
UncertaintyQuantification for Multi-Scan Registration

XIANGRU HUANG, The University of Texas at Austin, USA
ZHENXIAO LIANG, The University of Texas at Austin, USA
QIXING HUANG, The University of Texas at Austin, USA

Model

Aligned (Set II) Recons. (Set II) Var. Pred. (Set II) Recons. Error (Set II)

Aligned (Set I) Recons. (Set I) Var. Pred. (Set I) Recons. Error (Set I)

0 micro 120 micro

Fig. 1. Two reconstructions from two sets of scans of the same underlying teeth object. Both reconstructions nicely reconstruct local features, yet the
bottom reconstruction possesses larger global drifts than the top reconstruction. Such global drifts are hard to detect manually. Our approach computes
quantified uncertainties that accurately reveal such global drifts. The predictions are consistent with ground-truth reconstruction errors. From left to right: The
ground-truth model obtained by an Artec Micro scanner, the two sets of scans obtained by an Artec Space Spider scanner, the corresponding reconstructions,
the predicted uncertainties of the reconstructions, and the ground-truth reconstruction errors.

A fundamental problem in scan-based 3D reconstruction is to align the depth

scans under different camera poses into the same coordinate system. While

there are abundant algorithms on aligning depth scans, few methods have

focused on assessing the quality of a solution. This quality checking problem

is vital, as we need to determine whether the current scans are sufficient

or not and where to install additional scans to improve the reconstruction.

On the other hand, this problem is fundamentally challenging because the

underlying ground-truth is generally unavailable, and it is challenging to

predict alignment errors such as global drifts manually. In this paper, we

introduce a local uncertainty framework for geometric alignment algorithms.

Our approach enjoys several appealing properties, such as it does not require

re-sampling the input, no need for the underlying ground-truth, informative,

and high computational efficiency. We apply this framework to two multi-

scan alignment formulations, one minimizes geometric distances between
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pairs of scans, and another simultaneously aligns the input scans with a

deforming model. The output of our approach can be seamlessly integrated

with view selection, enabling uncertainty-aware view planning. Experimen-

tal results and user studies justify the effectiveness of our approach on both

synthetic and real datasets.
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1 INTRODUCTION
Reconstructing 3D models from depth scans is a fundamental prob-

lem in geometry processing and beyond. A standard 3D reconstruc-

tion pipeline typically combines a geometry registration phase and

a geometry reconstruction phase (c.f. [Huber 2002]). The goal of ge-

ometry registration is to bring depth scans obtained from different

camera poses into the same coordinate system. The accuracy of this

phase largely determines the quality of the reconstructed 3D model.

Existing multi-scan registration techniques have predominantly
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focused on developing suitable objective terms and novel optimiza-

tion methods for computing a single registration result (c.f. [Tam

et al. 2013]). In contrast, they place minimal efforts on studying

an equally important problem of how to quantify the uncertainties

of scan registration. Successful solutions to this task allow us to

answer critical questions such as whether the current result is ac-

curate, and if not, where to instill additional inputs to improve the

quality of scan registration. A prominent example is how to quantify

the uncertainties of global pose error, which is very hard to assess

manually (particularly for models with non-planar structures).

In this paper, we introduce a local uncertainty quantification

(or UQ) framework for multi-scan registration. The key idea is to

treat multi-scan registration as solving an optimization problem.

This optimization problem implicitly defines a map from the input

scans to the output optimized poses. By assuming a noise model for

generating the depth scans, this map then enables us to quantify

local uncertainties of the optimized scans via propagating uncertain-

ties associated with the input scans. We introduce new uncertainty

measures derived from an approximation of the output covariance

matrix, i.e., through the inverse Hessian evaluated at the current

reconstruction. These uncertainty measures (e.g., diagonal blocks

and leading eigenvectors of the approximated covariance matrix) en-

joy multiple appealing properties, such as computational efficiency,

quantified approximation errors, and information-rich. Compared

to prior UQ approaches [Bosse and Zlot 2008; Manoj et al. 2015;

Szeliski 1990; Szeliski and Kang 1997; Triggs et al. 1999; Wahba 1983;

Zhang 1998] that utilize the inverse Hessian matrix to approximate

the output covariance matrix, we provide a first analysis of the ap-

proximation errors, from which we develop informative and robust

uncertainty measures. Such measures are critical for multi-scan

registration, where it is infeasible and unnecessary to visualize the

entire predicted covariance matrix.

We have applied this framework under two multi-scan registra-

tion settings, i.e., 1) geometric alignments between pairs of scans (or

joint pairwise registration (JPR)) [Benjemaa and Schmitt 1998; Besl

and McKay 1992; Brown and Rusinkiewicz 2007; Chen and Medioni

1992b; Krishnan et al. 2005; Pottmann et al. 2006; Raghuramu 2015],

and 2) aligning the input scans to a deforming model (or simulta-

neous registration and reconstruction (SRAR)) [Huang et al. 2007a;

Huang and Anguelov 2010; Jin et al. 1995; Liu et al. 2006; Tubic et al.

2003]. Under both settings, we develop geometric representations

that lead to small discretization errors of our method on discrete

objects (e.g., point clouds).

We have evaluated our approach on synthetic and real datasets.

On synthetic datasets, experimental results justify that the predicted

uncertainty measures match the simulated uncertainty measures

obtained from repeated sampling the input depth-scans. On real

datasets with ground-truth poses, the predicted covariance matrix

is consistent with the pose errors. User studies demonstrate the

effectiveness of our UQ approaches for enhancing user experiences

in interactive scanning, and our approach accurately reveals the reg-

istration errors and significantly outperforms alternative methods.

As an application of our UQ approaches, we consider model-

based view planning, which optimizes the camera poses on a similar

3D model to maximize the quality of the resulting 3D reconstruc-

tion [Scott et al. 2003]. We introduce a novel model-based view

planner, where the objectives are to minimize the length of the

scanning trajectory and the trace of the approximated covariance

matrix. We present a practical greedy approach to solve the induced

optimization problem efficiently. Compared to other model-based

view planning approaches, our approach offers direct control of the

reconstruction error and also generalizes better when the model

and testing instances are different.

In summary, we present the following contributions:

• We define uncertainty measures for multi-scan registration

that are computationally efficient, robust, and information-

rich.

• We apply the proposed approach under two formulations,

namely, joint pairwise registration and aligning scans to a

deforming template model.

• We develop efficient approaches to visualize the quantified

uncertainties for interactive scanning.

• We demonstrate the usefulness of our approach in interactive

quality checking and model-based view planning.

2 RELATED WORKS
It is beyond the scope of this paper to provide a thorough overview

of the literature on geometry registration. We refer to [Berger et al.

2014; Tam et al. 2013; Zollhöfer et al. 2018] for standard surveys

on these topics. In the following, we discuss works on multi-scan

registration and uncertainty quantification, which are most relevant

to the context of this paper.

2.1 Multi-Scan Registration
Multi-scan registration seeks to bring depth scans stored in the indi-

vidual camera coordinate systems into the same coordinate system.

Depending on our assumptions about the input depth scans, existing

approaches fall into the category of global methods [Arrigoni et al.

2016a,b; Govindu and Pooja 2014; Huang and Guibas 2013; Huang

et al. 2017, 2019; Torsello et al. 2011; Wang and Singer 2013; Zhang

et al. 2019], where we do not have any prior knowledge about the

poses of the input scans, and the category of local methods [Ben-

jemaa and Schmitt 1998; Brown and Rusinkiewicz 2007; Chen and

Medioni 1992b; Huang et al. 2007a; Huang and Anguelov 2010; Kr-

ishnan et al. 2005; Pottmann et al. 2006; Raghuramu 2015], where

we assume that we have some initial guesses about the underlying

ground-truth poses. This paper studies uncertainty quantification

for local methods. A standard strategy among local methods is

to minimize the cumulative distances among the overlapping re-

gions [Benjemaa and Schmitt 1998; Brown and Rusinkiewicz 2007;

Chen and Medioni 1992b; Krishnan et al. 2005; Pottmann et al. 2006;

Raghuramu 2015]. Although these methods work well on dense and

clean depth scans, where the matches among overlapping regions

are accurate, it becomes less reliable for sparse and noisy point

clouds. In this case, depending on the structure of the overlapping

areas, the alignment errors can accumulate.

Another category of methods unifies registration and reconstruc-

tion. The key idea is to optimize scan poses by minimizing the dis-

tances between the input scans and a deforming surface model. The

representation of this dynamic model includes point clouds [Henry

et al. 2012; Keller et al. 2013; Rusinkiewicz et al. 2002; Whelan et al.
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2016] and implicit surfaces [Chen et al. 2013; Dai et al. 2017b; Huang

et al. 2007b; Huang and Anguelov 2010; Izadi et al. 2011; Kähler et al.

2015; Whelan et al. 2015]. From the optimization point of view, these

approaches fall into the category of incremental optimization [Chen

et al. 2013; Dai et al. 2017b; Henry et al. 2012; Izadi et al. 2011; Kähler

et al. 2015; Keller et al. 2013; Rusinkiewicz et al. 2002; Whelan et al.

2015, 2016] and global optimization [Huang et al. 2007b; Huang and

Anguelov 2010]. A key advantage of these methods is that they align

input scans with a densely sampled surface. As a result, they can

take sparse point clouds as input and exhibit improved registration

quality.

In contrast to developing new multi-scan registration techniques,

this paper focuses on the new topic of quantifying the uncertainties

of multi-scan registration techniques.

2.2 Uncertainty Analysis in Vision and Graphics
Uncertainty analysis is a long-standing topic in computer graphics

and vision. In terms of methodology, present works fall into the

category of simulation-based approaches and the group of algebraic

methods. Simulation-based methods [Bengtsson and Baerveldt 2003;

Iversen et al. 2017; Landry et al. 2019] apply sampling to generate

inputs and then calculate statistics (e.g., the covariance matrix)

among the induced outputs. These approaches can provide accurate

estimations. However, they are computationally expensive, as the

same algorithm has to run many times (typically in the order of

thousands) on different inputs (c.f. [Landry et al. 2019]).

Algebraic methods [Bengtsson and Baerveldt 2003; Biber and

Straßer 2003; Bosse and Zlot 2008; Censi 2007; Manoj et al. 2015;

Nieto et al. 2005; Szeliski 1990; Szeliski and Kang 1997; Triggs et al.

1999; Wahba 1983; Zhang 1998] build on a noise model of the input

and compute an approximation of the output covariance matrix via

the inverse Hessian of the objective function. These approaches

are efficient, as they only need to run each algorithm one time.

However, they are less accurate than simulation-based methods due

to approximation errors of the Hessian matrix and discretization

errors (c.f. [Landry et al. 2019]). Our approach, which falls into

this category, introduces innovative and rigorous means to address

both issues. Specifically, we analyze the approximation errors of

the inverse Hessian, from which we derive informative measures of

the covariance matrix that are insensitive to these approximations.

Besides, we carefully model the objective functions to minimize the

effects of the discretization error.

In terms of applications, most existing works have focused on vari-

ous pairwise alignment problems, e.g., structure-from-motion [Szeliski

and Kang 1997; Triggs et al. 1999; Zhang 1998] and ICP registra-

tion [Bengtsson and Baerveldt 2003; Biber and Straßer 2003; Bosse

and Zlot 2008; Censi 2007; Manoj et al. 2015; Nieto et al. 2005]. In

contrast to these works, we focus on multi-scan registration. In

this setting, the dimension of the covariance matrix is significantly

higher than that of the pairwise scenario, and there are critical

questions on what uncertainty measures are both informative and

robust, how to compute them efficiently, and how to visualize them

for interactive reconstruction.

Regarding multi-view reconstruction, several works [Kanatani

and Morris 2006; Lhuillier and Perriollat 2006; Polic et al. 2018] stud-

ied uncertainty quantification under a feature-based structure-from-

motion setting. Yet these approaches do not model the strong cor-

relations among the location errors of image feature points, which

depend on the camera poses and the underlying shape. In contrast,

we follow a correspondence free approach, enabling us to model

independent samples.

As the performance of algebraic methods depends on the dis-

cretization error, a technical focus of geometric uncertainty analysis

is to develop suitable representations and error metrics that are

insensitive to such errors. For example, in the application of pair-

wise geometric registration, the point-2-plane distance metric has

proven to be much more accurate than the point-2-point distance

metric (c.f. [Landry et al. 2019]). [Pauly et al. 2004] introduced a

point-based surface representation to quantify the uncertainties of

implicit surfaces derived from a point cloud. [Pöthkow et al. 2011]

developed a grid-based representation for quantifying the uncertain-

ties of converting an iso-surface into a triangular mesh. In contrast,

we focus on modeling multi-scan registration under both the setting

of minimizing pairwise distances between overlapping scans and

the context of aligning input scans to a deforming template.

