X

〉
=
〈
W +A∗(yA)−Z − S,X

〉
− 〈b,yA〉 .

where A∗ denotes the conjugate operator w.r.t. an operator A. The augmented Lagrangian for the convex
program can now be written as

L1/µ = 〈b,yA〉+
〈
Z + S −W −A∗(yA),X

〉
+

1

2µ
‖Z + S −W −A∗(yA)‖2F.

Here, the linear terms above represent the negative standard Lagrangian, whereas the quadratic parts rep-
resent the augmenting terms. µ is the penalty parameter that balances the standard Lagrangian and the
augmenting terms. The ADMM then proceeds by alternately optimizing each primal and dual variable with
others fixed, which results in closed-form solution for each subproblem. Denote by superscript k the iteration
number, then we can present the ADMM iterative update procedures as follows

y
(k+1)
A = (AA∗)−1

{
A
(
−W + S(k) + µX

(k)
+ Z(k)

)
− µb

}
,

Z(k+1) =
(
W +A∗

(
y

(k+1)
A

)
− S(k) − µX(k)

)
+
,

S(k+1) = Ppsd

(
W +A∗

(
y

(k+1)
A

)
−Z(k+1) − µX(k)

)
, (11)

X
(k+1)

= X
k

+
1

µ

(
Z(k+1) + S(k+1) −W −A∗

(
y

(k+1)
A

))
(12)

=− 1

µ
Pnsd

(
W +A∗

(
y

(k+1)
A

)
−Z(k+1) − µX(k)

)
. (13)

Here, the operator Ppsd (resp. Pnsd) denotes the projection onto the positive (resp. negative) semidefinite
cone, and (·)+ operator projects all entries of a vector / matrix to non-negative values. Within a reasonable
amount of time, ADMM typically returns moderately acceptable results.

B Proof of Theorem 1
The key step to the proof of Theorem 1 is to show that the set of outliers, even when they account for
a dominant portion of the input matrix, behave only as a small perturbation to the spectrum of the non-
corrupted components. Under the randomized model described in Section 4.1, it can be easily seen that
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the trimming procedure is not invoked with high probability. Consequently, Theorem 1 can be established
through the following lemma.

Lemma 1. Given any set of n permutation matrices P i ∈ Rm×m (1 ≤ i ≤ n), generate a random matrix
M via the following procedure.

1. Generate a symmetric block matrix A = [Aij ]1≤i,j≤n such that

Aii = I, 1 ≤ i ≤ n

and for all i < j,

Aij =


0, if µij = 0,

P iP
>
j , if νij = 1 and µij = 1,

U ij , else,
(14)

where νij ∼ Bernoulli (p) and µij ∼ Bernoulli (τ) are independent binary variables, and U ij ∈ Rm×m
are independent random permutation matrices obeying EU ij = 1

m1m · 1>m.

2. M is a principal minor of A from rows / columns at indices from a set I ⊆ {1, 2, · · · ,mn}, where
each 1 ≤ i ≤ mn is contained in I independently with probability q.

Then there exist absolute constants c1, c2 > 0 such that if p ≥ c1 log2(mn)
q
√
τn

, one has{
λi (M) ≥

(
1− 1

log(mn)

)
τpqn, if 1 ≤ i ≤ m

λi (M) ≤ c2
√
τn log (mn) < τpqn

log(mn) , if i > m
(15)

with probability exceeding 1− 1
m5n5 . Here, λi(M) represents the ith largest eigenvalue of M .

Proof of Lemma 1. Without loss of generality, we assume that P i = Im for all 1 ≤ i ≤ n, since rearranging
rows / columns of A does not change its eigenvalues. For convenience of presentation, we write A = Y +Z
such that

Y ii = τ

(
(1− p)
m

1m · 1>m + pIm

)
, 1 ≤ i ≤ n

and for all 1 ≤ i ≤ j ≤ n:

Y ij =


0, if µij = 0,

Im, if νij = 1 and µij = 1,

U ij , else.
(16)

This means that

Zij =

{
Im − Y ii, if i = j,

0, else.
(17)

Apparently, Z is a block diagonal matrix satisfying

‖Z‖ ≤ 2, (18)

which is only a mild perturbation of Y . This way we have reduced to the case where all blocks (including
diagonal blocks) are i.i.d., which is slightly more convenient to analyze.

Decompose Y into 2 components Y = Y mean + Y var such that

∀1 ≤ i ≤ j ≤ n : Y mean
ij = τ

(
(1− p)
m

1m · 1>m + pIm

)
, (19)

∀1 ≤ i ≤ n : Y var
ii = 0, (20)
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and

∀1 ≤ i < j ≤ n : Y var
ij =


−τ
(

(1−p)
m 1m · 1>m + pIm

)
, if µij = 0,

(1− τp) Im − (1−p)
m 1m · 1>m, if νij = 1 and µij = 1,

U ij − τ
(

(1−p)
m 1m · 1>m + pIm

)
, else.

(21)

In other words, Y mean represents the mean component of Y , while Y var comprises all variations around the
mean component. It is straightforward to check that

Y mean � 0, rank (Y mean) ≤ m+ 1.

If we denote by Y mean
I the principal minor coming from the rows and columns of Y at indices from I, then

from Weyl’s inequality one can easily see that

λi (M) ≥ λi (Y mean
I )− ‖Y var‖ − ‖Z‖ ≥ λi (Y mean

I )− ‖Y var‖ − 2, 1 ≤ i ≤ m (22)

and
λi (M) ≤ λi (Y mean

I ) + ‖Y var‖+ ‖Z‖ ≤ λi (Y mean
I ) + ‖Y var‖+ 2, i > m. (23)

In light of this, it suffices to evaluate ‖Y var‖ as well as the eigenvalues of Y mean
I .

