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Abstract

Joint segmentation of image sets has great importance
for object recognition, image classification, and image re-
trieval. In this paper, we aim to jointly segment a set of
images starting from a small number of labeled images or
none at all. To allow the images to share segmentation
information with each other, we build a network that con-
tains segmented as well as unsegmented images, and extract
functional maps between connected image pairs based on
image appearance features. These functional maps act as
general property transporters between the images and, in
particular, are used to transfer segmentations. We define
and operate in a reduced functional space optimized so that
the functional maps approximately satisfy cycle-consistency
under composition in the network. A joint optimization
framework is proposed to simultaneously generate all seg-
mentation functions over the images so that they both align
with local segmentation cues in each particular image, and
agree with each other under network transportation. This
formulation allows us to extract segmentations even with no
training data, but can also exploit such data when available.
The collective effect of the joint processing using functional
maps leads to accurate information sharing among images
and yields superior segmentation results, as shown on the
iCoseg, MSRC, and PASCAL data sets.

1. Introduction

Co-segmentation, i.e., jointly segmenting a collection

of similar images, has received a good deal of attention

recently in the vision literature [10, 24, 19]. Compared

with single image segmentation, co-segmentation has the

potential of aggregating information from multiple images

to improve the segmentation of individual images.

The crucial task in co-segmentation is to estimate and

represent relations between different images consistently.

So far this has been approached by computing point-based

maps between pairs of images using local descriptors such

as SIFT. Although this strategy works well on images that

contain the same object instance at various viewpoints and

scales, it is less effective when images exhibit large appear-

ance or object variations.

Moreover, even though one can establish maps between

pairs of images, in the context of multiple images, it is

challenging to enforce global consistency among these maps

— so that compositions of maps along cycles approximate

the identity map or, equivalently, compositions of maps

along different paths between two images are approximately

the same. This cycle-consistency constraint is an essential

regularizer for the problem. It alleviates the imperfections

of the individual maps and the difficulty of making path

choices when transferring information between images.

In this paper we present a novel framework, called

consistent functional maps, for representing and comput-

ing consistent appearance relations among a collection of

images. The proposed framework modifies the functional

map framework [16] to use it on pairs of images instead

of shapes, and further extends it to handle multiple images

under consistency constraints. The basic idea of functional

maps is to equip each image with a linear functional space,

and represent relations between images as linear maps be-

tween these functional spaces. This functional representa-

tion is powerful because image descriptors and segmenta-

tions can be considered as functions on images, and their

relations can thus be encoded as linear constraints on the

linear map between the two spaces. In particular, with a

properly chosen basis for each functional space, optimizing

functional maps between images becomes optimization of

the familiar transformation matrices. This allows us to apply

rich matrix optimization and linear algebraic techniques.

Most importantly, for our purposes, in a network of

images connected by such functional maps, the function-

al setting admits of an easy approach for enforcing the

consistency of these maps. By introducing a latent basis

for the functional space associated with each image, the

consistency of the functional maps is equivalent to the fact

that each functional map transforms the source image latent

basis to the target image latent basis. This leads to a simple

formulation of the cycle-consistency constraint, enabling

us to compute consistent functional maps among multiple

images by solving a tractable optimization problem.

Given the consistent functional maps computed between
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pairs of images, we jointly optimize segmentations of all

images so that they (i) are consistent with each other when

transported via the functional maps, and (ii) agree with

segmentation boundary clues presented on each image (e.g.,

sharp edges). We note that this optimization procedure

is easily modified to incorporate labeled images as input,

in which case we simply let the labeled images provide

additional clues for segmentation.

The proposed approach exhibits significantly improved

performance on two standard cosegmentation data sets i-

Coseg [3] and MSRC [21] compared with recent state-of-

the-art methods. Moreover, we create a more challenging

data set with a larger number of images and larger variance

in object appearance using images from the PASCAL VOC

data set [8]. Our method outperforms other techniques on

this data set as well.

2. Related Work

Earlier work on joint segmentation mainly compared the

visual features of image pairs, such as foreground color his-

togram [18], SIFT [14], saliency [5], and Gabor features [9].

