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Abstract
Maximuma posteriori(MAP) inference over dis-
crete Markov random fields is a fundamental task
spanning a wide spectrum of real-world applica-
tions, which is known to be NP-hard for gen-
eral graphs. In this paper, we propose a novel
semidefinite relaxation formulation (referred to
as SDR) to estimate the MAP assignment. Al-
gorithmically, we develop an accelerated variant
of the alternating direction method of multipli-
ers (referred to as SDPAD-LR) that can effec-
tively exploit the special structure of the new
relaxation. Encouragingly, the proposed proce-
dure allows solving SDR for large-scale prob-
lems, e.g., problems on a grid graph comprising
hundreds of thousands of variables with multi-
ple states per node. Compared with prior SDP
solvers, SDPAD-LR is capable of attaining com-
parable accuracy while exhibiting remarkably im-
proved scalability, in contrast to the commonly
held belief that semidefinite relaxation can only
been applied on small-scale MRF problems. We
have evaluated the performance of SDR on var-
ious benchmark datasets including OPENGM2
and PIC in terms of boththe quality of the so-
lutions and computation time. Experimental re-
sults demonstrate that for a broad class of prob-
lems, SDPAD-LR outperforms state-of-the-art al-
gorithms in producing better MAP assignments
in an efficient manner.

1. Introduction

Computing the maximuma posteriori(MAP) assignment
in a graphical model is a central inference task span-
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ning a wide scope of scenarios (Wainwright & Jordan,
2008), ranging from traditional applications in graph
matching, stereo reconstruction, object detection, error-
correcting codes, gene mapping, etc., to a more recent ap-
plication in estimating consistent object orientations from
noisy pairwise measurements (Crandall et al., 2011). For
general graphs, this problem is well-known to be NP-
hard (Shimony, 1994). However, due in part to its impor-
tance in practice, a large body of algorithms have been pro-
posed to approximate MAP estimates by solving various
convex relaxation formulations.

Among those methods based on convex surrogates,
semidefinite relaxation usually strictly dominates other for-
mulations based on linear programming or quadratic pro-
gramming in terms of solution quality. Despite its supe-
riority in obtaining more accurate estimates, however, the
most significant challenge that limits the applicability of
any semidefinite relaxation paradigm on real problems is
efficiency. So far existing general-purpose SDP solvers can
only handle problems with small dimensionality.

In this paper, we propose a novel semidefinite relaxation
approach (referred to as SDR) for second-order MAP infer-
ence in pairwise undirected graphical models. Our key ob-
servation is that the marginalization constraints in a typical
linear programming relaxation (c.f.(Kumar et al., 2009))
can be subsumed by combing a semidefinite conic con-
straint with a small set of linear constraints. As a result,
SDR admits a concise set of nicely decoupled constraints,
which allows us to develop an accelerated variant (referred
as SDPAD-LR) of the alternating direction method of mul-
tipliers method (ADMM) that is scalable to very large-scale
problems.

On a standard PC, we have successfully applied SDR on
dense problems of dimensions of (#states× #variables)
up to five thousand, and on grid-structured problems up to
105 variables each with dozens of states per node.

Practically, SDPAD-LR performs remarkably well
on a variety of problems. We have evaluated
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SDPAD-LR on two collections of benchmark datasets:
OPENGM2 (Kappes et al., 2013a) and a probabilistic infer-
ence challenge (PIC, 2011). Each benchmark consists of
multiple categories of problems derived from various MAP
estimation tasks. Experimental results demonstrate that
SDPAD-LR outperforms the state-of-the-art algorithms in
computational speed, while often obtaining better MAP
estimates.

1.1. Background

There is a vast literature concerning MAP estimation over
discrete undirected graphical models and it is beyond the
scope of this paper to discuss all existing algorithms. Inter-
ested readers are referred to (Wainwright & Jordan, 2008)
for an in-depth introduction to this topic. In the following,
we focus on methods that involve convex relaxation, which
are the most relevant to our approach.

Many prior convex relaxation techniques are derived from
the original graph structure underlying the MAP estima-
tion problem, among which linear programming relaxation
(LPR) methods (Chekuri et al., 2004; Wainwright et al.,
2005) are the most popular. In addition to LPR, researchers
have considered alternative convex relaxations, e.g.,
quadratic relaxation (QP-RL) (Ravikumar et al., 2010) and
second-order cone relaxation (SOCP-MS) (Kumar et al.,
2009). In the seminal work of (Kumar et al., 2009), the au-
thors evaluate various convex relaxation approaches, and
assert that LPR dominates QP-RL and SOCP-MS. How-
ever, as will be shown later, LPR is further dominated by
a standard SDP relaxation (Wainwright & Jordan, 2008),
which is one of the main foci of this paper.