We are now in position to quantify the eigenvalues of Y mean
I . Without affecting its eigenvalue distribution,

one can rearrange the rows / columns of Y mean
I so that

Y mean
I

(permutation)
= τp

 1n1 · 1>n1

. . .
1nm

· 1>nm

+
τ (1− p)

m
1N · 1>N . (24)

Here, ni (1 ≤ i ≤ m) denotes the cardinality of a set Ii generated by independently sampling n elements
each with probability q, and we set N := n1 + · · ·+nm for simplicity. From Bernstein inequality, there exist
universal constants c5, c6 > 0 such that if q > c5 log(mn)

n , then

|ni − nq| ≤ c6
√
nq log (mn), 1 ≤ i ≤ m (25)

holds with probability exceeding 1− (mn)
−10.

Since Y mean
I is positive semidefinite, from (24) one can easily check that all non-zero eigenvalues of Y mean

I

are also eigenvalues of the following (m+ 1)× (m+ 1) matrix

Y
mean
I : = τ


√
p1>n1 √

p1>n2

. . .
√
p1>nm√

1−p
m

1>N




√
p1n1 √

p1n2

. . .
√
p1nm

√
1−p
m

1N



= τ


pn1

√
p(1−p)

m
n1

pn2

√
p(1−p)

m
n2

. . .
...

pnm

√
p(1−p)

m
nm√

p(1−p)
m

n1

√
p(1−p)

m
n2 · · ·

√
p(1−p)

m
nm

1−p
m

N

 (26)

= τqn


p

√
p(1−p)

m

. . .
...

p
√

p(1−p)
m√

p(1−p)
m

· · ·
√

p(1−p)
m

1− p


︸ ︷︷ ︸

Y I,0

+ τ


p∆1

√
p(1−p)

m
∆1

. . .
...

p∆m

√
p(1−p)

m
∆m√

p(1−p)
m

∆1 · · ·
√

p(1−p)
m

∆m
1−p
m

∆N


︸ ︷︷ ︸

Y I,∆

, (27)
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where
∆i = ni − nq 1 ≤ i ≤ m,

and
∆N = N − qnm,

which satisfies |∆N | ≤ mmax1≤i≤m |∆i|.

By Schur complement condition for positive definite matrices [46], if
[

C B

B> D

]
� 0, then C � 0 and

D −B>C−1B � 0. Applying this condition to Y I,0 suggests that Y I,0 � 0 can only hold when

(1− p)− p (1− p)
m

1

p
1>m · 1m > 0,

which however cannot be satisfied since (1− p)− p(1−p)
m

1
p1>m · 1m = 0. Thus, Y I,0 is rank deficient.

In fact, all non-zero eigenvalues of Y I,0 can be quantified as well. Specifically, for any vector

zi := ei −
1

m

[
1m
0

]
, 1 ≤ i ≤ m− 1,

one can compute
Y I,0 · zi = (τqpn) zi, 1 ≤ i ≤ m− 1. (28)

That said, τqpn is an eigenvalue of Y I,0 with multiplicity m− 1. On the other hand, we have
Y I,0 ·

[
1m√
(1−p)m

p

]
= τqn

[
1m√
(1−p)m

p

]
,

z>i ·

[
1m√
(1−p)m

p

]
= 0,

(29)

indicating that τqn is another eigenvalue of Y I,0. Putting these together yields

λi
(
Y I,0

)
=


τqn, i = 1

τpqn, 2 ≤ i ≤ m,
0, i > m.

(30)

Furthermore, the residual component Y I,∆ can be bounded as follows

∥∥Y I,∆

∥∥ ≤ τ
∥∥∥∥∥∥∥∥


p∆1

. . .
p∆m

1−p
m

∆N


∥∥∥∥∥∥∥∥+ τ

∥∥∥∥∥∥∥∥∥∥


0

√
p(1−p)

m
∆1

. . .
...

0
√

p(1−p)
m

∆m√
p(1−p)

m
∆1 · · ·

√
p(1−p)

m
∆m 0


∥∥∥∥∥∥∥∥∥∥

F

≤ τ max

{
p max

1≤i≤m
|∆i| ,

1− p
m
|∆N |

}
+ τ
√

2p (1− p) max
1≤i≤m

|∆i|

≤ 2τ max
1≤i≤m

|∆i| ≤ 2c6τ
√
nq log (mn),

where the last inequality follows from (25). This taken collectively with (27) and (30) yields that: when
p > 2c6 log2(mn)√

nq or, equivalently, when 2c6
√
nq log (mn) < 1

log1.5(mn)
npq, one has

λi (Y mean
I ) ≥

(
1− 1

log
3
2 (mn)

)
τpqn, 1 ≤ i ≤ m,

λi (Y mean
I ) ≤ 2c6τ

√
nq log (mn) ≤ 1

log
3
2 (mn)

τpqn, i > m.
(31)
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Furthermore, observe that EY var
ij = 0, E

∥∥∥ 1
2
√
τ
Y var
ij

∥∥∥2

≤ 1, and 1
2
√
τ

∥∥Y var
ij

∥∥ ≤ 1√
τ
. When τ > 1

n , Lemma
3 yields that

‖Y var‖ ≤ 2c0
√
τn log (mn) (32)

with probability at least 1− (mn)−5. Hence, ‖Y var‖ = o (τpqn) if p > c10 log2 n
q
√
τn

for some constant c10 > 0.
Finally, the claim follows by substituting (31) and (32) into (22) and (23).

C Proof of Theorem 2
To prove Theorem 2, we first analyze the Karush–Kuhn–Tucker (KKT) condition for exact recovery, which
provides a sufficient and almost necessary condition for uniqueness and optimality. Valid dual certificates
are then constructed to guarantee exact recovery.

C.1 Preliminaries and Notations
Without loss of generality, we can treat Xgt as a sub-matrix of an augmented square matrix Xgt

sup such that

Xgt
sup := 1 · 1> ⊗ In, (33)

and

Xgt :=


Π1

Π2

. . .
Πn

Xgt
sup


Π>1

Π>2
. . .

Π>n

 , (34)

where the matrices Πi ∈ R|Si|×m are defined such that Πi denotes the submatrix of Im coming from its
rows at indices from Si. For instance, if Si = {2, 3}, then one has

Πi =

[
0 1 0 · · · 0
0 0 1 · · · 0

]
.