Joulin et al. [10] formulated co-segmentation as a discrimi-

native clustering problem such that the resulting foreground

and background could be separated with the largest mar-

gin. Region matching was applied to exploit inter-image

information by establishing correspondences between the

common objects in the scene. This allows us to jointly

estimate the appearance distributions of both the foreground

and the background [19]. In the supervised setting, a

pool of object-like candidate segmentations were generated

and a random forest regressor was trained to score each

pair of segmentations [24]. All these works succeeded in

automatically generating co-segmentation results. However,

only a few of them [10, 19, 24] focus on the challenging data

sets iCoseg and MSRC which contain images with different

viewpoints, illumination, and object deformation. Recent-

ly, segmentation masks were transferred from the training

windows to similar windows in test images [11], and images

were jointly segmented in a energy minimization framework

with multiple unary potentials [12].

Functional maps are related to graph matching for feature

correspondences in object categorization and image match-

ing [4, 13, 7, 23]. In these methods, an image is usually

represented as a graph whose nodes are regions in the image.

The edges of the graph reflect the underlying spatial struc-

ture of the image, such as region proximity, and are used

to guarantee the geometric consistency of nearby regions

during matching. An objective function describing appear-

ance similarity and geometric compatibility is maximized

to establish visual correspondences [4, 13]. Since the graph

matching problem is NP-hard in most versions, an important

topic under this theme is to design efficient algorithms for

approximately solving the assignment problem [7, 23]. In

the proposed method, we also use a graph to model an image

via its super-pixel decomposition. However, our frame-

work solves the graph matching problem in a functional

setting, which is fundamentally different from point-wise

correspondences and leads to a linear system with an easily-

obtained optimal solution for each pairwise functional map.

The cycle-consistency constraint has been applied in the

vision community for obtaining consistent affine matches

among multiple images [25, 17]. These approaches are

typically formulated as solving constrained optimization

problems, where the objective functions encode the score

of maps, and the constraints enforce the consistency of

maps along cycles. However, these approaches assume

that correct maps are dominant in the graph so that the

small number of bad maps can be identified through their

participation in many bad cycles. Moreover, as there is an

exponential number of cycles, how to effectively sample

cycles remains an open question. The consistency property

of functional maps is also related to diffusion maps [6] and

vector diffusion maps [22]. However, only orthonormal

transformation matrices were allowed in vector diffusion

maps, while we allow arbitrary maps.

3. Problem Statement and Overview
Our input is a collection of N similar images I =

{I1, · · · , IN}, with each image containing an object of the

same class, e.g, a cow. The goal is to jointly segment the

objects from all the input images. We distinguish between

an unsupervised setting, where only the input images are

given, and a semi-supervised setting, where objects in the

first L � N images are pre-segmented.

Without loss of generality, we assume that each image

is over-segmented into K = 200 super-pixels. We repre-

sent each image Ii as the graph (Pi, Ei) of the super-pixel

subdivision, where Pi = {p} collects all the super-pixels,

and edges in Ei connect adjacent super-pixels. Edges in

this graph are weighted according to the boundary length

shared by the corresponding super-pixels, With this setup,

the goal can be formulated as jointly computing a subset of

super-pixels Oi ⊂ Pi from each image Ii that represents the

underlying object (or objects).

3.1. Building blocks

To better explain the proposed approach, we present a

brief introduction to functional maps adapted from [16] for

mapping meshed 3D shapes to our super-pixel setting, and

formulate the cycle-consistency constraint. We remark that

the obvious analog of [16] in the image domain is to use

functions over the image pixels, but in our experience this

works much less well (as shown in supplemental material).

Functions on super pixels. We formulate image segmen-

tation as computing an indicator functions on the super-
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Figure 1: Overview of the proposed framework. (a) the original image and its super-pixel representation; (b) the first few Laplacian

eigenfunctions, visualized on the image super-pixels; (c) the functional maps between images which satisfy cycle-consistency; (d) The final

segmentation functions and the corresponding binary results after thresholding.

pixels. Define a function f : Pi → R that assigns each

super-pixel p ∈ Pi to a real value fi(p). Let F i denote the

space of all functions on Pi. It is clear that F i
∼= R

K is a

linear space of dimension K. Any segmentation Oi ∈ Pi

corresponds to a binary indicator function fOi ∈ F i where

fOi(p) = 1, ∀p ∈ Oi, and fOi(p) = 0, ∀p ∈ Pi \ Oi. On

the other hand, any function f ∈ F i induces a segmentation

Oi = {p|f(p) > ti}, given a properly chosen threshold ti.

