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Abstract
Smart deformation and warping tools play an important part in modern day geometric modeling systems. They
allow existing content to be stretched or scaled while preserving visually salient information. To date, these tech-
niques have primarily focused on preserving local shape details, not taking into account important global struc-
tures such as symmetry and line features. In this work we present a novel framework that can be used to preserve
the global structure in images and vector art. Such structures include symmetries and the spatial relations in
shapes and line features in an image. Central to our method is a new formulation of preserving structure as an
optimization problem. We use novel optimization strategies to achieve the interactive performance required by
modern day modeling applications. We demonstrate the effectiveness of our framework by performing structure
preservation deformation of images and complex vector art at interactive rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Realistic deformation of digital objects requires minimizing
visually perceptible distortions. The existing work in this
area has focused on preserving high frequency signals such
as local shape features [Sor06, GSCO06, ESA07, WGCO07,
AS07,SSP07,ZHM08,WLT08,WTSL08,KSSCO08] or mo-
tion structures such as skeletons [HSL∗06, SZT∗07].

Digital shapes not only contain visually prominent local
features, but often possess global structures such as symme-
tries, repeated contents and line features. As studied in visual
physiology [Arn74], the human visual system is very sensi-
tive in detecting these global shape structures. In many cases
the global form of an object is intricately tied to its underly-
ing functionality as demonstrated by the fan example in fig-
ure 2. For these reasons, analyzing and maintaining a shape’s
global structure is of critical importance for generating both
pleasing and realistic shape deformations.

In this paper, we consider preserving two types of global
structures in images and vector art: line features and symme-
tries. We consider the following features: line segments and
vanishing points that frequently occur in natural images and

reflectional, rotational and translational symmetries which
are popular in 2d vector art.

To accomplish the editing process, we introduce a gen-
eralized embedded deformation framework [SSP07]. We
start with detecting global structures and computing a rigid-
ity map from the input scene. This embedded deformation
framework is modified to incorporate structure preserving
constraints. Using this framework, the resizing process can
then be formulated as a constrained optimization problem.
The careful design of this optimization problem yields an
efficient solution. Using our method we achieve interactive
rates allowing the artist to freely manipulate the artwork un-
dergoing the deformation process.

When computing the rigidity map, we decompose visually
salient features into global structures and local features. Un-
like the previous works that try to preserve the shapes of all
the salient features, we preserve the shapes of local features
while allowing global structures to deform. This strategy ex-
hibits more flexibility in resizing images since in many cases
the input images are filled with many locally salient fea-
tures that can overly restrict the deformation process. The
visual distortion in our framework is minimized by preserv-
ing the configuration of global structures in the artwork.
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(a) Input (b) Ours (c) Homo. Scaling (d) [WGCO07] (e) Direct SC (f) Indirect SC (g) [WTSL08]

Figure 1: Resizing an image in which the line features and the people in the middle are prominent features. Our method tries to
preserve these line features and shape of the people together which exhibits much less visual distortion compared with existing
techniques. (a) Upper: The input image. Bottom: the line features and the deformation map. (b) Our method. (c) Homogeneous
scaling. (d) Content-driven Retargeting [WGCO07]. (e) Seam Carving [AS07]. (f) Indirect Seam Carving [AS07] with the
people and the lane being marked. (g) Optimized Scale-and-Stretch [WTSL08].

The effectiveness of our framework is demonstrated by the
interactive editing of various types of vector art and images
that contain global structures. Experiments show that our
method generates visually more pleasing results than pre-
viously published work.

1.1. Related Work

MLS Deformation. Schaefer et al. introduced a very ef-
fective image deformation tool based on minimizing a MLS
system. They showed that one can manipulate image us-
ing only a few control points [SMW06]. However, structure
preservation is not considered by their method.

Context-Aware Editing. Context aware editing has been
addressed in a grid-based embedded deformation [GSCO06,
ESA07, WTSL08, WLT08, KSSCO08]. The idea is to let the
feature objects deform rigidly or similarly and use an affine
deformation to smoothly interpolate unimportant regions.
These techniques are able to preserve the shape of features
or axis aligned reflection symmetries. However, they are un-
able to preserve global structures in the general setting since
structure preservation is not imposed explicitly.

Avidan and Shamir proposed Seam Carving [AS07,
RSA08, SA09] for image resizing. They adaptively remove
or add vertical and horizontal seams to generate the output
image. Since seam carving manipulates images at the pixel
level, it is a challenging task to incorporate symmetry preser-
vation into this process because global structures such as
symmetries and line features are resolution independent.

