
Learning Conditional Abstractions
Bryan A. Brady1

IBM
Poughkeepsie, NY 12601

Randal E. Bryant
Carnegie Mellon University
randy.bryant@cs.cmu.edu

Sanjit A. Seshia
UC Berkeley

sseshia@eecs.berkeley.edu

Abstract—Abstraction is central to formal verification. In term-level
abstraction, the design is abstracted using a fragment of first-order
logic with background theories, such as the theory of uninterpreted
functions with equality. The main challenge in using term-level
abstraction is determining what components to abstract and under
what conditions. In this paper, we present an automatic technique to
conditionally abstract register transfer level (RTL) hardware designs
to the term level. Our approach is a layered approach that combines
random simulation and machine learning inside a counter-example
guided abstraction refinement (CEGAR) loop. First, random simula-
tion is used to determine modules that are candidates for abstraction.
Next, machine learning is used on the resulting simulation traces
to generate candidate conditions under which those modules can
be abstracted. Finally, a verifier is invoked. If spurious counter-
examples arise, we refine the abstraction by performing a further
iteration of random simulation and machine learning. We present
an experimental evaluation on processor designs.

I. INTRODUCTION

Designs are usually specified at the register-transfer-level (RTL).
For formal verification, however, RTL can be a rather low level of
abstraction where data are represented as bits and bit vectors, and
operations on data are accomplished by bit-level manipulation.
In verification tasks that involve proving strongly data-dependent
properties, such as equivalence or refinement checking, bit-level
RTL quickly leads to state-space explosion, necessitating addi-
tional abstraction.

Term-level modeling can make formal verification of data-
intensive properties tractable by abstracting away details of data
representations and operations, viewing data as symbolic terms
and operations as uninterpreted functions. Term-level abstraction
has been found to be especially useful in microprocessor design
verification [14], [18], [20], [21]. The precise functionality of
units such as instruction decoders and the ALU are abstracted
away using uninterpreted functions, and decidable fragments of
first-order logic are employed in modeling memories, queues,
counters, and other common constructs. Efficient satisfiability
modulo theories (SMT) solvers [5] are then used as the com-
putational engines for term-level verifiers.

A major obstacle for term-level verification is the need to generate
term-level models from bit-vector-level (word-level) RTL. Two
recent efforts have sought to automate the generation of term-
level models. Andraus and Sakallah [4] were the first to address
the problem, proposing a counterexample-guided abstraction re-
finement (CEGAR) approach. While the CEGAR technique works
in some cases, it can require very many iterations of abstraction-
refinement in other situations. Brady et al. [8] proposed ATLAS,
an approach that combines random simulation with static analysis
to compute interpretation conditions — conditions under which

1This work was conducted while the author was affiliated with the University
of California, Berkeley.

a functional block is replaced with an uninterpreted function. AT-
LAS avoids the need for several abstraction-refinement iterations
by computing conservative interpretation conditions using static
analysis. However, in some cases, these conditions are so large as
to negate the advantages of term-level verification over word-level
methods.

In this paper, we present CAL, a new technique for automatically
generating a term-level verification model from a word-level
description. The main focus of this work is function abstraction.
Similar to ATLAS, CAL conditionally abstracts functional blocks
in the original design with uninterpreted functions. In contrast
with previous work, CAL uses a novel layered approach based
on a combination of random simulation, machine learning, and
counterexample-guided abstraction-refinement. In the first stage,
we exploit the module structure specified by the designer using
random simulation to identify functional blocks corresponding
to module instantiations that are suitable for abstraction with
uninterpreted functions. Replacing functional blocks with unin-
terpreted functions is always sound, that is, the correctness of the
resulting abstract design implies the correctness of the original
design. However, this abstraction loses information and can lead
to spurious counterexamples. In the second stage, we use machine
learning inside a CEGAR loop to rule out such spurious coun-
terexamples. First, a verifier is invoked on the unconditionally
abstracted verification model. If spurious counterexamples arise,
machine learning is used to compute conditions under which
abstraction can be performed without loss of precision; i.e., if the
resulting term-level design is in correct, then so is the original
word-level design. This process is repeated until we arrive with
a term-level model that is valid or a legitimate counterexample is
found. Fig. 1 illustrates the CAL approach.

