An Integration of HOL and ACL2

Mike Gordon, Warren A. Hunt, Jr., Matt Kaufmann, James Reynolds

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



An Integration of HOL and ACL2

Mike Gordon, Warren A. Hunt, Jr., Matt Kaufmann, James Reynolds

Higher-order logic

[
proof in HOL4
Y

First-order ACL2 logic in HOL

A

: trusted code

i translating

: ML and LISP
S-expressions

v

ACL2 input file

1
proof in ACL2

A

Optimised ACL2 specification

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



HOL and ACL2

@ Higher order logic (HOL) can express pretty much anything

o traditional textbook denotational semantics needs higher
order functions
@ arbitrary mathematics
@ classical analysis (e.g. measure theory)
@ infinite stream processing (e.g. Cryptol semantics)

@ ACL2 is a programming language and a theorem prover

@ ACL2 logic terms = Common Lisp programs
o theorem prover for first order logic (FOL) + induction
@ high assurance + fast execution + strong proof automation

@ Some projects committed to HOL, others to ACL2

@ Cambridge ARM project committed to HOL
@ Rockwell-Collins AAMP7 committed to ACL2
@ Galois SHADE project uses both HOL and ACL2

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



Motivating examples for linking HOL and ACL2

® ACL2 as a HOL simulation engine

@ translate HOL specifications into first-order ACL2
@ export ACL2-in-HOL to ACL2 system
@ run on ground data using ACL2 stobj-execution

@ Validate the Galois Connections Cryptol-to-ACL2 compiler

@ Cryptol semantics easier in HOL than in ACL2
@ Galois SHADE tool translates Cryptol to AAMP7 via ACL2
@ validate SHADE compilation of D by HOL proof of

F CryptolSemantics(D) = Acl2ToHol (SHADE (D))

® Use HOL measure theory to validate ACL2 primality test

@ Miller-Rabin test easy to code in ACL2, but hard to specify
@ HOL has a library supporting measure theory (Hurd)
@ validate ACL2 checker against HOL measure theory spec

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



Talk emphasizes automatic encoding/decoding tools

@ ACL2 Workshop paper provides background, motivation,
and a simple overview

@ ACL2 2006 Proceedings contain technical details
@ emphasizes low level logical issues

@ This paper is:

@ more comprehensive
@ emphasizes automatic encoding/decoding tools in HOL

@ Code and examples in SourceForge repository for HOL4

| http://hol.cvs.sourceforge.net/hol/hol98/examples/acl2/ |

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)


http://hol.cvs.sourceforge.net/hol/hol98/examples/acl2/

Previous work

@ PM (Proof Manager) by Fink, Archer and Yang (UC Davis)

@ low emphasis on logical issues
@ main effort on unified Ul for various provers

@ ACL2PII by Staples

@ uses Prosper Integration Interface (PII)

@ more emphasis on logic issues than PM

@ tricky translation from HOL to FOL by ML scripts
@ used by Susanto to run his unverified ARM model

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



Requirements of current work

@ Believable soundness story
@ earlier attempt not accepted by ACL2 community

@ Handle big examples robustly
@ run software on Fox’s verified ARM6 model

@ Ease of use
@ value can be realized with only minimal knowledge of ACL2

@ Compatible with Isabelle/HOL
@ Galois (Matthews) uses Isabelle/HOL for Cryptol semantics

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



Our approach: HOL theory SEXP of ACL2 logic

Higher-order logic

A
proof in HOL4

\ 4

First-order ACL2 logic in HOL

A

* trusted code

: translating

: ML and LISP

: S-expressions

A 4

ACL2 input file

A
proof in ACL2

A\ 4

Optimised ACL2 specification

Gordon, Hunt, Kaufmann, Reynolds

@ Machine verified translation
between higher order logic
and first order SEXP theory

@ Clean translations between
HOL/SEXP and ACL2

@ ML tool writes HOL/SEXP to
ACL2 input files

@ LISP tool writes ACL2 to
HOL/SEXP input files

@ Machine verified translation
between expanded ACL2 and
conventional style ACL2

An Integration of HOL and ACL2 (FMCAD 2006)