Recently, the inverse patch transform [CBAF08] and bidi-
rectional similarity [SCSI08] have been used for image edit-
ing. In both methods, the patch similarities between the input
and the target image are maximized. In particular, these two
methods are able to achieve some interesting editing results
such as removing rows and columns of grid patterns, how-
ever, there is no guarantee that they can preserve line features
and symmetries since these constraints are not incorporated.
Moreover, they are not suitable for interactive editing due to
their running times.

Symmetric Deformation. Mitra et al. [MGP07] intro-
duced a symmetrization method to make approximately
symmetric shapes more symmetric. A contemporary work
is also described in [PGR07], which focused on symmetric
remeshing of 3d shapes. Conceptually, it is possible to ap-
ply these symmetrization techniques to symmetry preserv-
ing editing. For example, one can apply standard shape de-
formation techniques to deform the shape followed by these
symmetrization methods to make the shape more symmet-
ric. However, we implemented this strategy and found that
it converges very slowly, particularly when the symmetric
deformation is large.

Structure Recovery. Realistic structure preserving editing
relies on robust structure recovery methods. Our technique
builds on a long series of works in pattern recognition. We
refer the reader to [MGP06, PSG∗06, CHL∗07, YM09] for
recent advances in symmetry detection and to [EMED08]
for state-of-art line feature detection algorithms.

The remainder of this paper is organized as follows. In
Sec. 2, we present the overview of our method. In Sec. 3,
we describe how to detect important global structures from
the input image/vector art. Then in Sec. 4, we describe how
to preserve these detected structures in the embedded de-
formation framework and in Sec. 5, we show how to ef-
ficiently solve the induced constrained optimization prob-
lem. We demonstrate the effectiveness our method in Sec. 6
through resizing various images and vector art. Finally, we
conclude this paper and introduce some future directions in
Sec. 7.

2. Overview

As shown in Fig. 2, our method proceeds in three stages.
In the first stage, we analyze the input scene in order to de-
tect its global structures and we compute the corresponding
structure-aware deformation map. Then in the second stage,
we feed the detected global structures and the structure-
aware deformation map into our generalized embedded de-
formation framework to construct the corresponding con-
strained optimization problem. Finally, given the user input,
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Figure 2: The pipeline of our method. (a-b) Given the input image, we first perform image analysis to compute the underlying
global structures and the rigidity map. (b)In the second step, we feed the structures and the rigidity map in our generalized
embedded deformation framework and formulate image resizing as an constrained optimization problem. (c) In the last step,
we use a novel coarse-to-fine optimization strategy to solve this optimization problem in real-time.

we optimize the embedded deformations to resize images by
solving this constrained optimization problem. We now de-
scribe each step in more detail. Throughout the rest of this
paper, we will regard vector art as images unless otherwise
specified.

Image Analysis. We detect four type of global structures
in images: vanishing points and their associated line seg-
ments, reflection symmetries, translational symmetries and
rotational symmetries. For vanishing points and their associ-
ated line segments, we employ the Hough transform method.
To detect symmetries, we modify the methods introduced in
[MGP06, PMW∗08] to handle images in an efficient way.

Besides detecting structures, we also compute a rigidity
map to guide the possible deformation applied to the input
image. The rigidity map is derived from the visual saliency
map [WTSL08] with regions of structures being decayed.
This way because we preserve the global structures. On the
other hand, if there are no global structures, the rigidity map
is similar to the visual saliency map.

Formulation. To preserve the global structures of an in-
put image, we need to have a good deformation model such
that the structure preserving constraints can be incorpo-
rated. We use a generalized embedded deformation frame-
work [SSP07] for this purpose.

In embedded deformation, the deformation of the input
scene is given by a deformation graph. We preserve the de-
tected global structures by placing constraints on the spa-
tial relations between the graph vertex positions. The trans-
formation associated with each vertex is determined by the
rigidity map. More precisely, for each vertex in the defor-
mation graph, we introduce a rotation matrix and an affine
transformation. The transformations are blended linearly us-
ing the weight specified by the rigidity map. By doing this,
we avoid sudden changes between rigid transformations and
affine transformations in the spatial domain.

Optimization. The optimization problem we are trying to
solve is a non-linear constrained optimization problem. As
our goal is to resize images at interactive rates, direct and
exact solvers are not applicable in this case since we have
non-linear terms in both the objective function and the con-
straints. For this reason, we use an approximate solver that
induces realistic deformations.