2.3 Geometrically Stable Sampling
A relevant task in geometry registration is to analyze the condition

number of the Hessian matrix of the objective function. For example,

[Gelfand et al. 2003] analyzed the condition number of the Hessian

matrix for registering a pair of scans under the point-2-plane dis-

tance metric [Chen and Medioni 1992a]. They also introduced a

greedy approach that selects a subset of the sample points so that

the induced condition number is minimized. The fundamental dif-

ference between our UQ approach and the approach of optimizing

the condition number is that we focus on the uncertainties of the

optimal solution. In contrast, the method of minimizing the con-

dition number can help the convergence to the optimal solution

(c.f. [Nocedal and Wright 2006]).

2.4 Model-based View Planning
Besides maximizing the registration and reconstruction quality from

a fixed set of scans, optimizing the set of input scans also dictates

the reconstruction quality. Model-based view planning seeks to

pre-compute a set of camera poses using a similar model, e.g., a

coarse reconstruction or a model of the same category, and then

uses the planned trajectory for scanning. The planned trajectory

can be enforced exactly, e.g., using a camera rig, or showing it to

the user as a suggestion for interactive scanning. Model-based view

planning has been studied extensively in the literature. We refer

to [Scott et al. 2003] for a literature review and to [Fan et al. 2016;

Hepp et al. 2018] for recent advances.

In model-based view planning, designing a suitable 3D recon-

struction quality score is crucial for both the reconstruction quality

and the generalization behavior between training and testing mod-

els. This paper shows that when using the trace-norm of the pose

covariance matrix, we obtain better reconstruction quality and gen-

eralization behavior than prior techniques.
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Sampling Uncertainty Quantification

y → x(y) V [x(y)] ≈ J ·V [y] · J
T

≈ J⋆ ·V [y] · J⋆T

Fig. 2. Illustration of the proposed uncertainty quantification framework. (Left) We consider multi-scan registration as a mapping between a set of input scans
and optimized scan poses using an off-the-shelf algorithm. The input scans are generated from a fixed set of unknown camera poses through a noise model
characterized by the parameter y . (Right) Our uncertainty quantification approach approximates the covariance of the output in two steps. The first step
leverages an approximated linear map of the non-linear map at the underlying ground-truth. The second step uses the optimal solution to approximate the
Jacobi matrix in the linear map, from which we develop informative uncertainty measures. This strategy allows us to perform uncertainty quantification from
a single set of input scans. The sub-figures show norms of the diagonal blocks of the covariance matrices.

3 OVERVIEW
In this section, we provide a roadmap of the technical sections

(Section 4 to Section 7) of this paper. As multi-scan registration

algorithms typically solve optimization problems to compute the

aligned scan poses, we describe in Section 4 a general framework

for computing informative and robust uncertainty measures among

the outputs of solving unconstrained optimization problems. In

Section 5 and Section 6, we apply the proposed UQ framework to two

popular formulations for multi-scan registration and reconstruction,

namely, minimizing the distances between pairs of overlapping

scans (Section 5) and minimizing the distances between the input

scans and the deforming template (Section 6). In each setting, we

present algorithms for uncertainty quantification and visualization

schemes to interpret the quantified uncertainties. Finally, Section 7

presents a novel uncertainty-driven model-based view planner.

4 UNCERTAINTY QUANTIFICATION FOR
UNCONSTRAINED OPTIMIZATION

In this section, we describe how to compute informative and robust

uncertainty measures of the outputs that are defined by solving

optimization problems. Our approach roots in an estimation of the

output covariance matrix and an analysis of the approximation error.

In the following, we first describe how to compute the approximated

covariance matrix in Section 4.1. We then introduce robust and

informative uncertainty measures in Section 4.2.

4.1 Implicitly Defined Optimal Solutions
We consider an unconstrained optimization problem, where the

objective function admits the form f (x ,y,w,pgt ). Here pgt denotes
the underlying ground-truth; y encodes the input noise model;w
collects the hyper-parameters of f ; x parameterizes the output vari-

ables. In the context of this paper (See Figure 2), pgt denotes the
underlying ground-truth scan points (i.e., when there is no noise)

in a world coordinate system. Note that pgt is generally unavailable.

We will discuss how to address this issue in Section 4.2. y models

the uncertainties when generating the input scans. Each sampling

ofy gives one set of input scans for geometry registration. x collects

pose variables (joint pairwise registration and simultaneous regis-

tration and reconstruction) and parameters of the underlying 3D

model (simultaneous registration and reconstruction).w encodes

the scan indicators, i.e., whether each scan participates in multi-scan

registration or not. Note that we treatw as a constant vector until

Section 7, where we study scan selection. However, we keepw in

our notations for the completeness of our approach.

Without losing generality, we place the additional assumption

that f (x ,y,w,pgt ) ≥ 0 and f (x ,y,w,pgt ) = 0 if and only if x = 0

and y = 0. In other words, x encodes deviations from the under-

lying ground-truth pose, y characterizes the noise-level, and the

underlying ground-truth is recovered when there is no input noise.

Under this setup, we formulate the map from y to x as solving the

following optimization problem:

x⋆(y,w,pgt ) = argmin

x
f (x ,y,w,pgt ). (1)

Given a probability distribution over y, the map defined in (1) in-

duces a probability distribution over x . Quantifying this distribution
to visualize the uncertainties of multi-scan registration introduces

several ground challenges. First, x⋆(y,w,pgt ) is a non-linear map

of y. Second, the underlying ground-truth pgt is unknown. Finally,
for high-dimensional problems such as multi-scan registration, we

need concise and informative measures. Our approach is motivated

from a line of works [Bengtsson and Baerveldt 2003; Bosse and Zlot

2008; Censi 2007; Manoj et al. 2015; Szeliski and Kang 1997; Wahba

1983; Zhang 1998] that approximates implicitly defined non-linear

maps by their linear counterparts. The results lead to approxima-

tions of the underlying covariance matrix. A key novelty of this

paper is that we analyze the approximation error to obtain accurate,

informative, and concise uncertainty measures that are suitable for

high-dimensional problems such as multi-scan registration. Another

subtle difference is that we consider two approximated covariance

matrices, one for computation, and another for the application of

model-based view planning (See Section 7). In the following, we

describe the approximated covariance matrices. In Section 4.2, we

introduce our uncertainty quantification algorithm.

Specifically, we first approximate the non-linear map defined in

(1) by its linear approximation, i.e.,

x⋆(y,w,pgt ) ≈
∂x⋆

∂y
(0,w,pgt ) · y. (2)
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We can compute the partial derivative
∂x⋆

∂y (0,w,pgt ) via the

implicit function theorem [Krantz and Parks 2013]:

∂x⋆

∂y
(0,w,pgt ) := −

( ∂2 f
∂x2

(0, 0,w,pgt )
)−1 ( ∂2 f
∂x∂y

(0, 0,w,pgt )
)
(3)

To address the second challenge thatpgt is unavailable, we simply

replace pgt by a reconstruction p⋆ derived from one set of input

scans. This approach leads to the following approximation

x⋆(y,w,pgt ) ≈
∂x⋆

∂y
(0,w,p⋆) · y. (4)

The approximations described in (2) and (4) offer two approxima-

tions of the output covariance matrix V [x⋆]:

C :=
∂x⋆

∂y
(0,w,pgt ) ·V [y] ·

∂x⋆

∂y
(0,w,pgt )T , (5)

C :=
∂x⋆

∂y
(0,w,p⋆) ·V [y] ·

∂x⋆

∂y
(0,w,p⋆)T . (6)

where V [y] denotes the input covariance matrix. Our UQ approach

will leverage the second covariance matrix C , which only requires

a single output [Szeliski and Kang 1997; Wahba 1983; Zhang 1998]

(e.g., a single run of multi-scan registration). In contrast, we will use

the first covariance matrixC to develop a model-based view planner

(e.g., where the underlying ground-truth is known).

When the approximations in (2) and (4) are precise and the el-

ements of y are independently random variables with zero mean,

then x⋆ is approximately a Gaussian distribution with zero mean

(due to the central limit theorem [Van Der Vaart 1998]). Since the

covariance matrix fully characterizes a Gaussian distribution with

zero mean, both C and C are informative in this setting.

For multi-scan registration, both (2) and (4) are inexact. Therefore,

it is critical to analyze the approximation errors. In the following,

we use one such analysis to derive measures of C that are infor-

mative and insensitive to the approximation errors. Note that such

uncertainty measures are also preferred for multi-scan registration,

as it is infeasible to visualize any entire covariance matrix.

4.2 Informative Uncertainty Measurements

To understand the approximation errors of C and C , we study the

following model for generating the input noise. Specifically, we

assume that the elements ofy are independent, and each yi satisfies

Expectation : E[yi ] = 0 (7)

Variance : V[yi ] = σ 2
(8)

Bounded : |yi | ≤ δσ (9)

for some δ > 1. Note that thismodel does not require the distribution

of eachyi to be a Gaussian. The following proposition states a bound

on the difference between C (C) and the output covariance matrix

V [x⋆] with respect to the matrix spectral norm.

Proposition 1. (Informal) Under the noise model described
above and mild conditions on the derivatives of f , we have

1

σ 2
max

(
∥C −V [x⋆]∥, ∥C −V [x⋆]∥

)
≤ σC(κ(fxx ),δ ) (10)

with high probability. Here ∥ · ∥ denotes the spectral norm; fxx =
∂2f
∂2x

; C depends on δ ; κ(fxx ) := λmax(fxx )/λmin(fxx ) denotes the
ratio between the maximum and the minimum eigenvalues of fxx ,
i.e., its the condition number. The smaller δ and κ(fxx ), the bigger
C(κ(fxx ),δ ).

The formal statement of Prop. 1 and the proof are derived from

the Taylor expansions of x⋆(y) and f . We defer the details to the

supplemental material.

Remark 1. Prop. 1 states that the approximation error is dictated
by the condition number of fxx . In the context of multi-scan registra-
tion, this condition number connects to the sparsity pattern of fxx ,
which depends on how the input scans overlap with each other. As
we will see in Section 8, an implication is that when the overlapping
relations among the input scans are strong, the approximation error
of C is small. On the other hand, for thin objects or when input scans
form strongly overlapping components, the approximation error of C
can be large.

Motivated from Prop 1, we introduce two groups of measures to

access the uncertainties of x⋆:

• Diagonal blocks. The first group consists of diagonal blocks

of C , each of which corresponds to one group of variables,

e.g., 6 × 6 blocks for scan poses. These measures are accurate,

as the spectral norms of the deviations in diagonal blocks are

upper bounded by those of the entire matrices. They are also

easy to compute. On the other hand, they do not capture the

correlations among uncertainties of multiple scans.

• Leading eigenvectors. The second group consists of lead-

ing eigenvectors of C , which capture structural correlations

among groups of variables, e.g., clusters of scans that strongly

overlap with each other.

The motivation comes from the fact that leading eigenvec-

tors are also stable under perturbations. Specifically, Given

two symmetric matrices A,E ∈ Rn×n , a variant of the Davis-
Kahan theorem [Davis and Kahan 1970] states that the dis-

tance between thek-th eigenvectoruk ofA and the eigenspace

Uk ′ ∈ R
n×k ′

formed by the top k ′ > k eigenvectors of A + E
is bounded as ∥uk − (Uk ′ ·U

T
k ′)uk ∥

2 ≤ ∥E∥/(λk − λk ′ − ∥E∥),
where λk is the k-th eigenvalue of A. In other words, the

top eigenvectors of V [x⋆] are well approximated by their

projections in the leading eigenspace of C .

5 JOINT PAIR-WISE REGISTRATION
In this section, we apply the framework described in Section 4 to

joint pairwise registration (or JPR), i.e., minimizing distances be-

tween all pairs of overlapping scans. We begin by describing the

formulation of JPR in Section 5.1. We then discuss the uncertainty

quantification setup in Section 5.2. Finally, we discuss how to visu-

alize the quantified uncertainties in Section 5.3.