ACL2: programming language or logic?

| (EQUAL (+ (x X Y) 2) (* X (¥ Y 2)))]

[ASSOCIATIVITY-OF-x from ACL2 file axioms.1lisp]

@ An expression in Lisp?

valid because if X,y and z are replaced by any
numbers, then the resulting instance of the axiom will
evaluate to t in Lisp

@ A formula of first order logic?

defines what it means for evaluation to be correct: it is
a partial semantics of Lisp evaluation

@ Second approach adopted:

axioms.1isp defines the ACL2 logic

differences between this and Lisp behaviour
(when there are no guard violations) viewed as
bugs in Lisp, not in the ACL2 axioms.

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



ACL2 inside HOL (1)

@ First, a datatype of S-expressions in higher order logic

type abbrev ("packagename",
type abbrev ("name",

Hol datatype
‘sexp

ACL2 .
ACL2

= ACL2_
| ACL2
| ACL2
|
|

SYMBOL of
STRING of
CHARACTER of
NUMBER of

PAIR of

“:string“)
“:string"“)

packagename => name
string

char

complex rational
sexp => sexp'

@ Similar to Staples’ ML definition, but inside the HOL logic

® complex rational built from rationals (Jens Brandt)

Gordon, Hunt, Kaufmann, Reynolds

An Integration of HOL and ACL2 (FMCAD 2006)



ACL2 inside HOL (2)

@ Overloading used to manage ACL2 names
® acl2Define "acl2Name" ‘holName ...:
@ constant acl2Name defined, then overloaded on holName

@ full ACL2 names simplify SEXP<—ACL2 correspondence

@ Simple examples: overload sym on ACL2 SYMBOL, then:

acl2Define "COMMON-LISP::NIL"
‘nil = sym "COMMON-LISP" "NIL"®

acl2Define "COMMON-LISP::T"
‘t = sym "COMMON-LISP" "T"*

acl2Define "COMMON-LISP: :EQUAL"
‘equal x y = if x = y then t else nil®

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



ACL2 inside HOL (3)

@ More examples: overload cons on ACL2_ PAIR, then:

acl2Define "COMMON-LISP: :CAR"
‘(car(cons x ) = x) A (car _ = nil)"®

acl2Define "COMMON-LISP: :CDR"

‘(cdr(cons _ y) =vy) A (cdr = nil)*
acl2Define "COMMON-LISP::IF"
‘ite x y z = 1if x = nil then z else y°

@ 31 ACL2 primitives:

acl2-numberp bad-atom<= binary-+ binary-+ unary-- unary-/ < car cdr char-code
characterp code-char complex complex-rationalp coerce cons consp denominator
equal if imagpart integerp intern-in-package-of-symbol numerator pkg-witness

rationalp realpart stringp symbol-name symbol-package-name symbolp

@ All these ACL2 primitives have been defined in HOL

@ Some tricky to get right (e.g. symbolp) — see companion
paper!

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



Proving the ACL2 axioms in HOL

@ S-expression p corresponds to formula - (p = nil)
@ sodefine: (Ep) = —(p = nil)

@ Note that 1 is a theorem of ACL2: - =1

® Some ACL2 axioms are trivial to prove
F Vx y. F equal (car(cons x y)) x

F Vx y. | equal (cdr(cons x y)) y

@ Others are harder

@ may just be hard (e.g. validity of p-induction)
@ or have lots of fiddly details

@ 78 axioms: we recently finished the proofs!

