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Multi-Core model checking

• Multi-Core has become the dominant trend
– No More Moore

• To leverage this change:
– Extend logic model checking algorithms

• Not targeting special purpose hardware (clusters), but desktops

• This means: multi-core & shared memory

• Should be possible to get automatic scaling of performance with 
a growing number of cores

– Support all verification & storage modes in Spin

• Safety & Liveness (including LTL, up to ω-regular properties)

• Bitstate hashing, hashcompact, exhaustive storage, etc.

• Partial order reduction should work the same

• A potential hurdle: distributed model checking algorithms
– Have been studied for many years

• Mostly targeting compute clusters – few target shared memory

• Mostly restricting to Safety properties – no good solutions for 
Liveness

• Results often incomparable – few benchmarks

dual-core

Spin verification
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what can we hope to achieve

design tradeoffs
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Slow mc: 50

200
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transfer a state 

to another CPU
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state & check if 

it is previously 

visited

Multi-Core PC

(Shared 

memory)

Model Checker 

Performance:

600 µsecRAM to 

network port

3 µsecRAM to RAM 

(memcpy)

copying

10 Kb

CPU 

Performance:

relevant factors
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what can we hope to achieve
speedup with increasing amounts of decoupling

Speedup as function of Independence
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hypothesis 2:

multi-core platforms realize performance gains

more easily than cluster computer systems

(a 10-core PC may realize better performance

than a 100-cpu cluster)

hypothesis 1:

unoptimized implementations will benefit more 

than optimized implementations of model 

checkers
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basic framework
multi-core model checking, with shared memory

transfer

state

queue

optional:

non-shared

state space

local

data

shared

state space

in RAM

Multiple CPU nodes

• At selected points in the search, a CPU 

can hand off a state to another CPU, by 

adding it to the target’s work queue

•Using algorithms for locking access to 

shared data, and for distributed termination 

detection (verifiable with standard Spin.)

•The state space arena can be shared 

(default) or non-shared (optional)

• A Spin extension for dual-core

• ~ 900 lines of new code, supporting all 

relevant verification modes including LTL, 

compatible with partial order reduction – no

increase in computational complexity

• The dual-core algorithm for safety

properties scales to N-core systems –

verification of liveness properties so far 

benefits only dual-core (i.e., it is an open 
problem to do liveness verification on N-cores 

without increase in computational complexity)

all shared work queues are bounded

(they serve to achieve load balancing –

when full, state handoffs can be skipped)
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sample output of a dual-core Spin run
$ spin –a petersonN
$ cc -DNOREDUCE -DDUAL_CORE-o pan pan.c
$ ./pan –z10000 –w27
states stored  cpu1   308054 cpu2   106219 ratio:  2.9
states matched cpu1    90618 cpu2    43409 ratio:  2.1
( Spin Version 4.3.0 -- 8 October 2006)

+ Dual Core Processing
+ Partial Order Reduction

Hash-Compact 4 search for:
never claim             - (none specified)
assertion violations    +
cycle checks            - (disabled by -DSAFETY)
invalid end states      +

State-vector 44 byte, depth reached 10000, errors: 0
414273 states, stored
134027 states, matched
548300 transitions (= stored+matched)

0 atomic steps
hash conflicts: 145 (resolved)

Stats on memory usage (in Megabytes):
23.199  equivalent memory usage for states (stored*(State-vector + overhead))
10.045  actual memory usage for states (compression: 43.30%)

State-vector as stored = 12 byte + 12 byte overhead
1073.742        memory used for hash table (-w27)
1296.000        memory used for DFS stack (-m27000000)
1024.000        memory used for shared work-queues
1073.741        other (proc and chan stacks)
3453.529        total actual memory usage

unreached in proctype user
line 57, state 30, "-end-"
(1 of 30 states)

cpu1: done, 706 Mb of shared state memory left

transfer

state

queues

106,219 states

explored

8,184 states

transferred

from cpu1 to

cpu2

1,973 states

transferred

from cpu2 to

cpu1

shared

state space

cpu2

308,054 states

explored

local

data

cpu1

local

data

poor load balancing

in this case
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state handoff heuristics for liveness properties

• any “irreversible transition” in the 
state reachability graph can serve 
to split the state space

– separates state space into 
disjoint parts

– these transitions can be used to 
define state handoff points

• trivial application to Spin’s nested 
depth-first search algorithm for 
proving liveness:

– the handoff point is the start of 
the nested search

– state spaces can be non-shared 
(since they are disjoint anyway)

– should give an immediate (nearly) 
2-fold speedup on dual-core 
systems for all liveness properties

cpu1

cpu2

for an irreversible transition there

are no return edges across the

handoff point: the two parts of the

state reachability graph are disjoint

initial state
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state handoff heuristics for safety properties

• what if there is no suitable irreversible 

transition?