With this notation, ΠiMΠ>j represents a submatrix of M ∈ Rm×m coming from the rows at indices from
Si and columns at indices from Sj . Conversely, for any matrix M̃ ∈ R|Si|×|Sj |, the matrix Π>i M̃Πj converts
M̃ to an m×m matrix space via zero padding.

With this notation, we can represent X in as a submatrix of X in
sup, which is a corrupted version of Xgt

sup

and obeys
X in
ij := Πi

(
X in

sup

)
ij

Π>j . (35)

For notational simplicity, we set

W ij :=

{
−X in

ij + λ1 · 1>, if (i, j) ∈ G,
λ1 · 1>, else.

(36)

Before continuing to the proof, it is convenient to introduce some notations that will be used throughout.
Denote by Ωgt and Ω⊥gt the support of Xgt and its complement support, respectively, and let PΩgt

and PΩ⊥gt

represent the orthogonal projection onto the linear space of matrices supported on Ωgt and its complement
support Ω⊥gt, respectively. Define Tgt to be the tangent space at Xgt w.r.t. all symmetric matrices of rank
at most m, i.e. the space of symmetric matrices of the form

Tgt :=




Π1

Π2

...
Πn

M + M> [ Π>1 Π>2 · · · Π>n
]

: M ∈ Rm×N

 , (37)
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and denote by T⊥gt its orthogonal complement. We then denote by PTgt (resp. PT⊥gt
) the orthogonal projection

onto Tgt (resp. T⊥gt). In passing, if we define

Σ := Diag

{[
n

n1
, · · · , n

nm

]}
, (38)

then the columns of

U :=
1√
n


Π1

Π2

...
Πn

Σ
1
2 (39)

form the set of eigenvectors of Xgt, and for any symmetric matrix M ,

PT⊥gt
(M) =

(
I −UU>

)
M
(
I −UU>

)
. (40)

Furthermore, we define a vector d to be

d :=


Π1

Π2

...
Πn

Σ1m. (41)

Put another way, if any row index j of Xgt is associated with the element s ∈ [m], then dj = n
ns
. One can

then easily verify that 〈
d · d>,Xgt − 1

m
1 · 1>

〉
=
〈
d · d>,Xgt

〉
− 1

m

(
1> · d

)2
= 0. (42)

In fact, when ni’s are sufficiently close to each other, d · d> is a good approximation of 1 · 1>, as claimed in
the following lemma.

Lemma 2. Consider a set of Bernoulli random variables νi ∼ Bernoulli (p) (1 ≤ i ≤ n), and set s :=∑n
i=1 νi. Let ni (1 ≤ i ≤ m) be independent copies of s, and denote N = n1 + · · ·+ nm. If p > c7 log2(mn)

n ,
then the matrix

A := (np)
2


1
n1

1n1

1
n2

1n2

...
1
nm

1nm

 [ 1
n1

1>n1

1
n2

1>n2
· · · 1

nm
1>nm

]
(43)

satisfies ∥∥∥∥ 1

m
A− 1

m
1N · 1>N

∥∥∥∥ ≤ c8√np log(mn) (44)

and ∥∥A− 1N · 1>N
∥∥
∞ ≤ c9

√
log(mn)

np
(45)

with probability exceeding 1− 1
m5n5 , where c7, c8, c9 are some universal constants.

Proof. See Appendix D.1.

Since p2d · d> is equivalent to A defined in (43) up to row / column permutation, Lemma 2 reveals that∥∥∥∥p2

m
d · d> − 1

m
1N · 1>N

∥∥∥∥ ≤ c8√np log(mn)

with high probability.
The following bound on the operator norm of a random block matrix is useful for deriving our main

results.
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Lemma 3. Let M = [M ij ]1≤i,j≤n be a symmetric block matrix, where M ij’s are jointly independent mi×mj

matrices satisfying

EM ij = 0, E ‖M ij‖2 ≤ 1, and ‖M ij‖ ≤
√
n, (1 ≤ i, j ≤ n). (46)

Besides, mi ≤ m holds for all 1 ≤ i ≤ n. Then there exists an absolute constant c0 > 0 such that

‖M‖ ≤ c0
√
n log (mn)

holds with probability exceeding 1− 1
m5n5 .

Proof. See Appendix D.2.

Additionally, the second smallest eigenvalue of the Laplacian matrix of a random Erdős–Rényi graph can
be bounded below by the following lemma.

Lemma 4. Consider an Erdős–Rényi graph G ∼ G(n, p) and any positive integer m, and let L ∈ Rn×n
represent its (unnormalized) Laplacian matrix. There exist absolute constants c3, c4 > 0 such that if p >
c3 log2 (mn) /n, then the algebraic connectivity a (G) of G (i.e. the second smallest eigenvalue of L) satisfies

a (G) ≥ np− c4
√
np log (mn) (47)

with probability exceeding 1− 2
(mn)5 .

Proof. See Appendix D.3.

Finally, if we denote by ns (resp. ns,t) the number of sets Si (1 ≤ i ≤ n) containing the element s (resp.
containing s and t simultaneously), then these quantities sharply concentrate around their mean values, as
stated in the following lemma.

Lemma 5. There are some universal constants c8, c9 > 0 such that if p2
set >

log(mn)
n , then

|ns − npset| ≤
√
c8npset log (mn), ∀1 ≤ s ≤ m,∣∣ns,t − np2

set

∣∣ ≤√c8np2
set log (mn), ∀1 ≤ s < t ≤ m,

hold with probability exceeding 1− 1
(mn)10 .

Proof. In passing, the claim follows immediately from the Bernstein inequality that

P

(∣∣∣∣∣
n∑
i=1

νi − np

∣∣∣∣∣ > t

)
≤ 2 exp

(
−

1
2 t

2

np(1− p) + 1
3 t

)
where νi ∼ Bernoulli(p) are i.i.d. random variables. Interested readers are referred to [47] for a tutorial.

C.2 Optimality and Uniqueness Condition
Recall that ni := |Ii| denotes the number of sets Sj containing the element i. The convex relaxation is exact
if one can construct valid dual certificates, as summarized in the following lemma.