Modules to

Abstract

RTL
Random

Simulation

Generate

Term-Level

Model

Invoke

Verifier

Simulation

Traces

Learn

Abstraction

Conditions

Abstraction

Conditions

Valid?
Yes

Done

Counter

example

Spurious?

No
Done

Yes Generate

Similar

Traces

No

Fig. 1. The CAL approach A CEGAR-based approach, CAL identifies
candidate abstractions with random simulation and uses machine learning
to refine the abstraction if necessary.

We present experimental evidence that our approach is efficient
and that the resulting term-level models are easier to verify.
Moreover, we show that the abstraction conditions that we learn
are as good or better than the previous best-known conditions.

The rest of this paper is organized as follows. We discuss some
background material and related work in Section II. In Section III,
we present the formal model for our work as well as some relevant
ideas borrowed from our previous work on ATLAS [8]. Our new
approach, CAL, is described in Section IV. Case studies are
discussed in detail in Section V. We conclude in Section VI.

II. BACKGROUND AND RELATED WORK

Background material on term-level abstraction is presented in
Sec. II-A, function abstraction in Sec. II-B, and related work in
Sec. II-C.

A. Term-Level Abstraction

Informally, a (word-level) design is said to be abstracted to the
term level if one or more of the following three abstraction
techniques is employed [8]:

1. Function Abstraction: In function abstraction, bit-vector op-
erators and modules computing bit-vector values are treated
as “black-box,” uninterpreted functions constrained only by
functional consistency. That is, they must evaluate to the same
values when applied to the same arguments. It is possible
for the inputs and outputs of uninterpreted functions to be
bit vectors or to be abstract terms (say, interpreted over Z).
Function abstraction (applied selectively) is the focus of this
paper, and we limit ourselves to uninterpreted functions that
map bit vectors to bit vectors.

2. Data Abstraction: Bit-vector expressions are modeled as ab-
stract terms that are interpreted over a suitable domain (typ-
ically a subset of Z). Data abstraction is effective when it
is possible to reason over the domain of abstract terms far
more efficiently than it is to do so over the original bit-vector
domain, through use of small-domain or bit-width reduction
techniques. Data abstraction is not the focus of this paper.

3. Memory Abstraction: In memory abstraction, memories and
data structures are modeled in a suitable theory of arrays
or memories, such as by the use of special read and write
functions [14] or lambda expressions [12]. We do not address
automatic memory abstraction in this paper.

B. Function Abstraction

The concept of function abstraction is illustrated using a toy ALU
design [8]. Consider the simplified ALU shown in Figure 2(a).
Here a 20-bit instruction is split into a 4-bit opcode and a 16-
bit data field. If the opcode indicates that the instruction is a
jump, the data field indicates a target address for the jump and is
simply passed through the ALU unchanged. Otherwise, the ALU
computes the square of its 16-bit input and generates as output
the resulting 16-bit result.

Using very coarse-grained term-level abstraction, one could ab-
stract the entire ALU module with a single uninterpreted function
(UF), as shown in Figure 2(b). However, we lose the precise
mapping from instr to out.

19 15 0

=

JMP

1 0

4 16

16-bit

multiplier

16

16

ALU

19 15 0

=

JMP

1 0

4 16

SQ

20

instr

instr
instr

(a) Original word-level ALU

out

out

out

(b) Fully

 uninterpreted ALU

(c) Partially-interpreted

ALU

16

16

16

Fig. 2. Three versions of an ALU design. Boolean signals are shown as
dashed lines and bit-vector signals as solid black lines [8].

Such a coarse abstraction is quite easy to perform automatically.
However, this abstraction loses information about the behavior of
the ALU on jump instructions and can easily result in spurious
counterexamples. In Section III-B, we will describe a larger
equivalence checking problem within which such an abstraction
is too coarse to be useful.

