
Algorithmic Analysis of
Piecewise FIFO Systems

Naghmeh Ghafari
 Richard Trefler

Arie Gurfinkel Nils Klarlund

David R. Cheriton
School of Computer Science

University of Waterloo
Waterloo, ON, Canada

Software Engineering Institute
 Carnegie Mellon University

Pittsburgh, PA

Google
New York, NY

2

FIFO Systems
Definition

A FIFO system is a set of finite state machines
that communicate over unbounded perfect
FIFO channels.

A common model of computation for
distributed protocols:
– IP-telecommunication protocols (BoxOS).
– interacting web services (BPEL).
– System on Chip (SoC) architectures.

Our Goal:
Algorithmic analysis of safety properties

in FIFO systems.

3

FIFO Systems in Action

1!a

2?d2?b

2?c 2?d

1?a → 2!d1?a → 2!b

2!c 2!d

Automaton A1 Automaton A2

〈1, 1, ε, ε〉

Global Execution

Channels

Channel 1 Channel 2

1

2

3 4

1

2 3

4

FIFO Systems in Action

1!a

2?d2?b

2?c 2?d

1?a → 2!d1?a → 2!b

2!c 2!d

Automaton A1 Automaton A2

〈1, 1, ε, ε〉 〈2, 1, a, ε〉

Global Execution

Channels

Channel 1 Channel 2

a

1

2

3 4

1

2 3

5

FIFO Systems in Action

1!a

2?d2?b

2?c 2?d

1?a → 2!d1?a → 2!b

2!c 2!d

Automaton A1 Automaton A2

〈1, 1, ε, ε〉 〈2, 1, a, ε〉 〈2, 3, ε, d〉

Global Execution

Channels

Channel 1 Channel 2

d

1

2

3 4

1

2 3

6

FIFO Systems in Action

1!a

2?d2?b

2?c 2?d

1?a → 2!d1?a → 2!b

2!c 2!d

Automaton A1 Automaton A2

〈1, 1, ε, ε〉 〈2, 1, a, ε〉 〈2, 3, ε, d〉 〈2, 3, ε, dd〉

Global Execution

Channels

Channel 1 Channel 2

d
d

1

2

3 4

1

2 3

7

An Alternative Execution

1!a

2?d2?b

2?c 2?d

1?a→ 2!d1?a → 2!b

2!c 2!d

Automaton A1 Automaton A2

〈1, 1, ε, ε〉

Global Execution

Channels

Channel 1 Channel 2

1

2

3 4

1

2 3

8

An Alternative Execution

1!a

2?d2?b

2?c 2?d

1?a→ 2!d1?a → 2!b

2!c 2!d

Automaton A1 Automaton A2

〈1, 1, ε, ε〉 〈2, 1, a, ε〉

Global Execution

Channels

Channel 1 Channel 2

a

1

2

3 4

1

2 3

9

An Alternative Execution

1!a

2?d2?b

2?c 2?d

1?a→ 2!d1?a → 2!b

2!c 2!d

Automaton A1 Automaton A2

〈1, 1, ε, ε〉 〈2, 1, a, ε〉 〈2, 2, ε, b〉

Global Execution

Channels

Channel 1 Channel 2

b

1

2

3 4

1

2 3

10

An Alternative Execution

1!a

2?d2?b

2?c 2?d

1?a→ 2!d1?a → 2!b

2!c 2!d

Automaton A1 Automaton A2

〈1, 1, ε, ε〉 〈2, 1, a, ε〉 〈2, 2, ε, b〉 〈3, 2, ε, ε 〉

Global Execution

Channels

Channel 1 Channel 2

1

2

3 4

1

2 3

Error state reached!

11

?a

?c
!a !b

?c

?d
L(A1) : I (?d)* : I

2

From Reachability to Limit
Languages

&
FIFO System

Reachable configurations
partitioned by control location

34

1

Inputs
 Initial channel content: I

12

?a

?c
!a !b

?c

?d
L(A1) : I (?d)* : I

L(A2) : I (?d)*?a(?c!a)* : I
1

From Reachability to Limit
Languages

&
FIFO System

Reachable configurations
partitioned by control location

34

2

Inputs
 Initial channel content: I

13

?a

?c
!a !b

?c

?d
L(A1) : I (?d)* : I

L(A2) : I (?d)*?a(?c!a)* : I

L(A3) : I (?d)*?a(?c!a)*!b(?c)* : I

L(A4) : I (?d)*?a(?c!a)*?c : I

1

2

From Reachability to Limit
Languages

&
FIFO System

Reachable configurations
partitioned by control location

34

Inputs
 Initial channel content: I

14

The Limit Language Problem
• Inputs

– a language of actions: L
– a set of initial channel contents: I

• Output
– the set of all possible channel contents that

result from zero or more application of L to I.

Notation

L* : I

This problem is undecidable in general.
We focus on a particular class of systems

for which it is decidable.

15

caller

callee

caller

callee
feature 1 feature 2 feature 3

The next generation telecommunication services over IP
developed at AT&T Research.