Lemma 6. Suppose that there exist dual certificates α > 0, Z = [Zij ]1≤i,j≤n ∈ SN×N and Y = [Y ij ]1≤i,j≤n ∈
SN×N obeying

Y − αdd> � 0, (48)
PΩgt

(Z) = 0, PΩ⊥gt
(Z) ≥ 0, (49)

Y ij = W ij −Zij , 1 ≤ i < j ≤ n, (50)

Y − αdd> ∈ T⊥gt . (51)
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Then Xgt is the unique solution to MatchLift if either of the following two conditions is satisfied:
i) All entries of Zij (∀i 6= j) within the support Ω⊥gt are strictly positive;
ii) For all M satisfying PT⊥gt

(M) � 0,〈
Y − αdd>,PT⊥gt

(M)
〉
> 0, (52)

and, additionally,
n

ni
+

n

nj
6= n2

ninj
, 1 ≤ i, j ≤ m. (53)

Proof. See Appendix D.4.

That said, to prove Theorem 2, it is sufficient (under the hypotheses of Theorem 2) to generate, with
high probability, valid dual certificates Y , Z and α > 0 obeying the optimality conditions of Lemma 6. This
is the objective of the next subsection.

C.3 Construction of Dual Certificates
Decompose the input X in into two components X in = X false + Xtrue, where

Xtrue = PΩgt

(
X in

)
, and X false = PΩ⊥gt

(
X in

)
. (54)

That said, Xtrue (resp. X false) consists of all correct (resp. incorrect) correspondences (i.e. non-zero entries)
encoded in X in. This allows us to write

W ij =

{
−X false

ij + λEij −Xtrue
ij + λE⊥ij , if (i, j) ∈ G,

λEij + λE⊥ij , else,
(55)

where E and E⊥ are defined to be

E := PΩgt

(
1 · 1>

)
, and E⊥ := 1 · 1> −E. (56)

We propose constructing the dual certificate Y by producing three symmetric matrix components Y true,1,
Y true,2, and Y L separately, as follows.

1. Construction of Zm and Rm. For any β ≥ 0, define αβ to be

αβ := arg min
α:β1·1>−αd·d>≥0

∥∥∥β1 · 1> − αd · d>
∥∥∥
∞
. (57)

By setting β0 := λ− (1−ptrue)pobs

m −
√

c10pobs log(mn)
np3

set
, we produce Zm and Rm as follows

Zm = PΩ⊥gt

((
λ− (1− ptrue) pobs

m

)
1 · 1> − αβ0

d · d>
)

(58)

and
Rm = PΩgt

((
λ− (1− ptrue) pobs

m

)
1 · 1> − αβ0

d · d>
)

(59)

for some sufficiently large constant c10 > 0.

2. Construction of Y true,1 and Y true,2. We set

Y true,1
ij =

{
−Xtrue

ij + (1−ptrue)pobs

m Eij , if i < j,∑n
j=1

(
Xtrue
ij − (1−ptrue)pobs

m Eij

)
ΠjΠ

>
i , if i = j,

and

Y true,2
ij =

{
Rm
ij , if i < j,

−
∑n
j=1 R

m
ijΠjΠ

>
i , if i = j.
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1 2 1 3 2 3 4 2 3
1 0 0 0 0 0 0 0 0 0
2 0 0 0 −1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
3 0 −1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

1 2 1 3 2 3 4 2 3
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0.5 0 0 0.5
1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0.5 0 0 0.5 0
2 0 0 0 0.5 0 −0.5 0 0 0
3 0 0.5 0 0 −0.5 0 0 0 0
4 0 0 0 0 0 0 0 0 0
2 0 0 0 0.5 0 0 0 0 −0.5
3 0 0.5 0 0 0 0 0 −0.5 0

(a) Input Y 0 (b) ZL

Figure 7: A toy example for constructing ZL, where 4 shapes S1 = {1, 2}, S2 = {1, 3}, S3 = {2, 3, 4}, and
S4 = {2, 3} are considered. The input incorrectly maps point 1 to 3 between S1 and S2, and both points are
contained in S3 and S4. One can check that Y 0 + ZL ∈ T⊥gt in this example.

3. Construction of Y L and ZL via an iterative procedure. Next, we generate Y L via the following iterative
procedure. Here, for any matrix M , we let M ij(s, s

′) represent the entry in the (i, j)th block M ij

that encodes the correspondence from s to s′.

Construction of a dual certificate Y L.
1. initialize: Set the symmetric matrix Y L,0 such that

Y L,0
ij =

{
−X false

ij + (1−ptrue)pobs

m E⊥ij , if i < j,

0, if i = j,

and start with ZL = 0.
2. for each non-zero entry Y L,0

ij (s, s′):
3. Set a = Y L,0

ij (s, s′), Bi,j,s,s′ = {l /∈ {i, j} | (s, s′) ∈ Sl} and ns,s
′

i,j = |Bi,j,s,s′ |.
4. for each set l ∈ Bi,j,s,s′ : perform

ZL
il (s, s

′)← ZL
il (s, s

′)− a

ns,s′
i,j

, ZL
li (s′, s)← ZL

li (s′, s)− a

ns,s′
i,j

,

ZL
lj (s, s′)← ZL

lj (s, s′)− a

ns,s′
i,j

, ZL
jl (s

′, s)← ZL
jl (s

′, s)− a

ns,s′
i,j

,

ZL
ll (s, s

′)← ZL
ll (s, s

′) + a

ns,s′
i,j

, ZL
ll (s
′, s)← ZL

ll (s
′, s) + a

ns,s′
i,j

.

5. output: Y L = Y L,0 + ZL.