Suppose that reasoning about the correctness of the larger circuit
containing this ALU design only requires one to precisely model
the difference in how the jump and squaring instructions are
handled. In this case, it would be preferable to use a partially-
interpreted ALU model as depicted in Figure 2(c). In this model,
the control logic distinguishing the handling of jump and non-
jump instructions is precisely modeled, but the datapath is ab-
stracted using the uninterpreted function SQ. However, creating
this fine-grained abstraction by hand is difficult in general and
places a large burden on the designer. It is this burden that we
seek to mitigate using the approach presented in this paper.

C. Related Work

The first automatic term-level abstraction tool was Vapor [4],
which aimed at generating term-level models from Verilog. The
underlying logic for term-level modeling in Vapor is CLU, which
originally formed the basis for the UCLID system [12]. Vapor
uses a counterexample-guided abstraction-refinement (CEGAR)
approach [4]. Vapor has since been subsumed by the Reveal
system [2], [3] which differs mainly in the refinement strategies
in the CEGAR loop. Both Vapor and Reveal start by completely
abstracting a Verilog description to the UCLID language by
modeling all bit-vector signals as abstract terms and all operators
as uninterpreted functions, and then iteratively rule out spuri-
ous counterexamples. While the CEGAR approach has shown
much promise [3], in many cases, however, several abstraction-
refinement iterations are needed to infer fairly straightforward
properties of data, thus imposing a significant overhead [8]. While
the approach presented in this paper is also counterexample-
guided, we require very few refinement iterations in practice.

A more recent approach to automatic abstraction is ATLAS [8].
ATLAS exploits the module structure specified by the designer
and uses random simulation to determine module instantiations
that are candidates for function abstraction. ATLAS uses static
analysis to heuristically compute interpretation conditions that
specify when a functional block must be represented precisely.

While this works in many cases, for some benchmarks the in-
terpretation conditions can grow extremely large, leading to poor
performance [8]. Our approach, CAL, addresses this limitation by
using a dynamic approach based on machine learning. As is the
case with ATLAS, the CAL approach can be combined with bit-
width reduction techniques (e.g. [7], [19]) to perform combined
function and data abstraction.

To our knowledge, Clarke, Gupta et al. [15], [17] were the first to
use machine learning to compute abstractions for model checking.
Our work is similar in spirit to theirs. One difference is that we
generate abstract, term-level models for SMT-based verification,
whereas their work focuses on bit-level model checking and lo-
calization abstraction. Consequently, the learned concept is differ-
ent: CAL learns Boolean interpretation conditions whereas their
technique learns sets of variables to make visible. Additionally,
our use of machine learning is more direct — e.g., while Clarke
et al. [15] also use decision tree learning, they only indirectly
use the learned decision tree (all variables branched upon in the
tree are made visible), whereas we use the Boolean function
corresponding to the entire tree as the learned interpretation
condition.

III. PRELIMINARIES

We adopt the formal model used in [8]. In Sec. III-A, we present
only the elements of this formal model necessary for the rest of
the paper. An illustrative example is given in Sec. III-B.

A. Basic Definitions

We model a design at the word level as a word-level netlist N =
(I, O, S, C, Init , A) where

• I is a finite set of input signals;
• O is a finite set of output signals;
• S is a finite set of intermediate sequential (state-holding)

signals;
• C is a finite set of intermediate combinational (stateless)

signals;
• Init is a set of initial states, i.e., initial valuations to elements

of S, and
• A is a finite set of assignments to outputs and to sequential

and combinational intermediate signals. An assignment is an
expression that defines how a signal is computed and updated.
We elaborate below on the form of assignments.

Input and output signals are assumed combinational, without loss
of generality. A combinational assignment is a rule of the form
v ← e, where v is a signal in the disjoint union C]O and e is an
expression that is a function of C] S] I. Combinational loops
are disallowed. Similarly, a sequential assignment is a rule of the
form v := u, where u is a signal. Signals v, u and expressions
e are of three types: bit-vector, Boolean, or memory. For brevity,
we omit the detailed syntax (see [8] for this), and present only
the notation used in the paper. In word-level netlists, a memory
is modeled as a flat array of bit-vector signals.