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



Coding HOL values as S-expressions

Universe of HOL types

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



Simple example (type encoding)

@ A simple HOL type definition:

Hol datatype ‘colour = R | B

@ The following theorems are generated automatically

I encode colour ¢ = case ¢ of R -=> nat 0 | B -> nat 1

-

decode_colour x =
if x = nat 0 then R else if x = nat 1 then B else ARB

colourp x = ite (equal (nat 0) x) t (equal (nat 1) x)

decode_colour(encode_colour x) = X

-
-
F (FE colourp x) ==> (encode_colour(decode colour x) =X)
F E colourp(encode colour x)

-

I=f(case a of R -> C0 | B -> Cl1) =
ite (equal(encode_colour a)(nat0)) (£C0) (£C1)

@ Can handle recursive datatypes (e.g. red-black trees)

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



Simple example (function encoding)

@ From a HOL function definition:
F (flip colour R = B) A (flip colour B = R)

@ The following are generated automatically:

@ definition of encoding function
F acl2 flip colour a =
ite (colourp a)

(ite (equal a (nat 0)) (nat 1) (nat 0))
(nat 1)

@ recogniser theorem
F E colourp(acl2 flip colour a)

@ correctness theorem

I encode_colour(flip colour a) =
acl2 flip colour(encode_colour a)

@ Can handle recursively defined functions

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



@ ACL2 is faster and/or more secure than ML

@ computation has higher assurance than ML
@ can execute industrial scale models

@ ACL2 combines a programming language with a logic
@ maybe uniquely has this property

@ HOL can express things hard to express in ACL2
@ e.g. the definition of a measurable set

@ Using ACL2 with HOL enlarges ‘circle of trust’
@ but can attach AcL.2 tag to HOL theorems

@ Extra trusted code minimised

@ HOL, ACL2 assumed trusted
@ clean translations SEXP-in-HOL <— SEXP-in-ACL2

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



@ Proving ACL2 axioms in HOL4 revealed bugs!

@ In HOL 4:

@ performance issues for strings
and parsing bugs for characters

@ ask Mike for more details

@ In ACL2:

@ logical (“x1+") code for primitive function pkg-witness
had wrong default value

@ ask Matt for more details

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



@ Finish off proving the ACL2 axioms in HOL
@ recently finished!

@ ACL2 execution of HOL model of ARM FP coprocessor
@ hand translation done (Reynolds), next do it automatically

@ ACL2 execution of HOL model of ARM processor
@ main effort will be deriving ACL2 version of Fox HOL model

@ Apply HOL measure theory to ACL2 Miller-Rabin test
@ relate Hurd’s proofs with Hunt's ACL2 model

@ Explore Galois Inc’s SHADE validation example
@ Cryptol semantics in higher order logic rather complex

Gordon, Hunt, Kaufmann, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



Questions?

Gordon, Hunt, Ka nn, Reynolds An Integration of HOL and ACL2 (FMCAD 2006)



Example axioms proved (1)

("closure_defaxiom",
|- |= andl
[acl2_numberp (add x y); acl2_numberp (mult x y);
acl2_numberp (unary _minus x); acl2_numberp (reciprocal x)])
("associativity of_plus_defaxiom",
|- |= equal (add (add x y) z) (add x (add y z)))

("commutativity_ of_plus_defaxiom", |- |= equal (add x y) (add y x))
("unicity of_0_defaxiom", |- |= equal (add (nat 0) x) (fix x))
("inverse_of_plus_defaxiom", |- |= equal (add x (unary_minus x)) (nat 0))

("associativity of star defaxiom",

|- |= equal (mult (mult x y) z) (mult x (mult y z)))
("commutativity of_ star_defaxiom", |- |= equal (mult x y) (mult y x))
("unicity_of_1_defaxiom", |- |= equal (mult (nat 1) x) (fix x))
("inverse of_star_defaxiom",

|- |= implies (andl [acl2_numberp x; not (equal x (nat 0))])

(equal (mult x (reciprocal x)) (nat 1)))
("integer_0_defaxiom", |- |= integerp (nat 0))
("integer_1_defaxiom", |- |= integerp (nat 1))
("car_cons_defaxiom", |- |= equal (car (cons X y)) Xx)
("cdr_cons_defaxiom", |- |= equal (cdr (cons x y)) y)
("cons_equal_defaxiom",

|- |= equal (equal (cons x1 yl) (cons x2 y2))