Reduced functional space. To improve efficiency, we

reduce the search space of segmentation indicator functions

to a subspace Fi ⊂ F i of dimension M < K for each image

Ii, spanned by a basis Bi = (b1i , · · · , bMi ). In the following,

we use f to denote the coefficients of f with respect to Bi.

In other words, f =
∑M

j=1 fjb
j
i = Bif . Please see §4 for

details.

Functional map. Relations between images can be easily

described as linear functional maps in the functional setting.

Specifically, a functional map from Fi to Fj is given by

a matrix Xij ∈ R
M×M , where Xij maps a function f ∈

Fi with coefficient vector f to the function f ′ ∈ Fj with

coefficient vector f ′ = Xijf . We refer the reader to [16] for

a more detailed introduction and intuition. In §5, we show

how to adapt this framework to the image setting.

Cycle consistency. In the functional setting, the cycle-

consistency constraint can be described as the fact that a

transported function along any loop should be identical to

the original function. Suppose we are given a connected

directed graph G that connects some pairs of images in I.

Denote Xij : Fi → Fj as the functional map associated

with edge (i, j) ∈ G. Let C denote the space of all cycles in

G, then the cycle consistency constraint can be described as

Xiki0 · · ·Xi1i2Xi0i1f = f
∀(Ii0 , Ii1 , · · · , Iik) ∈ C, f ∈ Fi0 .

(1)

Computationally, it is difficult to account for all the loops

and high-order constraints in Eq. 1. Instead, we introduce

a latent basis Yi = (y1
i , · · · ,yM

i ) for each image Ii. This

latent space is expected to include functions that are consis-

tent across multiple images, e.g., segmentation functions of

the underlying objects. With this setup, we simply constrain

that Xij are consistent with these latent basis, i.e.,

XijYi = Yj , ∀(i, j) ∈ G. (2)

It is easy to see that Eq. 2 is equivalent to Eq. 1 since

for any function fg in the global coordinate system and its

coefficient vector f = Yi0fg ∈ Fi0 , we have

Xiki0 · · ·Xi1i2Xi0i1f = Xiki0 · · ·Xi1i2Xi0i1Yi0fg

= Xiki0Yik fg = Yi0fg = f .

3.2. Approach overview

The proposed approach proceeds in three stages (Fig. 1).

The first stage computes a reduced functional space on each

image. The second stage optimizes consistent functional

maps between pairs of images. The objective function

combines a term that quantifies the quality of pair-wise func-

tional maps, and another term that enforces the consistency

among all functional maps. Given these consistent func-

tional maps, the final stage generates the segmentations by

jointly optimizing segmentation functions that (i) align with

the segmentation clues on each image and (ii) are consistent

with neighboring image segmentations after transportation

by functional maps. This optimization problem can easily

incorporate supervision information when some of the im-

ages have ground-truth segmentations.

4. Reduced Functional Spaces
We choose Fi as the eigen-space spanned by the first

M eigenvectors of the normalized graph Laplacian Li ∈
R

K×K , motivated by some practical success of using these

eigenvectors or combinations of them as segmentation in-

dicator functions [20]. An important distinction of the

proposed approach from previous methods is that we do not

commit to any segmentation indicator function at this stage.

Instead, these are jointly selected later over all input images

using optimized functional maps.

The segmentation functions can be approximated well

in the reduced eigen-space. Fig. 2 shows that when M =
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Figure 2: (a) Example of a binary segmentation function; (b)

Approximation of (a) with 30 basis functions (18.2% error); (c)

Binary version of (b) by thresholding (3% error); (d) The gray lines

are reconstruction errors of typical segmentation functions; the red

line shows the case in (b) and (c); the blue line is the average of all

cases.

30, the normalized error between the original segmentation

function and its projection to the reduced space is usually

less than 20%. Furthermore, if we convert the project-

ed function into a binary function by greedy thresholding

(§6.2), the averaged error is further reduced to 3%. In

other words, optimizing the segmentation functions in Fi

is sufficient for our purposes.

5. Extracting Consistent Functional Maps
Here we describe how to construct a sparse graph of im-

ages (§5.1), and how to compute consistent functional maps

for each edge in this graph, given the reduced functional

spaces Fi, 1 ≤ i ≤ N (§5.2 - §5.5).