A word-level design D is a tuple 〈I,O, {Ni | i = 1, . . . , N}〉,
where I and O denotes the set of input and output signals of
the design, and the design is partitioned into a collection of N

word-level netlists. A well-formed design is one where (i) every
output of a netlist is either an output of the design or an input to
some netlist (including itself) – i.e., there are no dangling outputs;
and (ii) every input of a netlist is either an input to the design or
exactly one output of some netlist. We refer to the netlists Ni as
functional blocks, or fblocks.

A term-level netlist is a generalization of a word-level netlist
where bit-vector and Boolean expressions can include ap-
plications of uninterpreted functions and predicates, written
UF (v1, . . . , vk) and UP (v1, . . . , vk) for k ≥ 0, and memory
operations can be modeled in a suitable theory of arrays/memories
using the usual read and write functions or lambda expres-
sions [12].

A term-level netlist that has at least one expression of the form
UF (v1, . . . , vk) or UP (v1, . . . , vk) is referred to as a strict term-
level netlist. A term-level design T is a tuple (I,O, {Ni | i =
1, . . . , N}), where each fblock Ni is a term-level netlist.

Given a word-level design D = (I,O, {Ni | i = 1, . . . , N}), we
say that T is a term-level abstraction of D if T is obtained from
D by replacing some word-level fblocks Ni by strict term-level
fblocks N ′

i .

The verification problems of interest in this paper are equivalence
checking and refinement checking.

Given two word-level designs D1 and D2, the word-level equiv-
alence (word-level refinement) checking problem is to verify that
D1 is sequentially equivalent to (refines) D2.

The definition is similarly extended to a pair of term-level designs
T1 and T2. We also consider bounded equivalence checking
problems, where the designs are to be proved equivalent for a
bounded number of cycles from the initial state.

The term-level abstraction problem we consider in this paper is
as follows.

Given a pair of word-level designs D1 and D2, abstract
them to term-level designs T1 and T2, such that D1 is
equivalent to (refines) D2 if and only if T1 is equivalent
to (refines) T2.

We follow the approach taken by ATLAS and generate the term-
level abstraction by computing an interpretation condition — a
condition under which we will retain the precise fblock in the
term-level model (i.e, we replace the fblock by an uninterpreted
function under the negation of the interpretation condition). The
idea of conditional function abstraction is illustrated in Figure 3.
The original word-level circuit is shown in Fig. 3(a) and the
conditionally abstracted version with interpretation condition c
is shown in Fig. 3(b).

In Section IV, we present our CAL approach to automatically
generate term-level abstract models. In Section V, we show that
using CAL can scale up verification by orders of magnitude.

B. Illustrative Example

Figure 4 depicts the equivalence checking problem that we will
use as a running example [8]. Two variants of the same circuit,
denoted Design A and Design B, are to be checked for output
equivalence.

c
0 1

out

x
1

x
n

x
2

f UF

x
1

x
n

x
2

f

out

(a) Original word-level fblock (b) Conditionally abstracted fblock

Fig. 3. Conditional abstraction (a) Original word-level fblock f . (b)
Conditionally abstracted version of f with interpretation condition c

Consider Design A. This design models a fragment of a processor
datapath. PC models the program counter register, which is
an index into the instruction memory denoted as IMem. The
instruction is a 20-bit word denoted instr and is an input to the
ALU. The ALU is similar to the ALU design shown in Figure 2(a)
– both ALUs pass the target address through unaltered when the
instruction is a jump. The top four bits of instr are the operation
code. If the instruction is a jump instruction (instr[19 : 16]
equals JMP), then the PC is set equal to the ALU output out;
otherwise, it is incremented by 4.

Design B is virtually identical to Design A, except in how the
PC is updated. For this version, if instr[19 : 16] equals JMP,
the PC is directly set to be the jump address instr[15 : 0].

JMP

4

16

ALU

IMem

=

out
16

20

PC

=

out_ok

pc_ok

Design A Design B

0 1

+4

[15:0]

[19:16]

16

JMP

4

16

ALU

IMem

=

out
16

20

PC

0 1

+4

[15:0]

[19:16]

16

=

V1

V2

V5

V4

V6

V7

V8

V3

V11

V9

V10

V12

V13

V14

V15

V16

V17

Fig. 4. Equivalence checking of two versions of a portion of a processor
design. Boolean signals are shown as dashed lines and bit-vector signals
as solid lines [8].