5.1 Formulation of JPR
This formulation considers the setting of aligning N scans S =

{S1, · · · , SN }. Each scan Si = {pi1, · · · ,piNi } consists of a set of

surfels. With pi j and ni j we denote the position and the normal

of pi j , respectively. Let Ti = (Ri , t i ) be the rigid pose associated
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overlap graph

iter 0 iter 1 iter 2

iter 3 final

Q

S1
S2

S4

S3

C12

C23

C34

C14

Fig. 3. (Left) Illustration of multi-scan registration by minimizing the pairwise distances between overlapping scans. We show the overlapping graph among the
input scans, intermediate results when alternating between closest-point computation and pose optimization, and the final optimized scans. (Right) Illustration
of the noisy model under this setting. Q : the underlying ground-truth model. Si , 1 ≤ i ≤ 4: Simulated scans. Ci j , (i, j) ∈ {(1, 2), (1, 4), (3, 4), (2, 3)}:
Correspondences between overlapping scan pairs.

with scan Si . Then multiple-scan registration amounts to solve the

following optimization problem (c.f. [Tam et al. 2013]):

minimize

{Ti }

∑
(i,i′)∈E

d2(Si ,Ti , Si′ ,Ti′)

subject to R1 = I3, t1 = 0. (11)

Here E encodes the graph of overlapping scans. d(Si ,Ti , Si′ ,Ti′)
denotes the distance between Si and Si′ along their overlapping

region. Let Cii′ ⊂ Si × Si′ collect the set of unsigned correspon-

dences between Si and Si′ , i.e., (pi j ,pi′j′) ∈ Cii′ if and only if

(pi′j′ ,pi j ) ∈ Ci′i , we use the well-known point-2-plane distance

metric [Chen and Medioni 1992a] to define d2(Si ,Ti , Si′ ,Ti′) :=∑
(pi j ,pi′ j′ )∈Cii′

(
(Ripi j + t i − Ri′pi′j′ − t i′)

T (Ri′ni′j′)
)
2

(12)

Substitute (12) into (11), we arrive at an optimization problem of

non-linear least squares, where the variables are Ti , 2 ≤ i ≤ n. In
this paper, we use the Gauss-Newton method for solving (11).

Remark 2. For the purpose of uncertainty quantification, we as-
sume the edge set E and the correspondence sets Cii′ , (i, i ′) ∈ E are
fixed. During the course of registration, we follow the common strat-
egy of updating both sets (c.f. [Tam et al. 2013]). Specifically, each
correspondence set Cii′ is iteratively updated by computing the closest
points between Si and Si′ under the current scan poses. We trim each
correspondence set if the point-wise distance is above two times the
median of all point-wise distances. Since the particular registration
algorithm is not the focus of this paper, we defer the technical details
to ([Tam et al. 2013]). Figure 3(Left) illustrates the effects of multi-scan
registration via minimizing pair-wise distances.

5.2 UncertaintyQuantification
We first describe a noise model for generating the input scans. We

then introduce our UQ algorithm (See Section 5.2.2).

5.2.1 Noise model. Figure 3(Right) illustrates the uncertainty
quantification setup for joint pair-wise registration. We model the

input scans as perturbations from a latent surface model. Specifically,

consider a latent surface model represented as a set of surfels {sk =
(qk ,nk ), 1 ≤ k ≤ K}, where qk and nk denote the position and

the normal of sk , respectively. Let ki j ∈ {1, · · · ,K} be the index of

the corresponding surfel for scan point pi j . With p
gt
i j we denote the

ground-truth location for pi j , which is close to qki j and lies on the

plane specified by (qki j ,nki j ), i.e., (p
gt
i j −qki j )

Tnki j = 0. We model

pi j and ni j so that they perturb p
gt
i j and nki j , respectively:

pi j = p
gt
i j + yi jnki j , ni j = nki j + zi j (13)

where yi j ∈ R and zi j ∈ R3 encode the noises in positions and

normals, respectively. In our UQ approach, we assume {yi j } ∪ {zi j }
are independent with each other, and they satisfy

E[yi j ] = 0,V[yi j ] = σ 2, E[zi j ] = 0,V[zi j ] = Σn . (14)

where Σn ∈ R3×3 is a pre-defined covariance matrix.

In our experiments, we set σ and Σn as the variance of point-2-

plane distance and the variance of the normal differences, respec-

tively. We evaluate these variances among all correspondences in

{Cii′}. We them divide both variances by two to predict the vari-

ances from the latent surface model.

For uncertainty quantification, we place one additional assump-

tion. Define the induced correspondences between Si and Si′ as

C
gt
ii′ := {(pi j ,pi′j′)|1 ≤ j ≤ Ni , 1 ≤ j ≤ Ni′ ,ki j = ki′j′}.

We assume the correspondence set Cii′ employed in joint pairwise

registration is contained in C
gt
ii′ , i.e., Cii′ ⊂ C

gt
ii′ . In other words, if

(pi j ,pi′j′) ∈ Cii′ then ki j = ki′j′ . As analyzed in [Pottmann and

Hofer 2002; Pottmann et al. 2004], this is a feasible assumption as

the squared point-2-plane distance is a quadratic approximation of

the squared distance function.
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Fig. 4. Visualizing pose uncertainties of reconstructing a wrench model under joint pairwise registration (or JPR). We show the input model, the aligned scans,
the diagonal blocks, and three leading eigenvectors. The top row shows the predicted results, and the bottom row shows the simulated results. We can see that
the predicted uncertainties are consistent with the intuition that this model possesses planar faces that can glide when performing registration. Such planar
face structures are revealed in the leading eigenvectors. Also, our approach reveals high-frequency signals of the simulated covariance matrix.

ALGORITHM 1: Uncertainty quantification algorithm for joint pair-

wise registration.

Input: An overlapping graph E and optimized correspondence sets

Cii′, (i, i′) ∈ E. Optimized scan point positions

p⋆
i j , 1 ≤ i ≤ N , 1 ≤ j ≤ Ni and scan point normals

n⋆
i j , 1 ≤ i ≤ N , 1 ≤ j ≤ Ni .

Output: Diagonal blocks and leading eigenvectors of CJPR

Step 1: Compute {hi j } and {vi j,i′j′ } using (15);
Step 2: Compute Cm , Adis , and Cnor using (16);

Step 3: Use (17) to compute the diagonal blocks and leading

eigenvectors of CJPR;

5.2.2 Algorithm. We proceed to introduce an algorithm for quan-

tifying the uncertainties of joint pairwise registration (See Algo-

rithm 1 for the pseudo-code). First, we parameterize the rotation of

each scan as Ri = exp(−ci×), where ci ∈ R3. This parameterization

turns (11) into a unconstrained optimization problem.

Applying the methodology described in Section 4, we obtain the

following expression of the estimated covariance matrix CJPR ∈

R6(N−1)×6(N−1)
from one single input.

Definition 1. Given a matrix A ∈ Rn1×n2 . Define the linear
operator Vi :i′(A) ∈ R(i

′−i+1)×n2 so that it takes the sub-matrix of A
that collects its i-th row to the i ′-th row. With Vi (A) we denote the
operator that takes the i-th row of A. This notation also applies to the
case where A is a column vector.

Proposition 2. Denote p⋆i j and n⋆i j as the optimized position
and the optimized normal for surfel pi j , respectively. Introduce sparse
coefficient vectors hi j ∈ R6(N−1), 1 ≤ i ≤ N , 1 ≤ j ≤ Ni , where the
non-zero elements are given by

V(6i−11):(6i−9)(hi j ) := n
⋆
i j , 2 ≤ i ≤ N , 1 ≤ j ≤ Ni

V(6i−8):(6i−6)(hi j ) := p
⋆
i j × n⋆i j , 2 ≤ i ≤ N , 1 ≤ j ≤ Ni (15)

Let C = ∪(i,i′)∈ECii′ collect all point-wise correspondences. Introduce

Cm :=
∑

(pi j ,pi′ j′ )∈C

(hi j − hi′j′)(hi j − hi′j′)
T

Adis := σ ·
∑

(pi j ,pi′ j′ )∈C

(hi j − hi′j′)n
T
i′j′

(
(ei j − ei′j′)

T ⊕ I
)

(16)

where ei j ∈ R
∑
Ni is the canonical basis with the ij-th element being

one and ei j ⊗ I ∈ R(3
∑
Ni )×3. Then we have

CJPR = C
−1
m AdisA

T
disC

−1
m . (17)

Proof. Please refer to the supplemental material. □

5.3 Uncertainty Visualization
As described in Section 4, we interpretCJPR using its diagonal blocks

and leading eigenvectors. This section discusses how to visualize

these quantities. Let C
(i)
JPR

∈ R6×6, 2 ≤ i ≤ N denote the diagonal

block that corresponds to scan Si , we convert it into an uncertainty

value for scan Si . To this end, we first compute its leading eigen-

value λmax

i ∈ R and leading eigenvector umax

i ∈ R6, respectively.

Decompose

√
λmax

i umax

i = (ci ;ci ), where ci and ci correspond the

translation and rotation components, respectively. We then define

the uncertainty value for Si as

σi =
1

Ni

Ni∑
j=1

∥ci + ci × pi j ∥ (18)

which is the average displacement among Si incurred by (ci ;ci ). As
shown in Figure 4, we reconstruct a mesh from the aligned scans

and visualize σi , 1 ≤ i ≤ N as a scalar field on the reconstructed

mesh. This is done by performing a range query on the aligned

scans from each mesh vertex and then computing the mean among
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Q
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Fig. 5. The second approach studied in this paper applies simultaneous registration and reconstruction (or SRAR) to jointly align a set of scans and reconstruct
a 3D model from the aligned scans. (Left) The procedure of SRAR for reconstructing the same model in Figure 3. Each iteration optimizes the scan poses
(top) and a collection of surfels (bottom) by minimizing the distances from the scan points to the surfels. These surfels are initialized by performing principal
component analysis (or PCA) among scan points that fall into cells of a grid. Note that while the procedure involves registration and reconstruction at multiple
levels, uncertainty quantification is performed at the finest level. (Right) An illustration of the uncertainty quantification setup for SRAR.

the associated values of the neighboring points. We use a similar

scheme to visualize each leading eigenvector, i.e., by feeding the

corresponding elements of each scan into (18).

Figure 4 shows visualizations of a wrench model that possesses

planar structures. Intuitively, scans of these planar faces can drift

(c.f. [Gelfand and Guibas 2004]). We can see that the diagonal blocks

and the leading eigenvectors nicely reveal such structural patterns.

6 SIMULTANEOUS REGISTRATION AND
RECONSTRUCTION

In this section, we apply the proposed framework to the setting

of simultaneous registration and reconstruction (or SRAR) [Huang

et al. 2007a; Huang and Anguelov 2010]. A standard reconstruction

pipeline usually consists of two sequential steps, where the first

step performs joint pairwise registration, and where the second

step reconstructs a 3D model from the aligned scans. In contrast,

SRAR unifies registration and reconstruction by solving a single

optimization problem. The key idea is to align the input scans to a

latent surface model, which is also jointly optimized with the scan

poses. In the following, we first describe the formulation of SRAR

in Section 6.1. We then introduce the uncertainty quantification

formulation for SRAR in Section 6.2.

6.1 Formulation of SRAR
The input to SRAR consists of N depth scans Si = {pi j , 1 ≤ j ≤

Ni }, 1 ≤ i ≤ N . Note that unlike joint pairwise registration (or

JPR) which relies on the point normals to formulate the registration

potential, SRAR does not require point normals as input.

The key difference between SRAR and JPR lies in how to represent

the latent surface model and how to define the distance metric for

aligning each scan with the latent surface. We adapt the setup in

Section 5 to represent the latent surface as a collection of surfels

sk = (qk ,nk ), 1 ≤ k ≤ K . As we will use the point-2-plane distance
metric [Chen and Medioni 1992a] to align the input scans with the

latent surface, each surfel possesses three independent variables,

i.e., the corresponding plane equation (dk ,nk ), where dk denotes

the distance from the origin to sk .
Let ki j ∈ {1, · · · ,K} denote the corresponding plane of point pi j

(i.e., the one with closest surfel position qki j ). SRAR amounts to

optimize the pose (Ri , t i ) of each scan Si and the plane equations

{(dk ,nk )} by solving the following optimization problem:

argmin

{Ri ,t i }, {(dk ,nk )}

N∑
i=1

Ni∑
j=1

(
(Ripi j + t i )

Tnki j − dki j
)
2

subject to R1 = I3, t1 = 0. (19)

In other words, (19) utilizes the point-2-plane distance metric to

align the data points with the latent surface model. As discussed

in [Huang and Anguelov 2010], (19) admits a simple and effec-

tive minimization strategy, which alternates between optimizing

{(Ri , t i )} and {(dk ,nk )}.