A recent line of approaches have aimed at obtaining tighter
convex relaxations by incrementally adding higher-order
interactions to enforce proper marginalization over groups
of variables (Sontag et al., 2012; Komodakis & Paragios,
2008; Batra et al., 2011). Despite the practical success of
these approaches, it remains an open problem to analyze
their behavior — for example, to decide whether a polyno-
mial number of clusters are sufficient.

There have been several attempts in applying semidefi-
nite relaxation to obtain MAP assignment (Torr, 2003;
Olsson et al., 2007; Wang et al., 2013; Peng et al., 2012).
However, most of these methods are primarily designed
for binary MAP estimation problems. In a recent work,
(Peng et al., 2012) considered a general MAP estimation
problem, where each variable has multiple states. The key
difference between the proposed formulation and that of
(Peng et al., 2012) is that we utilize the semidefinite cone
constraint to prune redundant linear marginalization con-
straints. This leads to a concise set of loosely decoupled
constraints, which is important in developing effective op-
timization paradigms.

1.2. Notation

Before proceeding, we introduce a few notations that will
be used throughout the paper. For any linear operatorA, we
letA⋆ represent its conjugate operator. Denote byR

N×M
+

the set ofN ×M matrices with nonnegative entries, and
(·)+ : R

N×M → R
N×M
+ the projection operator onto

R
N×M
+ . For any symmetric matrixM , we useM�0 to

represent the projection ofM onto the positive semidefi-
nite cone. Finally, we denote by‖X‖F the Frobenius norm
of a matrixX.

2. MAP Estimation and SDP Relaxation

We start with state configurations overn discrete random
variablesX = {x1, · · · , xn}. Without loss of general-
ity, assume that eachxi takes values in a discrete state
set{1, · · · ,m}. Consider a pairwise Markov random field
(MRF) G parameterized by the potentials (or sufficient
statistics)wi(xi) for all vertices andwij(xi, xj) for all
edges(i, j) ∈ G. The energy (or log-likelihood) associated
with this MRF is given by

f(X ) =

n
∑

i=1

wi(xi) +
∑

(i,j)∈E

wij(xi, xj). (1)

The goal of MAP estimation is then to compute the con-
figuration of states that maximizes the energy – the most
probable state assignmentXM .

2.1. Semidefinite Programming Relaxation (SDR)

MAP estimation over discrete sets is an NP-hard combina-
torial problem, and can be cast as an integer quadratic pro-
gram (IQP). Denote byxi = (xi,1, · · · , xi,m)⊤ ∈ {0, 1}m

a binary vector such thatxi,j = 1 if and only if xi = j.
Then MAP estimation is equivalent to the following inte-
ger program.

(IQP): maximize
x∈{0,1}nm

n
∑

i=1

〈wi,xi〉+
∑

(i,j)∈G

〈

W ij ,xix
⊤
j

〉

subject to 1
⊤xi = 1, 1 ≤ i ≤ n, (2)

wherewi andW ij encode the corresponding potentials.

The hardness of the above IQP arises in two aspects: (i)
x are binary-valued, and (ii) the objective function is a
quadratic function of these binary variables. These moti-
vate us to relax the constraints in some appropriate manner,
leading to our semidefinite relaxation. In the sequel, we
present the proposed relaxation in a step-by-step fashion.

1) In the same spirit as existing convex formulations
(e.g., (Kumar et al., 2009; Peng et al., 2012)), we intro-
duce a binary block matrixX := xx⊤ ∈ {0, 1}nm×nm
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to accommodate quadratic objective terms:

X =













Diag(x1) X12 · · · X1n

X⊤
12 Diag(x2)

...
...

... · · ·
. . .

...
X⊤

1n · · · · · · Diag(xn)













,

which apparently exhibits the following properties:

Xii = xix
⊤
i = Diag(xi), 1 ≤ i ≤ n. (3)

2) The non-convex constraintX = xx⊤ is then relaxed
and replaced byX � xx⊤, which by Schur comple-
ment condition is equivalent to the following semidefi-
nite conic constraint :

(

1 x⊤

x X

)

� 0. (4)

3) The binary constraintsx ∈ {0, 1}nm and X ∈
{0, 1}nm×nm are replaced by weaker linear constraints

X ≥ 0.

Note that the constraints0 ≤ x ≤ 1 andX ≤ 1·1⊤ are
essentially subsumed by the constraints (2), (3), and (4)
taken together. For the sake of numerical efficiency, we
further relax the non-negative constraintX ≥ 0 to be

X ij ≥ 0, (i, j) ∈ G. (5)

As we will see later, this relaxation is crucial in acceler-
ating SDP solvers for large-scale problems.