5.1. Similarity graph

We compute a sparse similarity graph G for the input

image collection I, and only compute functional maps

between pairs of images specified by G. In this paper, we

simply connect each image with its k = 30 nearest images

using their GIST [15] descriptors gi, 1 ≤ i ≤ N . We assign

a weight to the edge between image pair (i, j) ∈ G via

wij = exp(−‖gi − gj‖2/2σ2), (3)

where σ = median(‖gi − gj‖) is the median of image

descriptor differences.

5.2. Aligning image features

When computing the functional map Xij from image Ii
to image Ij , it is natural to enforce that Xij agrees with

the features computed from the images. In the functional

setting, this is equivalent to the constraint that Xijdi ≈ dj ,

where di and dj are corresponding descriptor functions

on the two images represented in the reduced functional

space. Let Di (Dj) collect all descriptors of image Ii (Ij) in

(a) (b) (c) (d)

Figure 3: Visualization of some probe functions that are put in

correspondence by the functional map. The four probe functions

shown are the 1st (a) and the 27th (b) dimension of the color

histogram, and the 17th (c) and the 291st(d) dimension of the bag-

of-visual-words feature.

columns; then the function preservation constraints can be

written as

f feature
ij = ‖XijDi −Dj‖1, (4)

where ‖ · ‖1 denotes the element-wise L1-norm (sum of

absolute values of all elements) to account for noise in

image descriptors. In this paper, the features in Di and

Dj include 3 average RGB values, a 64-dimensional color

histogram, and the bag-of-visual-words histograms with 300
visual words. In total there are 367 descriptor functions,

yielding an over-determined problem.

5.3. Regularization

The regularizer used for Xij is represented as:

f reg
ij =

∑
1≤s,s′≤M

(
|λs

i − λs′
j |Xij(s, s

′)
)2

, (5)

where λs
i (λs′

j ) denotes the s-th (s′-th) eigenvalue of the

graph Laplacian matrix Li (Lj). Note that for similar

images (i.e., similar spectra of eigenvalues), minimizing f reg
ij

essentially forces Xij to be close to a diagonal matrix. This

is an expected effect, since the magnitudes of eigenvalues

reflect the frequencies of the corresponding eigenvectors,

and eigenvectors of similar frequencies (corresponding to

similar scales) are more likely to be related [20]. Fig. 4

shows an example of functional map with and without the

regularization term — the one with regularization is closer

to a diagonal matrix, meaning that eigenvectors are trans-

ported only to their counterparts with similar frequencies.

5.4. Incorporating map consistency

As described in Eq. 2, we formulate the cycle-

consistency constraint of functional maps by introducing a

latent basis Yi for each Fi, and force each functional map

Xij to transform Yi into Yj . Practically, we found that it

is better to consider a reduced basis Yi ∈ R
M×m. This is

because Fi is generated by eigenvectors of Li, and there is

no guarantee that these eigenvectors are totally consistent,

due to inter-image variability. We choose m = 20 for
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Figure 4: The functional map (a) with and (b) without commuta-

tivity regularization.

all experiments. With this setup, we formulate the map

consistency term as

f cons =
∑

(i,j)∈G
wijf

cons
ij =

∑
(i,j)∈G

wij‖XijYi − Yj‖2F , (6)

where ‖ · ‖F denotes the Frobenius norm.

Note that merely minimizing Eq. 6 would force the Yi to

be zero matrices. We thus impose an additional constraint

Y TY = Im, where the latent basis matrix Y is simply

(Y T
1 , · · · , Y T

N )T . This ensures that the columns of Y are

linearly independent, favoring solutions of Yi that are not

rank-deficient.

5.5. Optimization

Combining Eq. 4-6, we arrive at the following optimiza-

tion problem for computing consistent functional maps:

min
∑

(i,j)∈G
wij

(
f feature
ij + μf reg

ij + λf cons
ij

)

s.t. Y TY = Im, (7)

where λ and μ control the tradeoffs between different ob-

jective terms. For all the experiments, we set λ = 10 and

μ = 40. The effect of the consistency term is shown in

Fig. 5 and a segmentation function transferred along a cycle

is illustrated in Fig. 6.

To effectively solve Eq. 7, we use an alternating op-

timization strategy, which decouples the optimization of

{Xij , (i, j) ∈ G} from the optimization of Y , leading to

subproblems that are much easier to solve.