Our solver decomposes the variables into groups based
on their types. We optimize each type of variables subse-
quently. Using this strategy, the constraints are always linear
in the variables which allows for efficient optimization. In
addition, we show how our solver is designed to incorporate
the power of both Gauss-Newton method [SSP07] and an al-
ternating subset method [SA07], which are frequently used
in the context of shape editing.

3. Image Analysis

In this section we describe our steps for detecting global
structures in images and constructing the rigidity map that
constrains the deformation process. We note that detecting
global structures in images is an ongoing and active area of
research. We describe here the steps that were taken for the
examples in our paper, however, our underlying deformation
method does not preclude the use of more advanced image
analysis techniques.

3.1. Structure Detection

Line features. We use the standard Hough transform to
compute vanishing points and their associated line segments.
We start with computing edge features from image gradi-
ents using hysteresis thresholding [Can86]. Then we polish
the edge features by line segment fitting. More precisely, we
start at an end point and trace along an edge until the line
fitting error is bigger than a user supplied threshold (typi-
cally 2 pixels). We repeat this process until all the edges have
been traced. This procedure outputs a collection of line seg-
ments. Line segments that exceed twenty pixels in length are
fed into the Hough transform for detecting vanishing points.
Typically there are at most 3 vanishing points in an image.
We pick the first three detected vanishing points. To avoid
including false positives, we prune any detected vanishing
points which have only 2 associated line segments. We also
connect line segments that have the same line equations.

Symmetries. We modify the methods introduced
in [MGP06, PMW∗08] to detect symmetries. The existence
of each type of symmetry is tested independently. For fixed
type of symmetries, we proceed in three steps to detect
its existence. In the first step, we vote for candidate sym-
metries based on correspondences between the SIFT fea-
tures [Low04]. In the second step, we filter the candidate
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symmetries by clustering in the transformation space. Fi-
nally, we use the standard image registration technique to
verify filtered symmetries. Each detected symmetry is spec-
ified by its type, its symmetric transformation, and the sup-
port region in which this symmetry occurs.

To vote for candidate symmetries, a naive way is to di-
rectly use the correspondences between SIFT features. How-
ever, we found that this approach typically generate a huge
set of samples in the transformation space which slows down
the clustering step significantly.

Our approach is to use correspondences between pairs of
SIFT features. More precisely, we form a pair between each
SIFT feature and each of its neighboring SIFT features. We
discard pairs that are more than 30 pixels apart. We also dis-
card those features smaller than 15 pixels to ensure that each
pair has a robust orientation. We compute matches between
line segments. Two pairs are matched if their start and end
SIFT features match with each other and the deviation in
their lengths is less than 5 pixels. We typically choose a con-
servative SIFT feature matching threshold in order to include
sufficient evidences of the underlying symmetries.

The candidate symmetries are selected as follows. If we
are detecting rotational symmetries, the rotation angle and
the rotation center is the angle between the directions of
matched pairs and their intersection points, respectively. For
translational symmetries, we further require that the angle
between the directions is less than 30 degrees. The transla-
tion vector is simply the vector between their middle points.
Similarly, for reflection symmetries, we compute a reflection
axis based on their middle points. We choose this reflection
axis if the angle between this reflection axis and the bisector
of the two line segments is less than 30 degrees.

Clustering in the transformation space is also performed
differently among different types of symmetries. For reflec-
tion symmetries, we apply the mean-shift algorithm intro-
duced in [MGP06]. The center of rotation is also determined
in the same way. For rotational and translational symmetries,
we apply the generalized Hough transform technique intro-
duced in [PMW∗08].

3.2. Rigidity Map

Fig. 3.2 illustrates the process of computing the rigidity map
D : R2 → [0,1] which is a mapping between the image do-
main and a value in [0,1]. The rigidity map D is derived
from two other maps: the visual saliency map [WTSL08]
F : R2 → [0,1] and the structure map S : R2 → [0,1]. The
visual saliency map F encodes visual saliency information
of the input image. We compute F as the convolution be-
tween the well-known image gain map I [FLW02] and the
disk filter Br(x) = 3

4πr2 , ‖x‖< r and Br(x) = 0 otherwise:

F(x) = I(x)⊗Br(x). (1)

We set r = 5 pixels in this paper.

Figure 3: The rigidity map is computed from a feature map
with the signals of structured regions being decayed by the
structure map.