Remark 3. In the same spirit as ICP registration [Besl and McKay
1992], we also update the associations between the scan points and the
latent planes by recursively finding the closest surfel positions. Such
operations are particularly useful when the input scans are not aligned.
To achieve fast convergence, we can also use a coarse latent surface
and gradually refine it when scans become more aligned. Figure 5(Left)
shows a typical optimization procedure for SRAR on the same dataset
shown in Figure 3(Left). However, when performing uncertainty quan-
tification, we assume these associations are fixed.

6.2 UncertaintyQuantification Formulation
We proceed to apply the proposed framework described in Section 4

to the objective function of SRAR.
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6.2.1 Noise model. We employ a similar noise model as the one

used in JPG (See Figure 5(Right)). Specifically, consider a set of

ground-truth planes (d
gt
k ,n

gt
k ). Let p

gt
i j be the ground-truth location

for scan pointpi j . Withki j we denote the index of the corresponding
plane of pi j . Then

n
gt
ki j

T
p
gt
i j − d

gt
ki j
= 0. (20)

The input positions {pi j } are generated by following (13). Unlike

JPR, we compute σ as the variance of the point-2-plane distance

between the optimized scan points and their corresponding planes.

6.2.2 Formulation. In the same spirit as JPG, we assume that

for each sampled input described above, SRAR converges to the

underlying point-plane associations {ki j }. In practice, we found

that the discretization error of the proposed SRAR formulation is

small. Intuitively, point-2-plane distances are insensitive to wrong

point-plane associations when the planes are compatible with each

other locally.

To apply (4), the remaining task is to convert (19) into an uncon-

strained optimization problem by using the following local parame-

terizations for rotations and scan poses:

Ri = exp(ci×) 1 ≤ i ≤ N

nk =
n
gt
k + xk,1t

gt
k,1 + xk,2t

gt
k,2

∥n
gt
k + xk,1t

gt
k,1 + xk,2t

gt
k,2∥
, dk = d

gt
k + xk,3 1 ≤ k ≤ K

(21)

where (n
gt
l , t

gt
k,1, t

gt
k,2) forms a local coordinate system.

Applying (5) to the objective function (19) of SRAR, we arrive at

the following proposition for computing the approximated covari-

ance matrix.

Proposition 3. Introduce sparse coefficient vectorsдi j ∈ R
6(N−1)+3K ,

1 ≤ i ≤ N , 1 ≤ j ≤ Ni , whose non-zero elements are given by

V(6i−11):(6i−9)(дi j ) := n
gt
ki j
, 2 ≤ i ≤ N , 1 ≤ j ≤ Ni

V(6i−8):(6i−6)(дi j ) := p
gt
i j × n

gt
ki j
, 2 ≤ i ≤ N , 1 ≤ j ≤ Ni

V
6(N−1)+3ki j (дi j ) := tTki j ,1 · p

gt
i j , 1 ≤ i ≤ N , 1 ≤ j ≤ Ni

V
6(N−1)+3ki j+1(дi j ) := tTki j ,2 · p

gt
i j , 1 ≤ i ≤ N , 1 ≤ j ≤ Ni

V
6(N−1)+3ki j+2(дi j ) := −1, 1 ≤ i ≤ N , 1 ≤ j ≤ Ni

Denote

CXX :=

N∑
i=1

Ni∑
j=1

дi jд
T
i j

Then the uncertainty quantification approach described above outputs
the following approximated covariance matrix:

CSRAR = σ 2C−1
XX . (22)

Proof. Please refer to the supplemental material. □

Aligned (SRAR) Predicted (SRAR) Simulated (SRAR)

Aligned (JPR) Predicted (JPR) Simulated (JPR)

Fig. 6. Comparison between joint pairwise registration (or JPR) and simul-
taneous registration and reconstruction (or SRAR) on the same set of scans
of an engine model. (Top) From left to right: the aligned scans under JPR, a
visualization of the diagonal blocks of the predicted covariance matrix under
JPR, and a visualization of the diagonal blocks of the simulated covariance
matrix under JPR. (Bottom) Visualizations of the corresponding quantities
under SRAR. We can see that SRAR is superior to JPR.

Decompose CXX = (A,B;BT , Σ), where A ∈ R6(N−1)×6(N−1)
,

B ∈ R6(N−1)×3K
, and Σ ∈ R3K×3K

. Due to the structure in дi j , it
is easy to check that Σ is a block-diagonal matrix, whose inverse

can be efficiently computed. As a result, one can compute C−1
XX

effectively using Schur complement (c.f. [Zhang 2005]). We left the

technical details to the supplemental material. Algorithm 2 shows

the pseudo-code of our uncertainty quantification approach under

SRAR.

ALGORITHM 2: Uncertainty quantification algorithm for simultane-

ous registration and reconstruction.

Input: Optimized scan point positions p⋆
i j , 1 ≤ i ≤ N , 1 ≤ j ≤ Ni and

latent planes (n⋆
k , d

⋆
k ), 1 ≤ k ≤ K .

Output: Diagonal blocks and leading eigenvectors of CSRAR

Step 1: Compute CXX ;

Step 2: Use (22) to compute the diagonal blocks and leading

eigenvectors of CSRAR;

6.2.3 Uncertainty Visualization. Uncertainty visualization em-

ploys the same visualization schemes described in Section 5.3. As

shown in Figure 6(Left), our predicted covariance matrices are con-

sistent with the simulated covariance matrices. Another observation

is that the predicted diagonal blocks of SRAR have smaller norms

than those of JPR (See Figure 6(Right)). An interpretation is that

ACM Trans. Graph., Vol. 39, No. 4, Article 130. Publication date: July 2020.



130:10 • Xiangru Huang, Zhenxiao Liang, and Qixing Huang

JPR is sensitive to the accuracy of point normals. In contrast, SRAR

does not require point normals.

7 UNCERTAINTY-DRIVEN VIEW-PLANNING
In this section, we introduce a model-based view-planning approach.

Generally speaking, a model-based view-planner takes a 3D model

as input and outputs a set of camera poses. These camera poses

typically optimizes a two-term objective function (c.f. [Scott et al.

2003]), where the first term characterizes a coverage score of the

camera poses and where the second term measures the length of

the shortest path that connects the camera poses. Our model-based

view planner replaces the coverage score by an uncertainty score

derived from the approach described in Section 6. This formulation

allows us to plan views to minimize the reconstruction error of

the resulting scans directly. In the following, we first describe the

uncertainty score in Section 7.1. We then describe our model-based

view planner in Section 7.2.

7.1 An Uncertainty Score
This section defines an uncertainty score among scans Si , 1 ≤ i ≤ n
of a model M , where Si are generated from pre-defined camera

poses Ci using the noisy model described in Section 6. To model

the process of selecting a subset of scans for reconstruction, we

consider a reweighted total objective function under SRAR:

f
weighted

:=

n∑
i=1

wi

ni∑
j=1

(
(Ripi j + t i )

Tnki j − dki j
)
2

(23)

wherewi is an indicator that specifies whether Si is selected or not.

We seek to setwi as either 0 or 1.

Applying (5) to (23), we obtain the following approximated co-

variance matrix among both the scan poses and the reconstruction:

CSRAR(w,p
gt ) :=

( n∑
i=1

wiGiG
T
i
)−1 ( n∑

i=1
w2

iGiG
T
i
) ( n∑

i=1
wiGiG

T
i
)−1
(24)

whereGi = (дi1, · · · ,дiNi
) collects vectors дi j associated with Si in

its columns. Note that since the ground-truth modelM is present, we

define CSRAR(w,p
gt ) with respect to the ground-truth scan points,

i.e., each Si stays onM .

The following theorem states an important property ofCSRAR(w,p
gt ),

which sheds lights on the proposed uncertainty score that we will

introduce.

Theorem 1. Suppose
n∑
i=1

wiGiG
T
i ≻ 0,

n∑
i=1

GiG
T
i ≻ 0.

Then

CSRAR(w,p
gt ) ⪰

( n∑
i=1

GiG
T
i
)−1
. (25)

In particular, equality holds ifw1 = w2 = · · · = wn .

Proof: Please refer to the supplemental material. □

Remark 4. Theorem 1 states that adding more scans always re-
duces variance, i.e., when scan weights of active scans are identical.
This property motivates us to useC(w,pgt ) to define the quality score.

Planned

Views

Aligned

Scans

Recons.

Error

Fig. 7. This figure shows the results of our model-based view planner on a
mushroom model. We placed 1000 camera poses among a viewing sphere
centered at the barycenter of the input model. The planned trajectory
optimizes 50 views. For each block, we show the planned trajectory, the
resulting aligned scans, and the color-coded reconstruction error. (Top) The
result obtained from setting λ = 100 in (28). (Bottom) The result obtained
from setting λ = 1 in (28).

Remark 5. On the other hand, one should interpret this result
from the perspective that assuming global convergence, adding more
scans leads to more accurate alignments and reconstructions. The is-
sue of convergence radii of SRAR, which is related to the condition
number of C(w,pgt ) (c.f. [Nocedal and Wright 2006]), appears to be
quite different. Similar to geometrically stable sampling for pair-wise
registration [Gelfand et al. 2003], one may apply sampling to adjust
the performance of SRAR. However, we found using uniform sample
weights does not incur any convergence issue for all the datasets tested
in this paper.

We proceed to define the quality score as a suitable function of

the covariance matrix.

Corollary 1. Consider a broad range of matrix functions H
that include polynomials of eigenvalues of principal sub-matrices with
non-negative weights, e.g., trace or determinant of a principal sub-
matrix. Then for each h ∈ H , we have

h(CSRAR(w,p
gt )) ≥ h((

n∑
i=1

GiG
T
i )

−1). (26)

Following Corollary 1, we define the uncertainty score for view-

planning as the trace of the sub-matrixCPose(w,p
gt ) ∈ R6(N−1)×6(N−1)

of CSRAR(w,p
gt ) that corresponds to scan poses:

funcertainty(w) := Trace(CPose(w,p
gt )). (27)

7.2 A Greedy Uncertainty-Driven View Planner
Besides funcertainty(w), which evaluates the reconstruction quality

from a subset of scans specified by w , another essential goal in
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model-based view planning is to minimize the length of the path that

connects the selected views. While this quantity, i.e., a solution to

the travel salesman problem (or TSP), admits integer programming

relaxations. We found that it is challenging to solve the induced

global optimization problem. Fundamental challenges are 1) the

linear programming relaxations are loose, and 2) rounding fractional

solutions into integer solutions effectively. To address these issues,

we utilize a greedy approach in this paper.

Specifically, let f
length

(w) denote the length of the trajectory

among selected cameras specified byw . We use a greedy approach

to determine the best binary indicator vectorw that minimizes the

following cumulative objective function:

min

w ∈{0,1}n
f
uncertainty(w ) + λ flength(w) (28)

where λ is a tradeoff-parameter that balances the reconstruction

error and the length of the TSP path. Starting from wi = 1, 1 ≤

i ≤ n, we calculate the value of the objective function in (28) when

removing each scan. We then remove the scan that leads to the

smallest objective value after removing that scan. This procedure is

iteratedwhenwe cannot reduce the objective function further. In our

implementation, we use the Christofides’s algorithm [Christofides

1976] for computing f
length

(w).

In practice, we found that this simple strategy leads to high-

quality solutions. The total running time for a model with 100K

latent planes and 500 camera poses is between 110 seconds to 210

seconds on a desktop with a dual-core 3.4G Hz GPU and 128G main

memory. As shown in Figure 7, increasing the value of λ leads to

smoother paths but with increased reconstruction errors.

8 EXPERIMENTAL EVALUATION
This section presents experimental evaluations of the proposed UQ

and view-planning methods. In Section 8.1 and Section 8.2, we de-

scribe experimental evaluations of our UQ approaches on synthetic

examples and real examples, respectively. The goal of evaluating

on synthetic examples is to assess the approximation errors of the

proposed UQ techniques empirically. In contrast, experimental eval-

uations on real examples study whether the quantified uncertainties

match the pose and reconstruction errors compared to the underly-

ing ground-truth. In Section 8.3, we present a user study to gauge

the effectiveness of the proposed UQ approaches on model check-

ing. In Section 8.4, we present a user study on the model-based

view-planning approach described in Section 7.

