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HOL and ACL2

@ Higher order logic (HOL) can express pretty much anything

o traditional textbook denotational semantics needs higher
order functions
@ arbitrary mathematics
@ classical analysis (e.g. measure theory)
@ infinite stream processing (e.g. Cryptol semantics)

@ ACL2 is a programming language and a theorem prover

@ ACL2 logic terms = Common Lisp programs
o theorem prover for first order logic (FOL) + induction
@ high assurance + fast execution + strong proof automation

@ Some projects committed to HOL, others to ACL2

@ Cambridge ARM project committed to HOL
@ Rockwell-Collins AAMP7 committed to ACL2
@ Galois SHADE project uses both HOL and ACL2
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Motivating examples for linking HOL and ACL2

® ACL2 as a HOL simulation engine

@ translate HOL specifications into first-order ACL2
@ export ACL2-in-HOL to ACL2 system
@ run on ground data using ACL2 stobj-execution

@ Validate the Galois Connections Cryptol-to-ACL2 compiler

@ Cryptol semantics easier in HOL than in ACL2
@ Galois SHADE tool translates Cryptol to AAMP7 via ACL2
@ validate SHADE compilation of D by HOL proof of

F CryptolSemantics(D) = Acl2ToHol (SHADE (D))

® Use HOL measure theory to validate ACL2 primality test

@ Miller-Rabin test easy to code in ACL2, but hard to specify
@ HOL has a library supporting measure theory (Hurd)
@ validate ACL2 checker against HOL measure theory spec
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Talk emphasizes automatic encoding/decoding tools

@ ACL2 Workshop paper provides background, motivation,
and a simple overview

@ ACL2 2006 Proceedings contain technical details
@ emphasizes low level logical issues

@ This paper is:

@ more comprehensive
@ emphasizes automatic encoding/decoding tools in HOL

@ Code and examples in SourceForge repository for HOL4

| http://hol.cvs.sourceforge.net/hol/hol98/examples/acl2/ |
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http://hol.cvs.sourceforge.net/hol/hol98/examples/acl2/

Previous work

@ PM (Proof Manager) by Fink, Archer and Yang (UC Davis)

@ low emphasis on logical issues
@ main effort on unified Ul for various provers

@ ACL2PII by Staples

@ uses Prosper Integration Interface (PII)

@ more emphasis on logic issues than PM

@ tricky translation from HOL to FOL by ML scripts
@ used by Susanto to run his unverified ARM model
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Requirements of current work

@ Believable soundness story
@ earlier attempt not accepted by ACL2 community

@ Handle big examples robustly
@ run software on Fox’s verified ARM6 model

@ Ease of use
@ value can be realized with only minimal knowledge of ACL2

@ Compatible with Isabelle/HOL
@ Galois (Matthews) uses Isabelle/HOL for Cryptol semantics
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@ Machine verified translation
between higher order logic
and first order SEXP theory

@ Clean translations between
HOL/SEXP and ACL2

@ ML tool writes HOL/SEXP to
ACL2 input files

@ LISP tool writes ACL2 to
HOL/SEXP input files

@ Machine verified translation
between expanded ACL2 and
conventional style ACL2

An Integration of HOL and ACL2 (FMCAD 2006)



ACL2: programming language or logic?

| (EQUAL (+ (x X Y) 2) (* X (¥ Y 2)))]

[ASSOCIATIVITY-OF-x from ACL2 file axioms.1lisp]

@ An expression in Lisp?

valid because if X,y and z are replaced by any
numbers, then the resulting instance of the axiom will
evaluate to t in Lisp

@ A formula of first order logic?

defines what it means for evaluation to be correct: it is
a partial semantics of Lisp evaluation

@ Second approach adopted:

axioms.1isp defines the ACL2 logic

differences between this and Lisp behaviour
(when there are no guard violations) viewed as
bugs in Lisp, not in the ACL2 axioms.
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ACL2 inside HOL (1)

@ First, a datatype of S-expressions in higher order logic

type abbrev ("packagename",
type abbrev ("name",

Hol datatype
‘sexp

ACL2 .
ACL2

= ACL2_
| ACL2
| ACL2
|
|

SYMBOL of
STRING of
CHARACTER of
NUMBER of

PAIR of

“:string“)
“:string"“)

packagename => name
string

char

complex rational
sexp => sexp'

@ Similar to Staples’ ML definition, but inside the HOL logic

® complex rational built from rationals (Jens Brandt)
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ACL2 inside HOL (2)

@ Overloading used to manage ACL2 names
® acl2Define "acl2Name" ‘holName ...:
@ constant acl2Name defined, then overloaded on holName

@ full ACL2 names simplify SEXP<—ACL2 correspondence

@ Simple examples: overload sym on ACL2 SYMBOL, then:

acl2Define "COMMON-LISP::NIL"
‘nil = sym "COMMON-LISP" "NIL"®

acl2Define "COMMON-LISP::T"
‘t = sym "COMMON-LISP" "T"*

acl2Define "COMMON-LISP: :EQUAL"
‘equal x y = if x = y then t else nil®
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ACL2 inside HOL (3)