Similarly, the structure map is defined as

S(x) = S′(x)⊗Br(x). (2)

Where S′(x) is a binary map that takes value 1 if x is within
distance r to a detected structure or its support region except
that for reflection symmetry. The structure map basically de-
scribes where and to what extent we can relax the rigidity
preservation. We don’t take reflection symmetries into ac-
count because there are still rich features in their support
regions.

Given the feature map F and the structure map S, we fi-
nally define the rigidity map as

D(x) = F(x)(1−S(x)). (3)

We also normalize the rigidity map such that its maximum
value is 1 and its minimum value is 0.

Fig. 3.2 illustrates the behavior of the rigidity map D. If
we only used the feature map to guide the deformation as
most context aware resizing techniques do, we would pre-
serve both the shapes of the fan and the characters. As we
will see later though, this could be problematic if we stretch
the image drastically. In the rigidity map, the shape of the
fan is not preserved. However, by using the rigidity map
and preserving the rotation symmetry, we achieve the effect
of folding/unfolding. By doing so, visual distortion is pre-
vented even when the input image is stretched drastically.

4. Formulation

We now describe how to formulate the structure preserving
resizing problem using our embedded deformation frame-
work. We start with reviewing the embedded deformation
framework [SSP07] in Sec. 4.1. Then in Sec. 4.2 and in
Sec. 4.3, we show how to extend the original framework to
preserve structures and how to incorporate the rigidity map.

4.1. Embedded Deformation

In the embedded deformation, the deformation of the input
image is controlled by a deformation graph G. The defor-
mation graph consists of a set of vertices vi where 1≤ i≤ N
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and a set of edges which connect vertices with their k-nearest
neighbors (k=9 in our case). We will useNi to denote the in-
dices of the neighboring vertices of vi. Note that in the origi-
nal framework, vertices are uniformly distributed. In the next
section, we will show how to sample the vertices to match
the detected structures.

Each vertex vi has two positions pi and qi. pi is its fixed
position at which it is sampled and qi is its active position
after the deformation graph has been deformed.

Each vertex vi is associated with an affine transformation
matrix Ri. Ri describes how the scene deforms in neighbor-
hood of vi. The consistency between the neighborhood of vi
and the this transformation matrix Ri is measured as

ec
i = ∑

j∈Ni

‖Ri(pi−p j)− (qi−q j)‖2. (4)

Ri also induces a transformation Ti(·) : R2 →R2 in the
neighborhood of vi as

Ti(x) = Ri(x−pi)+qi. (5)

Finally, the deformed position x
′

of each point x in the
input scene is parameterized by qi and Ri using partition of
unity [SSP07] as

x
′
=

M

∑
i=1

wi(x)Ti(x)/
M

∑
i=1

wi(x). (6)

The weights wCi(x) are given by

wi(x) =
{

(1.0−‖x−pi‖/ri)2 ‖x−pi‖< ri
0 otherwise

(7)

Where ri is the maximum distance between pi and its neigh-
bors.

The user-input is formulated as constraints on the ver-
tex positions. We impose two types of constraints: soft con-
straints and hard constraints. Soft constraints are formulated
as minimizing the sum of squared distances between the de-
formed handle vertex positions and their target positions:

Eh = wh ∑
i∈H

‖qi−hi‖2. (8)

Where H collects the indices of the handle vertices.hi is the
target position of qi.

Each hard constraint specifies the x or y coordinate of a
vertex. For simplicity, we write all the hard constraints in a
matrix form as

Fq = c. (9)

Here vector q collects all the deformed positions qi. Hard
constraints are used to fix the boundary of the target image.

We also want to minimize the sum of consistency mea-
sures at each vertex in order to make the deformation to be

smooth:

Ec =
N

∑
i=1

∑
j∈Ni

‖Ri(pi−p j)− (qi−q j)‖2. (10)

Combining Equ. 8, Equ. 9 and Equ. 10, we compute the
optimal deformed vertex positions by solving the following
constrained optimization problem

min
q,{Ri}

M

∑
i=1

∑
j∈Ni

‖Ri(pi−p j)−(qi−q j)‖2 +wh ∑
i∈H

‖qi−hi‖2

(11)
subject to Fq = c.

For optimization, the transformations Ri are treated as la-
tent variables and are optimized with qi. Once qi and Ri have
been computed, we deform the input scene using Equ. 6.