Optimizing functional maps Xij . When the latent basis

matrix Y is fixed, Xij can be optimized independently, i.e.,

the optimal value of Xij is given by

X�
ij = argmin

X

(
f feature
ij + μf reg

ij + λf cons
ij

)
. (8)

Eq. 8 is a quadratic program, and we use SeDuMi [1] to

solve it efficiently. In the first iteration where the latent basis

matrix Y is unknown, we set λ = 0.

Optimizing latent basis matrix Y . When the functional

maps Xij are fixed, Eq. 7 for solving the latent basis matrix

Y becomes

min trace(Y TWY )

s.t. Y TY = Im, (9)

(b)
test images

(c) without
consistency

(d) with
consistency

(a)
training image

Figure 5: (a) Training image with ground truth segmentation; (b)

test images; segmentation results transferred from (a) through the

maps obtained by Eq. 7 without the consistency term in (c) and

with the consistency term in (d).

(a) example image cycle (b) w/o consistency (c) w/ consistency

Figure 6: Given a cycle of 3 images in (a), the segmentation

function of the first image is transferred along the cycle. The

final function transferred back looks like the original one more

in (c) when the maps are consistent than that in (b) when map

consistency is not enforced.

where matrix W ∈ R
NM×NM consists of N × N blocks,

with the (i, j)-th block

Wij =

⎧⎪⎨
⎪⎩

∑
(i,j′)∈G

wij′(Im +XT
ij′Xij′) i = j

−wij(Xji +XT
ij) (i, j) ∈ G

0 otherwise.

The following proposition provides the analytical solu-

tions to Eq. 9:

Proposition 1 Denote by σ1 ≤ · · · ≤ σm the first m
eigenvalues of W . Let U = (u1, · · · ,um) collect the
corresponding eigenvectors. The optimal solution to Eq. 9
is given by

Y = UV, ∀ V ∈ O(m), (10)

where O(m) denotes the space of all orthonormal matrices
of dimension m×m.

It is clear that the value of ‖XijYi − Yj‖2F is invariant

for any orthonormal V . We simply set the optimal value

Y � = U .

Stopping criterion. Let X
(k)
ij denote the value of Xij at

iteration k. We alternate between the optimization of Xij

and Y until ‖X(k+1)
ij −X

(k)
ij ‖F/‖X(1)

ij ‖F < 10−6, ∀(i, j) ∈
G.
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Figure 7: Generated segmentation function (c) compared with

normalized cut results (b). Our results are more consistent. All

results are shown in the granularity of super-pixels.

6. Generating Consistent Segmentations
Given the consistent functional maps {Xij}, the final

stage of the proposed approach jointly optimizes an approx-

imate segmentation indicator function fi ∈ Fi for each

image. We then generate the final segmentation by round-

ing/binarizing fi into a segmentation indicator function.

6.1. Joint optimization of segmentation functions

To optimize the coefficient vectors fi of segmentation

functions fi = Bifi, we minimize an objective function

which consists of a map consistency term fmap and a

segmentation term f seg. The map consistency term fmap

ensures the segmentation functions are consistent with the

optimized functional maps:

fmap =
∑

(i,j)∈G
wij‖Xijfi − fj‖2F . (11)

The segmentation term sums the alignment score be-

tween each segmentation function and segmentation clues

provided on each image. We formulate each alignment

score as a quadratic function fT
i Lifi = fTi BT

i LiBifi[20].

For unlabeled images, we set Li as the normalized graph

Laplacian. For labeled images, we re-define Li as the

normalized graph Laplacian of the graph that only connects

super-pixels within the foreground or background segment.

The segmentation term is then given by:

f seg =
N∑
i=1

fTi BT
i LiBifi. (12)

Combing Eq.11 and 12, we arrive at the following con-

strained optimization problem:

min f seg + γfmap s.t.

N∑
i=1

‖fi‖2 = 1, (13)

where γ controls the importance of fmap with respect to f seg.

In this paper, we set γ = 10. In the same spirit as optimizing

the latent basis Y in Eq. 9, we constrain the norm of fi to

prevent trivial solutions. The effect of the global consistency

term is shown in Fig. 7 in comparison with Normalized Cut

results.

It is easy to see that Eq. 13 is equivalent to min f̄TZ f̄

subject to
∥∥f̄∥∥2

2
= 1, in which Z can be obtained by

adding BT
i LiBi to each diagonal block of W , i.e. Z =

Diag(BT
i LiBi)+ γW . The optimal solution is given by the

second smallest eigenvector f̄� = (f�1 , · · · , f�N ) ∈ R
NM×1

of matrix Z. The corresponding segmentation function of

each image Ii is then obtained by si = Bif
�
i .