8.1 Experimental Evaluations on Synthetic Datasets
In this section, we first describe the experimental setup. We then

analyze the experimental results on approximation errors of the

proposed UQ approaches. We also quantitatively compare the accu-

racies of the two multi-scan registration strategies discussed in this

paper, i.e., SRAR and JPR.

8.1.1 Experimental Setup. We have collected a synthetic dataset

that consists of four categories of models (two models per category),

namely, Plant, Engine, Airplane, and Bridge (See Figure 8). These

models cover a diverse range of model scales. 3D reconstructions

of these models have direct scientific and industrial impacts. For

example, reconstructing plants over time helps us to understand the

internal mechanisms of biological forms (c.f. [Li et al. 2013]). In this

scenario, quantified uncertainties of the reconstructions are critical

for analyzing growing patterns. The Engine, Airplane, and Bridge

categories collect diverse man-made objects, where uncertainty

quantification can significantly enhance all phases of interactive

scannings, such as view planning and quality checking. The result-

ing accurate reconstructions offer various downstream applications,

e.g., damage detection for engines, airplanes, and bridges.

The camera locations of the synthetic scans are uniformly among

the viewing sphere centered at the origin of each model. We set the

viewing sphere’s radius as a random number between two times

and four times the diameter of each model. Moreover, the upright

direction of the camera always passes through the upright orienta-

tion of each model. In total, we place 50 scans for Plant and Engine

models, 200 scans for Airplane models, and 500 scans for Bridge

models (the number of scans increases as the model size increases).

When generating the input scans, we choose three noise ratios,

i.e., ϵ = L
1000
, L
400
, L
200

, where L is the diameter of that model in

the Euclidean distance. At each level, we place 10000 sets of depth

scans independently. Each scan point is independently perturbed

along the viewing direction by a random variable in [−ϵ, ϵ]. We use

these sets to compute both the simulated covariance matrix and the

predicted covariance matrices. Note that although the scans deviate

from one set to another, their overlapping patterns are fixed.

When generating the input to JPR and SRAR, we randomly per-

turb the pose of each input scan by a random rotation specified

by exp(−c×) (where c is a random vector in [−0.02, 0.02]3) and a

random translation in [−4ϵ, 4ϵ]3. Since the ground-truth correspon-

dences are not given in these experiments, they also evaluate the

discretization errors of the proposed approaches.

8.1.2 Analysis of Approximation Errors. We first analyze the ap-

proximation errors of our UQ approaches by comparing the diagonal

blocks and the leading eigenvectors of the simulated covariance

matrix with those predicted by our approach. For each predicted di-

agonal blockA
pred

and that obtained from the simulated co-variance

matrixA
simul

, we report the relative error as

∥Asimul−Apred ∥

∥Asimul ∥
. We then

plot the cumulative distribution of relative errors for each approach

per model.

The evaluation protocol for the leading eigenspace is similar.

For each eigenvectorv of a simulated covariance matrix C , we first
computevperp = argminv⋆∈UC

∥v⋆−v ∥2, whereUC is the leading

eigenspace of the corresponding predicted covariance matrix. Then

for all the leading eigenvectorsv , we collect statistics on the relative

errors for all the corresponding sub-vectors of v and vperp
, i.e.,

∥v
perp

i − vi ∥/∥vi ∥. Intuitively, these relative errors characterize

the coverage of the leading eigenspace of the predicted covariance

matrixC on that of the simulated covariance matrixC . They are zero
if and only if these two eigenspaces coincide. The same as diagonal

blocks, we plot the cumulative distribution of relative errors for all

eigenvectors of the simulated covariance matrix.

The sixth and the seventh columns of Figure 8 show cumulative

distributions of the approximation errors of the predicted diagonal

blocks and the predicted eigenspace. Note that we conducted the ex-

periments under both JPR and SRAR while varying the noise levels
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Fig. 8. Each block shows the experimental results on one synthetic model. (From left to right): A sample set of the input scans, quantified uncertainties derived
from the diagonal blocks of the predicted covariance matrix under JPG, corresponding quantified uncertainties of the simulated covariance matrix under JPG,
quantified uncertainties derived from the diagonal blocks of the predicted covariance matrix under SRAR, corresponding quantified uncertainties of the
simulated covariance matrix under SRAR, approximation errors of our approach under JPR, and approximation errors of our method under SRAR.
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of the input scans. Overall, our UQ approaches offer accurate pre-

dictions of the underlying uncertainty measures. For JPR, the mean

relative errors range from 0.108 to 0.171 for diagonal blocks and from

0.158 to 0.216 for the leading eigenspace, respectively. For SRAR, the

mean relative errors range from 0.117 to 0.182 for diagonal blocks

and from 0.149 to 0.228 for the leading eigenspace, respectively.

These quantitative results are consistent with the qualitative results

(from the second to the fifth columns of Figure 8), which demon-

strate that the predicted results offer meaningful approximations of

the corresponding simulated ones.

We can also observe that the relative errors increase when the

noise level increases. Moreover, the relative errors increase when the

shapes become thin and long. For example, the approximation errors

on Airplane and Bridge are more significant than those on Plant and

Engine. Intuition is that uncertainties on Airplane and Bridge are

more prominent, and the linear map approximation is less accurate.

However, even at the highest noise level, the relative errors of the

diagonal blocks and the leading eigenspace are below 0.250 under

both settings. Such results justify that uncertainty measures derived

from diagonal blocks and leading eigenvectors of the predicted

covariance matrix are robust, informative, and efficient.

8.1.3 Multi-Scan Registration Comparison. Another interesting
question is: how do the two registration methodologies compare

against each other in terms of the registration error? As compared

in the third and the fifth columns of Figure 8, the approach of si-

multaneous registration and reconstruction (or SRAR) yields better

registration results than joint pairwise registration (or JPR). The

simulated uncertainties of SRAR are consistently smaller than those

of JPR. On Airplane and Bridge, the performance of SRAR is consid-

erably better than JPR. Again, the advantage of SRAR is that it does

not utilize point normals, which may be noisy.

8.2 Experimental Evaluations on Real Datasets
In this section, we evaluate the proposed UQ approaches on real

datasets. Similar to Section 8.1, we first describe the experimental

setup. We then analyze the experimental results of UQ and compare

the two registration approaches.

8.2.1 Experimental Setup. We have collected a real benchmark

dataset that consists of four categories of models, namely, Teeth,

MechPart, ScanNet [Dai et al. 2017a], and Waymo [Sun et al. 2019]

(See Figure 9). Similar to the synthetic dataset, 3D reconstructions

of these models enjoy rich medical and industrial applications. Ap-

plications of 3D teeth reconstructions include surgery planning for

implanting and orthodontics [Yau et al. 2014]. Both applications

benefit from certified 3D reconstructions as input. 3D reconstruc-

tions of mechanical parts are used for model inspection, in which

quantified uncertainties of 3D reconstructions enable us to evaluate

the manufacturing error. ScanNet and Waymo are used to assess

the performance of our approach to large-scale scenes. Such recon-

structions are essential for applications of virtual reality and 3D

mapping.

Each model in this dataset is associated with a set of input scans

and ground-truth poses and reconstructions. The scans of Teeth and

MechPart come from an Artec Space Spider scanner. The number

of scans per model ranges from 300 to 500. For both Teeth and

MechPart, the underlying ground-truth models come from an Artec

Micro high precision industrial scanner. We obtain the ground-

truth pose of each input scan by aligning it with the underlying

ground-truth model. For ScanNet and Waymo, we use the scans

provided by the original datasets. Similar to the synthetic dataset,

the overlapping graph among the input scans of each model exhibits

great diversity, e.g., from sparse graphs to dense graphs.

For Teeth and MechPart, we use the ground-truth poses and

reconstructions described above for experimental evaluation. Since

scenes of ScanNet do not possess ground-truth reconstructions, we

utilize planar areas of each scene and evaluate deviations of the

data points in each planar area from the corresponding fitted plane.

For models in the Waymo dataset, we directly assess the pose error

using the provided ground-truth poses.

8.2.2 Analysis of UQ Results. The setting of real scans differ

from that of synthetic scans in two ways: 1) we do not know the

noise model for generating the input scans, and 2) we do not have

an exact underlying ground-truth. Therefore, we employ a different

evaluation protocol for quantitative evaluation. Specifically, for each

reconstruction, we compare it against the approximated underlying

ground truth (i.e., obtained using the high-precision industrial scan-

ner) to pose errors and shape errors. We then evaluate whether the

quantified uncertainties are consistent with these errors, as detailed

below.

We first consider the cumulative distribution of the relative dif-

ference between the ground-truth pose error described above and

the predicted variance vector associated with each scan pose. The

statistics collect the results of 10000 experiments, i.e., we pick 200

subsets of scans per model, where each subset randomly picks 90%

of the input scans 50 times. Note that given two vectors a,b, their
relative difference is given by ∥a − b∥/max(∥a∥, ∥b∥). As shown
in the third column of Figure 9, most normalized differences fall

between 0.042 to 0.225. In other words, the predicted pose variance

per scan nicely indicates the underlying ground-truth pose error

per scan.

We proceed to analyze whether our UQ approaches capture the

structural patterns among the ground-truth pose errors. To this end,

we compute the L2 projection of the ground-truth pose error vector

onto the leading eigenspace computed using our method. We then

calculate the relative projection error between each pose error vector

and its projection. As shown in the fourth column of Figure 9, most

projection errors fall between 0.052 to 0.238. In other words, the

predicted leading eigenspace provides a meaningful approximation

of the simulated eigenspace.

8.2.3 Multi-Scan Registration Comparison. As shown in Figure 9,

the pose error of SRAR is usually smaller than that of JPR. For ex-

ample, the mean rotation/translation errors when using JPR are

0.29◦/59micron, 0.32◦/87micron, and 0.51◦/32mm on Teeth, Mech-

Part, and Waymo, respectively. Likewise, the corresponding er-

rors when using SRAR are 0.19◦/27micron, 0.27◦/39micron, and
0.31◦/13mm, respectively. The relative error reductions range from

12.1% to 52.3% on these datasets.
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Fig. 9. Each block shows the experimental results on one real model. (From left to right): A sample of the input scans, quantified uncertainties derived from
the diagonal blocks of the predicted covariance matrix under JPG, the ground-truth reconstruction error under JPG, quantified uncertainties under SRAR, the
ground-truth reconstruction error under SRAR, approximation errors of the pose components of the covariance matrices (JPR and SRAR), and approximation
errors of the shape component of the covariance matrix (SRAR).
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Fig. 10. Quantitative evaluations of the proposed uncertainty quantification
approach for assessing reconstruction quality. (Top) Illustration of the user
interface, which shows from the original model (left) and two reconstruc-
tions (right). The reconstructions are chosen so that one is better than the
other in terms of the mean reconstruction error. (Bottom) Statistics of the
user study results. We show the average result among an Easy subset (the
mean error of one reconstruction is smaller than half of the other one),
among a Hard subset (remaining ones), and across the entire dataset (i.e.,
Overall). The reconstructions are shown under four modes (from left to
right in each block), namely, (M-I) raw reconstruction, (M-II) reconstruction
color-coded by a local registration error, (M-III) reconstruction color-coded
by quantified uncertainties, and (M-IV) reconstruction color-coded by the
ground-truth reconstruction error. For each instance, a user is asked to
choose the reconstruction with the smaller mean error. Statistics collect the
mean and variance among all the users.

8.3 User Study on UQ for Model Checking
We proceed to evaluate the effects of the proposed UQ approaches

for model checking, i.e., whether they help users to understand the

quality of a 3D reconstruction in interactive scanning.

8.3.1 Experimental Setup. For quantitative evaluation, we have
designed a user interface that consists of three sub-windows (See

Figure 10). The left sub-window shows the ground-truth model,

which mimics images of the underlying physical model. The middle

and right sub-windows show two reconstructions of the underlying

model, where the mean error of one reconstruction is smaller than

that of the other one. We employed Poisson Surface Reconstruc-

tion [Kazhdan et al. 2006] to obtain the reconstructions. For JPR,

the reconstruction applies to the aligned data points. For SRAR, the

reconstruction applies to the optimized latent surface.

Each pair of reconstructions is displayed in four modes:

• M-I: Raw reconstruction. The first mode merely displays raw

reconstructions without additional information. The user

judges which one is better via visual comparisons with the

underlying ground-truth.

• M-II: Local alignment error. The second mode shows the mean

distances between the aligned point clouds and the recon-

structed model. We collect statistics on the reconstructed

model using the approach described in Section 5.3.