Although in the embedded deformation framework, there
is no guarantee that edges are not flipped. We did not find
any edge flip effect in all the examples we have tested.

4.2. Structure Preservation

We formulate structure preservation as constraints on the de-
formed vertex positions qi. This leads to two questions: How
to initialize the vertices and how to constrain them during de-
formation. In the following section, we describe how we ini-
tialize these samples. Then we introduce the constraints on
the vertices to preserve structures. The key idea is the way
we parameterize the vertices using structure parameters. Fi-
nally, we present an unified constraint expression to ease the
discussion in Sec. 5.

Initialization. We introduce two types of vertices. The first
type is used to sample the detected structures. The placement
of samples differs from structure to structure and it will be
discussed below in detail. The second type of vertices is used
to uniformly fill the rest of the input domain. The sampling
process is controlled by a sampling density δ.

Translational Symmetry. Suppose a translational symme-
try s appears on a m× n grid. Without losing generality, we
assume this symmetry is along the x axis of the grid. Since a
translational symmetry is given by a translational vector, we
generate a grid of vertices qi j of size m×n and a constraint:

qi+1, j−qi j = t. (12)

Where t is the translational vector which can be changed
during manipulation.

Rotational Symmetry. We consider fan-like rotational
symmetries in this paper. As shown in Fig. 4, we sample
the rotational symmetry using m lines of vertices qi j where
1≤ i≤ m, 1≤ j ≤ n. As a rotational symmetry is param-
eterized by the angle of the first line, the rotation angle and
the rotation radius, we constrain the vertices to preserve this
symmetry as

qi j = v+n(θ+(i−1)φ)t j. (13)

c© 2009 The Author(s)
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Figure 4: Structure preserving constraints of each type of global structure.

Where θ specifies the angle of the first line. φ is the rota-
tion angle and t j is the rotation radius of each trajectory. The
normal vector is expressed as n = (cosθ,sinθ)T .

If the rotational center resides in the deformation domain,
one can also treat the rotation center as an additional vertex
q1 and rewrite the constraints as

qi j−q1 = n(θ+(i−1)φ)t j. (14)

Reflection Symmetry. We sample a reflection symmetry
s using n pairs of reflection symmetric vertices (q2i,q2i+1)
where 1 ≤ i ≤ n. The reflection axis is parameterized by its
normal direction n and the projected distance d from the ori-
gin. Given the coordinates frame centered at the origin v with
n and n⊥ being the axes, we can parameterize them as

q2i = n · (d− t2i+1)+n⊥t2i
q2i+1 = n · (d + t2i+1)+n⊥t2i.

(15)

Vanishing Point. A vanishing point structure s contains
m sets of co-linear vertices {qi j} and 1 ≤ i ≤ m,1 ≤ j ≤ ji
whose corresponding lines Li share at a single point v. We
can parameterize these vertices as

qi j = v+niti j. (16)

Where ni is the normalized direction of the i-th line.

Parallel Lines. Parallel lines are considered special van-
ishing point structures where their vanishing points at infin-
ity. In our paper, we use a separate constraint set for par-
allel lines to prevent numerical instabilities. In the detected
vanishing point structures, the ones with norm of vanishing
points bigger than 104 pixels are treated as parallel lines.

We sample a parallel line structure s using m lines of ver-
tices {qi j} where 1 ≤ j ≤ ji and ji depends on the length
of the corresponding line. Once again we add constrains on
these vertices by parameterized them using latent variables.
The line segments are parameterized by a shared normal di-
rection and a distance di to the origin for each line segment.
Once the line segments have been specified, each vertex is
parameterized using a additional scalar ti j as

qi j = ndi−n⊥ti j. (17)

Unified Representation. To ease the discussion below, we
present a unified representation for structure preserving con-
straints. Based on the structures of Equ. 12, Equ. 13, Equ. 15,

Equ. 16 and Equ. 17, we write down the constraint for each
structure s as

Dsq = Ps(Φs)ts. (18)

Where ts encodes all the linear structure parameters such as
di and ti j , and Θs collects all the non-linear structure param-
eters such as normal directions. We use Θ to denote all the
non-linear parameters for simplification.

Due to different purposes, we decompose the set of all
the structures S = E ∪A into two subsets where E contains
the structures to be preserved exactly, e.g, by satisfying con-
straint specified in Equ. 18. E usually includes line features
and rotational symmetries. A contains structures to be pre-
served only approximately. Reflection symmetry is typically
included in A. Moreover, A is also used to design efficient
solver in Sec. 5.