Note that we model the instruction memory as a read-only
memory using an uninterpreted function IMem. The same un-
interpreted function is used for both Design A and Design B. We
also assume that Designs A and B start out with identical values
in their PC registers.

The two designs are equivalent iff their outputs are equal at every
cycle, meaning that the Boolean assertion out ok ∧ pc ok is
always true.

It is easy to see that this is the case, because from Fig-
ure 2(a) we know that A.out always equals A.instr[15 : 0] when
A.instr[19 : 16] equals JMP. The question is whether we can
infer this without the full word-level representation of the ALU.

Consider what happens if we use the abstraction of Figure 2(b).

In this case, we lose the relationship between A.out and
A.instr[19 : 16]. Thus, the verifier comes back to us with a
spurious counterexample, where in cycle 1 a jump instruction
is read, with the jump target in Design A different from that in
Design B, and hence A.PC differs from B.PC in cycle 2.

However, if we instead used the partial term-level abstraction
of Figure 2(c) then we can see that the proof goes through,
because the ALU is precisely modeled under the condition that
A.instr[19 : 16] equals JMP, which is all that is necessary.

The challenge is to be able to generate this partial term-level
abstraction automatically. We describe our approach to solving
this problem below.

IV. THE CAL APPROACH

The main contribution of this paper is presented in this section.
The goal of this step is to compute conditions under which it is
precise to abstract using a machine-learning-based CEGAR loop.

A. Identifying Candidate fblocks

The first step in CAL is the same as in ATLAS: to use syntactic
matching and random simulation to identify a set of fblocks
that are candidates for replacement with uninterpreted functions.
We review this procedure in this section since it is crucial to
understand the rest of the CAL procedure.

The first step in identifying candidates for abstraction is to
identify replicated fblocks. A replicated fblock is an fblock in
D1 that has an isomorphic counterpart in D2. A formal definition
can be found in [8]. In equivalence and refinement checking
problems, identifying replicated fblocks is typically a matter of
finding instances of the same RTL module present in both designs.

The fblock identification process generates a collection of sets of
fblocks FS = {F1,F2, ...,Fk, }. Each set Fj contains replicated
fblocks that are isomorphic to each other. Fj can be viewed as an
equivalence class of the fblocks it contains. In later steps when
function abstractions are computed, it is important to note that
the same function abstraction is used for each fblock in Fj .
The next step in the abstraction candidate identification process
is to determine which equivalence classes F ∈ FS will be
considered for abstraction. This is accomplished using random
simulation.

Fix an equivalence class F . Let its cardinality be l. Let fi ∈
F be an arbitrary fblock with m bit-vector output signals
〈vi1, . . . , vim〉, and n input signals 〈ui1, . . . , uin〉. Then, we term
the tuple of corresponding output signals χj = (v1j , v2j , . . . , vlj),
for each j = 1, 2, . . . ,m, as a tuple of isomorphic output signals.

Given a tuple of isomorphic output signals χj =
(v1j , v2j , . . . , vlj), we create a random function RFχj unique
to χj that has n inputs (corresponding to input signals
〈ui1, . . . , uin〉, for fblock fi).

For each fblock fi ∈ F , i = 1, 2, . . . , l, we replace the
assignment to the output signal vij with the random assignment
vij ← RFχj (ui1, . . . , uin). This substitution is performed for all
output signals j = 1, 2, . . . ,m. The resulting designs D1 and D2

are then verified through simulation. Note that all other fblocks

not in F are interpreted precisely. This process is repeated for F
using T different random functions RFχj

.

If the fraction of failing verification runs is greater than a
threshold τ , then we drop the equivalence class F from further
consideration. Otherwise, we retain F for further analysis, as
described in the following section. It is important to note that
we have not yet decided to replace fblocks in F with unin-
terpreted functions – this will be determined later using the
counterexample-guided loop. We denote the set of equivalence
classes that are to be considered for abstraction as FSA.

