
Protocol Verification using Flows:

An Industrial Experience

Murali Talupur

Joint work with

John O’ Leary, Mark R. Tuttle

SCL, Intel Corp

Parametric Verification using Flows

1. CMP is an abstraction & compositional reasoning based
method

1. Uses Model Checker as a proof assistant

2. Requires user guidance

2. Demonstrated that “flows” yield powerful invariants

1. Partial orders on “events”

2. Available for free

3. Applied it to German and Flash

P(N)
True or Cex

Abstract

Strengthen

Model Check

Invent
Lemma

PA

spurious cex
P#(N)

Last year we introduced the
CMP + Flows method for
parametric protocol
verification [FMCAD08]

Verification of Larrabee Cache

Protocol

F
ix

ed
 F

u
n

ct
io

n
 L

o
g

ic

M
em

o
ry

 &
 I

/O
 I

n
te

rf
ac

es

Ring Network

CPU core

Coherent

L2 cache

CPU core

CPU core

CPU core

CPU core

CPU core

CPU core

CPU core

Coherent

L2 cache

Coherent

L2 cache

Coherent

L2 cache

Coherent

L2 cache

Coherent

L2 cache

Coherent

L2 cache

Coherent

L2 cache

…

…

…

…

Ring Network

This year we applied the
method to a real, state-
of-the-art cache
protocol

To be used in Intel’s

Larrabee processors

LRB is several orders of magnitude larger than Flash
(which is considered hard to verify)

50 message types vs 16 messages

70 Boolean state variables vs 10

Lessons from our Effort

• A significant milestone
– To our knowledge no protocol of this size has been verified at this level

of automation

– Proof required just 5 manual lemmas by hand
• Dramatic reduction compared to 25 lemmas required for McOP protocol

using just CMP method[DCC08]

– CMP+Flows scales very well in terms of protocol size and manual effort
required

• Demonstrates that powerful invariants, namely those from flows, are
available essentially for free

• Ideas from our work will be useful in other contexts
– Other message passing systems

– Shared memory systems, concurrent software verification as well

Extensions Required

Notion of Flows had to be

generalized
• From simple linear flows to

directed acyclic graphs

Additional invariants from

flows
• Conflict between flows

Criteria to choose which

flows to use
• Using all flows leads to state

explosion

iMem Dir

ReqS

RecvReqS

RecvAck

SndData

W
ait

Data

SendAck

DataSent
G

ntS

Dir i

SendReqS

SendGntS

RecvReqS

RecvGntS

Linear Flows DAG Flows

Outline

Background
CMP method
Flows

Extensions
Linear flows to dags
New language
New constraints

LRB verification
Details
Lessons

Conclusion

Logical Model of a Cache Protocol

Dire
cto

ry

Mem

6

5

4

3

1

2

CMP+Flows Approach

Consists of two key elements

CMP Method:

•A general framework for verifying systems with

replication based on abstraction & compositional

reasoning

•We simplified and generalized the method

Flow based Invariants:

•A new method for discovering system invariants

•Implicit partial orders on system events yield valuable

invariants

CMP Method

P(N) True or Cex
Abstract

Strengthen

Model Check

Invent

Lemma

PA

spurious cex
P#(N)

Strengthening with L:

Each rule is of the form:
rname: guard ���� action

Strengthened rule:
rname: guard & L ���� action

Abstraction in CMP

Data Type Reduction

Throws away the state spaces of agents 3..N

Any condition involving them is conservatively over-approximated

Syntactic & fast but leads to very abstract models

Other

21 N

21

N-13

P(N)

PA

Inventing Lemmas

P(N)

Abstract

Strengthen

Model Check

Invent
Lemma

PA

spurious cex
P#(N)

Manual process (by examining spurious cexs)

Time consuming and requires insight

Drawback of all theorem proving style

methods

Flows can drastically reduce the “lemma burden”

Dir i j

SendReqS

SendGntS

RecvReqS

RecvGntS

Process i intiates a Request Shared
transaction: Case 1

Flows

Partial orders on system events

For cache protocols, sending and receiving
of messages by various agents are

“events”

Each event corresponds to a well
defined syntactic block of protocol
code

For cache protocols written in Murphi,
events are essentially rule names

For the rest of the talk:

Rule names ���� Events

Constraints from Flows

Dir i j

SendReqS

SendGntS

RecvReqS

RecvGntS

Precedence between events:

For instance, for process i, action RecvReqS(i)
must happen before SendGntS(i)

Flows are used and also validated

Wrong/incomplete flows are caught by the method

Sample invariant:

If guard for SendGntS is true then

history variables must record firing of RecvReqS

Tracking Flows

A set Aux(i) of auxiliary variables to

track

1) all the flows that a process i is involved in

2) for each such flow the last rule that was fired

Each aux ∈ Aux(i) is initially

(no_flow, no_rule)

If process i fires rule rnamen in fname

update aux = (f,rnamen-1) to (f,rnamen)

If rnamen is the last rule reset the aux variable

rname1

rname2

rnamen-1

rnamen

rnamem

fname

Outline

Background
CMP method
Flows

Extensions
Linear flows to dags
New language
New constraints

LRB verification
Details
Lessons

Conclusion

Typical LRB flow
iMem Dir

ReqS

SndData

Data

SendAck

DataSent

W
ait

RecvReqS

G
ntS

Flows are DAGs in real protocols unlike

“academic” protocols

SendAck depends on two other events:

Data and GntS

RecvReqS enbles two other events:

SndData and Wait

RecvAck
Flattening out partial orders leads to

an explosion in the number of flows

A transaction for requesting shared access

Order between all events not specified:

For eg., GntS and Data

Language for new Flows

Each flow is given by:

fname: {prec1, prec2,..,precn}

where each preci is an entry of the form

rname: rname1, .., rnamem

Name of the rule

firing

Name of the

flow

Names of the

preceding rules

Example
iMem Dir

ReqS

RecvReqS

RecvAck

SndData

W
ait

Data

SendAck

DataSent

G
ntS

ReqShar: {prec1,.., prec9}

One of the ‘prec’s:

SendAck: GntS, Data

Conflict sets

• Many flows are mutually exclusive

– For example, ReqShar cannot happen when ReqExcl is
happening and vice-versa

• Because the directory can participate in only one of these at a time

• Further, many flows are such that only a single instance
can be alive at any time

– ReqShar, ReqExcl for example

• With each flow we also associate a conflict set

Language for flows

Each flow is given by:

fname, conflict_set: {prec1, prec2,..,precn}

where each preci is an entry of the form

(rname, id): (rname1,id1), .., (rnamem,idm)

Name of the rule

firing & id

Name of the flow

and conflict set

Names of the

preceding rules &

ids

We need event ids to distinguish occurrences of same

event in multiple flows.

Invariants from Flows

• Invariants from precedence constraints:

– Constraints on events within a flow

– Extension to new language straight-forward

• Invariants from conflict constraints:

– Constraints on events across multiple flows

This is new!

Conflict constraints

Suppose f1 and f2 conflict

Conflict constraint:

If f1 is active then f2 cannot become

active

Equivalently:

If there exists an aux variable

recording firing of an event from f1
then e6 should not be enabled

Flow f1

iDir

e 1

e2

e5

iDir

e 6

e7

e10

Flow f2

e4 e9

Rest of events in f2 are disabled

by the precedence constraints

e
3

e
8

Outline

Background
CMP method
Flows

Extensions
Linear flows to dags
New language
New constraints

LRB verification
Details
Lessons

Conclusion

LRB Cache Model

Dire
cto

ry

Mem

6

5

4

3

1

2

High level model written

Murphi

Constructed semi-

automatically from tabular

description

Retained all the relevant

details

The various in- and out-

buffers and L1 cache

states

Retaining all the internal structure made characterizing when an agent has

access difficult

LRB Proof (1)

• Property: If cache i has exclusive access to an item then no other cache j
has access to the same item.

• The rules in Murphi model were very large covering multiple “events”
– Single rule for “Receive” would cover different types of incoming messages

• Even though they belonged to completely different transactions

– We needed to break up the rules into smaller rules to get closer rule-event
correspondence

• Done using simple rewriting procedures

• Model had some quirks
– Many directory variables referred to using terms that had process ids

• Though they were essentially constants

– Leads to an unnecessarily abstract model

LRB Proof (2)

• Abstraction was carried out using Abster
– We need to specify how many agents to keep concrete in the

abstract model
• 2 agents for LRB since we were verifying two indexed safety

properties

• Flows are also given as an input
– We used about 15 flows from the design documents

• Covering transactions for shared and exclusive access
– Left out flows for write backs and invalidates

– Flow invariants generated automatically
– These led to 36 lemmas

• 25 from precedence constraints and 11 from conflict constraints

LRB Proof (3)

• 5 manual lemmas on top to complete the proof

– Huge reduction compared to the 25 lemmas used for

McOP [DCC08]

• Architects were more impressed with flow

validation than with the global properties

verified!

• Murphi running time: 5.5 hrs

– Time taken for whole proof not clear

• Methodology development and proof went hand in hand

State explosion from flows

• It does not help to track all the flows that we can get from
the design documents!

• Only flows that appear in their own conflict sets
should be used

– The rest lead to blow up in state space of the abstract model

• Multiple instantiations of a flow can be active at the same time

• Thus, the “other” agent can saturate the auxiliary variables

– Unexpected because the concrete model with auxiliary variables
does not suffer from the same problem

Outline

Background
CMP method
Flows

Extensions
Linear flows to dags
New language
New constraints

LRB verification
Details
Lessons

Conclusion

Existing Methods

In
de

x
pr

ed
ic
at

es

W
S1S

Counte
r A

bstr
acti

on

Regular M
odel C

heck
ing

In
vis

ible In
va

ria
nts

A
gg

re
ga

te
d

Tra
ns

C
M

P

Increasing Manual Effort

The
or

em
 P

ro
vi
ng

Automatic methods don’t scale

Theorem Proving style methods require human guidance

but scale

C
M

P +
 F

lo
w
s

Conclusion

• CMP + Flows method is highly scalable
and easy to use
– Perhaps the only method available for large

protocols

• Ideas generally applicable
– Not limited to cache protocols

– Flows open up a new avenue to taming
verification complexity

• By providing a way to harness informal high level
reasoning in a precise manner

Future Work

• Extend flows to other kinds of systems
– Shared memory systems

– Concurrent software

• Investigate other uses of flows
– Run time monitoring

– Refinement checking between high level
model and RTL implementation

– Speeding up model checking