For each structure s ∈ A, we penalize the deviation of
Equ. 18 in L2-norm. The total structure energy term is given
by:

Es = ∑
s∈A

ws‖Dsq−Ps(Θs)ts‖2
2. (19)

Where ws represents the importance of structure s. In our
framework, the default value of ws = 0.5.

4.3. Feature Preservation

Similar to most of context-aware deformation tech-
niques [ESA07, WGCO07, WTSL08, KSSCO08], we pre-
serve visual salient feature regions by constraining the trans-
formations of the vertices in corresponding regions to be
rigid. A straightforward way is to let Ri be a rigid transform
if the value of pi in the rigidity map D(pi) is above a thresh-
old. However, this strategy would make the transformations
change abruptly between feature regions and flat regions.

We address this issue by introducing a rotation Ri1 and
an affine transformation Ri2 to each vertex vi. We also make
them to be consistent in the neighborhood of vi. The local
consistency measure ec

i is refined as

ec
i =

2

∑
k=1

λik ∑
j∈Ni

‖Rik(pi−p j)− (qi−q j)‖2. (20)

where λi1 = D(pi) and λi2 = 1−D(pi). Intuitively, if D(pi)
is close to 1, minimizing ec

i forces the neighborhood of vi to
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(a) (b) (c) (d) (e) (f) (g)

Figure 5: Different stages of our optimization strategy. (a) The input image with a rotational symmetry.;(b) The coarse de-
formation graph. (c) Optimize Θ in stage I; (d) Subdivide the deformation graph and optimize t in Stage II;(e) Enforce exact
preservation before stage III (f) Relax vertex positions in stage III. (g) Result.

deform rigidly. On the other hand, if D(pi) is close to 0, the
neighborhood of vi can be stretched.

Under this new definition, the cumulative consistency
measure Ec is modified as

Ec =
2

∑
k=1

N

∑
i=1

λik‖Rik(pi−p j)− (qi−q j)‖2. (21)

The matrix Ri used to deform the input scene can be taken
as either Ri1 and Ri2. In our experiments, we found that a
better strategy is to let

Ri = λi1Ri1 +λi2Ri2. (22)

Intuitively, we want Ri to be close to a rotation when D(pi)
is big.

For optimization, we parameterize:

Ri1 =
(

φ1
i1 φ2

i1
φ3

i1 φ4
i1

)
,Ri2 =

(
cosφ1

i2 −sinφ1
i2

sinφ1
i2 cosφ1

i2

)
(23)

We use Φik to denote all the transformation parameters of
Rik and use Φ to denote all the transformation parameters.

Combining Equ. 8, Equ. 19, Equ. 21, Equ. 9 and Equ. 18,
we now describe the optimization problem that we are trying
to solve as follows:

min
q,Φ,t,Θ

Eh +Ec +Eh (24)

subject to Fq = c and Dsq = Ps(Θs)ts,∀s ∈ E .

To further simplify the discussion below, we use a more
general expression which is described as follows:

min
x
‖f(x)‖2

subject to Aq = B(Θ)t.
(25)

Here the vector x = (q,Φ, t,Θ) collects all the variables. fT f
collects all the terms in Eh, Ec and Es. Aq = B(Θ)t encapsu-
lates all the equality constraints.

5. Optimization

Image resizing requires us to find an efficient solver for the
optimization problem specified in Equ. 25. A useful prop-
erty of image resizing or general shape editing is that one
can always treat the previous frame as the initial guess of the

current frame since the deformation is continuous. In other
words, applying local optimization is sufficient to achieve
good results. However, for this particular problem we are
trying to solve, optimizing it using any direct solver would
be very hard since the unknowns comprise variables of dif-
ferent scales and types and there are non-linear parameters in
the constraints. Our strategy is to decompose this hard prob-
lem into three easier problems and solve them subsequently.

Fig 5 shows the work flow of our optimization technique.
Our method proceeds in three stages. At stage I, we esti-
mate the non-linear parameters Θ by treating the rest of the
variables as latent variables. As Θ typically consists of di-
rections of reflection axis which are resolution independent,
we find that it is sufficient to optimize them at a coarse level
(See Fig. 5(c)). Moreover, we let all the structures be pre-
served approximately such that we only have hard handle
constraints which are linear in the variables. We employ the
Gauss-Newton method [SSP07], which runs very efficiently
for small scale problems. At stage II, we fix the non-linear
structure parameters Θ and optimize the linear structure pa-
rameters t by treating q and Φ as latent variables. Note that at
stage II, all the structures are still preserved approximately.
Finally, at stage III, we enforce the exact preservation and
re-optimize q and Φ. In both stage II and stage III, we use
variants of the alternating optimization method [SA07] on a
denser graph.

