# TRACKING MUSES AND STRICT INCONSISTENT COVERS

Éric Grégoire

Bertrand Mazure

Cédric Piette

November 13, 2006



Formal Methods in Computer Aided Design (FMCAD'2006)

- **1** MUSES & INCONSISTENT COVERS
  - Definitions and properties
  - Motivations
- (A)OMUS: A MUS EXTRACTOR
  - Deciding which clauses belong to a MUS
  - Taking the neighborhood of the current interpretation into account
  - Algorithm and Experimental Results
- **3** COMPUTING ONE STRICT INCONSISTENT COVER
  - Algorithm and Experimental Results
- **1** CONCLUSIONS AND FUTURE WORK

- **1** MUSES & INCONSISTENT COVERS
  - Definitions and properties
  - Motivations
- (A)OMUS: A MUS EXTRACTOR
  - Deciding which clauses belong to a MUS
  - Taking the neighborhood of the current interpretation into account
  - Algorithm and Experimental Results
- **3** Computing one strict inconsistent cover
  - Algorithm and Experimental Results
- 4 CONCLUSIONS AND FUTURE WORK

# **DEFINITION:** CNF formula

#### We call:

- \* *literal*: propositional atom or its negation $(I, \neg I)$
- ★ *clause*: finite disjunction of literals  $(I_1 \lor I_2 \lor ... \lor I_n)$
- ★ CNF formula: finite conjunction of clauses  $(c_1 \land c_2 \land ... \land c_m)$

# **DEFINITION:** CNF formula

#### We call:

- \* *literal*: propositional atom or its negation $(I, \neg I)$
- \* *clause*: finite disjunction of literals  $(I_1 \vee I_2 \vee ... \vee I_n)$
- \* CNF formula: finite conjunction of clauses  $(c_1 \land c_2 \land ... \land c_m)$

# **DEFINITION:** Interpretation

- $\rightarrow$  Let  $\phi$  be a CNF formula. An *interpretation* is an application from  $Var(\phi)$  to  $\{0,1\}$ .
- $\rightarrow$  A *model* of  $\phi$  is an interpretation that satisfies  $\phi$ .

# **DEFINITION:** CNF formula

#### We call:

- \* *literal*: propositional atom or its negation $(I, \neg I)$
- \* *clause*: finite disjunction of literals  $(I_1 \vee I_2 \vee ... \vee I_n)$
- \* CNF formula: finite conjunction of clauses  $(c_1 \land c_2 \land ... \land c_m)$

# **DEFINITION:** Interpretation

- $\rightarrow$  Let  $\phi$  be a CNF formula. An *interpretation* is an application from Var( $\phi$ ) to  $\{0,1\}$ .
- $\rightarrow$  A *model* of  $\phi$  is an interpretation that satisfies  $\phi$ .

# **DEFINITION:** SAT

The <u>SAT</u> problem consists in deciding whether a CNF formula admits a model, or not. When a model exists, the CNF is said <u>satisfiable</u>, otherwise is said <u>unsatisfiable</u>.

# **DEFINITION:** CNF formula

#### We call:

- \* *literal*: propositional atom or its negation( $I, \neg I$ )
- \* *clause*: finite disjunction of literals  $(I_1 \vee I_2 \vee ... \vee I_n)$
- \* CNF formula: finite conjunction of clauses  $(c_1 \land c_2 \land ... \land c_m)$

# **DEFINITION:** Interpretation

- $\rightarrow$  Let  $\phi$  be a CNF formula. An *interpretation* is an application from Var( $\phi$ ) to  $\{0,1\}$ .
- $\rightarrow$  A *model* of  $\phi$  is an interpretation that satisfies  $\phi$ .

#### **DEFINITION: SAT**

The <u>SAT</u> problem consists in deciding whether a CNF formula admits a model, or not. When a model exists, the CNF is said <u>satisfiable</u>, otherwise is said <u>unsatisfiable</u>.