Remark 1. The non-negativity constraints described in (5)
are necessary since otherwise SDR becomes loose for sub-
modular functions. Below is an example in the presence of
2 variables each having 2 states:

w1 =

[

2
0

]

, w2 =

[

−3
0

]

, W 12 =

[

0 2
2 0

]

.

It is clear that W 12 satisfies the submodular property.
However, the optimizer of SDR after dropping the con-
straintXij ≥ 0 is given by

x1 =
1

3

[

1
2

]

, x2 =
1

9

[

8
1

]

, X12 =
1

9

[

4 −1
4 2

]

,

which does not obey the non-negativity constraint onX.

The feasibility constraints (2),(3), (4) and (5) taken col-
lectively give rise to the following semidefinite relaxation

(SDR) formulation for MAP estimation:

(SDR): maximize
x,X

n
∑

i=1

〈wi,xi〉+
∑

(i,j)∈G

〈W ij ,Xij〉

subject to

(

1 x⊤

x X

)

� 0, (6)

Xii = Diag(xi), 1 ≤ i ≤ n, (7)

1
⊤xi = 1, 1 ≤ i ≤ n, (8)

Xij ≥ 0, (i, j) ∈ G. (9)

2.2. Comparison with Prior Relaxation Heuristics

2.2.1.Superiority over LP relaxations.

Careful readers will remark that there might exist other con-
vex constraints onX andx that we can enforce to tighten
the proposed semidefinite relaxation. One alternative is
the following marginalization constraints, which have been
widely invoked in LP relaxation for MAP estimation:

Xij1 = 1, X⊤
ij1 = 1, 1 ≤ i < j ≤ n. (10)

Somewhat unexpectedly, these constraints turn out to be
redundant, as asserted in the following theorem.

Theorem 1. Any feasible solutionX to SDR (i.e. anyX
obeying the feasibility constraints of SDR) necessarily sat-
isfies

Xij1 = 1, X⊤
ij1 = 1, 1 ≤ i < j ≤ n. (11)

Proof. See the supplemental material.

Intuitively, this property arises from the following features
of x andXii:

x⊤
i · 1 = 1, Xii1 = xi, X

⊤
ii1 = 1, 1 ≤ i ≤ n.

These intrinsic properties are thenpropagatedto all off-
diagonal blocks by the semidefinite constraint.

2.2.2.Invariance under variable reparameterization.

Pioneered by the beautiful relaxation proposed for
the MAX-CUT problem (Goemans & Williamson, 1995),
many SDP approaches developed for combinatorial prob-
lems employ the integer indicatory = 1

2 (1 + x) to pa-
rameterize binary variables (e.g., (Torr, 2003; Kumar et al.,
2009)). If one applies matrix liftingY = yy⊤ and follows
a similar relaxation procedure, the resulting semidefinitere-
laxation (referred to as SDR2) can be derived as follows
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maximize
y,Y

n
∑

i=1

〈wi,yi〉+
1
2

∑

(i,j)∈G

〈W ij ,Y ij〉

subject to

(

1 y⊤

y Y

)

� 0,

1
⊤yi = 2−m, 1 ≤ i ≤ n,

Y ij + 1 · y⊤
j + yi · 1

⊤ + 1 · 1⊤ ≥ 0,

(i, j) ∈ G,

1·1⊤+yi·1
⊤+1·y⊤

i
+Y ii

2
= Diag(1+ yi),

1 ≤ i ≤ n, (12)

wherewi are defined as

wi = wi +
1

2





∑

j:(i,j)∈G

W ij1+
∑

j:(j,i)∈G

W
⊤
ji1



 .

In fact, SDR2 is identical to SDR, as formally stated below.

Theorem 2. (x⋆,X⋆) is the solution to SDR if and only if

y⋆ := 2x⋆ − 1,

Y ⋆ := 4X⋆ − 2
(

x⋆ · 1⊤ + 1 · x⋆⊤
)

+ 1 · 1⊤

is the solution to SDR2.

Proof. See the supplemental material.

Despite the theoretical equivalence between SDR2 and
SDR, from a numerical perspective, solving SDR2 is much
harder than solving SDR. The difficulty arises from the
complicated form of the linear constraints enforced by
SDR2 (i.e., (12)). Note that the advantage of SDR2 is that
all diagonal entries ofY are equal to1 as follows

diag(Y ii) = 2(1+yi)−1−yi−yi = 1, ( 1 ≤ i ≤ n).

Nevertheless, none of prior SDP algorithms takes full ad-
vantage of this property in accelerating the algorithm.