4. Construction of Y and Z: define Y and Z such that

Y = Y true,1 + Y true,2 + Y L + αβ0
d · d>, (60)

Zij =

{
Zm
ij −ZL

ij , if i 6= j,

0, if i = j.
(61)

Remark 5. Below is a toy example to illustrate the proposed procedure for constructing ZL. Consider three
sets S1 = {1, 2}, S2 = {1, 3}, S3 = {2, 3, 4}, and S4 = {1, 3}. Suppose that Y L,0 only contains two non-zero
entries that incorrectly maps elements 1 to 3 in Y L,0

12 , as illustrated in Fig. 7(a). The resulting ZL is shown
in Fig. 7(b). Clearly, Y L,0 + ZL obeys Y L,0 + ZL ∈ T⊥gt .
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With the above construction procedure, one can easily verify that:
(1) Y true,1, Y true,2 and Y L are all contained in the space T⊥gt ;
(2) PΩgt (Z) = 0;
(3) If we set Mm := αβ0

d · d>, then for any i 6= j,

Y ij =Y true,1
ij + Y true,2

ij + Y L
ij + Mm

ij

=−Xtrue
ij +

(1− ptrue) pobs

m
Eij + Rm

ij −X false
ij +

(1− ptrue) pobs

m
E⊥ij + ZL

ij + Mm
ij

=−Xtrue
ij −X false

ij + λ1 · 1> −
((

λ− (1− ptrue) pobs

m

)
1 · 1> −Rm

ij

)
+ ZL

ij + Mm
ij

=W ij −
(
Zm
ij −ZL

ij

)
. (62)

Furthermore, from Lemma 2 one can obtain

∥∥∥d · d> − 1 · 1>
∥∥∥
∞

= O

(√
log (mn)

npset

)
.

This taken collectively with (57) and the assumption (8) ensures that

αβ0
= λ− (1− ptrue) pobs

m
−O

(√
c10pobs log (mn)

np3
set

)
> 0 (63)

as long as p3
set >

c15 log(mn)
n for some constant c15 > 0.

Consequently, we will establish that Y and Z are valid dual certificates if they satisfy{
all entries of Zm

ij −ZL
ij (∀i 6= j) within Ω⊥gt are strictly positive;

Y true,1 + Y true,2 + Y L � 0.
(64)

Such conditions will be established through the following lemmas.

Lemma 7. There are some universal constants c0, c1 > 0 such that∥∥∥Y L
∥∥∥ ≤ c0

√
npobs log (mn)

p2
set

and ∥∥∥ZL
ij

∥∥∥
∞
≤

√
c1pobs log (mn)

np3
set

, 1 ≤ i < j ≤ n

with probability exceeding 1− 1
(mn)4 .

Proof. See Appendix D.5.

Lemma 8. There are some universal constants c5, c6, c7 > 0 such that if ptruepobspset >
c7 log2(mn)

n and

λ <

√
pobs log(mn)

pset
, then with probability exceeding 1− 1

(mn)10 , one has

∥∥Y true,2
∥∥ ≤ c5√npobs

pset
log (mn) ,

and 〈
vv>,Y true,1

〉
≥ 1

2
npsetptruepobs − c6

√
npsetpobs log (mn)

for all unit vector v satisfying vv> ∈ T⊥gt .
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Proof. See Appendix D.6.

Combining Lemmas 7 and 8 yields that there exists an absolute constant c0 > 0 such that if

ptrue > c0
log2 (mn)√
npobsp4

set

,

then
Y = Y true,1 + Y true,2 + Y L � 0.

On the other hand, observe that all entries of the non-negative matrix Zm lying in the index set Ω⊥gt are

bounded below in magnitude by
√

c10pobs log(mn)
np3

set
. For sufficiently large c10, one can conclude that all entries

of Zm
il −ZL

il outside Ωgt are strictly positive.
So far we have justified that Y and Z satisfy (64), thereby certifying that the proposed algorithm correctly

recovers the ground-truth matching.

D Proofs of Auxiliary Lemmas

D.1 Proof of Lemma 2
Denote by A := 1N · 1TN . From Bernstein inequality, ni sharply concentrates around np such that if
p > c6 log2(mn)

n

|ni − np| ≤ c5
√
np log(mn), ∀1 ≤ i ≤ m (65)

with probability exceeding 1− (mn)−10, where c5, c6 > 0 are some absolute constants.
The bound (65) also implies that∥∥∥∥∥∥∥∥∥I −


np
n1

np
n2

. . .
np
nm


∥∥∥∥∥∥∥∥∥ ≤ max

1≤i≤m

|ni − np|
ni

≤
c5
√
np log(mn)

np− c5
√
np log(mn)

≤ 2c5

√
log(mn)

np
.

Similarly, one has
|N − nmp| ≤ c5

√
pmn log(mn)

with probability exceeding 1− (mn)−10, which implies that∥∥A∥∥ = N ≤ nmp+ c5
√
pmn log(mn) < 2nmp.

Rewrite A as

A :=


np
n1

Diag (1n1)

. . .
np
nm

Diag (1nm)

 ·A ·


np
n1

Diag (1n1)

. . .
np
nm

Diag (1nm)

 .
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This allows us to bound the deviation of A from A as follows

∥∥A−A
∥∥ ≤

∥∥∥∥∥∥∥A−


np
n1

Diag (1n1
)

. . .
np
nm

Diag (1nm
)

A

∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥


np
n1

Diag (1n1
)

. . .
np
nm

Diag (1nm
)

A−A

∥∥∥∥∥∥∥
≤


∥∥∥∥∥∥∥


np
n1

Diag (1n1)

. . .
np
nm

Diag (1nm)


∥∥∥∥∥∥∥+ 1

∥∥A∥∥
∥∥∥∥∥∥∥I −


np
n1

Diag (1n1)

. . .
np
nm

Diag (1nm)


∥∥∥∥∥∥∥

≤

(
1 + c5

√
log(mn)

np
+ 1

)
2nmp · 2c5

√
log(mn)

np

≤ c6m
√
np log(mn)

for some universal constant c6 > 0.
On the other hand, it follows immediately from (65) that

∥∥A− 1 · 1>
∥∥
∞ = max

1≤i,j≤m

∣∣∣∣∣ (np)2

ninj
− 1

∣∣∣∣∣ = max
1≤i,j≤m

∣∣∣∣pn (pn− nj) + (pn− ni)nj
ninj

∣∣∣∣
≤ max

1≤i,j≤m

∣∣∣pn+ c5
√
np log(mn)

∣∣∣(
pn− c5

√
np log(mn)

)2 c5
√
np log(mn)

≤ c9

√
log(mn)

np

for some absolute constant c9 > 0.