#### **PROPERTY**

If a CNF formula is unsatisfiable, then its exhibits at least one Minimal Unsatisfiable Subformula (MUS).

# **DEFINITION:** Minimal Unsatisfiable Subformula (MUS)

A Minimal Unsatisfiable Subformula or MUS K of a CNF formula  $\phi$  is a set of clauses s.t.

- $\star$   $K \subseteq \phi$
- \* K is unsatisfiable
- ⋆ Each proper subset of K is satisfiable

# **DEFINITION:** Minimal Unsatisfiable Subformula (MUS)

A Minimal Unsatisfiable Subformula or MUS K of a CNF formula  $\phi$  is a set of clauses s.t.

- $\star$   $K \subseteq \phi$
- \* K is unsatisfiable
- ★ Each proper subset of K is satisfiable

# **DEFINITION:** The set of MUSes

The set of MUSes is defined by:

$$KS_{\phi} = \{K \mid K \text{ is a MUS and } K \in \phi\}$$

# **DEFINITION:** Minimal Unsatisfiable Subformula (MUS)

A Minimal Unsatisfiable Subformula or MUS K of a CNF formula  $\phi$  is a set of clauses s.t.

- $\star$   $K \subseteq \phi$
- \* K is unsatisfiable
- ★ Each proper subset of K is satisfiable

# **DEFINITION:** The set of MUSes

The set of MUSes is defined by:

$$KS_{\phi} = \{K \mid K \text{ is a MUS and } K \in \phi\}$$

#### **DEFINITION:** Inconsistent cover

An inconsistent cover of a unsatisfiable CNF formula  $\phi$  is a subset of  $KS_{\phi}$  such that its removal restores the satisfiability of  $\phi$ .

A strict insconsistent cover is composed of independent MUSes.



# **EXAMPLE**



• MUSes: A, B, C, D, E



- MUSes: A, B, C, D, E
- The set of MUSes: {A, B, C, D, E}



- MUSes: A, B, C, D, E
- The set of MUSes: {A, B, C, D, E}
- Inconsistent covers: {A, B, C, E}



- MUSes: A, B, C, D, E
- The set of MUSes: {A, B, C, D, E}
- Inconsistent covers: {A, B, C, E}, {A, C, D}



- MUSes: A, B, C, D, E
- The set of MUSes: {A, B, C, D, E}
- Inconsistent covers: {A, B, C, E}, {A, C, D}, ...
- · Strict inconsistent covers:



- MUSes: A, B, C, D, E
- The set of MUSes: {A, B, C, D, E}
- Inconsistent covers: {A, B, C, E}, {A, C, D}, ...
- Strict inconsistent covers: {B, D, C}



- MUSes: A, B, C, D, E
- The set of MUSes: {A, B, C, D, E}
- Inconsistent covers: {A, B, C, E}, {A, C, D}, ...
- Strict inconsistent covers: {B, D, C}, {B, D, E}



- MUSes: A, B, C, D, E
- The set of MUSes: {A, B, C, D, E}
- Inconsistent covers: {A, B, C, E}, {A, C, D}, ...
- Strict inconsistent covers: {B, D, C}, {B, D, E}, {A, C}



- MUSes: A, B, C, D, E
- The set of MUSes: {A, B, C, D, E}
- Inconsistent covers: {A, B, C, E}, {A, C, D}, ...
- Strict inconsistent covers: {B, D, C}, {B, D, E}, {A, C}, {A, E}

#### **COROLLARY**

Let K be a MUS, and c be a clause.  $\forall c \in K$ ,  $K \setminus \{c\}$  is satisfiable.

#### **COROLLARY**

Let *K* be a MUS, and *c* be a clause.  $\forall c \in K$ ,  $K \setminus \{c\}$  is satisfiable.