3. Scalable Optimization Algorithm

The curse of dimensionality poses inevitable numer-
ical challenges when applying general-purpose SDP
solvers to solve SDR. Despite their superior accu-
racy, primal-dual interior point methods (IPM) like
SDPT (Toh et al., 1999) are limited to small-scale prob-
lems (e.g. nm < 150 on a regular PC). More scal-
able solvers such as CSDP (Helmberg & Rendl, 2000) and
DSDP (Benson & Ye, 2008) propose to solve the dual prob-
lem. However, since the non-negativity constraintsXij ≥
0 produce numerous dual variables, these solvers are still
far too restrictive for our program — none of them can
solve SDR on a standard PC whennm exceeds 1000.

The limited scalability of interior point methods has in-
spired a flurry of activity in developing first-order methods,
among which the alternating direction method of multipli-
ers (ADMM) (Wen et al., 2010; Boyd et al., 2011) proves
well suited for large-scale problems. In this section, we
propose an efficient variant of ADMM – referred to as
SDPAD-LR (SDP Alternating Direction method for Low
Rank structure), which is tailored to the special structure
of SDR (including low rank and sparsity) and enables us to
solve problems with very large dimensionality.

3.1. Alternating Direction Augmented Lagrangian
Method (ADMM)

For convenience of presentation, we denote

X :=

(

1 x⊤

x X

)

,

and rewrite SDR in the operator form:

minimize
〈

C,X
〉

dual variables

subject to A
(

X
)

= b, y

P
(

X
)

≥ 0, z ≥ 0

X � 0, S � 0 (13)

whereC encodes allwi andW ij , A(X) = b collects
the equality constraints, andP(X) gathers element-wise
non-negative constraints. We let variablesy, z, andS rep-
resent the corresponding dual variables for respective con-
straints. In the sequel, we will start by reviewing SDPAD,
i.e., the original alternating direction method introduced in
(Wen et al., 2010), and then present the key modification
underlying the proposed efficient variant SDPAD-LR.

3.1.1.SDPAD: Procedures and Convergence

SDPAD considers the following augmented Lagrangian:

L(y,z,S,X) = 〈b,y〉+
〈

P⋆(z) + S −C −A⋆(y),X
〉

+ (2µ)−1 ‖P⋆(z) + S −C −A⋆(y)‖2F ,

where the penalty parameterµ controls the strength of the
quadratic term. As suggested by (Boyd et al., 2011), we
initialize µ with a small value, and gradually increase it
throughout the optimization process.

Let superscript(k) indicate the variable in thekth iteration.
Each iteration of the SDPAD consists of a dual optimiza-
tion step, followed by a primal update step given as follows

X
(k)

= X
(k−1)

+
P⋆(z(k)) + S(k) −C −A⋆(y(k))

µ
. (14)

Instead of jointly optimizing all dual variables, the key
idea of SDPAD is to decouple the dual optimization step
into several sub-problems or, more specifically, to optimize



Semidefinite Relaxation for MAP Estimation

y, z,S in order with other variables fixed. This leads to
closed-form solutions for each sub-problem as follows

y
(k) = (AA∗)−1

(

A
(

S(k−1) −C + µX
(k−1))

− µb
)

,

z
(k) = P

(

C − S
(k−1) − µX

(k−1)
)

+
,

S
(k) =

(

C +A⋆(y(k))− P⋆(z(k))− µX
(k−1)

)

�0

.

Similar to that considered in (Wen et al., 2010), our stop-
ping criterion involves measuring of both primal feasibility

‖A(X
(k)

)− b‖ and dual feasibilityµ(X
(k)
−X

(k−1)
).

Convergence property. In general, convergence proper-
ties of SDPAD are known when only equality constraints
are present (Wen et al., 2010). However, the inequality con-
straints of SDR are special in the following two aspects:

(i) They are element-wise non-negativity constraints;

(ii) They are essentially decoupled from other linear con-
straints.

Property (ii) arises as all equality constraints are concerned
with diagonal blocks ofX, while all linear inequality con-
straints are only enforced on its off-diagonal blocks. Such
special structure leads to theoretical convergence guaran-
tees for SDPAD, as stated in the following theorem.

Theorem 3. The SDPAD method presented above con-
verges to the optimizer of SDR.

Proof. See the supplemental material.

3.1.2.SDPAD-LR: Accelerated Method

Apparently, the most computationally expensive step of
SDPAD is the update ofS, which involves the eigen-
decomposition of annm × nm matrix. This limits the ap-
plicability of SDPAD to large-scale problems (e.g.nm >
104). To bypass this numerical bottleneck, we modify SD-
PAD and present an efficient heuristic called SDPAD-LR,
which exploits the low-rank structure ofX.