• we want to achieve:

– load balancing, but retain the benefits of 

depth-first search and change as little as 

possible in the search algorithms in Spin

– sufficient decoupling of cpu’s (a cpu should 

be able to do at least N steps with a newly 

received state, before it hands it off again)

• heuristic used: a handoff depth of modulo 

N steps (e.g., N: 10..1000)

– method is intuitively simple

– giving user control over load-balancing

• generalizes to N-core systems

– should give near N-fold speedups on N 

cores

cpu1

cpu2

cpu1

cpu1

cpu2

N

2N

3N

4N

using a shared hash-table

each cpu builds a dfs-stack of

N steps and then hands off any

successor at level N+1
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performance of this method

Liveness Property  -- without partial order reduction

Leader Election Protocol -- 7 Nodes
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sensitivity to the chosen handoff depth
the characteristic bathtub curve

Peterson's Algorithm N=4

MaxDepth SearchTree 2,770,018
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distributed termination detection
/* cf. EWD998 "Shmuel Safra's version of termination detection," 15 Jan. 1987. */

mtype = { Query, Quit, Work };

chan q[2] = [32] of { mtype, byte };

active [2] proctype N()
{ bool done = false;

byte s, r, n;

assert (_pid == 0 || _pid == 1);
q[1 - _pid]!Work,0; s++; /* seed work items */

accept: do /* the algorithm itself: */
:: q[_pid]?Work,0 -> r++;

if
:: (n < 16) -> q[1 - _pid]!Work,0; s++
:: true
fi

:: empty(q[0]) && !done && _pid == 0 -> /* only node 0 can initiate termination */
done = true; /* remember that we sent the Query msg */
q[1]!Query,s

:: q[_pid]?Quit,0 -> /* only node 1 receives this */
assert (_pid == 1);
break /* node 1 can now terminate */

:: q[_pid]?Query,n ->
if
:: _pid == 1 -> q[0]!Query,r /* respond to termination query from 0 */
:: _pid == 0 -> /* process response to our termination query */

if
:: n == s -> q[1]!Quit,0; break /* accepted; node 0 terminates */
:: else -> done = false /* try again */

fi fi
od;
assert (empty(q[_pid]))

}
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Peterson’s mutual exclusion algorithm (1981)

bool turn, flag[2];

byte ncrit;

active [2] proctype user() /* two processes */

{   assert(_pid == 0 || _pid == 1);

do /* do forever */

::   flag[_pid] = 1; turn = _pid;

do /* wait */

:: flag[1 - _pid] != 0 ->

if

:: turn != 1 - _pid

:: else -> break

fi

:: else -> break

od;

ncrit++; 

assert(ncrit == 1); /* in critical section */

ncrit--;

flag[_pid] = 0

od

}

Surprise: a straight C implementation does not

necessarily guarantee mutual exclusion.

A reference implementation in C on a 3.2 GHz

dual-core Intel Pentium D – reveals a low

probability of mutex violations… (~ 1 in 106).

It is caused by out of order execution optimization

in the chip itself (not visible in the assembly code).

peterson.c:

#define MB() __asm__ __volatile__ ( "mfence" : : : "memory")

MB();

while (*sh_flag1 == 1 && *sh_turn == 1)

{ MB();

}

a fix: add memory barriers
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the alternative….

int

tas(volatile int *s)

{   int r;

__asm__ __volatile__(

"xchgl %0, %1 \n\t"

: "=r"(r), "=m"(*s)

: "0"(1), "m"(*s)

: "memory");

return r;

}

Ugly, but it works, and is fast

Introduces a first platform dependency:

different definition of the test&set

instruction for each CPU-type

(luckily there aren’t many different

CPU types in use today)
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adding partial order reduction
the cycle proviso

• to avoid infinite deferral of transitions 
(the infamous ignoring problem) the 
standard algorithm checks if any 
successors are on the dfs stack (the 
“cycle proviso”)

• but we don’t have a full dfs stack in 
multi-core searches – the stack is split 
across two or more cpus

• two modifications of the cycle proviso 
are sufficient to restore soundness and 
completeness: *)

1. a full expansion of successor states is 
done for each ‘border state’ (since we 
cannot tell if the handed off states are on 
the stack)

2. previously visited states that are 
generated by any cpu with a lower pid, 
are treated as if they are on the dfs stack

• the cycle proviso works as before 
elsewhere in the search  

cpu1

cpu2

cpu1

cpu1

cpu2

N

2N

3N

4N

full expansion at all border states

*) formal proof courtesy Dragan Bosnacki



FMCAD2006 17

dining philosphers
with and without partial order reduction

Dining Philosphers N=9

with Partial Order Reduction Enabled
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another example: Peterson’s algorithm
with and without partial order reduction (logscales)
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a reference model

#define BranchSize 8

#define StateSize 500

#define TransTime 9 /*  9 = 1 usec ; 13 = 16 usec */

#define NStates 500000

int count;

byte filler[StateSize];

active [BranchSize] proctype test()

{

end: do

:: d_step {

count < NStates ->

c_code {

int xi; /* transition delay */

for (xi = 0; xi < (1<<TransTime); xi++)

{ now.filler[xi%StateSize] += xi%256; 

}

memset(now.filler, 0, StateSize*sizeof(char));

};

count++

}

od

}

study effect of:

branch factor

state size

transition time
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Reference Model
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synopsis

• multi-core algorithms do best for verification 
problems with:
– larger state sizes (over 100 bytes)

– larger branch factors (lots of non-determinism)

– long transition delays (e.g., embedded C-code)

• they give no performance improvement for:
– small state sizes (less than 100 bytes)

– small branch factors (less than 2)

– short transition delays (less than 1 µsec)

• there are cases where a multi-core model 
checking algorithm cannot compete with a 
well-tuned single-core model checker

– e.g., deterministic, models – irrespective of 
state space size or number of CPU cores…

– search and compilation optimization can reduce 
the benefit of multi-core model checking (i.e., 
they benefit single-core algorithms)

– specifically: partial order reduction methods 
reduce the benefit of distributed model checking

• next challenge: is there an efficient (N>2)-core 
liveness verification algorithm….?

dual-core

model checking