6.2. Rounding segmentation functions

The continuous functions si generated above already

delineate the objects in the images well. To convert them

into binary indicator functions, we simply sample 30 thresh-

olds within the interval [min(si),max(si)] uniformly, and

choose the threshold whose corresponding segmentation has

the smallest normalized cut score [20].

7. Experimental Results
7.1. Standard co-segmentation data sets

iCoseg data set We first evaluated our method on the

iCoseg data set [3], which contains 38 object classes (643

images in total) with known pixel-level segmentation. Im-

ages in each class contain very similar objects, and within-

class variability is relatively low. Segmentation accuracy is

calculated as the percentage of correctly labeled pixels.

Table 1 shows the accuracy of our unsupervised joint

segmentation method, two other state-of-the-art unsuper-

vised co-segmentation algorithms [10, 19], and a supervised

method [24]. The same number of images are used in

all methods. The accuracy is averaged over 20 random

selections for each class. Our method is significantly bet-

ter than the state-of-the-art unsupervised methods in most

of the cases, and comparable and sometimes even better

than the supervised one [24]. Additionally, we also show

the comparison of average accuracy with the segmentation

transfer method [12] in Table 2. Note that even though

[12] is a supervised method trained with the entire PASCAL

VOC10 training set, our unsupervised method is better than

their simplified version (“image + transfer” in [12]), and

comparable with their full model.

MSRC data set We further evaluated the proposed

method on the MSRC data set. It includes 591 pixel-

wise labeled images of 23 object classes. The accuracy

of our unsupervised joint segmentation method is shown in

Fig. 8a, in comparison with other recent co-segmentation

algorithms [10] and [19]. We select the same classes as

reported by [10] and [19]. Our method is significantly better

in most of the cases. It takes about 20 minutes to jointly

segment 30 images with low memory usage. Please refer to

supplemental material for details of computational cost.

Semi-supervised joint segmentation accuracy of our

method is compared with [24] and [12] in Fig. 8b. Ten

randomly selected images are used in testing for our method

and [12] as in [24], and the remaining images are used in

training. Our method again outperforms the state-of-the-art



class [10] [19] [24] FMaps-uns

Alaska Bear 74.8 86.4 90.0 90.4
Red Sox Players 73.0 90.5 90.9 94.2

Stonehenge1 56.6 87.3 63.3 92.5
Stonehenge2 86.0 88.4 88.8 87.2

Liverpool FC 76.4 82.6 87.5 89.4
Ferrari 85.0 84.3 89.9 95.6

Taj Mahal 73.7 88.7 91.1 92.6
Elephants 70.1 75.0 43.1 86.7

Pandas 84.0 60.0 92.7 88.6

Kite 87.0 89.8 90.3 93.9
Kite panda 73.2 78.3 90.2 93.1
Gymnastics 90.9 87.1 91.7 90.4

Skating 82.1 76.8 77.5 78.7

Hot Balloons 85.2 89.0 90.1 90.4
Liberty Statue 90.6 91.6 93.8 96.8
Brown Bear 74.0 80.4 95.3 88.1

Average 78.9 83.5 85.4 90.5

Table 1: Segmentation accuracy on the iCoseg data set.

Supervised Unsupervised

image + transfer [12] full model [12] FMaps

87.6 91.4 90.5

Table 2: Average accuracy on the iCoseg data set.

methods in most of the cases.

Discussion The functional maps are surprisingly effective

in building natural correspondences between images. The

superior performance shows the effectiveness of the consis-

tent functional maps and the joint optimization framework

in generating robust results from the image network, despite

the imperfections of individual maps. Although exact pixel

or region correspondences may exist, in the more general

functional formulation cycle consistency can be easily en-

forced, yielding improved results. Example segmentation

results are shown in supplemental material.

7.2. Larger data set

Besides the standard data sets, we investigated perfor-

mance on a larger and more diverse data set, created by re-

trieving images with selected class labels from the PASCAL

VOC 2012 data set. Images from the same object class are

treated as a group for joint segmentation.

In the semi-supervised setting, the images from the

“training” set and the “validation” set of PASCAL are used

as labeled and unlabeled images, respectively. Our frame-

work is compared with another state-of-the-art segmenta-

tion transfer method [12], and the results are in Fig. 8c.