#### **PROPERTY**

Let  $\phi$  be an inconsistent *n*-clauses CNF formula and  $SIC_{\phi}$  be a strict inconsistent cover of  $\phi$ . Then we have:

$$MaxSat(\phi) \leq n - |SIC_{\phi}|$$

#### **COROLLARY**

Let *K* be a MUS, and *c* be a clause.  $\forall c \in K$ ,  $K \setminus \{c\}$  is satisfiable.

#### **PROPERTY**

Let  $\phi$  be an inconsistent *n*-clauses CNF formula and  $SIC_{\phi}$  be a strict inconsistent cover of  $\phi$ . Then we have:

$$MaxSat(\phi) \leq n - |SIC_{\phi}|$$

#### RELATION BETWEEN MAXSAT AND MUSES

Let  $\omega$  be an optimal interpretation for MaxSat, any falsified clause w.r.t.  $\omega$  belongs to at least one MUS of the CNF formula.

- A MUS represents one smallest explanation for the inconsistency (certificate)
- It can help in finding new technics for SAT practical resolution
- It can provide a way to restore satisfiability
- Lots of potential applications (VLSI correctness checking, non-monotonic logics, etc.)

- A MUS represents one smallest explanation for the inconsistency (certificate)
- It can help in finding new technics for SAT practical resolution
- It can provide a way to restore satisfiability
- Lots of potential applications (VLSI correctness checking, non-monotonic logics, etc.)

- A MUS represents one smallest explanation for the inconsistency (certificate)
- It can help in finding new technics for SAT practical resolution
- It can provide a way to restore satisfiability
- Lots of potential applications (VLSI correctness checking, non-monotonic logics, etc.)

- A MUS represents one smallest explanation for the inconsistency (certificate)
- It can help in finding new technics for SAT practical resolution
- It can provide a way to restore satisfiability
- Lots of potential applications (VLSI correctness checking, non-monotonic logics, etc.)

- A MUS represents one smallest explanation for the inconsistency (certificate)
- It can help in finding new technics for SAT practical resolution
- It can provide a way to restore satisfiability
- Lots of potential applications (VLSI correctness checking, non-monotonic logics, etc.)

- A MUS represents one smallest explanation for the inconsistency (certificate)
- It can help in finding new technics for SAT practical resolution
- It can provide a way to restore satisfiability
- Lots of potential applications (VLSI correctness checking, non-monotonic logics, etc.)

- A MUS represents one smallest explanation for the inconsistency (certificate)
- It can help in finding new technics for SAT practical resolution
- It can provide a way to restore satisfiability
- Lots of potential applications (VLSI correctness checking, non-monotonic logics, etc.)

#### **COMPLEXITY**

- Deciding whether a CNF formula is a MUS or not is **DP-complete** [Papadimitriou & Wolfe 85]
- Deciding whether a CNF formula belongs to the set of MUSes or not is in  $\Sigma_2^p$

[Eiter & Gottlob 92]

- **1** MUSES & INCONSISTENT COVERS
  - Definitions and properties
  - Motivations
- (A)OMUS: A MUS EXTRACTOR
  - Deciding which clauses belong to a MUS
  - Taking the neighborhood of the current interpretation into account
  - Algorithm and Experimental Results
- COMPUTING ONE STRICT INCONSISTENT COVER
  - Algorithm and Experimental Results
- **4** Conclusions and future work

# PROPERTY [MAZURE-SAIS-GRÉGOIRE 97]

Let  $\phi$  be a CNF formula, K a MUS of  $\phi$ , and c a clause. For all interpretations  $\omega$ ,  $\exists c \in K$  s.t.  $\omega \nvDash c$ 

# PROPERTY [MAZURE-SAIS-GRÉGOIRE 97]

Let  $\phi$  be a CNF formula, K a MUS of  $\phi$ , and c a clause. For all interpretations  $\omega$ ,  $\exists c \in K$  s.t.  $\omega \nvDash c$ 

#### CANDIDATE HEURISTIC

During a local search run, the most often falsified clauses belong to MUSes.