• M-III: Results of our approach. The third mode visualizes diag-

onal blocks (the default option) and leading eigenvectors of

the predicted covariance matrix using the method described

in Section 5.3.

• M-IV: Ground-truth reconstruction error. The last mode shows

the ground-truth reconstruction error by measuring the clos-

est distance between each point of the reconstruction and the

underlying ground-truth reconstruction.

The reconstructions conducted in this study are generated by

running SRAR and JPR on the synthetic dataset. We sample pairs

of 3D reconstructions, compute mean reconstruction errors, and

sample reconstruction pairs. In total, we collected 400 reconstruction

pairs for the user study (200 using JPR and the other 200 using

SRAR). Half of them form an Easy subset where the mean error of

one reconstruction is smaller than half of another reconstruction.

The remaining pairs form the Hard subset.

8.3.2 Analysis of Results. Figure 10 shows the results of a user
study among 20 AMT users. We can see that when only display-

ing the rough reconstructions, picking the reconstruction with the

smaller error is close to a random guess. This behavior is consistent

among both the Easy subset and the Hard subset. In other words, it

is critical to provide users with additional information to make accu-

rate judgments. The local registration error is useful to some extent,

yielding 67.5%/32.5% (±4.9%), 53.8%/46.2% (±5.5%), and 59.4%/40.6%

(±5.2%) success/failure rates on Easy, Hard, and Overall, respec-

tively. In other words, the local registration error may indicate the

reconstruction error when one reconstruction is significantly better

than the other reconstruction. On the other hand, it is ineffective

for instances in the Hard subset.

In contrast, our approach yields far better results. The success/failure

rates on settings of Easy, Hard, and Overall are 85.0%/15.0% (±3.2%),

72.6%/27.4% (±3.7%), and 78.8%/21.2% (±3.5%), respectively. The per-

formance matches the results of using ground-truth reconstruction

errors, i.e., 88.9%/11.1% (±2.8%), 78.8%/21.2% (±3.5%), and 83.9%/16.1%

(±3.2%), respectively. Note that using the ground-truth reconstruc-

tion errors do not offer perfect results, as salient error regions of

some reconstruction pairs are different, making it difficult to judge

which one has a smaller mean error.

Question Percentages

Effective indication of global drifts? 94%

Effective indication of reconstruction errors? 88%

Eigenvectors indicate uncertainty structures? 85%

Table 1. A questionnaire for assessing our UQ approach.

We have conducted an additional questionnaire to gauge the effec-

tiveness of our visualization schemes (See Table 1). For example, 94%

of the users indicated that our UQ approach is useful for revealing
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10.4/56.2 15.2/68.1 18.3/83.2

24.1/132.1 41.2/145.1 49.4/161.7

Fig. 11. This figure shows model-based view planning on a Wrench dataset that consists of a reference model (Left) and three testing objects. The ground-truth
models of these objects are reconstructed using an Artec Micro scanner. We perform view-planning on the reference model, and the results guide users to
scan similar objects using an Artec Space Spider scanner. The top row shows the view planning results of our approach. The bottom row shows the baseline
approach that solves a set cover problem [Scott et al. 2003]. The scanning trajectory is displayed concerning the ground-truth model of each object. For each
model, we show the scanning trajectory on the top and the color-coded reconstruction errors on the bottom (mean/max in micros).

global drifts. Moreover, 88% of the users reported that the output

of our approach reflects magnitudes and patterns of reconstruction

errors. Finally, 85% of the users commented that visualizations of

eigenvectors indicate structures in the quantified uncertainties. All

percentages are above 85%, and they justify the effectiveness of our

approach.

8.4 Uncertainty-Driven View Planning
In this section, we present an experimental analysis of the proposed

uncertainty-driven view planning approach under the framework

of SRAR.

8.4.1 Experimental Setup. We perform experimental evaluations

under the setting of category-specific view planning. Specifically,

consider the task of scanning a physical object whose category

label is known. We use a similar 3D model that belongs to the

same category to compute the scanning trajectory. We then display

the planned path to a user for interactive scanning. Note that the

planned trajectory only suggests how to scan a new object. We find

that users do not precisely follow the intended trajectory.

We have performed an experimental study on a Wrench category

that consists of one reference model and three testing objects. Note

that the differences between the testing objects and the reference

model vary, and such differences help assess the generalization

ability of our approach. Interactive scanning employed an Artec

Space Spider scanner. To generate the planned trajectory, we placed

1000 camera poses around the reference model. The distance from

each camera origin to the reference model is 2cm, the viewing

direction of each camera targets at the closest point. We run the

algorithm described in Section 7 to generate the planned trajectory.

8.4.2 Analysis of View-Planning. For a baseline comparison, we

pick a state-of-the-art model-based view planning approach [Scott

2009], which applies a set cover method to optimize a visibility-

driven score among the selected views. As shown in Figure 11, our

UQ-driven view planner delivers results that are better than the base-

line approach. The mean/max reconstruction errors (in micros) on

the three testing objects are 10.4/56.2, 15.2/68.1, and 18.3/83.2, respec-

tively. In contrast, the mean/max reconstruction errors (in micros)

of the baseline approach are 24.1/132.1, 41.2/145.1, and 49.4/161.7,

respectively. Visually, our approach offers much evenly distributed

reconstruction errors than the baseline approach, which exhibits

certain global drifts. These results show the advantage of modeling

uncertainties of geometry reconstruction for view planning.

For both approaches, the reconstruction errors increase when

the differences between the testing model and the reference model

escalate. However, our method offers a smaller variance among the

three testing models than the baseline approach. These statistics

show that the uncertainty score, which considers how scans over-

lap, is more stable than the visibility score for characterizing the

reconstruction quality.

9 CONCLUSIONS AND FUTURE WORK
In this paper, we have studied the problem of uncertainty quan-

tification for multi-scan registration. Our approach examines the

approximation errors of utilizing the inverse of the Hessian matrix

of the objective function to estimate the covariance matrix among

the output derived from minimizing this objective function. This

analysis results in robust and informative uncertainty measures.

We have applied this approach under two settings of multi-scan

registration, namely, minimizing pairwise distances between over-

lapping scans and aligning the input scans with a deforming tem-

plate. Under both settings, we showed how to formulate objective

functions that possess small discretization errors. Our uncertainty

quantification methods also allowed us to compare these two for-

mulations, both empirically and theoretically. Experimental results
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on a variety of synthetic and real datasets and user studies on real

datasets demonstrate the usefulness of our approaches. Finally, we

showed the effectiveness of our uncertainty measures for the task

of model-based view planning.

There are ample opportunities for future research. For example,

it would be interesting to explore how to extend the linear approxi-

mation scheme employed in this paper to non-linear schemes, e.g.,

by introducing high-order components of the Taylor expansion.

Besides, we would also like to incorporate non-rigid scan registra-

tion (that can address scan warping) into our formulation. Finally,

it would be interesting to investigate uncertainty quantification

for other geometry processing tasks such as shape editing, shape

modeling, and reverse engineering.
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A PROOFS OF PROPOSITIONS AND THEOREMS IN
SECTION 4

In this section, we present a formal statement of the main analy-

sis result of the paper. We begin with introducing the notations in

Section A.1. We then discuss the main result, key lemmas, and a

proof of the main result in Section A.2. In Section A.3, we show

a bound for the error Taylor’s approximation of the implicit func-

tion induced from some energy function that fits some regularity

conditions. Finally in Section A.4, we discuss the error due to the

reconstruction. Except in Section A.4 we always use the ground

truth reconstruction parameter, i.e. pдt , as in (5).

A.1 Notations
Definition 2. Given a vector y ∈ Rn , we define the k-order

product tensor induced from y as ⊗ky ∈ Rn×···×n .

Definition 3. Given two k-order tensors A,B ∈ Rn1×···×nk , we
define their inner products as

⟨A,B⟩ =

n1∑
i1=1

· · ·

nk∑
ik=1

ai1 · · ·ik · bi1 · · ·ik , (29)

where ai1 · · ·ik and bbi
1
···ik

denote the corresponding elements ofA and
B.

Definition 4. Suppose the implicit function x(y) is given by bi-
nary function f such that f (x(y),y) = 0. For simplicity we assume
f (0, 0) = 0 and now we are interested about the local behavior near
(0, 0). The k-th order approximation for x(y) is referred to as

Sn (y) :=
n∑

k=0

1

k!
⟨x (k)(0), ⊗ky⟩

where x (k ) is the k-th order derivative of x with respect toy. The k-th
order remainder is naturally defined as

Rn (y) := x(y) − Sn (y) =
∞∑

k=n+1

1

k!
⟨x (k )(0), ⊗ky⟩.

For convenience we use abbreviation fxbys to denote the partial de-

rivative ∂b+s

∂xb ∂ys
f (0, 0) which is a (b + s)-order tensor. Sometimes we

treat fxbys as a matrix of shape

size(x)b × size(y)s

where size(·) takes the number of components of operand.

Lemma 2.

n∑
k=0

1

k!

(
⊗k Rn (y)

)
· fxk (Sn (y),y) = 0

∑
p≥0

1

p!

(
⊗p Rn (y)

)
·
∑
q,s≥0

1

q!s!

(
⊗q Sn (y)

)
· fxp+qys ·

(
⊗s y

)
= 0

Proof. By the Taylor’s theorem for binary function f (x ,y) we
have that ∑

b,s≥0

1

b!s!
fxbys

(
⊗b x(y)

)
⊗
(
⊗s y

)
= 0 (30)

Substituting x(y) by Rn (y) + Sn (y), (30) turns into

0 =
∑
b,s≥0

1

b!s!
fxbys

(
⊗b x(y)

)
⊗
(
⊗s y

)
=

∑
p,q,s≥0

1

p!q!s!

(
⊗p Rn (y)

)
⊗
(
⊗q Sn (y)

)
· fxp+qys ·

(
⊗s y

)
(31)

=
∑
p≥0

1

p!

(
⊗p Rn (y)

)
·
∑
q,s≥0

1

q!s!

(
⊗q Sn (y)

)
· fxp+qys ·

(
⊗s y

)
=
∑
p≥0

1

p!

(
⊗p Rn (y)

)
· fxp (Sn (y),y) (32)

The equation (32) was obtained by shrinking the Taylor expansion

of fxp (x ,y) at point (Sn (y),y). In general the binomial theorem

cannot apply to tensor product because of the lack of commutativity.

As a matter of fact in (31) we utilized the symmetric property of the

tensor fxp+qys .
□

Lemma 2 allows us to estimate |Rn (y)| only depending on partial

derivatives of binary function f and low-order Taylor’s expansion

of x(y).

Corollary 2 (Scalar Version). Suppose�����∑
k≥2

1

k!

(
⊗k Rn (y)

)
· fxk (Sn (y),y)

����� ≤ cRn (y) · fx (Sn (y),y) (33)

holds for some constant c < 1, Then

|Rn (y)| ≤
1

1 − c
| fx (Sn (y),y)|

−1 | f (Sn (y),y)|.

remark. It is worth noting that the condition (33) is not that

strong as it seems at first look. In the neighborhood of y
0
= 0,

|Rn (y)| has the order of magnitude O(|y |n+1), which means | fxk |

just needs to grow in the rate slower than O
(

k !
|y |(n+1)k

)
. It can be

shown that

fx (Sn (y),y) = −
1

(n + 1)!
⟨x (n+1), ⊗n+1y⟩ + o(|y |n+1),

hence the dominating term in |Rn (y)| would be

1

(n + 1)!
|x (n+1) |F · |y |n+1,

compliant with the Taylor’s expansion of x(y).

A.2 Main Result and Key Lemmas
In this subsection we consider implicit function x(y) induced by

energy function T (x ,y):

x(y) = argmin

x
T (x ,y).

Assume x(0) = 0 as before. As we focus on the local behavior of x
near (0, 0) with some appropriate smooth conditions, this definition

is equivalent to

Tx (x ,y) = 0

where Tx =
∂T
∂x .
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A subtle difference between Tx and f introduced in A.1 is that

Tx is a vector instead of scalar. But Lemma 2 still holds true by

adding one more dimension from vector-valued Tx to tensors fxk
and fxp+qys through proof. Similar to Corollary 2, we have the

following lemma when T (x ,y) is known:

Lemma 3 (Vector Version). Denote by λmax and λmin the largest
and smallest eigenvalues of matrix Txx (Sn (y),y) respectively, and
suppose�����∑

k≥2

1

k!