B. Top-Level CAL Procedure

The top-level CAL procedure, VERIFYABS, is shown in Al-
gorithm 1. VERIFYABS takes two arguments, the design D
being verified (which includes both designs – e.g., it is the miter
for equivalence checking) and the set of equivalence classes
being abstracted FSA. Initially, the interpretation conditions
ci ∈ IC are set to false meaning that we start by unconditionally
abstracting the fblocks in D. The procedure CONDABS creates
the abstracted term-level design T from the word-level design D,
the set of equivalence classes to be abstracted FSA, and the set of
interpretation conditions IC. Next, we invoke a term-level verifier
on T . If VERIFY (T) returns “Valid”, we report that result and
terminate. If a counterexample arises, we evaluate the counterex-
ample on the word-level design. If the counterexample is non-
spurious, we report the counterexample and terminate, otherwise
we store the counterexample in CE and invoke the abstraction
condition learning procedure, LEARNABSCONDS (D,FSA, CE).
We say that VERIFYABS is sound if it reports “Valid” only if D
is correct. It is complete if it reports a true counterexample when
D is incorrect. We have the following guarantee for the procedure
VERIFYABS:

Theorem 1: If VERIFYABS terminates, it is sound and complete.

Proof: Any term-level abstraction is a sound abstraction of
the original design, since any partially-interpreted function (for
any interpretation condition) is a sound abstraction of the fblock
it replaces. Thus VERIFYABS is sound. Moreover, VERIFYABS
terminates with a counterexample only if it deems the counterex-
ample to be non-spurious, by simulating it on the concrete design
D. Therefore VERIFYABS is complete.

In order to guarantee termination of VERIFYABS, we must impose
certain constraints on the learning algorithm LEARNABSCONDS.
This is formalized in the theorem below.

Theorem 2: Suppose that the learning algorithm LEARNAB-
SCONDS satisfies the following properties:

(i) If ci denotes the interpretation condition for an fblock
learned in iteration i of the VERIFYABS loop, then ci =⇒
ci+1 and ci 6= ci+1;

(ii) The trivial interpretation condition true belongs to the
hypothesis space of LEARNABSCONDS, and

(iii) The hypothesis space of LEARNABSCONDS is finite.

Then, VERIFYABS will terminate and return either Valid or a
non-spurious counterexample.

Proof: Consider an arbitrary fblock that is a candidate for

function abstraction. Let the sequence of interpretation conditions
generated in successive iterations of the VERIFYABS loop be
c0 = false, c1, c2, By condition (i), c0 =⇒ c1 =⇒
c2 =⇒ . . . where ci 6= ci+1. Since no two elements of the
sequence are equal, and the hypothesis space is finite, no element
of the sequence can repeat. Thus, the sequence (for any fblock)
forms a finite chain of implications. Moreover, since true belongs
to the hypothesis space, in the extreme case, VERIFYABS can
generate in its final iteration the term-level design T identical to
the original design D, which will yield termination with either
Valid or a non-spurious counterexample.

In practice, the conditions (i)-(iii) stated above can be imple-
mented on top of any learning procedure. The most straightfor-
ward way is to set an upper bound on the number of iterations that
LEARNABSCONDS can be invoked, after which the interpretation
condition is set to true. Another option is to set ci+1 to ci∨di+1

where di+1 is the condition learned in the i + 1th iteration. Yet
another option is to keep a log of the interpretation conditions
generated, and if an interpretation condition is generated for a
second time, the abstraction procedure is terminated by setting
the interpretation condition to true. Many other heuristics are
possible; we leave an exploration of these to future work.

Algorithm 1 Procedure VERIFYABS (D,FSA): Top-level CAL
verification procedure.

1: // Input: Combined word-level design (miter)
D := 〈I,O, {Ni | i = 1, . . . , N}〉

2: // Input: Equivalence classes of fblocks
FSA := {Fj | j = 1, . . . , k}

3: // Output: Verification result
Result ∈ {Valid,CounterExample}

4: Set ci = false for all ci ∈ IC.
5: while true do
6: T = CONDABS (D,FSA, IC)
7: Result = VERIFY (T)
8: if Result = Valid then
9: Return Valid.