First, we observe thatS can be alternatively expressed as

S
(k) = C +A⋆(y(k))− P⋆(z(k))− µ

(

X
(k)

−X
(k−1)

)

.

This allows us to present SDPAD without invokingS. The
detailed steps of SDPAD can now be summarized as in Al-
gorithm1.

It is straightforward to see that the bottleneck of Algo-
rithm 1 lies in how to compute and store the primary vari-
ableX . To derive an efficient solver, we make the as-
sumption that the optimal solutionX

⋆
is low-rank. This

is motivated by the empirical evidence that for a variety of
problems (see the experimental section for details), SDR is

Algorithm 1 SDPAD for solving SDR

input : kmax = 1000, ǫ = 10−4, µmin = 10−3, ρ =
1.005.
initialize : X

(0)
= X

(−1)
= 0, y(0) = 0, z(0) = 0

repeat
X

(k)
temp = 2X

(k−1)
−X

(k−2)

t
(k)
temp = (AA⋆)−1(A(X

(k)
temp)− b)

y(k) = y(k−1) + µt
(k)
temp

z(k) =
(

z(k−1) − µP(X
(k)
temp)

)

+

X
(k)

=
(

X
(k−1)

−
C +A⋆(y(k))−P⋆(z(k))

µ

)

�0

(15)
k ← k + 1; µ = µρ

until min(µ‖X
(k)

− X
(k−1)

‖F, ‖A(X
(k)

) − b‖) ≤ ǫ or
k > kmax

exact, meaning rank(X
⋆
) = 1. Moreover, in the general

case, the rank ofX
⋆

is expected to be much small than its
dimension (e.g. (Burer & Monteiro, 2003)), i.e.,

rank
(

X
⋆
)(

rank(X
⋆
) + 1

)

≤ 2M,

whereM is the number of constraints.1 of SDPR.

Based on this assumption, the key idea of SDPAD-LR is to
invoke a low-rank matrixY ∈ R

(nm+1)×r for some small
r and encodeX = Y Y ⊤ throughout the iterative process.
This allows us to keep all the variables in memory even for
large-scale problems.

In this case, (15) is modified asY (k) = U (k)
Σ

1

2

+, where
Σ = Diag(σ1, · · · , σr) andU = (u1, · · · ,ur) represent
the topr eigenvalues and respective eigenvectors of

V
(k) = Y

(k−1)
Y

(k−1)⊤ −
C +A⋆(y(k))− P⋆(z(k))

µ
. (16)

Although V (k) is a dense matrix, its top eigenvectors
can be efficiently computed using theLanczos process
(Cullum & Willoughby, 2002), whose efficiency is dictated
by the complexity of the matrix multiplication operator
V (k) : u ∈ R

nm+1 → V (k)u ∈ R
nm+1. As SDR only

involves the constrainsXij ≥ 0, (i, j) ∈ E , the matrix
C+A⋆(y(k))−P⋆(z(k)) turns our to share the same spar-
sity pattern withG. Thus, the complexity of computing
V (k)u is at mostO(nmr2 +m2|E|).

Theoretically, it is extremely challenging to derive an up-
per bound onr to ensure the exactness of the modified al-
gorithm. To address this issue, we thus design SDPAD-LR
so that it iteratively doubles the value ofr and reapplies the
modified algorithm until it returns the optimal solution. For
most of our experiments, we found thatr = 8 is sufficient.

1Practically, many negativity constraints are redundant.
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Algorithm 2 SDPAD-LR for solving SDR

input : kmax = 5000, ǫ = 10−4, µmin = 10−3, ρ =
1.005, δ = 1e− 2, rmax = 32, r = 4.
initialize : X

(0)
= X

(−1)
= 0, y(0) = 0, z(0) = 0

repeat
X

(k)
temp = 2X

(k−1)
−X

(k−2)

t
(k)
temp = (AA⋆)−1(A(X

(k)
temp)− b)

y(k) = y(k−1) + µt
(k)
temp

z(k) =
(

z(k−1) − µP(X
(k)
temp)

)

+

ComputeX(k) according to (16)
k ← k + 1; µ = ρµ

if mod (k, 1000) = 0, λmin(X
(k)

) > δλmax(X
(k)

)
then

r = min(rmax, 2r); µ = µmin

end if
until k > kmax or λmin(X

(k)
) ≤ δλmax(X

(k)
) and

min(µ‖X
(k)

−X
(k−1)

‖F, ‖A(X
(k)

)− b‖) ≤ ǫ

The pseudo-code of SDPAD-LR is summarized in Algo-
rithm 2.