D.2 Proof of Lemma 3
The norm of M can be bounded via the moment method, which attempts to control tr(Mk) for some even
integer k. See [48, Section 2.3.4] for a nice introduction.

Specifically, observe that Etr(Mk) can be expanded as follows

Etr
(
Mk

)
=

∑
1≤i1,··· ,ik≤n

Etr (M i1i2M i2i3 · · ·M iki1) ,

a trace sum over all k-cycles in the vertex set {1, · · · , n}. Note that (i, i) are also treated as valid edges. For
each term Etr(M i1i2M i2i3 · · ·M iki1), if there exists an edge occurring exactly once, then the term vanishes
due to the independence assumption. Thus, it suffices to examine the terms in which each edge is repeated at
least twice. Consequently, there are at most k/2 relevant edges, which span at most k/2+1 distinct vertices.
We also need to assign vertices to k/2 edges, which adds up to no more than (k/2)

k different choices.
By following the same procedure and notation as adopted in [48, Page 119], we divide all non-vanishing

k-cycles into (k/2)
k classes based on the above labeling order; each class is associated with j (1 ≤ j ≤ k/2)

edges e1, · · · , ej with multiplicities a1, · · · , aj , where (e1, · · · , a1, · · · , aj) determines the class of cycles and
a1 + · · ·+ aj = k. Since there are at most nj+1 distinct vertices, one can see that no more than nj+1 cycles
falling within this particular class. For notational simplicity, set K =

√
n, and hence ‖M ij‖ ≤ K. By

assumption (46), one has

Etr (M i1i2M i2i3 · · ·M iki1) ≤ mE
(
‖M e1‖

a1 · · ·
∥∥M ej

∥∥aj)
≤ mE ‖M e1‖

2 · · ·E
∥∥M ej

∥∥2
Ka1−2 · · ·Kaj−2

≤ mKk−2j .
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Thus, the total contribution of this class does not exceed

mnj+1Kk−2j = mn
k
2 +1.

By summing over all classes one obtains the crude bound

Etr
(
Mk

)
≤ m

(
k

2

)k
n

k
2 +1,

which follows that

E ‖M‖k ≤ Etr
(
Mk

)
≤ m

(
k

2

)k
n

k
2 +1.

If we set k = log (mn), then from Markov’s inequality we have

P
(
‖M‖ ≥ k

2
n

1
2 + 1

k (mn)
5
k m

1
k

)
≤ E ‖M‖k(

k
2n

1
2 + 1

k (mn)
5
k m

1
k

)k ≤ m
(
k
2

)k
n

k
2 +1

m
(
k
2

)k
n

k
2 +1 (mn)

5
≤ 1

(mn)
5 .

Since n
1

log n = O (1), there exists a constant c0 > 0 such that

P
(
‖M‖ ≥ c0n

1
2 log (mn)

)
≤ 1

m5n5
,

which completes the proof.

D.3 Proof of Lemma 4
When G ∼ G(n, p), the adjacency matrixA consists of independent Bernoulli components (except for diagonal
entries), each with mean p and variance p(1− p). Lemma 3 immediately implies that if p > 2 log(mn)

n , then

1√
p(1− p)

∥∥A− p1n · 1>n ∥∥ ≤ c0√n log (mn) + 1 (66)

with probability at least 1− (mn)−5. That said, there exists an absolute constant c1 > 0 such that∥∥A− p1n · 1>n ∥∥ ≤ c1√pn log (mn) (67)

with probability exceeding 1− (mn)−5.
On the other hand, from Bernstein inequality, the degree of each vertex exceeds

dmin := pn− c2
√
pn log (mn) (68)

with probability at least 1 − (mn)
−10, where c2 is some constant. When p > 2 log(mn)

n , G is connected, and
hence the least eigenvalue of L is zero with the eigenvector 1n. This taken collectively with (67) and (68)
suggests that when p > c23 log2(mn)

n , one has

a (G) ≥ dmin −
∥∥A− p1n · 1>n ∥∥ ≥ pn− c3√pn log (mn)

with high probability.

D.4 Proof of Lemma 6
Suppose that Xgt + H is the solution to MatchLift for some perturbation H 6= 0. By Schur complement

condition for positive definiteness, the feasibility constraint
[
m 1>

1 Xgt + H

]
� 0 is equivalent to

{
Xgt + H � 0,

Xgt + H − 1
m1 · 1> � 0,
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which immediately yields

PT⊥gt
(H) =

(
I −UU>

) (
Xgt + H

) (
I −UU>

)
� 0, (69)

and 〈
d · d>,H

〉
=

〈
d · d>,Xgt − 1

m
1 · 1> + H

〉
≥ 0. (70)

The above inequalities follow from the facts PT⊥gt

(
Xgt

)
= 0 and

〈
d · d>,Xgt − 1

m1 · 1>
〉

= 0.
From Assumption (51), one can derive〈

Y − αd · d>,PT⊥gt
(H)

〉
+
〈
αd · d>,H

〉
=
〈
Y − αd · d>,H

〉
+
〈
αd · d>,H

〉
= 〈Y ,H〉 =

∑
i 6=j

〈Y ij ,Hij〉 . (71)

This allows us to bound 〈
Y − αd · d>,PT⊥gt

(H)
〉

+
∑
i6=j

〈Zij ,Hij〉

≤
〈
Y − αd · d>,PT⊥gt

(H)
〉

+
〈
αd · d>,H

〉
+
∑
i 6=j

〈Zij ,Hij〉 (72)

=
∑
i 6=j

〈Y ij ,Hij〉+
∑
i 6=j

〈Zij ,Hij〉 (73)

=
∑
i 6=j

〈W ij ,Hij〉 , (74)

where the first inequality follows from (70), and the last equality follows from Assumption (50).
In order to preclude the possibility that Xgt + H is the solution to MatchLift, we need to show that∑
i 6=j 〈W ij ,Hij〉 > 0. From (74) it suffices to establish that〈

Y − αd · d>,PT⊥gt
(H)

〉
+
∑
i6=j

〈Zij ,Hij〉 > 0 (75)

for any feasible H 6= 0. In fact, since Y − αd · d> and PT⊥gt
(H) are both positive semidefinite, one must

have 〈
Y − αd · d>,PT⊥gt

(H)
〉
≥ 0. (76)

On the other hand, the constraints

supp (Z) ⊆ Ω⊥gt, PΩ⊥gt
(Z) ≥ 0, and PΩ⊥gt

(H) ≥ 0

taken together imply that ∑
i 6=j

〈Zij ,Hij〉 ≥ 0. (77)

Putting (76) and (77) together gives〈
Y − αd · d>,PT⊥gt

(H)
〉

+
∑
i 6=j

〈Zij ,Hij〉 ≥ 0.