10: else
11: Store counterexample in CE .
12: if CE is spurious then
13: IC ←LEARNABSCONDS (D,FSA, CE)
14: else
15: Return CounterExample.
16: end if
17: end if
18: end while

Procedure CONDABS (D,FSA, IC) is responsible for creating
a term-level design T from the original word-level design D,
the set of equivalence classes to be abstracted FSA, and the set
of interpretation conditions IC. CONDABS operates by iterating
through the equivalence classes in FSA. A fresh uninterpreted
function symbol UFj is created for each tuple of isomorphic
output signals χj associated with equivalence class Fi ∈ FSA.
Each output signal vij ∈ χj is conditionally abstracted with UFj
as illustrated in Fig. 3. More formally, if cvij ∈ IC denotes the
interpretation condition associated with vij , then we replace the
assignment vij ← e in fblock fi with the assignment vij ←

ITE(cvij , e,UFj(i1, ..., ik)), where ITE denotes the if-then-else
operator. See [8] for a more detailed description.

C. Learning Conditional Abstractions

Spurious counterexamples arise due to imprecision introduced
during abstraction. More specifically, when a spurious counterex-
ample arises, it means that at least one fblock fi ∈ F (where
F ∈ FSA) is being abstracted when it needs to be modeled
precisely. In the context of our abstraction procedure VERIFYABS,
if VERIFY (T) returns a spurious counterexample CE , then we
must invoke the procedure LEARNABSCONDS (D,FSA, CE).
The LEARNABSCONDS procedure invokes a decision tree learn-
ing algorithm on traces generated by replacing fblocks fi ∈ F
by a tuple of random functions RFχj . Traces are classified as
being “bad” or “good” depending on whether the replacement
with a random function results in a property violation or not. The
learning algorithm generates a classifier in the form of a decision
tree to separate the good traces from the bad ones. The classifier
is essentially a Boolean function over signals in the original word-
level design. More information about decision tree learning can
be found in Mitchell’s textbook [22].

There are three main steps in the LEARNABSCONDS proce-
dure:

1. Generate good and bad traces for the learning procedure;
2. Determine meaningful features that will help decision tree

learning procedures compute high quality decision trees, and
3. Invoke a decision tree learning algorithm with the above

features and traces.

The data input to the decision tree software is a set of tuples
where one of the tuple elements is the target attribute and the
remaining elements are features. In our context, a target attribute
α is either Good or Bad. Our goal is to select features such that
we can classify the set of all tuples where α = Bad based on the
rules provided by the decision tree learner. Since we use an off-
the-shelf decision tree learning tool, we omit a description of how
this works. However, it is very important to provide the decision
tree learning with quality input data and features, otherwise, the
rules generated will not be of use. The data generation procedure
is described in Sec. IV-D and feature selection is described in
Sec. IV-E.

D. Generating Data

In order to produce a meaningful decision tree, we must provide
the decision tree learner with both good and bad traces. We use
random simulation to generate witnesses and counterexamples and
describe these procedures in detail below.

1) Generating Witnesses: Good traces, or witnesses, are gener-
ated using a modified version of the random simulation procedure
described in Sec. IV-A. Instead of simulating the abstract design
when only a single fblock has been replaced with a random
function, we replace all fblocks with their respective random
functions at the same time and perform verification via simulation.
Replacing all the fblocks to be abstracted with the respective
random function ensures diversity in the set of traces fed to the
decision tree learner.

After replacing each fblock to be abstracted with the correspond-
ing random functions, we perform simulation by verification,
repeating the process for N different random functions for each
fblock. N is chosen heuristically similar to T in Sec. IV-A (we
discuss typical values for N in Sec. V-D). The initial state of
design D is set randomly before each run of simulation. This
usually results in simulation runs that pass, and hence in good
traces — recall that at this stage we only consider fblocks that
produce failing runs in a small fraction of simulation runs. Now,
instead of only logging the result of the simulation, we log the
value of every signal in the design for every cycle of each passing
simulation. It is up to the feature selection step, described in
Sec. IV-E, to decide what signals are important.

2) Generating Similar Counterexamples: Whenever LEARNAB-
SCONDS is called, there is a spurious counterexample stored
in CE . We generate many counterexamples similar to CE using
random simulation in a manner similar to that used while identi-
fying abstraction candidates. If more than one equivalence class
of fblocks has been abstracted, the counterexample CE can be
the result of abstracting any individual equivalence class, or a
combination of them.