3.2. Iterative Rounding

Similar to other ADMM methods (Boyd et al., 2011),
SDPAD-LR converges rapidly to moderate accuracy within
the first 400 iterations, and significantly slows down af-
terwards. Thus, rather than continuing until SDPAD-LR
converges, it would be more efficient to shrink the prob-
lem size by fixing those variables whose optimal states are
likely to have been revealed. Specifically, after each round
of SDPAD-LR, we fix the optimal statej of a variable
xi if xi,j > tmax (tmax = 0.99 for all the examples) or
xi,j = max1≤i≤n,1≤j≤m xi,j . We then reapply the itera-
tive procedures on the reduced problem. In practice, we
find that due to the tightness of SDR, the size of the re-
duced problems are significantly smaller than the original
problem, and one iterative rounding procedure is usually
sufficient.

4. Experimental Results

In this section, we evaluate SDPAD-LR on several bench-
mark data sets and compare its performance against exist-
ing SDP solvers and state-of-the-art MAP inference algo-
rithms.

4.1. Benchmark Datasets

We perform experimental evaluation on MAP estimation
problems from three popular benchmark data sets (See Ta-
ble 2), i.e., OPENGM2 (Kappes et al., 2013a), PIC (PIC,
2011), and a new data set ORIENT for the task of estimat-
ing consistent camera orientations (Crandall et al., 2011).
OPENGM2 comprises 19 categories of mostly sparse MAP

categories G n m probs t
PIC-Object full 60 11-21 37 5m32s
PIC-Folding mixed 2K 2-503 21 21m42s
PIC-Align dense 30-400 20-93 19 37m63s
GM-Label sparse 1K 7 324 6m32s
GM-Char sparse 5K-18K 2 100 1h13m
GM-Montage grid 100K 5,7 3 9h32m
GM-Matching dense 19 19 4 2m21s
ORIENT sparse 1K 16 10 10m21s

Table 2.Statistics of the datasets evaluated in this paper.G: graph
structure of the MAP problem in each category;n: number of
variables;m: number of states; probs: number of instances;t:
average running time of SDPAD-LR.

problems. We choose four representative categories for
evaluation: Geometric Surface Labeling (GM-Label), Chi-
nese Characters (GM-Char), MRF Photomontage (GM-
Montage) and Matching (GM-Matching). The first three
categories GM-Label, GM-Character and GM-Montage are
sparse MAP estimation problems with increasing scales.
GM-Matching is a special category where our convex re-
laxation is not tight. PIC comprises 10 categories of MAP
inference problems of various structure. As we already in-
clude sparse MAP inference problems from OPENGM2,
we pick 3 representative dense categories from PIC: Ob-
ject Detection(PIC-Object), Image Alignment (PIC-Align)
and Folding (PIC-Folding).

4.2. SDP Solver Evaluation

Baseline algorithms. We evaluate the proposed SDPAD-
LR against the following existing large-scale SDP solvers.

• SDPAD — the original ADMM method presented
in (Wen et al., 2010).

• SDPNAL — the Newton-CG (conjugate gradient)
augmented method proposed in (Zhao et al., 2010).

• IPM-NC — the nonconvex interior point method
which attempts to solve a direct relaxation of the MAP
inference problem (Burer & Monteiro, 2003):

minimize 〈C,xx⊤〉

subject to 1
⊤xi = 1,xi ≥ 0, 1 ≤ i ≤ n

This method serves as an alternative low-rank heuris-
tic for the proposed SDPAD-LR. With losing general-
ity, we set the initial values ofxi =

1
m
1, 1 ≤ i ≤ n.

• MOSEK — the cutting-edge interior point method. To
apply it on large-scale SDRs, we add the nonnegativ-
ity constraints in an incremental fashion, i.e., at each
iteration, we detect the 100 smallest negative entries
and add them to the constraint set.

• MUL-Update — an approximate on-line SDP
solver that is based on multivariate weight up-
dates (Arora et al., 2012).
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Table 1.Comparison of SDP Solvers on Representative Problems.N : dimension of the matrix.M : number of constraints.

Method
deer0034.K10.F100 (dense) file30markers (sparse) folding2BE6 (dense) gm275 (sparse)
N = 661, M = 218791 N = 862,M = 218791 N = 3836,M = 218791 N = 5201, M = 218791
cpu gap inf cpu gap inf cpu gap inf cpu gap inf

SDPAD-LR 4:33 7.2e-4 1.3e-6 7:33 2.2e-4 5.3e-6 2:44:36 2.3e-4 5.3e-7 21:33 5.1e-4 1.3e-6
SDPAD 8:29 8.2e-5 4.3e-7 10:33 9.4e-5 1.3e-7 25:56:37 2.3e-4 3.7e-6 41:33:21 1.2e-4 3.1e-6