Our method significantly improves the segmentation perfor-

mance. In the last column, we also include the performance

of our unsupervised framework with all images in each class

jointly segmented without any label information. Note that

in quite a few cases, our unsupervised technique already

outperforms the supervised method of [12].

20 40 60 80
0.8

0.82

0.84

0.86

0.88

0.9

Number of images

A
cc

ur
ac

y

All cases
Average

(a) Unsupervised

0 10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

Number of Training Images

A
cc

ur
ac

y

 

 

Random
Color
BovW
Color−FG
Shape−FG

(b) Supervised

Figure 9: Segmentation accuracy as a function of (a) unlabeled

images in the unsupervised setting and (b) labeled images in the

supervised setting.

For natural objects such as cat, cow, dog, horse, and

sheep, the performance of our unsupervised method is very

close to the supervised version. This suggests that, because

the image set does not have much variation in object ap-

pearance, adding labeled images does not provide much

additional information beyond the clues contained in the

unlabeled images. On the other hand, for man-made objects

such as bus and car, the training data are more helpful

because the appearances of related objects differ a lot.

Sensitivity Analysis In the unsupervised case, we also

investigated accuracy as a function of the number of im-

ages. Starting from a random subset of the “aeroplane”

class in PASCAL, we add more and more images to the

unsupervised set in random order. This improves accuracy

in general because added images provide more segmentation

cues to each other (Fig. 9a).

In the supervised case, we vary the number of training

images selected from the “training set”, and evaluate the

performance on a separate “validation set” of 90 images

(Fig. 9b). Ground truth segmentations are added for train-

ing according to their image similarities to the validation

set using global color histogram (Color) or Bag-of-visual-

Words (BovW). As the number of training images increases,

the segmentation accuracy improves rapidly, then gradually

saturates. The curve for adding training images in random

order is also shown (averaged over 20 runs). The faster

increase using BovW suggests that it may be used to actively

select more helpful training images. To further confirm

this observation, we pretend that the foregrounds of the

test images are known, and select training images based on

similarities in foreground color histogram (Color-FG) and

foreground shape histogram (Shape-FG [2]). Their curves

rise even faster than BovW, confirming the importance of

selecting good training images.

8. Conclusion

We have proposed a framework for joint image segmen-

tation, in which functional between images are jointly esti-



class N [10] [19] FMaps-uns

cow 30 81.6 80.1 89.7
plane 30 73.8 77.0 87.3
face 30 84.3 76.3 89.3
cat 24 74.4 77.1 88.3

car(front) 6 87.6 65.9 87.3

car(back) 6 85.1 52.4 92.7
bike 30 63.3 62.4 74.8

(a) MSRC, unsupervised

class [24] [12] FMaps-s

cow 94.2 92.5 94.3
plane 83.0 86.5 91.0
car 79.6 88.8 83.1

sheep 94.0 91.8 95.6
bird 95.3 93.4 95.8
cat 92.3 92.6 94.5
dog 93.0 87.8 91.3

(b) MSRC, supervised

class N L [12] FMaps-s FMaps-uns

plane 178 88 90.7 92.1 89.4

bus 152 78 81.6 87.1 80.7

car 255 128 76.1 90.9 82.3

cat 250 131 77.7 85.5 82.5

cow 135 64 82.5 87.7 85.5

dog 249 121 81.9 88.5 84.2

horse 147 68 83.1 88.9 87.0

sheep 120 63 83.9 89.6 86.5

(c) PASCAL

Figure 8: Performance comparison on the MSRC and PASCAL data sets. N and L denote the number of images and the number of labeled

images in each class, respectively. FMaps-s and FMaps-uns are supervised and unsupervised versions of the proposed method, respectively.

mated and co-optimized to ensure better cycle-consistency

in the image network. Using the obtained functional maps,

segmentation functions of all images are jointly optimized

so that they are consistent under functional transport and

well-aligned with each image’s own segmentation cues. The

new method significantly outperforms the recent state-of-

the-art methods on iCoseg, MSRC, and PASCAL VOC

2012.

Many topics remain for further exploration, including

how the performance depends on the characteristics of the

image set, and whether multiple object classes can be han-

dled at once — possibly providing a tool for automated en-

tity extraction from image collections. In addition, building

the image network based on the GIST descriptor can be

improved, and more sophisticated methods to assess image

similarity can be brought to bear on the problem.