Motivation: BoxOS Protocol

16

Motivation: BoxOS Protocol

17

Transparent Phase

Tear Down Phase

Motivation: BoxOS Protocol

Setup Phase

18

Piecewise Languages
• A language is simply piecewise if it can be expressed by a

regular expression of the form:
M0*a0 M1*… an-1Mn* where Mi ⊆ Σ and ai ∈ Σ ∪ {ε}

• A language is piecewise if it is a finite (possibly empty) union
of simply piecewise languages.

(a+b)*c is simply piecewise where M0 = {a,b} and a0 = c,
a*c + b*d is piecewise,
(ab)* is NOT piecewise.

• A partially ordered automaton is a tuple (A , ≤), where
– A = (Σ, Q, q0, δ, F) is an automaton
– ≤ ⊆ Q x Q is a partial order on states, q’ ∈ δ(q,a) implies that q ≤ q’.

Theorem [Klarlund and Trefler, 04]
A language is piecewise iff it is recognized by a partially ordered
automaton.

19

Piecewise FIFO Systems
Definition

A FIFO system is piecewise if there exists a partial order on its
control locations.

Observation
In piecewise FIFO systems, action languages corresponding to limit
languages are Kleene closure of sets of actions.

Example

1!a

A Piecewise FIFO System

2?a

1?c 1!b

1?c

11?d 2!a

2

34

1?d 1!b

NOT A Piecewise FIFO System

2?a

1?c 1!b

1?c

1

2

34

1?d 2!a
1?d 1!b

20

Outline
• Introduction
• FIFO Systems
• Limit Languages
• Motivation
• Piecewise FIFO Systems

– Single Channel Systems (see paper)
– Multi-Channel Systems

• Related Work
• Summary

21

Multi-Channel Communication Graph
Definition

A communication graph of a set of actions S over channels C is a
directed graph (C,E) where (i, j) ∈ E iff there are a and b in Σ such
that i?a → j!b is an action in S.

1 2

3

Our analysis is based on the topology of the
communication graph

Example
 Act = {1?a → 2!b, 2?b → 3!d, 3?a → 3!a, 3?d → 1!a}

treestar inverted tree DAG

22

Star Topology
Key Idea

Star topology algorithm is driven by the content
of the origin channel.

1

23

4
5

6

Each iteration of the algorithm is done using two
functions:

Example
origin channel: M1*a1 M2*a2

iterations reachable configurations

1st (M1*a1M2*a2,)
 2nd (M2*a2,)

3rd (ε ,)

SATURATE STEPand

23

1

2 3

a*(b+c)

ε ε

〈a*(b+c), ε, ε〉

SATURATE
Inputs

– initial channel configuration, I, with the origin channel
of the form M*· Z

– a set of actions: Act
Output

– the set of states that are reachable by reading an
arbitrary number of letters from the head of the origin
channel.

SATURATE

1

a*a*

32

a*(b+c)

〈a*(b+c), a*, a*〉

Example
Act = {1?a → 2!a, 1?a → 3!a, 1?b → 2!b, 1?c → 3!c}

24

STEP
Inputs

– initial channel configuration, I, with the origin channel of the
form (a0 + …. + an) · Z

– a set of actions, Act
Output

– all configurations that are reachable by reading exactly one
letter from the origin channel.

STEP
a* a*

〈(b+c), a*, a*〉

1

2 3

(b+c)

Example
Act = {1?a → 2!a, 1?a → 3!a, 1?b → 2!b, 1?c → 3!c}

〈ε, a*b, a*〉

a*b a*

1

2 3

ε

〈ε, a*, a*c〉

a* a*c

1

2 3

ε

25

Complexity Analysis
Theorem
 In the worst case, the running time of the algorithm for computing

the limit language in a k-channel system with a star topology is
O(max(kh,h)), where h is the size of the automaton representing
the origin channel.

Proof
The depth of the recursion of the algorithm is bounded by h.

Inside each call, SATURATE takes constant time and returns a
single configuration.

STEP returns a set of configurations with size bounded by k-1.

The complexity of the algorithm is bounded by the number of
internal nodes of a (k-1)-ary tree of height h.

26

Tree Topology

Star algorithm is not applicable!
– assumes all reads come from a single

channel.

Act1 = {1?→ 2!, 1? → 3!, 1? → 4!}
Act2 = {2? → 5!, 2? → 6!}
Act3 = {3? → 7!}1. Tree topology can be partitioned into a

set of star topologies.

2. The communication graph induces a
partial order of dependencies on
channels:

1

2 3 4

5 6 7

Observations:

i ≤ j if there exists a path from i to j in the graph.

27

From Tree to Star
Theorem

For every sequence of actions x, there exists a sequence y s.t.
• y has the same actions as x
• all reads of y are ordered
• If (x : w) ≠ Ø for some w, (y : w) = (x : w)

2?c 4!c

Example

w = 〈ab, c, d, ε, ε〉

y = 1?a 2!a 1?b 3!b 2?c 4!c 3?d 5!d

x : w 〈ε, a, b, c, d〉

1

2 3

4 5

ab

c d
εε

y : w 〈ε, a, b, c, d〉

3?d 5!d1?a 2!a 1?b 3!bx =

28

Computing Limit Language

Algorithm Steps
Step 1 Partition the actions such that each partition is a star.
Step 2 Order the partitions according to the partial order on channels.
Step 3 Apply the Star algorithm on each partition following the order.