(andl [equal x1 x2; equal yl y2]))
("booleanp_characterp_defaxiom", |- |= booleanp (characterp x))
("characterp_page_defaxiom", |- |= characterp (chr #"\f"))
("characterp_tab_defaxiom", |- |= characterp (chr #"\t"))
("characterp_rubout_defaxiom", |- |= characterp (chr #"\127"))

("coerce_inverse_1_defaxiom",
|- |= implies (character_listp x)
(equal (coerce (coerce x (csym "STRING")) (csym "LIST")) X))

An Integration of HOL and



Example axioms proved (2)

("coerce_inverse_2_defaxiom",
|- |= implies (stringp x)

(equal (coerce (coerce x (csym "LIST")) (csym "STRING")) X))
("character_listp_list_to_sexp",
|- 11. |= character_listp (list_to_sexp chr 1))

("character_listp_coerce_defaxiom",

|- |= character_listp (coerce acl2_str (csym "LIST")))
("lower_case_p_char_downcase_defaxiom",

|- |= implies (andl [upper_case_p x; characterp x])

(lower_case_p (char_downcase x)))

("stringp_symbol_package_name_defaxiom",

|- |= stringp (symbol_package_name x))
("symbolp_ intern_in_ package of_symbol defaxiom",

|- |= symbolp (intern_in_package_of_symbol x y))
("symbolp_pkg_witness_defaxiom", |- |= symbolp (pkg_witness x))
("completion_of_plus_defaxiom",

|- |= equal (add x y)

(itel
[ (acl2_numberp x,ite (acl2_numberp y) (add x y) X);
(acl2_numberp y,y)] (nat 0)))

("completion_of_car_defaxiom",

|- |= equal (car x) (andl [consp x; car x]))
("completion_of_cdr_defaxiom",

|- |= equal (cdr x) (andl [consp x; cdr x]))
("completion_of_char_code_defaxiom",

|- |= equal (char_code x) (ite (characterp x) (char_code x) (nat 0)))
("completion_of_denominator_defaxiom",

|- |= equal (denominator x) (ite (rationalp x) (denominator x) (nat 1)))
("completion_of_imagpart_defaxiom",

|- |= equal (imagpart x) (ite (acl2_numberp x) (imagpart x) (nat 0)))

An Integration of HOL and



Example axioms proved (3)

("completion_of_intern_in_package of_ symbol_ defaxiom",
|- |= equal (intern_in_package of_symbol x y)
(andl [stringp x; symbolp y; intern_in package_of symbol x y]))
("completion_of_ numerator_defaxiom",
\— |= equal (numerator x) (ite (rationalp x) (numerator x) (nat 0)))
("completion_of_ realpart_defaxiom",
\— |= equal (realpart x) (ite (acl2_numberp x) (realpart x) (nat 0)))
("completion_of_ symbol name defaxiom",
|- |= equal (symbol_name x) (ite (symbolp x) (symbol_name x) (str "")))
("completion_of_symbol_package_name_defaxiom",
|- |= equal (symbol_package_name x)
(ite (symbolp x) (symbol_package_ name x) (str "")))
("booleanp_bad atom less_equal_defaxiom",
|- |= ite (equal (bad_atom_less_equal x y) t)
(equal (bad_atom less_equal x y) t)
(equal (bad_atom_less_equal x y) nil))
("bad_atom_less_equal_antisymmetric_defaxiom",
|- |= implies
(andl
[bad_atom x; bad_atom y; bad_atom less_equal x y;
bad_atom_less_equal y x]) (equal x y))
("bad_atom less_equal_transitive defaxiom",
|- |= implies
(andl
[bad_atom_ less_equal x y; bad_atom less_equal y z;
bad_atom x; bad_atom y; bad_atom z])
(bad_atom_less_equal x z))
("bad_atom_less_equal_total_ defaxiom",
|- |= implies (andl [bad_atom x; bad_atom y])
(ite (bad_atom less_equal x y) (bad_atom less_equal x y)
(bad_atom_ less_equal y x)))

An Integration of HOL and



	Title