# Property [Mazure-Sais-Grégoire 97]

Let  $\phi$  be a CNF formula, K a MUS of  $\phi$ , and c a clause.

For all interpretations  $\omega$ ,  $\exists c \in K$  s.t.  $\omega \nvDash c$ 

#### CANDIDATE HEURISTIC

During a local search run, the most often falsified clauses belong to MUSes.

Problem: Some clauses can be often falsified without belonging to MUSes.

# PROPERTY [MAZURE-SAIS-GRÉGOIRE 97]

Let  $\phi$  be a CNF formula, K a MUS of  $\phi$ , and c a clause.

For all interpretations  $\omega$ ,  $\exists c \in K$  s.t.  $\omega \nvDash c$ 

#### CANDIDATE HEURISTIC

During a local search run, the most often falsified clauses belong to MUSes.

Problem: Some clauses can be often falsified without belonging to MUSes.

⇒ A more discriminating criterion is needed to identify clauses of MUSes.

# TAKING THE NEIGHBORHOOD OF THE CURRENT INTERPRETATION INTO ACCOUNT

#### **Definition:** once-satisfied clause

A clause c is said once-satisfied clause w.r.t. an interpretation  $\omega$  iff  $\omega$  satisfies exactly one literal of c.

#### **Definition:** critical clause

A clause c falsified w.r.t. an interpretation  $\omega$  is said critical iff the opposite of each literal of c appears in at least one once-satisfied clause.

These once-satisfied clauses are said linked to the critical clause c

$$(a \lor b \lor c) \leftarrow \\ \land (\neg b \lor e) \\ \land (\neg a \lor b \lor c) \leftarrow \\ \land (\neg a \lor \neg b) \leftarrow \\ \land (a \lor d) \\ \land (b \lor \neg c) \leftarrow \\ \land (\neg d \lor e) \\ \land (a \lor \neg b) \leftarrow \\ \land (\neg e \lor \neg f)$$

$$\omega = \{ \neg a, \neg b, c, d, e, f \}$$

$$(a \lor b \lor c) \leftarrow \\ \land (\neg b \lor e) \\ \land (\neg a \lor b \lor c) \leftarrow \\ \land (\neg a \lor \neg b) \leftarrow \\ \land (a \lor d) \\ \land (b \lor \neg c) \leftarrow \\ \land (\neg d \lor e) \\ \land (a \lor \neg b) \leftarrow \\ \land (\neg e \lor \neg f)$$

$$\omega = \{ \neg a, \neg b, c, d, e, f \}$$

### **PROPERTY**

Let c be a critical clause w.r.t. an interpretation  $\omega$ .

Any flip on  $\omega$  in order to satisfy c leads to falsify another clause previously satisfied w.r.t.  $\omega$ .

$$(a \lor b \lor c) \leftarrow \\ \land (\neg b \lor e) \\ \land (\neg a \lor b \lor c) \leftarrow \\ \land (\neg a \lor \neg b) \leftarrow \\ \land (a \lor d) \\ \land (b \lor \neg c) \leftarrow \\ \land (\neg d \lor e) \\ \land (a \lor \neg b) \leftarrow \\ \land (\neg e \lor \neg f)$$

$$\omega = \{ \neg a, \neg b, c, d, e, f \}$$

### PROPOSED HEURISTIC

Performing a local search that counts for each clause the number of times it has been critical.

Let K be a MUS, and c be a clause s.t.  $c \in K$ 

Let K be a MUS, and c be a clause s.t.  $c \in K$   $\Downarrow$   $K \setminus \{c\}$  is SAT. Let  $\omega$  be a model of  $K \setminus \{c\}$ 

Let K be a MUS, and c be a clause s.t.  $c \in K$   $\Downarrow$   $K \backslash \{c\}$  is SAT. Let  $\omega$  be a model of  $K \backslash \{c\}$   $\Downarrow$   $\omega \nvDash c$ 

Let 
$$K$$
 be a MUS, and  $c$  be a clause s.t.  $c \in K$   $\Downarrow$   $K \setminus \{c\}$  is SAT.