SDPNAL 10:55 8.1e-5 1.3e-6 9:42 6.2e-5 2.1e-6 18:33:11 5.2e-5 4.7e-7 21:34:35 9.7e-5 4.5e-7
IPM-NC 1:27 2.3e3 na 2:37 4.1e-7 na 10:23 4.5e2 na 21:56 3.5e-6 na
MOSEK 21:33:10 2.3e-6 1.3e-9 na na na

MUL-Update 6:13:56 8.1e-3 2.7e-5 na na na

Problem sets.For evaluation, we consider four categories,
on which most baseline algorithms are applicable: PIC-
OBJ, PIC-Align, PIC-Folding and GM2-Label. For sim-
plicity, we pick a representative problem from each cate-
gory. The dimensions of these problem sets range from600
to 5000, and they contain both dense and sparse problems
(See Table1).

Evaluation protocol. Following the standard protocol for
assessing convex programs, we evaluate the duality gap and
the primal/dual infeasibility of each algorithm:

gap=
|〈b,y〉 − 〈C,X〉|

1 + |〈b,y〉|+ |〈C,X〉|
,

inf = max
{‖A(X)− b‖2 + ‖min(P(X), 0)‖2

1 + ‖b‖2
,

‖C +A∗(y)− P∗(z)− S‖F
1 + ‖C‖F

}

As IPM-NC solves a different optimization problem, we re-
port the gap between its optimal solutions with the ground-
truth optimal solutions.

Analysis of results. We run each algorithm until the dual-
ity gap is below1e − 4 or the maximum number of itera-
tions is reached. Table1 shows the running time, duality
gap and maximum primal/dual infeasibility of each algo-
rithm on each problem. We can see that SDPAD-LR gen-
erates results that are comparable to SDPAD and SDPNAL.
However, SDPAD-LR turns out to be remarkably more ef-
ficient than SDPAD and SDPNAL on large-scale or sparse
datasets. This is due to the fact that SDPAD-LR only re-
quires computing the top eigenvalues, which is both mem-
ory and computationally efficient.

Both interior point methods (i.e., IPM-NC and MOSEK)
have provable guarantees to generate more accurate results
than other methods. However, MOSEK is not scalable to
large data sets, as reported in Table1. IPM-NC is scalable
to large-scale problems, as the number variables involved
is small. However, as IPM-NC solves a non-convex opti-
mization problem, it may easily get trapped into local min-
imals (e.g., on deer0034.K10.F10030markers and fold-
ing 2BE6).

Finally, the multivariate weight update method MUL-
Update turns out be inefficient on solving SDRs of MAP in-

ference problems. This is due to the fact that MUL-Update
is an approximate solver and it requires a lot of iterations
to obtain an accurate solution.

4.3. MAP Inference Evaluation

Experimental setup. We compare SDR
with the top-performing algorithms from
OPENGM2 (Kappes et al., 2013a). These algo-
rithms include (i) BRAOBB (Otten & Dechter, 2012),
which is based on combinatorial search, (ii)α-
expansion (Szeliski et al., 2008)–a move making
method, (iii) MCBC (Kappes et al., 2013b), which
is based on a highly optimized max-cut solver, (iv)
TRWS-LF2 (Kolmogorov, 2006)– Tree-reweighted
message passing, (vi) ogm-TRBP— Tree-reweighted
belief propagation (Szeliski et al., 2008) and (vii) fi-
colofo (Cooper et al., 2010)– the top performing method
on dense problems of PIC.

We use two measures to assess the performance of each
method. The first measure evaluates for each method the
mean objective valuesf of the resulting MAP assignments
on each category. For the consistency with (Kappes et al.,
2013a), we report−f , meaning that the smaller the value,
the better the algorithm. The second measure reports the
percentage that each method achieves the best solution
among all existing methods (not necessarily the global op-
timal). The higher the percentage, the better the algorithm.

Performance. Table 3 summarizes the performance of
SDPAD-LR v.s. state-of-the-art MAP inference algorithms
on each type of problems. In each block, the top element
(which is tilted) describes−f of each method on each cat-
egory, and the bottom block describes the percentage of
obtaining the best solution. We can see that the overall
performance of SDPAD-LR is superior to each other indi-
vidual algorithm. Except on GM-Matching, SDPAD-LR is
the top performing on each other dataset. In contrast, each
existing method either does not apply or generates poor re-
sults on one or several datasets. This shows the advantage
of solving a strong convex relaxation of the MAP inference
problem. Below we break down the performance on each
benchmark.