Stage I: Optimize Θ. At this stage, we let A = S . In this
case, the constraints simply become Fq = c. Each Gauss-
Newton iteration improves the current values of the free vari-
ables as xk+1 = xk + dx by solving the following optimiza-
tion problem

min
dx
‖f(xk)+∇f(xk)(dx)‖2

subject to F · (dq) = 0.
(26)

Where ∇f(xk) is the Jacobian of f(x) at xk.

We employ the SuperLU package [DEG∗99] to solve the
linear system derived from Equ. 26. Moreover, as the pur-
pose of this step is to estimate the non-linear parameters,
typically 3-4 Gauss-Newton iteration is sufficient for this
purpose.

We typically use 100-150 vertices for the coarse defor-
mation graph which leads to 400-800 variables. The perfor-
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mance of our solver on a machine with 4 1.65GHZ proces-
sors is 1ms-2ms per iteration and is 4ms - 8ms in total.

Stage II and III: Optimize t,q and Φ. For simplicity, we
introduce stage II and stage III together. When the non-linear
structure parameters Θ are fixed, we use the alternating sub-
set method to optimize q, t and Φ. More precisely, we alter-
nate between optimizing local transformations {Rik(Φik)}
and linear structure parameters t with deformed vertex po-
sitions q being fixed, and optimizing the deformed vertex
positions q with {Rik(Φik)} and t being fixed.

As can be seen from Equ. 19 and Equ. 21, local transfor-
mations Rik and linear structure parameters are decoupled
when q is fixed. Thus, we can optimize them independently.
Optimizing each local transformation Rk

j can be done in a
closed way, we refer the reader to [SMW06] for more de-
tails. The linear structure parameter ts is optimized at:

t∗s = argmin
ts
‖Dsq−Psts‖2 = (PT

s Ps)−1(PT
s Ds).

When t, Θ and Φ are fixed, f (x) is linear in q, and so
are the constraints. Thus, we can compute the optimal ver-
tex positions q∗ = qk +dq by solving the following linearly
constrained quadratic programming problem:

min
q
‖f(xk)+∇qf(xk)dq|2

subject to Adq = 0.
(27)

We use SuperLU package [DEG∗99] to solve the lin-
ear system derived from Equ. 27. As can be seen from
Equ. 25, the matrix ∇qfT∇qf is a constant matrix. Since
A is also a constant matrix, it follows that we can pre-
factorize the right-hand side of the linear system and use
back-substitution in order to solve this linear system. This
strategy significantly reduces the cost per iteration.

To detect convergence, we monitor whether ‖∇qF‖ <
ε = 1e− 2. We also set a maximum number of iterations
for the alternating methods. Typically, 10-20 iterations are
sufficient.

At stage II and stage III, we typically use 300-450 ver-
tices for the deformation graph which leads to 1000-1500
variables. Because we can pre-factorize the system, the per-
formance of our solver on the same machine is around 0.5
ms per iteration and is 10ms - 20ms in total.

6. Results

We have implemented our framework for various examples
of vector art and images and tested it on a machine with 4
1.65GHZ processors. For the all the example, we achieved
10-30 frames per second.

Resizing Our method is good at resizing images and vector
art which contains line features and symmetries. As shown
in Fig. 1, our technique is able to preserve both the line

features and the people in the input image. The Seam Carv-
ing method [AS07] tends to fail in this example (See Fig.
1(e)) due to the dominant diagonal line features such as the
lane markers that crosses the image. Even if we constrain
Seam Carving to try to avoid distorting both people and lane
markers, distortions of straight lines still occur 1(f). Shape
preserving based method s [WGCO07,WTSL08] also fail in
this example because line features that are not aligned with
the image axis are not preserved. Finally, homogeneous scal-
ing does preserve the line features but it distorts the people in
the image. In contrast, our method preserves lines by allow-
ing them to smoothly rotate while undergoing deformation.
Fig.7 shows additional results of resizing urban scenes.

Figure 7: Resizing images which contains rich line features
and people. Compared with alternative methods, our method
can preserve both the shapes of the people and the line fea-
tures (a) Input. (b) Our result. (c) Seam Carving [AS07] with
people being marked. (d) Homogeneous scaling.