Let  $\omega$  be a model of  $K \setminus \{c\}$   $\Downarrow$   $\omega \nvDash c$   $\Downarrow$  Let  $\omega'$  s.t.  $d_H(\omega, \omega') = 1$  and  $\omega' \vDash c$ 

Let 
$$K$$
 be a MUS, and  $c$  be a clause s.t.  $c \in K$   $\Downarrow$   $K \setminus \{c\}$  is SAT.

Let  $\omega$  be a model of  $K \setminus \{c\}$   $\Downarrow$   $\omega \nvDash c$   $\Downarrow$  Let  $\omega'$  s.t.  $d_H(\omega, \omega') = 1$  and  $\omega' \vDash c$   $\Downarrow$   $\exists c' \in K$  s.t.  $\omega' \nvDash c'$ 

Let 
$$K$$
 be a MUS, and  $c$  be a clause s.t.  $c \in K$   $\Downarrow$   $K \setminus \{c\}$  is SAT.

Let  $\omega$  be a model of  $K \setminus \{c\}$   $\Downarrow$   $\omega \nvDash c$   $\Downarrow$  Let  $\omega'$  s.t.  $d_H(\omega, \omega') = 1$  and  $\omega' \vDash c$   $\Downarrow$   $\exists c' \in K$  s.t.  $\omega' \nvDash c'$   $\Downarrow$ 

Let 
$$K$$
 be a MUS, and  $c$  be a clause s.t.  $c \in K$   $\Downarrow$   $K \setminus \{c\}$  is SAT.

Let  $\omega$  be a model of  $K \setminus \{c\}$   $\Downarrow$   $\omega \nvDash c$   $\Downarrow$  Let  $\omega'$  s.t.  $d_H(\omega, \omega') = 1$  and  $\omega' \vDash c$   $\Downarrow$   $\exists c' \in K$  s.t.  $\omega' \nvDash c'$   $\Downarrow$ 

Then, we have c is critical (w.r.t.  $\omega$ )

### **PROPERTY**

For each clause c in a MUS, there exists an interpretation  $\omega$  s.t. c is critical.

#### **PROPERTY**

For each clause c in a MUS, there exists an interpretation  $\omega$  s.t. c is critical.

# EXTENSION OF THE RELATIONSHIP BETWEEN MAXSAT AND MUSes

Let  $\omega$  be an optimal interpretation for MaxSat, any falsified clause c w.r.t.  $\omega$ :

- belongs to at least one MUS of the CNF formula
- is critical w.r.t.  $\omega$
- at least one once-satified clause linked to c belongs to the same MUS

# (A) OMUS ALGORITHM

```
Function (A) OMUS (\phi: CNF formula) : CNF formula
       stack = \emptyset:
      While ((LS+score(\phi) does not find a model of \phi)) do
            push(\phi);
            \phi \leftarrow \phi - \phi_{\mathsf{LowestScore}};
      done
      Repeat
            \phi = pop();
      until (UNSAT(\phi))
       [For OMUS]
      Fine-Tune (\phi);
      Return \phi;
End
```