• ORIENT. SDPAD-LR is the leading method on ORI-
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Table 3.Results on benchmark datasets.
SDPAD-LR Ficolofo BRAOBB α-expand TRWS-LF2 ogm-TRBP MCBC A-star

ORIENT -7834.6 na -3059.2 -7695.4 -7592.4 -7553.8 na na100% 0% 0% 0% 0%

PIC-Object -19316.12 -19308.94 -19113.87 -10106.8 -19020.82 -18900.81 na na97.3% 91.9% 24.3% 0% 59.5% 32.2%

PIC-Folding -5963.68 -5963.68 -5927.01 -5652.76 -5905.01 -5907.24 na na100% 100% 42.9% 14.2% 38.1% 42.9%

PIC-Align 2285.23 2285.34 2285.34 2285.34 2286.64 2289.12 na na100% 90% 90% 90% 80% 70%

GM-Label -476.95 na na -476.95 -476.95 486.42 na na100% 100% 99.67% 40%

GM-Char -59550.67 na na na -49519.44 -49507.98 -49550.10 na86.1% 11% 6% 89.1%

GM-Montage 168298.00 na na 168220.00 735193.0 235611.00 na na66.3% 33.3% 0% 0%

GM-Matching 44.19 na 21.22 na 32.38 5.5e10 na 21.22
0% 100% 0% 0% 100%

ENT. The problems in ORIENT exhibit specific struc-
tures, i.e, the pair-wise potentials consist of approxi-
mately shifted permutation matrices. Experimentally,
we found that SDR is usually tight on these problems.
This explains the superior performance SDPAD-LR.
In contrast, linear programming relaxations are not
tight on ORIENT, and thus TRBP and TRWS only de-
liver moderate performance. Moreover, this structural
pattern leads to huge search spaces for combinatorial
algorithms (e.g., BRAOBB), and they can easily get
stuck in local optimums.

• Dense problems.SDPAD-LR also outperforms other
methods on three dense categories from PIC. It
achieves the best mean energy value as well as the
highest percentage of obtaining the best solution. This
again arises since SDR is tight on these problems.

• Sparse problems. SDR yields comparable results
with state-of-the-art algorithms on the three sparse cat-
egories from OPENGM2. GM-Label consists of prob-
lems where the standard LP relaxation is tight. On
GM-Char which consists of large-scale binary prob-
lems, SDR is comparable to MCBC in the sense
that SDR achieves a better mean energy value while
MCBC attains a higher percentage of being the best
solution. This arises because MCBC is a highly opti-
mized solver designed for binary quadratic problems.
On the other hand, SDPAD-LR is only an approximate
SDP solver which, in some cases, may not converge to
the global optimum due to numerical issues.

• GM-Matching. SDR only yields moderate results on
GM-Matching. This occurs because SDR is not tight
on GM-Matching. In contrast, as GM-Matching is a
small-scale problem, combinatorial optimization tech-
niques such as BRAOBB and A-star are capable of
finding globally optimal solutions.

Running Times. The running time of SDPAD-LR (includ-

ing the rounding procedure) is of the same scale as other
convex relation techniques. As shown in Table2, our pre-
liminary Matlab implementation takes less than 10 mins
on small-scale problems (i.e. those in PIC-Object, GM-
Matching and PIC-Label). On medium size problems, i.e.,
those in PIC-Folding, PIC-Align, GM-Char and ORIENT,
the running time of SDPAD-LR ranges from 20 minutes
to 1 hour. On large-scale problems from GM-Montage,
SDPAD-LR takes around 8 hours on each problem. How-
ever, there is still huge room for improvement. One alter-
native is to use the eigenvalues computed in the previous
iteration to accelerate the eigen-decomposition at the cur-
rent iteration, which is left for future work.

5. Conclusions

In this paper, we have presented a novel semidefinite re-
laxation for second-order MAP estimation and proposed
an efficient ADMM solver. We have extensively compared
the proposed SDP solver with various state-of-the-art SDP
solvers. Experimental results confirm that our SDP solver
is much more scalable than prior approaches when applied
to various MAP estimation problem, which enables us to
apply SDR on large-scale datasets. Owing to the power
of semidefinite relaxation, SDR proves superior to other
top-performing MAP inference algorithms on a variety of
benchmark datasets.

There are plenty of opportunities for future research. First,
we would like to extend SDR to higher-order MAP prob-
lems. Moreover, it would be interesting to integrate SDR
and combinatorial optimization techniques, which has the
potential to boost the power of both. From the theoreti-
cal side, theoretical support for exact estimation with SDR
would be one exciting direction for investigation. This
would offer justification of the presented low-rank heuris-
tic. On the other hand, as many combinatorial optimization
problems can be formulated as MAP inference problems,
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such exact estimation conditions can shed light on the orig-
inal combinatorial optimization problems.
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