1

2 3 4

2

5 6

7

3

Algorithm in Action
1

2 3 4

5 6 7
Partition Order

1

2 3 4

2

5 6

7

3

Act1

Act2

Act3

Act* : I
(Act1* Act2* Act3*) : I

29

Complexity Analysis

Theorem
In the worst case, the running time of the algorithm for computing
the limit language in a k-channel system with a tree topology is
O(max(Nh x M, hM)), where h is the size of the automaton
representing the root content.

Proof
Each invocation of the Star algorithm produces at most max(Nh, h)
piecewise configurations, each of size at most h.

There are at most M number of invocations to the Star algorithm.

Assumptions
– The communication graph is an N-ary tree with M internal

nodes.
– The initial content of all the channels except the root is empty.

30

Inverted Tree Topology
Tree algorithm is not applicable!

– a channel may depend on several
independent channels

((1?a 3!a)* (2?b 3!b)*) : w

((2?b 3!b)* (1?a 3!a)*) : w
〈ε, ε, abab〉 ∉

1 2` 3

4 5

6

Act = {1?a 3!a, 2?b 3!b} w = 〈aa, bb, ε〉

Example

1 2

3

aa bb

ε

31

Shadow Channels
Shadow channels replace the nodes (channels) that

have an in-degree greater than or equal to 2.

1 2

31 32

Algorithm for computing the limit language
Step 1 Introduce shadow channels and turn the

 graph into a tree.
Step 2 Use Tree algorithm to calculate the limit.

 Step 3 Merge the contents of the shadow channels.

Act = {1?a 31!a, 2?b 32!b} w = 〈aa, bb, ε, ε〉

Tree
algorithm

Merge
shadows

〈ε, ε, aabb〉
〈ε, ε, bbaa〉
〈ε, ε, baba〉
〈ε, ε, abab〉
〈ε, ε, baab〉
〈ε, ε, abba〉

=

1 2

3

Act = {1?a 3!a, 2?b 3!b} w = 〈aa, bb, ε〉
Example

〈ε, ε, aa || bb〉Act* : w 〈ε, ε, aa, bb〉

32

DAG Topology
Inverted Tree algorithm is not applicable!

– immediate predecessors of a channel may
be interdependent.

Act = {1?a 31!a, 1?b 2!b, 2?b 32!b} w = 〈a*b*, ε, ε, ε 〉

Tree
algorithm

〈a*b*, ε, a*, ε〉

〈b*, b*, a*, b*〉
Merge

shadows

〈a*b*, ε, a*〉

〈b*, b*, (a + b)*〉

Observation
While merging shadow channels, the dependencies
between channels should be considered.

1

2

3

4

Act = {1?a 3!a, 1?b 2!b, 2?b 3!b} w = 〈a*b*, ε, ε〉

Example
a*b*

ε

1

23
ε

includes infeasible
configurations

〈b, b, ba〉
Act* : w

33

Indexed Merge
Modify merge to respect the dependencies between

channels.
– Keep track of relative positions of each letter in a

channel as it is copied between channels.
– Restrict the merge based on the history of positions of

each letter.

Act = {1?a 31!a, 1?b 2!b, 2?b 32!b}

Act* : widx
Tree

algorithm

〈a*b*, ε, a*〉

〈b*, b*, a*b*〉

w = 〈a*b*, ε, ε, ε 〉 Add indices widx = 〈a1*b2*, ε, ε, ε 〉

Act = {1?a 3!a, 1?b 2!b, 2?b 3!b} w = 〈a*b*, ε, ε〉
Example

a*b*

ε

1

23
ε

Merge
shadows

〈a1*b2*, ε, a1*, ε〉

〈b2*, b2*, a1*, b2*〉

34

(Most) Related Work
Boigelot et al. [SAS’97]

– QDDs to represent channel contents.
– Automata-theoretic algorithms to compute limit languages

restricted to a single read, write, or conditional action.
– Semi-algorithms to compute sets of reachable states.

 We consider limit languages of subsets of read,write,
and conditional actions.

 For single channel systems, our new algorithm is
simpler.

 For multi-channel systems, we give the first explicit
algorithms.

Klarlund and Trefler [AVOCS’04]
– Decidability and recognizability results for piecewise FIFO

systems.

35

In Summary

Reachability problem in piecewise FIFO systems

eff.
piecewise

eff.
regular

exponential

eff.
piecewise

Star & Tree
exponential

Single Channel
Multi-channel

with
Acyclic CG

Multi-channel
limit

language complexitylimit
language complexity

Initial
Channel
Language

piecewise

regular non-
regular
[KT’04]

non-regular
[KT’04]

piecewise
[KT’04]

Questions?

THANK YOU FOR YOUR
ATTENTION!