# **EXPERIMENTAL RESULTS**

| Instance         | zCore [Zhang | [Lynce &   | [Bruni 03] 1 | AOMUS               | AOMUS      |
|------------------|--------------|------------|--------------|---------------------|------------|
|                  | & Malik 03]  | MSilva 04] |              | (falsified clauses) |            |
| aim-50-2_0-no-2  | 30 (1,88)    | 30 (0,90)  | 31           | 30 (1,79)           | 30 (2,61)  |
| aim-50-2_0-no-4  | 21 (1,29)    | 21 (3,49)  | 21           | 21 (2,97)           | 21 (2,85)  |
| aim-100-1_6-no-1 | 47 (1,45)    | 47 (284)   | 47           | 47 (2,62)           | 47 (2,67)  |
| aim-100-1_6-no-2 | 54 (1,12)    | 53 (224)   | 54           | 53 (2,37)           | 53 (2,82)  |
| aim-100-1_6-no-3 | 57 (1,23)    | time out   | 57           | 57 (1,87)           | 57 (3,20)  |
| aim-100-1_6-no-4 | 48 (0,95)    | 48 (241)   | 48           | 48 (1,86)           | 48 (2,84)  |
| aim-200-1_6-no-2 | 81 (1,52)    | time out   | 82           | 80 (1,79)           | 80 (2,94)  |
| jnh11            | 121 (2,46)   | time out   | 129          | 225 (13)            | 167 (29)   |
| jnh13            | 57 (1,90)    | time out   | 106          | 90 (41)             | 66 (77)    |
| jnh14            | 91 (1,85)    | time out   | 124          | 111 (45)            | 90 (89)    |
| jnh2             | 45 (1,95)    | time out   | 60           | 117 (56)            | 74 (50)    |
| jnh5             | 86 (1,79)    | time out   | 125          | 143 (39)            | 114 (61)   |
| jnh8             | 90 (2,28)    | time out   | 91           | 118 (65)            | 76 (102)   |
| fpga10_11_uns    | 561 (27)     | time out   | -            | 565 (15)            | 561 (26)   |
| fpga10_12_uns    | 672 (65)     | time out   | -            | 568 (66)            | 561 (57)   |
| homer10.shuffled | 940 (624)    | time out   | -            | 518 (818)           | 415 (496)  |
| homer11.shuffled | 561 (25)     | time out   | -            | 564 (16)            | 561 (26)   |
| homer14.shuffled | 1065 (714)   | time out   | -            | 561 (536)           | 561 (449)  |
| homer15.shuffled | time out     | time out   | -            | 677 (1299)          | 561 (1104) |

<sup>&</sup>lt;sup>1</sup>extracted from [Bruni 03]

- **1** MUSES & INCONSISTENT COVERS
  - Definitions and properties
  - Motivations
- (A)OMUS: A MUS EXTRACTOR
  - Deciding which clauses belong to a MUS
  - Taking the neighborhood of the current interpretation into account
  - Algorithm and Experimental Results
- **3** Computing one strict inconsistent cover
  - Algorithm and Experimental Results
- 4 CONCLUSIONS AND FUTURE WORK

- Goal:
  - delivering the source(s) of inconsistency
  - helping in satisfiability restoring

- Goal:
  - delivering the source(s) of inconsistency
  - helping in satisfiability restoring
- Is computing all MUSes of the formula tractable ?

- Goal:
  - delivering the source(s) of inconsistency
  - helping in satisfiability restoring
- Is computing all MUSes of the formula tractable ?
- **Problem**: A *n*-clauses formula can exhibit  $C_n^{n/2}$  MUSes in the worst case

- Goal:
  - delivering the source(s) of inconsistency
  - helping in satisfiability restoring
- Is computing all MUSes of the formula tractable ?
- **Problem**: A *n*-clauses formula can exhibit  $C_n^{n/2}$  MUSes in the worst case

- Goal :
  - delivering the source(s) of inconsistency
  - helping in satisfiability restoring
- Is computing all MUSes of the formula tractable ?
- **Problem**: A *n*-clauses formula can exhibit  $C_n^{n/2}$  MUSes in the worst case
- We need to compute independent causes of unsatisfiability ⇒ concept of Strict Inconsistent Cover

## ICMUS ALGORITHM

```
Function ICMUS(\phi: CNF formula) : a strict Inconsistent Cover |C \leftarrow \emptyset|; While ((\Sigma is unsatisfiable)) do |MUS \leftarrow \text{OMUS}(\Sigma)|; |C \leftarrow C \cup MUS|; |\Sigma \leftarrow \Sigma \setminus MUS|; done return |C|; End
```