Comparing this with (75), we only need to establish either
〈
Y − αd · d>,PT⊥gt

(H)
〉
> 0 or

∑
i6=j 〈Zij ,Hij〉 >

0.
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i) Suppose first that all entries of Zij (∀i 6= j) in the support Ω⊥gt are strictly positive. If the identity∑
i 6=j 〈Zij ,Hij〉 = 0 holds, then the strict positivity assumption of Zij on Ω⊥gt as well as the constraint

PΩ⊥gt
(H) ≥ 0 immediately leads to

PΩ⊥gt
(H) = 0.

Besides, the feasibility constraint requires that PΩgt
(Hij) ≤ 0. If PΩgt

(Hij) 6= 0, then all non-zero entries
of Hij are negative, and hence 〈

d · d>,H
〉

=
〈
d · d>,PΩgt (H)

〉
< 0,

which follows since all entries of d are strictly positive. This contradicts with (70). Consequently, we must
either have H = 0 or

∑
i 6=j 〈Zij ,Hij〉 > 0. This together with (75) establishes the claim.

ii) Next, we prove the claim under Assumptions (52) and (53). In fact, Assumption (52) together with
(69) asserts that

〈
Y ,PT⊥gt

(H)
〉
≤ 0 can only occur if PT⊥gt

(H) = 0. This necessarily leads to H = 0, as
claimed by Lemma 9.

Lemma 9. Suppose that Xgt + H is feasible for MatchLift, and assume that

n

ni
+

n

nj
6= n2

ninj
, ∀1 ≤ i, j ≤ m. (78)

If PT⊥gt
(H) = 0, then one has H = 0.

Proof. See Appendix D.7.

In summary, we can conclude that Xgt is the unique optimizer in both cases.

D.5 Proof of Lemma 7
First, we would like to bound the operator norm of Y L. Since each randommatrixX in

ijI{Xin
ij is observed and corrupted}

is independently drawn with mean (1−ptrue)pobs

m 1 · 1>, it is straightforward to see that

EY L,0 = E
(
−X false +

(1− ptrue) pobs

m
E⊥
)

= 0.

By observing that ZL is constructed as a linear transform of Y L,0, one can also obtain

EZL = 0, ⇒ EY L = EZL + EY L,0 = 0.

Thus, it suffices to examine the deviation of
∥∥∥Y L

∥∥∥ incurred by the uncertainty of X false.

Denote by Ai,j ∈ RN×N the component of ZL generated due to the (i, j)th block −X false
ij , which clearly

satisfies
ZL = Ai,j − EAi,j .

For each non-zero entry of X false
ij , if it encodes an incorrect correspondence between elements s and t, then

it will affect no more than 6ns,t entries in Ai,j , where each of these entries are affected in magnitude by
an amount at most 1

ns,t
. Recall that ns,t represents the number of sets Si (1 ≤ i ≤ n) containing s and t

simultaneously, which sharply concentrates within
[
np2

set ±O
(√

np2
set log (mn)

)]
as asserted in Lemma 5.

As a result, the sum of squares of these affected entries is bounded by

6ns,t
n2
s,t

= O

(
1

ns,t

)
. (79)

Moreover, since each row / column of X false
ij can have at most one non-zero entry, we can rearrange Ai,j

with row / column permutation such that Ai,j becomes a block-diagonal matrix, where the components
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affected by different entries of X false
ij are separated into distinct diagonal blocks. This together with (79)

leads to ∥∥Ai,j
∥∥ ≤ ∥∥Ai,j

∥∥
F
≤ max

s 6=t

√
8

ns,t
,

and hence ∥∥∥EAi,j
(
Ai,j

)>∥∥∥ ≤ pobs

(
max
s6=t

√
8

ns,t

)2

≤ c16pobs

np2
set

for some absolute constant c16 > 0, where the last inequality follows from Lemma 5.
Observe that Ai,j − EAi,j (i 6= j) are independently generated with mean zero, whose operator norm

is bounded above by 2 maxs 6=t
√

8
ns,t

. Applying the matrix Bernstein inequality [49, Theorem 1.4] suggests

that there exist universal constants c5, c6 > 0 such that for any t = O (
√
npoly log (mn)),

P

∥∥∥∥∥∥
∑

(i,j)∈G

Ai,j − EAi,j

∥∥∥∥∥∥ > t

 ≤ n2 exp

− 1
2 t

2

n2
(
c16pobs

np2
set

)
+

2 maxs 6=t

√
8

ns,t

3

 .

Put in another way, there exists a universal constant c6 > 0 such that

∥∥∥ZL
∥∥∥ =

∥∥∥∥∥∥
∑
i 6=j

Ai,j − EAi,j

∥∥∥∥∥∥ < c6

√
npobs

p2
set

log (mn) (80)

holds with probability exceeding 1− 1
(mn)10 . This follows from Lemma 5.

Additionally, observe that EY L,0
ij = 0 and∥∥∥∥ 1

√
pobs

Y L,0
ij

∥∥∥∥ ≤ √n
as long as pobs >

1
n . Applying Lemma 3 suggests that∥∥∥Y L,0

∥∥∥ < c0
√
npobs log (mn)

with probability at least 1− 1
(mn)5 . This combined with (80) yields

∥∥∥Y L
∥∥∥ ≤ ∥∥∥Y L,0

∥∥∥+
∥∥∥ZL

∥∥∥ < c11

√
npobs log (mn)

p2
set

with probability at least 1− 3
(mn)5 , where c11 is some universal constant.