@ More examples: overload cons on ACL2_ PAIR, then:

acl2Define "COMMON-LISP: :CAR"
‘(car(cons x ) = x) A (car _ = nil)"®

acl2Define "COMMON-LISP: :CDR"

‘(cdr(cons _ y) =vy) A (cdr = nil)*
acl2Define "COMMON-LISP::IF"
‘ite x y z = 1if x = nil then z else y°

@ 31 ACL2 primitives:

acl2-numberp bad-atom<= binary-+ binary-+ unary-- unary-/ < car cdr char-code
characterp code-char complex complex-rationalp coerce cons consp denominator
equal if imagpart integerp intern-in-package-of-symbol numerator pkg-witness

rationalp realpart stringp symbol-name symbol-package-name symbolp

@ All these ACL2 primitives have been defined in HOL

@ Some tricky to get right (e.g. symbolp) — see companion
paper!
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Proving the ACL2 axioms in HOL

@ S-expression p corresponds to formula - (p = nil)
@ sodefine: (Ep) = —(p = nil)

@ Note that 1 is a theorem of ACL2: - =1

® Some ACL2 axioms are trivial to prove
F Vx y. F equal (car(cons x y)) x

F Vx y. | equal (cdr(cons x y)) y

@ Others are harder

@ may just be hard (e.g. validity of p-induction)
@ or have lots of fiddly details

@ 78 axioms: we recently finished the proofs!
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Coding HOL values as S-expressions

Universe of HOL types
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Simple example (type encoding)

@ A simple HOL type definition:

Hol datatype ‘colour = R | B

@ The following theorems are generated automatically

I encode colour ¢ = case ¢ of R -=> nat 0 | B -> nat 1

-

decode_colour x =
if x = nat 0 then R else if x = nat 1 then B else ARB

colourp x = ite (equal (nat 0) x) t (equal (nat 1) x)

decode_colour(encode_colour x) = X

-
-
F (FE colourp x) ==> (encode_colour(decode colour x) =X)
F E colourp(encode colour x)

-

I=f(case a of R -> C0 | B -> Cl1) =
ite (equal(encode_colour a)(nat0)) (£C0) (£C1)

@ Can handle recursive datatypes (e.g. red-black trees)
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Simple example (function encoding)

@ From a HOL function definition:
F (flip colour R = B) A (flip colour B = R)

@ The following are generated automatically:

@ definition of encoding function
F acl2 flip colour a =
ite (colourp a)

(ite (equal a (nat 0)) (nat 1) (nat 0))
(nat 1)

@ recogniser theorem
F E colourp(acl2 flip colour a)

@ correctness theorem

I encode_colour(flip colour a) =
acl2 flip colour(encode_colour a)

@ Can handle recursively defined functions
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@ ACL2 is faster and/or more secure than ML

@ computation has higher assurance than ML
@ can execute industrial scale models

@ ACL2 combines a programming language with a logic
@ maybe uniquely has this property

@ HOL can express things hard to express in ACL2
@ e.g. the definition of a measurable set

@ Using ACL2 with HOL enlarges ‘circle of trust’
@ but can attach AcL.2 tag to HOL theorems

@ Extra trusted code minimised

@ HOL, ACL2 assumed trusted
@ clean translations SEXP-in-HOL <— SEXP-in-ACL2
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@ Proving ACL2 axioms in HOL4 revealed bugs!

@ In HOL 4:

@ performance issues for strings
and parsing bugs for characters

@ ask Mike for more details

@ In ACL2:

@ logical (“x1+") code for primitive function pkg-witness
had wrong default value

@ ask Matt for more details
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@ Finish off proving the ACL2 axioms in HOL
@ recently finished!

@ ACL2 execution of HOL model of ARM FP coprocessor
@ hand translation done (Reynolds), next do it automatically

@ ACL2 execution of HOL model of ARM processor
@ main effort will be deriving ACL2 version of Fox HOL model

@ Apply HOL measure theory to ACL2 Miller-Rabin test
@ relate Hurd’s proofs with Hunt's ACL2 model

@ Explore Galois Inc’s SHADE validation example
@ Cryptol semantics in higher order logic rather complex
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Questions?
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Example axioms proved (1)

("closure_defaxiom",
|- |= andl
[acl2_numberp (add x y); acl2_numberp (mult x y);
acl2_numberp (unary _minus x); acl2_numberp (reciprocal x)])
("associativity of_plus_defaxiom",
|- |= equal (add (add x y) z) (add x (add y z)))

("commutativity_ of_plus_defaxiom", |- |= equal (add x y) (add y x))
("unicity of_0_defaxiom", |- |= equal (add (nat 0) x) (fix x))
("inverse_of_plus_defaxiom", |- |= equal (add x (unary_minus x)) (nat 0))