Algorithm 1: ICMUS algorithm

# EXPERIMENTAL RESULTS

TABLE: Inconsistent covers for various classes of formulas

| Instance          | #var | #cla  | Time | #MUS | Ses in the IC           | _ |
|-------------------|------|-------|------|------|-------------------------|---|
| dp02u01           | 213  | 376   | 1.19 | 1    | (47,51)                 |   |
| dp03u02           | 478  | 1007  | 362  | 1    | (327,760)               |   |
| fpga10_11_uns_rcr | 220  | 1122  | 56   | 2    | (110,561) (110,561)     |   |
| fpga11_12_uns_rcr | 264  | 1476  | 128  | 2    | (132,738) (132,738)     |   |
| ca002             | 26   | 70    | 0.61 | 1    | (20,39)                 |   |
| ca004             | 60   | 168   | 1.11 | 1    | (49,108)                |   |
| ca008             | 130  | 370   | 5.26 | 1    | (110,255)               |   |
| term1_gr_rcs_w3   | 606  | 2518  | 6180 | 11   | (12,22) (21,33)         |   |
|                   |      |       |      |      | (30,58) (12,22) (12,22) |   |
|                   |      |       |      |      | (12,22) (12,22) (12,22) |   |
|                   |      |       |      |      | (12,22) (24,39) (21,33) |   |
| C220_FV_RZ_14     | 1728 | 4508  | 28   | 1    | (10,14)                 |   |
| C220_FV_RZ_13     | 1728 | 4508  | 46   | 1    | (9,13)                  |   |
| C170_FR_SZ_96     | 1659 | 4955  | 18   | 1    | (81,233)                |   |
| C208_FA_SZ_121    | 1608 | 5278  | 21   | 1    | (18,32)                 |   |
| C168_FW_UT_851    | 1909 | 7491  | 83   | 1    | (7,9)                   |   |
| C202_FW_UT_2814   | 2038 | 11352 | 304  | 1    | (15,18)                 |   |
| jnh208            | 100  | 800   | 14   | 1    | (76,119)                |   |
| jnh302            | 100  | 900   | 63   | 2    | (27,28) (98,208)        |   |
| jnh310            | 100  | 900   | 184  | 2    | (12,13) (90,188)        |   |
| 3col40_5_3        | 80   | 346   | 4.64 | 1    | (64,136)                |   |
| fphp-012-010      | 120  | 1212  | 57   | 1    | (120,670)               |   |

- 1 MUSES & INCONSISTENT COVERS
  - Definitions and properties
  - Motivations
- (A)OMUS: A MUS EXTRACTOR
  - Deciding which clauses belong to a MUS
  - Taking the neighborhood of the current interpretation into account
  - Algorithm and Experimental Results
- 3 Computing one strict inconsistent cover
  - Algorithm and Experimental Results
- 4 CONCLUSIONS AND FUTURE WORK

### CONCLUSIONS AND FUTURE WORK

### **CONTRIBUTIONS**

Theoretical and practical applications of the new notion of critical clause

- **Theoretical:** For each clause belonging to a MUS, there exists an interpretation s.t. it can be critical.
- Practical: Exploitation of this property in order to extract:
  - An approximation or an exact MUS
  - An inconsistent cover

## CONCLUSIONS AND FUTURE WORK

### **CONTRIBUTIONS**

Theoretical and practical applications of the new notion of critical clause

- Theoretical: For each clause belonging to a MUS, there exists an interpretation s.t. it can be critical.
- Practical: Exploitation of this property in order to extract:
  - An approximation or an exact MUS
  - An inconsistent cover

### **FUTURE WORK**

- Specific treatment of long clauses
- Certificates for:
  - The smallest inconsistent cover(s)
  - The set of MUSes
- Apply this work for MaxSAT practical resolution.
- ...