On the other hand, for each (s, t) entry of ZL
il (i 6= l), it can only be affected by those observed blocks

X false
ij (or X false

jl ) satisfying t ∈ Sj (or s ∈ Sj). Consequently, each entry of ZL
il can be expressed as a sum

of Θ (npsetpobs) zero-mean independent variables, each of them being bounded in magnitude by 1
(mins 6=t ns,t)

.
From Hoeffding’s inequality one can derive

P
(∥∥∥ZL

il

∥∥∥
∞
> t
)
≤ m2P

− t2

c7npsetpobs
1(

min
s 6=t

ns,t

)2

 ≤ m2P

(
− t2

c̃7pobs
1

np3
set

)

for some constants c7, c̃7 > 0, indicating that∥∥∥ZL
il

∥∥∥
∞
≤

√
c8pobs log (mn)

np3
set

, ∀i 6= l

with probability exceeding 1− 1
(mn)10 .
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D.6 Proof of Lemma 8
By construction of Y true,1, one can see that all non-zero entries lie within the support Ωgt. One important
feature of Xgt

ij is that it can be converted, via row / column permutation, into a block diagonal matrix that
consists of m all-one blocks, where the ith block is of size ni (1 ≤ i ≤ m). From Lemma 5, one has

ni ∈
[
npset ±

√
c8npset log (mn)

]
, 1 ≤ i ≤ m

with high probability. Thus, Y true,1 can also be rearranged such that its non-zero entries form m disjoint
diagonal blocks. We will quantify the eigenvalues of Y true,1 by bounding the spectrum of each of these
matrix blocks.

We first decompose the matrix Y true,1 into two parts Y
true,1

and Ỹ
true,1

such that

∀i 6= j, Y
true,1

ij =

{
−X in

ij , if X in
ij is observed and not corrupted,

0, else;

and

∀i 6= j, Y
true,1

ij =

{
−X in

ij + (1−ptrue)pobs

m , if X in
ij is observed and corrupted,

(1−ptrue)pobs

m , else.

That said, Y
true,1

ij consists of all non-corrupted components, while Ỹ
true,1

consists of all “debiased” random
outliers.

By Lemma 4, one can verify that for all unit vector v such that vv> ∈ T⊥gt ,〈
vv>,Y

true,1
〉
≥ min

1≤s≤m
(nsptruepobs − c4

√
nspobs log (mn))

≥ 1

2
npsetptruepobs − c5

√
npsetpobs log (mn) (81)

for some absolute constant c5 > 0, where the second inequality follows from the concentration result stated
in Lemma 5.

In addition, each entry of Ỹ
true,1

ij (i 6= j) lying in the support Ωgt has mean zero and variance (1−ptrue)pobs

m

(
1− (1−ptrue)pobs

m

)
.

Lemma 3 then suggests that the norm of each non-zero block of Ỹ
true,1

(the ones with size ni) is bounded
above by O

(√
pobsni log (nm)

)
. As a result,∥∥∥Ỹ true,1

∥∥∥ ≤ c15 max
1≤s≤m

√
pobsns log (nm) < c̃15

√
npsetpobs log (nm) .

This taken collectively with (81) yields that〈
vv>,Y true,1

〉
≥ 1

2
npsetptruepobs − (c5 + c̃15)

√
npsetpobs log (mn) . (82)

On the other hand, we know from the construction procedure and Lemma 2 that

‖Rm‖∞ ≤

√
c10pobs log (mn)

np3
set

+ λ
∥∥∥d · d> − 1 · 1>

∥∥∥
∞

≤ c̃10

(√
pobs log (mn)

np3
set

+

√
pobs log (mn)

pset

√
log (mn)

npset

)

≤ 2c̃10

√
pobs

np3
set

log (mn)
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for some constants c10, c̃10 > 0. Since Rm ∈ Ωgt, we can also rearrange Rm into m diagonal blocks each of
size ni (1 ≤ i ≤ m). Hence, a crude upper bound yields

∥∥Y true,2
∥∥ ≤ ∥∥Y true,2

∥∥
1
≤
(

max
1≤i≤m

ni

)(
2c̃10

√
pobs

np3
set

log (mn)

)
≤ c11npset

√
npobs

p3
set

log (mn)

= c11n

√
npobs

pset
log (mn)

for some universal constant c11 > 0.

D.7 Proof of Lemma 9
Define an augmented matrix Hsup such that

Hsup
ij = Π>i HijΠj . (83)

Recall that ni denotes the number of sets containing element i, and that

Σ :=


n
n1

n
n2

. . .
n
nm

 .
The assumption that PT⊥gt

(H) = 0 can be translated into(
I − 1

n
(1n ⊗ Im) Σ (1n ⊗ Im)

)
Hsup

(
I − 1

n
(1n ⊗ Im) Σ (1n ⊗ Im)

)
= 0.

We can easily compute that

Hsup
ii −ΣH

sup

·i −H
sup

i· Σ + ΣH
sup

·· Σ = 0, 1 ≤ i ≤ n,

where 
H

sup

·i := 1
n

∑n
j=1 H

sup
ji ,

H
sup

i· := 1
n

∑n
j=1 H

sup
ij ,

H
sup

·· := 1
n2

∑n
i=1

∑n
j=1 H

sup
ij .

This combined with the identity Hii = 0 (and hence Hsup
ii = 0) yields

ΣH
sup

·· Σ = ΣH
sup

·i + H
sup

i· Σ, 1 ≤ i ≤ n.

Summing over all i leads to

ΣH
sup

·· Σ = Σ

(
1

n

n∑
i=1

H
sup

·i

)
+

(
1

n

n∑
i=1

H
sup

i·

)
Σ = ΣH

sup

·· + H
sup

·· Σ.

Expanding it yields
n2

ninj

(
H

sup

··

)
i,j

=

(
n

ni
+

n

nj

)(
H

sup

··

)
i,j
, 1 ≤ i, j ≤ m.

From our assumption that n2

ninj
6= n

ni
+ n

nj
, we can derive

H
sup

·· = 0. (84)

Due to the feasibility constraint, all diagonal entries of Hsup
ij are non-positive, and all off-diagonal entries

of Hsup
ij are non-negative. These conditions together with (84) establish that H = 0.
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