("associativity of star defaxiom",

|- |= equal (mult (mult x y) z) (mult x (mult y z)))
("commutativity of_ star_defaxiom", |- |= equal (mult x y) (mult y x))
("unicity_of_1_defaxiom", |- |= equal (mult (nat 1) x) (fix x))
("inverse of_star_defaxiom",

|- |= implies (andl [acl2_numberp x; not (equal x (nat 0))])

(equal (mult x (reciprocal x)) (nat 1)))
("integer_0_defaxiom", |- |= integerp (nat 0))
("integer_1_defaxiom", |- |= integerp (nat 1))
("car_cons_defaxiom", |- |= equal (car (cons X y)) Xx)
("cdr_cons_defaxiom", |- |= equal (cdr (cons x y)) y)
("cons_equal_defaxiom",

|- |= equal (equal (cons x1 yl) (cons x2 y2))

(andl [equal x1 x2; equal yl y2]))
("booleanp_characterp_defaxiom", |- |= booleanp (characterp x))
("characterp_page_defaxiom", |- |= characterp (chr #"\f"))
("characterp_tab_defaxiom", |- |= characterp (chr #"\t"))
("characterp_rubout_defaxiom", |- |= characterp (chr #"\127"))

("coerce_inverse_1_defaxiom",
|- |= implies (character_listp x)
(equal (coerce (coerce x (csym "STRING")) (csym "LIST")) X))
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Example axioms proved (2)

("coerce_inverse_2_defaxiom",
|- |= implies (stringp x)

(equal (coerce (coerce x (csym "LIST")) (csym "STRING")) X))
("character_listp_list_to_sexp",
|- 11. |= character_listp (list_to_sexp chr 1))

("character_listp_coerce_defaxiom",

|- |= character_listp (coerce acl2_str (csym "LIST")))
("lower_case_p_char_downcase_defaxiom",

|- |= implies (andl [upper_case_p x; characterp x])

(lower_case_p (char_downcase x)))

("stringp_symbol_package_name_defaxiom",

|- |= stringp (symbol_package_name x))
("symbolp_ intern_in_ package of_symbol defaxiom",

|- |= symbolp (intern_in_package_of_symbol x y))
("symbolp_pkg_witness_defaxiom", |- |= symbolp (pkg_witness x))
("completion_of_plus_defaxiom",

|- |= equal (add x y)

(itel
[ (acl2_numberp x,ite (acl2_numberp y) (add x y) X);
(acl2_numberp y,y)] (nat 0)))

("completion_of_car_defaxiom",

|- |= equal (car x) (andl [consp x; car x]))
("completion_of_cdr_defaxiom",

|- |= equal (cdr x) (andl [consp x; cdr x]))
("completion_of_char_code_defaxiom",

|- |= equal (char_code x) (ite (characterp x) (char_code x) (nat 0)))
("completion_of_denominator_defaxiom",

|- |= equal (denominator x) (ite (rationalp x) (denominator x) (nat 1)))
("completion_of_imagpart_defaxiom",

|- |= equal (imagpart x) (ite (acl2_numberp x) (imagpart x) (nat 0)))
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Example axioms proved (3)

("completion_of_intern_in_package of_ symbol_ defaxiom",
|- |= equal (intern_in_package of_symbol x y)
(andl [stringp x; symbolp y; intern_in package_of symbol x y]))
("completion_of_ numerator_defaxiom",
\— |= equal (numerator x) (ite (rationalp x) (numerator x) (nat 0)))
("completion_of_ realpart_defaxiom",
\— |= equal (realpart x) (ite (acl2_numberp x) (realpart x) (nat 0)))
("completion_of_ symbol name defaxiom",
|- |= equal (symbol_name x) (ite (symbolp x) (symbol_name x) (str "")))
("completion_of_symbol_package_name_defaxiom",
|- |= equal (symbol_package_name x)
(ite (symbolp x) (symbol_package_ name x) (str "")))
("booleanp_bad atom less_equal_defaxiom",
|- |= ite (equal (bad_atom_less_equal x y) t)
(equal (bad_atom less_equal x y) t)
(equal (bad_atom_less_equal x y) nil))
("bad_atom_less_equal_antisymmetric_defaxiom",
|- |= implies
(andl
[bad_atom x; bad_atom y; bad_atom less_equal x y;
bad_atom_less_equal y x]) (equal x y))
("bad_atom less_equal_transitive defaxiom",
|- |= implies
(andl
[bad_atom_ less_equal x y; bad_atom less_equal y z;
bad_atom x; bad_atom y; bad_atom z])
(bad_atom_less_equal x z))
("bad_atom_less_equal_total_ defaxiom",
|- |= implies (andl [bad_atom x; bad_atom y])
(ite (bad_atom less_equal x y) (bad_atom less_equal x y)
(bad_atom_ less_equal y x)))
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