(
⊗k Rn (y)

)
·Txk+1 (Sn (y),y)

����� ≤ c |Rn (y)|
2 · λmax (34)

holds for some constant c < 1. Then

|Rn (y)| ≤
2|Tx (Sn ,y)|

λmin +

√
λ2
min

− 4cλmax |Tx (Sn ,y)|

≤
2|Tx (Sn ,y)|

λmin

whenever |Tx (Sn ,y)| ≤ λ2
min

/(4cλmax). Here ∥ · ∥ represents the spec-
tral norm of matrices.

Proof. By Lemma 2 and the triangle inequality we have

|Txx (Sn (y),y) · Rn (y)|

≤|Tx (Sn (y),y)| +

����� n∑
k=2

1

k!

(
⊗k Rn (y)

)
·Txk+1 (Sn (y),y)

�����
≤|Tx (Sn (y),y)| + cλmax |Rn (y)|

2

By definition of eigenvalues,

|Txx (Sn (y),y) · Rn (y)| ≥ λmin |Rn (y)|.

Thus

λmin |Rn (y)| ≤ |Tx (Sn (y),y)| + c · λmax |Rn (y)|
2

which is a quadratic inequality about |Rn (y)| thus has two branches.
Since Rn (y) = O(y

n+1) in the neighborhood ofy0 = 0, by continuity

we could assume |Rn (y)| falls into the smaller branch. Solving this

inequality reveals that

|R(y)| ≤
2|Tx (Sn ,y)|

λmin +

√
λ2
min

− 4cλmax |Tx (Sn ,y)|
,

which completes our proof. □

We next bound the difference between C and Var[x(y)] using
tools introduced above. Recall that

C := Var(x ′ · y) = Var[S1(y)]

where Sn was introduced in A.1. In the following we would discuss

the more general situation where

Cn := Var[Sn (y)]

in which we use Sn (y) to approximate x(y) rather than the linear

approximation S1(y). In this way

Var[x(y)] −Cn

=Var[x(y)] − Var[Sn (y)]

=Var[Rn (y)] + Cov[Rn (y), Sn (y)] + Cov[Sn (y),Rn (y)]

where Cov(X ,Y ) := E[(X − E[X ])(Y − E[Y ])T ] is the covariance

matrix. By Cauchy’s inequality we have

∥Var[x(y)] −Cn ∥ ≤ E
[
|Rn (y)|

2
]
+ 2

√
E
[
|Rn (y)|2

]
E
[
|Sn (y)|2

]
=

√
E
[
|Rn (y)|2

] (√
E
[
|Rn (y)|2

]
+ 2

√
E
[
|Sn (y)|2

] )
.

(35)

Lemma 3 together with inequality (35) provides a general frame-

work to bound the error of our approximated variance. In general

Sn (y) can be calculated explicitly and Tx (Sn (y),y) has the order of
magnitudeO(|y |n+1) in the neighborhood ofy

0
= 0. Although λmin

and λmax are functions with respect to y, we could expect they are

stable within the area of our interest since the implicit function x(y)
would be ill-conditioned if λmin(Txx ) tends to zero.

Lemma 4.

Tx (Sn (y),y) = −
1

(n + 1)!
⟨⊗n+1y,x (n+1)(0)⟩ + o

(
|y |n+2

)
Proof. By definition of Sn (y) we have

Tx (Sn (y) + Rn (y),y) = 0 (36)

The Taylor’s expansion of Tx has the form like Lemma 2.

It is worth noting that if Rn (y) appeared in some product then this

product would have no terms of degree less or equal to n. Hence the
all terms of degree at most n on left side of Lemma 2 is contributed

by Tx (Sn (y),y), which is of course zero from the right side, i.e.,

constant zero.

As for the coefficient of ⊗n+1y, it suffices to compare the coeffi-

cient corresponding to degree n + 1 on both side of Lemma 2.

□

As far as the linear approximation S1(y) is concerned, (35) can be

simplified further.

Theorem 5. Suppose the random variable y satisfies E[y] = 0.

The function T (x ,y) satisfies the condition in (34) and

|Tx (S1(y),y)| ≤ ∥Txx ∥/
(
4cκ(y)

)
where

κ(y) := λmax(Txx (S1,y))/λmin(Txx (S1,y)).

Then we have

|Var[x(y)] −C1 |

≤4E

[
|Tx (S1,y)|2κ(y)2

∥Txx (S1,y)∥2

]
+ 2|x ′(0)|E

[
2|Tx (S1,y)| · κ(y) · |y |

∥Txx (S1,y)∥

]

Proof. Just note that

Cov[R1(y), S1(y)] = E[R1(y)S1(y)
T ]

and

∥Var(R1(y))∥ ≤ E[|R1(y)|
2].

Then directly using Lemma 3 completes the proof. □
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A.3 An Explicit Bound for Functions with Regularity
Finally we show that a family of functions with regularity conditions

satisfy the condition (34).

Theorem 6. Suppose there are positive constantsM,α , β, ζ ,κ such
that:

•

∥Txb+1ys (0, 0)∥ ≤ Mαbβs

Here Txb+1ys is regarded as a matrix whose column size is the
dimension of variable x and ∥ · ∥ takes the spectral norm of
matrices.

•

λmin(Txx (0, 0)) >
Mα

κ
,

which implies that

λmax(Txx (0, 0))

λmin(Txx (0, 0))
≤ κ .

•

|Rn (y)| ≤
ζ

α
(37)

and

|Tx (Sn (y),y)| ≤
(1/κ − τeτ )2

2Mα2eζ +τ
, (38)

where τ (y) = α |Sn (y)| + β |y |.

Then we have

|Rn (y)| ≤
2|Tx (Sn (y),y)|

∥Txx (0, 0)∥
(
1/κ − τ (y)eτ (y)

) (39)

remark.We make some explanation for the last two conditions

above. (37) means |Rn (y)| is constrained inside the area what we

consider into the neighborhood of (x0,y0) = (0, 0). This condition

is necessary because the higher-order terms would play a critical

role and the polynomial approximation fails when y go beyond the

area of constant radius.

The (38) is in fact rather weak. We have shown that

|Tx (Sn (y),y)| = −
1

(n + 1)!
|x (n+1)(0)|F · |y |n+1 + o

(
|y |n+1

)
and the right side of (38) has a lower bound when constrained in

the neighborhood of (0, 0) where the growth of τ would be nearly

linear.

Proof. By Taylor’s expansion, for b ≥ 1 we have

∥Txb+1 (Sn (y),y)∥ ≤
∑

p,q≥0

1

p!q!
∥Txb+p+1yq (0, 0)∥ · |Rn (y)|

p · |y |q

≤ Mαb
∑

p,q≥0

1

p!q!
αpβq |Rn (y)|

p · |y |q

= Mαb
∑
k≥0

1

k!

(
α |Rn (y)| + β |y |

)k
= Mαbeτ (y). (40)

For Txx we have

∥Txx (Sn (y),y) −Txx (0, 0)∥

≤
∑

p+q≥1

1

p!q!
∥Txp+2yq (0, 0)∥ · |Rn (y)|

p · |y |q

≤Mα
∑
k≥1

∑
p+q=k

1

p!q!
αpβq |Rn (y)|

p · |y |q

=Mα
∑
k≥1

1

k!
τ (y)k

≤Mατ (y)eτ (y) < κτ (y)eτ (y) · λmin(Txx(0, 0)).

Thus

λmin(Txx (Sn (y),y)) ≥ λmin(Txx (0, 0))(1 − κτ (y)eτ (y))

≥ ∥Txx (0, 0)∥(1/κ − τ (y)eτ (y)) (41)

Dividing left side of the equation∑
b≥0

1

b!
Txb+1 (Sn (y),y) · ⊗

bRn (y) = 0

into three parts we obtain that

Txx (Sn (y),y) · Rn (y)

= −Tx (Sn (y),y) −
∑
b≥2

1

b!
Txb+1 (Sn (y),y) · ⊗

bRn (y). (42)

Inequality (41) implies that

∥Txx (Sn (y),y) · Rn (y)∥ ≥ ∥Txx (0, 0)∥(1/κ − τ (y)eτ (y))|Rn (y)|.
(43)

Inequality (40) implies that�����∑
b≥2

1

b!
Txb+1 (Sn (y),y) · ⊗

bRn (y)

�����
≤M

∑
b≥2

1

b!
αbeτ (y) |Rn (y)|

b

≤
1

2

Mα2 exp
(
τ (y) + α |Rn (y)|

)
. (44)

Combining (42), (43) and (44) we obtain the inequality

∥Txx (0, 0)∥(1/κ − τ (y)eτ (y))|Rn (y)|

≤|Tx (Sn (y,y))| +
1

2

Mα2 exp
(
τ (y) + α |Rn (y)|

)
|Rn (y)|

2

≤|Tx (Sn (y,y))| +
1

2

Mα2 exp
(
τ (y) + ζ

)
|Rn (y)|

2
(45)

The inequality (45) is a quadratic inequality about variable |Rn (y)|
and the solution has two branches. Since now we are interested in

the neighborhood of y
0
= 0 and Rn (y) = O(|y |n+1), we assume the

solution falls into the branch corresponding to the smaller solutions.

Solving this quadratic inequality and utilizing (38), the conclusion

(39) immediately follows. □
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A.4 The Error from Reconstruction Bias
In the last sectionwemainly consider the difference betweenVar[x(y)]
and C where the reconstruction parameter p in (4) is assumed to

be the ground truth pдt , but such an assumption is unpractical in

general. Instead we use p⋆ that is derived from one set of scans. In

other words, p⋆ is a function of y. In particular p⋆(0) = pдt . In this

section we are about to estimate the error of (6) compared with (5)

where the ground truth reconstruction pдt is replaced by p⋆.
The first order apprximation of p⋆ is

p⋆(y) ≈ pдt + p′(0) · y. (46)

In our noise model we assumed y has zero mean and covariance

matrix σ 2I , which means the components of random variable y are

pariwisely independent. In the following argument we would use

the first order approximation to analyze the error caused by the

reconstruction bias. This reduction is reasonable since the recon-

struction function p can be regarded locally linear about the input

noise y.
Thus by Markov’s inequality,

Pr[|p⋆(y) − pдt | ≥ γσ ] ≤
diag

(
p′(0)Tp′(0)

)
γ 2

=
|p′(0)|2F
γ 2

where diag means the sum of diagonal entries.

For some fixed y, we consider solution x and x ′
for pдt and p⋆

respectively:

f (x ,y,pдt ) = 0 (47)

f (x ′,y,p⋆) = 0 (48)

The Tyalor’s expansion for f with respect to variables x and p
would be∑
b,s≥0

1

b!s!

(
⊗b (x ′−x)

)
· fxbps (x ,y,p

дt )·
(
⊗s (p⋆−pдt )

)
= 0. (49)

The first order approximation of x ′
would be

x ′ ≈ x −T−1
xxTxp (p

⋆ − pдt ).

Thus

Var[x ′] ≈ Var[x] +T−1
xxTxp (p

⋆ − pдt )(p⋆ − pдt )TTpxT
−1
xx . (50)

Formula (50) is rather crude since we have not taken y into consid-

eration. The following theorem gives a more accurate and formal

estimation for the discussion above,

Theorem 7. Function x(y,p⋆) is determined by equation

x(y,p⋆) = argmin

x
T (x ,y,p⋆) (51)

wherep⋆ is the predetermined parameter. Suppose x(yдt ,pдt ) = xдt

and y follows the noise model that Var[y] = σ I2 as the main text.
For brevity we assume that

xдt = yдt = pдt = 0.

Let S1(y;p⋆) be the first order approximation of function x(y,p⋆)
with respect to variable y, i.e.,

S1(y;p
⋆) =

∂x

∂y
(0,p⋆) · y.

Here we ignored the constant term x(0,p⋆) because x(0,pдt ) = 0.
The following inequality provides a bound for bias between vari-

ances of S1(y,p⋆) and S1(y,pдt ).