In effect, our consistently aligned network of images

serves as an abstraction of the object class represented by

the images. We believe that this approach, focussing on

establishing transport mechanisms for image properties in a

network setting and then using global analysis tools over the

entire network, can be beneficial to other vision problems on

joint analysis of image collections.
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1. Superpixels vs. dense pixel grid
The approach presented builds maps between functions

on a superpixel representation of the images. In lines 212-

215 of the main paper, we remark that this strategy is better

than building maps between functions defined on the actual

image pixels. Table 1 compares the performance of these

two strategies on the MSRC data set, where the columns

Fmaps-uns and Fmaps-dense-uns describe the unsupervised

performance of using superpixels and image pixels, re-

spectively. We can see that the performance when using

superpixels is superior. Moreover, the overall performance

of both approaches is still better than other state-of-the-art

techniques. This demonstrates the effectiveness of using

functional maps as a tool for co-segmentation.

class [1] [2] FMaps-uns Fmaps-dense

cow 81.6 80.1 89.70 86.55

plane 73.8 77.0 87.25 84.00

face 84.3 76.3 89.26 80.62

cat 74.4 77.1 88.26 77.84

car(front) 87.6 65.9 87.30 75.94

car(back) 85.1 52.4 92.70 86.28

bike 63.3 62.4 74.77 66.71

Table 1: Unsupervised joint segmentation accuracy on the

MSRC data set.

2. Computational Cost
In the main paper, we mentioned that it took about 20

minutes to jointly segment 30 images. Here we present a

detailed break down for each of the steps of our framework

in Table 2. The last column shows the actual execution

time for 30 images on a DELL Precision T3500 PC with

Intel 3.07GHz CPU and 12GB memory. The algorithm

was implemented in MATLAB with no optimization or

acceleration.

The pre-processing steps, such as over-segmentation,

super-pixel adjacency graph construction, and feature ex-

Step Complexity Time for 30 images

Over-segmentation O(N) 240s

Super-pixel adjacency

graph construction

O(N) < 1s

Feature extraction O(N) 60s

Solving Eq. 7 O(N2M2) 1050s

Solving Eq. 13 O(N2M2) < 1s

Total O(N2M2) 22.5 minutes

Table 2: Computational costs. N is the number of total

images. M is the dimension of the reduced functional

space. In our paper, M is set as 30.

traction, can all be performed independently for each image.

The most time-consuming part is solving Eq. 8 for each

pair of connected images (part of Eq. 7) at each alternating

optimization cycle. In a fully connected image graph, this

incurs O(N2) complexity. However, by enforcing a sparse

image graph and connecting images only to their k-nearest

neighbors, the complexity can be reduced. Solving Eq. 9

and Eq. 13 are equivalent to an SVD of an NM × NM
matrix for the first few eigenvectors. This can be computed

very efficiently and only takes 0.1 seconds for a 900× 900
matrix with N = 30 and M = 30. In practice, we found

4-6 alternating optimizations for sufficient.

Although our method also has storage complexity of

O(N2), it is actually very memory-efficient because the

quadratic storage only occurs for the NM ×NM matrices

in Eq. 9 and Eq. 13. For example, when segmenting the

178 images in the “aeroplane” class of the PASCAL data

set, the peak memory usage for Matlab is only 1.1 GB

with all graphs, features, functional maps, and intermediate

variables in its workspace.

Our method uses a reduced functional space of dimen-

sion M = 30, and is very memory efficient compared to

methods that directly compares super-pixels (or pixels). For

these methods, the quadratic complexity can be overwhelm-

ing when the total number of super-pixels in all images is

large.

1



3. More Segmentation Examples

Five examples are shown for each class in iCoseg and MSRC, and ten examples are shown for each class in PASCAL data

set. All are fully unsupervised.

3.1. Examples in iCoseg Data Set

Alaskan bear

Red Sox Players

Stonehenge1

Stonehenge2

Liverpool FC

Ferrari

2



Taj Mahal

Elephants

Pandas

Kite

Kite Panda

3



Gymnastics

Skating

Hot Balloons

Liberty Statue

3.2. Examples in MSRC Data Set

Cow

4



Plane

Face

Cat

Car

Bike

3.3. Examples in PASCAL Data Set

Aeroplane

Bus

5



Car

Cow

Dog

6



Horse

Sheep
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