Similar behavior is also exhibited in the fan example
where our method is able to fold/unfold the fan but the other
methods either distort the image or in other cases only scale
each individual object(see Fig. 8). Note that for this exam-
ple, seam carving + uniform scaling [RSA09] could achieve
better result if the goal is only to preserve the shape of each
individual object. Fig. 9 shows a similar example where we
are able to fold the wings of a white peacock.

(a) (b) (c)

Figure 8: Comparison on resizing the Chinese art shown in
Fig. 5(a). (a) Ours. (b) [AS07]. (c) [WTSL08].

Fig. 6 shows a more complicated example where the in-
put image contains a reflection symmetry and three van-
ishing points. Since we preserve these global structures in
our framework, we achieve much better result than previous
works.
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(a) Input (b) Ours (c) Homogeneous Scaling (d) CDR [WGCO07] (e) Seam Carving [AS07]

Figure 6: Resizing an image that has one reflection symmetry and three vanishing points. Our method yields much better result
when than previous works. (a) Input. (b) Ours. (c) Homo. Scaling. (d) Content-driven [WGCO07]. (e) Seam Carving [AS07].

(a) (b) (c)

Figure 9: Results of resizing an image which contains a pea-
cock. (a) Input. (b) Result I. (c) Results II.

(a) Input (b) Single Layer (c) Two Layers

Figure 10: Resizing a two-layered vector art. (a) Input. (b)
Using one layer. (c) Using two layers where the two transla-
tional symmetries in the background are preserved.

Our framework can be easily extended to vector art with
multiple layers. In this case, we can apply different deforma-
tions to preserve the structures of different layers. As shown
in 10, this strategy can avoid the case where energy terms
from different layers adversely compete with each other.

(a) (b) (c)

Figure 11: Warping vector art that has a global reflec-
tion symmetry. Preserving symmetry yields better result than
without preserving symmetry. (a) Input. (b) Without preserv-
ing symmetry. (c) Preserving symmetry.

Warping. Our technique can also to be used to warp a
given scene. In this case, the user manipulates the scene by
placing and moving control handles that we provide. Fig-
ure 11 shows a vector art example where we have a promi-
nent reflection symmetry. In this example, we try to preserve
this reflection symmetry approximately during warping (see
Fig. 11(c)). Compared with Fig. 11(b) where the symmetry

is not preserved, we can see that our technique yields a bet-
ter result. Fig. 12 shows another example where we preserve
the partial rotational symmetry exactly. Again we can see
that preserving the symmetry yields a more pleasing result.

(a) (b) (c)

Figure 12: Warping a vector art that has a partial rotation
symmetry. (a) Input. (b) Without preserving symmetry. (c)
Preserving symmetry.

Discussion. In our technique we are trying to understand
the scene to some extent before applying the deformation.
Given the input scene, we decompose it into regions where
the shape of features should be preserved and regions where
we allow certain deformation but with the global structure
being preserved. As we have shown in our examples, this
strategy gives more flexibility in deforming the scene than
preserving everything indicated by the feature map.

On the other hand, structure preservation relies on ro-
bust structure detection methods. Fig. 13 shows an example
where we failed to detect the line features on the ground. In
this example, visual distortion is presented near these fea-
tures when pulling the image. In the future, we want to find
more reliable structure detection methods or to incorporate
human interaction into this process.

(a) (b) (c)

Figure 13: A partial failure case of our method where line
features on the wall and ground are not detected. (a) Input.
(b) The detected the line structures. (c) Resizing result. One
can see that the wall and the ground are distorted.
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7. Conclusion

In this paper, we introduced a method for preserving global
structures while resizing images and vector art. Structure
preserving deformation is formulated as an optimization
problem where we seek to achieve multiple goals of max-
imizing both the structural similarity and local similarity. A
novel optimization framework is used to achieve real-time
performance. Finally, the effectiveness of our framework is
demonstrated on both natural images as well as vector art.

There are ample opportunities for future research. In gen-
eral, detecting global structures in images and vector art con-
tent is still an area requiring additional exploration. Further-
more, our method does not explore structure preserving 3D
object deformations. We note that structure preserving defor-
mation is a highly over-constrained process. Further analy-
sis could be done to compare the result of the deformation
with user expectations. This may lead to a better weighting
of constraints.

Acknowledgement: We would like to thank the anony-
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