− Z (p⋆) ⪯ Var[S1(y;p
⋆)] − Var[S1(y;p

дt )] ⪯ Z (p⋆) (52)

in which Z (p) is a matrix such that

∥Z (p⋆)∥

≤2σ 2
max

{
∥T−1

xx ∥
2 · ∥Txy ∥

(
∥T−1

xx ∥ · ∥Txy ∥ · ∥Txxp ∥ + ∥Txyp ∥
)}

· |p⋆ − pдt | · dim(y) (53)

where max takes arguments along the segment joining (0, 0,p⋆) and
(0, 0,pдt ) for partial derivatives Txx , Txy , Txxp and Txyp .
remark. If the partial derivatives of T is stable in the neighborhood
of pдt and |p⋆ − pдt | < δ , we can simplify (53) into

∥Z (p⋆)∥ ≤ σ 2 · |p⋆ − pдt | ·C(pдt ,δ ) (54)

where C(pдt ,δ ) depends on the ground truth reconstruction pдt and
the reconstruction error δ . Wheny is normally distributed, p⋆ can be
also regarded as approximately normally distributed conentrated in
pдt in local sense. In this way the error matrix Z is typically smaller
than Var[S1(y;pдt )] by several orders of magnitude.

Proof. Using the mean value theorem of vector-valued functions

we have

|S1(y;p
⋆) − S1(y;p

дt )|

≤

 ∂S1
∂p

(y,p
1
)

 · |p⋆ − pдt |

≤

(
∥T−1

xx ∥
2 · ∥Txy ∥ · ∥Txxp ∥ + ∥T−1

xx ∥ · ∥Txyp ∥
)
· |y | · |p⋆ − pдt |.

(55)

where p
1
is some point on segment joining p⋆ and pдt , and Txx ,

Txy , Txxp , Txyp are all taken at point (xдt ,yдt ,p
1
).

Next we consider the variance. First we have ineuqality

Var[S1(y,p
⋆)] ⪯ E[S1(y,p

⋆)ST
1
(y,p⋆)].

Utilizing the face that E[S1(y,pдt )] = 0, we have

Var[S1(y;p
⋆)] − Var[S1(y;p

дt )]

⪯E[S1(y;p
⋆)ST

1
(y;p⋆) − S1(y;p

дt )ST
1
(y;pдt )].

Similarly, again applying mean value theorem we have

|S1(y;p
⋆)ST

1
(y;p⋆) − S1(y;p

дt )ST
1
(y;pдt )|

≤2

 ∂S1
∂p

(y;p
1
)ST
1
(y;p

1
)

 · |p⋆ − pдt |

≤2∥T−1
xx ∥

2 · ∥Txy ∥
(
∥T−1

xx ∥ · ∥Txy ∥ · ∥Txxp ∥ + ∥Txyp ∥
)

· |y |2 · |p⋆ − pдt |

where p
1
is some point on segment joining p⋆ and pдt , and Txx ,

Txy , Txxp , Txyp are all taken at point (xдt ,yдt ,p
1
).

Since E[|y |2] = σ 2
dim(y) we completes our proof. □
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B PROOFS OF PROPOSITIONS AND THEOREMS IN
SECTION 5

B.1 Proof of Prop. 2
Since we only care about the local behavior near the ground truth,

we use the p
дt
i j ,n

дt
i j to replace the optimized poses p⋆i j ,n

⋆
i j . Also for

convenience we assume the output (ci , t i ) is (I , 0) corresponding

to p
дt
i j ,n

дt
i j since otherwise we can just consider the shift from the

ground truth.

x⋆(y) is determined by

x⋆(y) := arg min

{Ri ,t i }

∑
(i,i′)∈E

d2(Si ,Ti , Si′ ,Ti′)

= argmin

x
f (x ,y)

= argmin

x

∑
(i,i′)∈E

∑
(p i j ,p i′ j′ )∈Cii′

α2i ji′j′(x ,y)

in which

d2(Si ,Ti , Si′ ,Ti′) :=
∑

(p i j ,p i′ j′ )∈Cii′

(
(Ripi j+t i−Ri′pi′j′−t i′)

T (Ri′ni′j′)
)
2

,

αi ji′j′(x ,y) = (Ripi j + t i − Ri′pi′j′ − t i′)
T (Ri′ni′j′),

and

f (x ,y) =
∑

(p i j ,p i′ j′ )∈C

α2i ji′j′(x ,y).

Introducing notation αi ji′j′ is to emphasize the dependence upon

variables x and y. It is worth noting that αi ji′j′(x
дt ,yдt ) = 0 for all

(i, i,′ ) ∈ E.

By definition

C := Var[x ′(yдt ) · y]

= E
[
x ′(yдt ) · yyT · x ′(yдt )T

]
= σ 2x ′(yдt )x ′(yдt )T ,

where x ′(yдt ) is the first order derivative of x at the point of ground

truth. It is known that

x ′(yдt ) =

(
∂2

∂x2
f (xдt ,yдt )

)−1 ∂2
∂x∂y

f (xдt ,yдt ).

Here we clarify the format of the variable x . Recall thaty collects

input pi j and ni j , and x consists of pose estimation Ri = exp(ci×)
and t i . Note x is a 6(N − 1)-dimensional vector since R1 is always I
and t1 is 0. We put t i in (6i − 11)th to (6i − 9)th components of x ,
ci in (6i − 8)th to (6i − 6)th components of x .

Define hi j ∈ R6(N−1)
whose non-zero elements are

V6i−11:6i−9(hi j ) := n
дt
i j

V6i−8:6i−6(hi j ) := p
дt
i j × n

дt
i j

Using such a definition we have

∂2

∂x2
f (xдt ,yдt ) = 2

∑
(p i j ,p i′ j′ )∈C

∂αii′

∂x
(xдt ,yдt ) ·

(
∂αii′

∂x
(xдt ,yдt )

)T
= 2

∑
(p i j ,p i′ j′ )∈C

(hi j − hi′j′)(hi j − hi′j′)
T ,

∂2

∂x∂y
f (xдt ,yдt ) = 2

∑
(p i j ,p i′ j′ )∈C

∂αii′

∂x
(xдt ,yдt ) ·

(
∂αii′

∂y
(xдt ,yдt )

)T
= 2

∑
(p i j ,p i′ j′ )∈C

(hi j − hi′j′)
(
nTi′j′(Pi j − Pi′j′)

)
where Pi j ∈ P

3, |y | are column permutations so that all Pi j have

disjoint non-zero columns. Let ei j ∈ R
∑
Ni

be the canonanical basis

with the i, j-th element being one. Since

(Pi1 j1 − Pi′
1
j′
1

)(Pi2 j2 − Pi′
2
j′
2

)T

=
(
I[(i1, j1) = (i2, j2)] + I[(i

′
1
, j ′
1
) = (i ′

2
, j ′
2
)]

− I[(i ′
1
, j ′
1
) = (i2, j2)] − I[(i1, j1) = (i ′

2
, j ′
2
)]
)
I

=
(
ei1 j1 − ei′

1
j′
1

)T (
ei2 j2 − ei′

2
j′
2

)
I .

where I is the indicator function. Thus

∂2 f

∂x∂y
· Var[y] ·

∂2 f

∂y∂x

=4AdisA
T
dis

in which

Adis = σ
∑

(p i j ,p i′ j′ )∈C

(hi j − hi′j′)n
T
i′j′

(
(ei j − ei′j′)

T ⊗ I
)

Finally we obtain that

C := Var[x ′(yдt ) · y] = C−1
m AdisA

T
disC

−1
m .

□

C PROOFS OF PROPOSITIONS AND THEOREMS IN
SECTION 6

In this section, we provide proofs of the propositions and theorems

in Section 6.

C.1 Proof of Prop. 3
The energy function is

f =
N∑
i=1

Ni∑
j=1

h2i j

where

hi j = (Ripi j + t i )
Tnki j − dki j .

Similar to Prop. 2, we have

Var[x⋆(y)] =

(
∂2 f

∂x2

)−1
·
∂2 f

∂x∂y
· Var[y] ·

∂2 f

∂y∂x
·

(
∂2 f

∂x2

)−1
= σ 2

(
∂2 f

∂x2

)−1
·
∂2 f

∂x∂y
·
∂2 f

∂y∂x
·

(
∂2 f

∂x2

)−1
, (56)

in which all partial derivatives were taken at the point of ground

truth (xgt ,ygt ).
Note that hi j (xgt ,ygt ) = 0 for ground truth (xgt ,ygt ). Taking

advantage of this property we have

∂2h2i j

∂x2
= 2

(
hi j
∂2hi j

∂x2
+
∂hi j

∂x

( ∂hi j
∂x

)T )
= 2

∂hi j

∂x

( ∂hi j
∂x

)T
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∂2h2i j

∂x∂y
= 2

(
hi j
∂2hi j

∂x∂y
+
∂hi j

∂x

( ∂hi j
∂y

)T )
= 2

∂hi j

∂x

( ∂hi j
∂y

)T
Observe that the only non-zero components in

∂hi j
∂y is corre-

sponding to parameter pi j , which leads to( ∂hi j
∂y

)T ∂hi′j′
∂y

=

{
pTi jpi j = 1, if (i, j) = (i ′, j ′)

0, otherwise

Thus

∂2 f

∂x∂y
= 4

N∑
i=1

Ni∑
j=1

hi j

∂x

(hi j
∂x

)T
= 2

∂2 f

∂x2
,

and furthermore,

Var[x⋆(y)] = σ 2

( N∑
i=1

Ni∑
j=1

∂hi j

∂x

( ∂hi j
∂x

)T )−1
.

Simple calculus figures out that

∂hi j

∂x
= дi j

whereдi j is just as defined in Prop. 3. Hence the proof completes. □

C.2 Efficient Inverse
One challenge of (22) in the main paper is that for large-scale prob-

lems, e.g., hundreds of scans with hundreds of thousands of latent

planes, it is infeasible to compute the inverse of CXX directly. In

the following, we describe how to leverage the structure in CXX to

efficiently compute the pose component CSRAR,Pose of CSRAR.

The following proposition characterizes the structure of CXX .

Proposition 4. CXX can be expressed as

CXX =

(
A B

BT Σ

)
(57)

whereA ∈ R6(N−1)×6(N−1) is a (N − 1)× (N − 1) block matrix, where
the (i, i ′)-th block is non-zero if and only if sets of the corresponding
planes of the data points of Si+1 and Si′+1 overlap. B ∈ R6(N−1)×3K

is a (N − 1) × K block matrix, where the (i,k)-th block is non-zero if
and only if the k-th plane is the corresponding plane of a data point
in Si+1. Σ ∈ R3K×3K is a K × K block diagonal matrix.

The proof is straight-forward and we omit it for brevity.

The 2 × 2 block structure of CXX offers a simple way to express

the its inverse:

Proposition 5. The inverse of CXX is given by(
0 0

0 Σ−1

)
+

(
I

Σ−1BT

)
(A − BΣ−1BT )−1

(
I

Σ−1BT

)T
(58)

Proof. See Appendix C.3. □

Since Σ is a block diagonal matrix, we can use (58) to efficiently

encode C−1
XX .

C.3 Proof of Proposition 5
Denote (

A B

BT Σ

)−1
=

(
X Y

YT Z

)
. (59)

It follows that

AX + BYT = I (60)

AY + BZ = 0 (61)

BTY + ΣZ = I (62)

(62) leads to

Z = Σ−1(I − BTY ) (63)

Substitute (63) into (61), we obtain

(A − BΣ−1BT )Y = −BΣ−1 ⇔ Y = −(A − BΣ−1BT )−1BΣ−1. (64)

Substitute (64) into (62), we obtain

Z = Σ−1(I + BT (A − BΣ−1BT )−1BΣ−1)

= Σ−1 + (BΣ−1)T (A − BΣ−1BT )−1(BΣ−1). (65)

Substitute (64) into (60), we obtain

X = A−1(I + BΣ−1BT (A − BΣ−1BT )−1)

= A−1 +A−1BΣ−1BT (I −A−1BΣ−1BT )−1A−1

= (I +A−1BΣ−1BT (I −A−1BΣ−1BT )−1)A−1

= (I −A−1BΣ−1BT )−1A−1

= (A − BΣ−1BT )−1. (66)

Combing (64),(65), and (66), we end the proof.

□

D PROOFS OF PROPOSITIONS AND THEOREMS IN
SECTION 7

D.1 Proof of Theorem 1
First of all, we have

n∑
i=1

( wiGi
Gi

)
·
(
wiG

T
i Gi

)
⪰ 0. (67)

Denote the left side of (67) as

( A B

BT C

)
. Then we have

( A B

BT C

)
⪰ 0, A ≻ 0. (68)

It follows that

0 ⪯
( I 0

−BTA−1 I

)
·
( A B

BT C

)
·
( I −A−1B
0 I

)
=
( A 0

0 C − BTA−1B

)
(69)

This means

C − BTA−1B ⪰ 0,

which ends the proof.
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