Consider the situation where CE is the result of only abstracting a
single equivalence class. In this situation, we replace each fblock
in that class with a random function in the word-level design, just
as we did when identifying abstraction candidates in Sec. IV-A.
Next, verification via simulation is performed, and this process
is iterated for N different random functions, for heuristically-
chosen N . A main point of difference between generating similar
counterexamples and generating witnesses is that in generating
similar counterexamples, we set the initial state of design D to
be consistent with the initial state in CE , whereas we randomly set
the initial state of design D when generating witnesses. We log
the values of every signal in the design for each failing simulation
run. It is possible that none of the simulation runs fail, because
the counterexample could be the result of abstracting a different
equivalence class. We repeat this process for each fblock that is
being abstracted.

If replacing individual equivalence classes with random functions
does not result in any failing simulation run, we must take into
account combinations of equivalence classes. In this case, we
try pairs of equivalence classes, then triples, and so on. Clearly,
there is a potential exponential blowup here; however, this has
not occurred in our experiments. In fact, considering a single
equivalence class at a time sufficed for all examples considered
in this work. We leave the exploration of heuristics that determine
how to choose interpretation conditions for combinations of
fblocks for future work.

As noted above, the witness generation and the counterexample
generation procedures can both generate good and bad traces.
Denote the set of all bad traces by Bad and the good traces as
Good . We label each trace in Bad with the Bad attribute and
each trace in Good with the Good attribute.

E. Choosing Features

The quality of the decision tree generated is highly dependent
on the features used to generate the decision tree. We use two
heuristics to identify features:

1. Include input signals to the fblock being abstracted.
2. Include signals encoding the “unit-of-work” being processed

by the design, such as the instruction being executed.

Input signals. Suppose we wish to determine when fblock f must
be interpreted. It is very likely that whether or not f must be
interpreted is dependent on the inputs to f . So, if f has input
signals (i1, i2, ..., in) it is almost always the case that we would
include the input arguments as features to the decision tree learner.

Unit-of-work signals. There are cases when the input arguments
alone are not enough to generate a quality decision tree. In these
cases, human insight can be provided by defining the unit-of-work
being performed by the design. For example, in a microprocessor
design, a unit-of-work is an instruction. Similarly, in a network-
on-a-chip (NoC), the unit-of-work is a packet, where the relevant
signals could include the source address, destination address,
or possibly the type of packet being sent across the network.
Once a unit-of-work signal is identified at one part of the design,
automatic dataflow analysis can identify all signals derived from
it and label these also as features for the learning algorithm. For
instance, in the case of a pipelined processor, the registers storing
instructions in each stage of the pipeline are relevant signals to
treat as features.

In rare cases, the above heuristics are not enough to generate qual-
ity decision trees; we discuss these scenarios and give additional
features in Sec. V.

V. CASE STUDIES

We performed two case studies to evaluate CAL. Both of these
case studies have also been verified using ATLAS. Additionally,
each case study requires a non-trivial interpretation condition (i.e.,
an interpretation condition different from false). The first case
study involves verifying the example shown in Fig. 4. In the
second case study, we verify, via correspondence checking, two
versions of the Y86 microprocessor.

All experiments were run on a MacBook Pro with a 2.4 GHz Intel
Core 2 Duo processor with 4GB RAM. The term-level verification
engine used for the experiments was the UCLID verification
system [1], [9] with Minisat2 [16] and Boolector [11] as the
SAT and SMT backends, respectively. Random simulation was
performed using Icarus Verilog [25]. The decision tree learner
we used in the experiments is C5.0 [23]. We compared our term-
level abstraction-based approach with the state-of-the-art bit-level
equivalence checker, ABC [6], [10]. The benchmarks used in
these experiments as well as the results can be found at [24].

A. The Illustrative Example

In this experiment, we perform equivalence checking between
Design A and B shown in Fig. 4. First, we initialize the designs
to the same initial state and inject an arbitrary instruction. Then
we check whether the designs are in the same state. The precise
property that we wish to prove is that the ALU and PC outputs
are the same for design A and B. Let outA and outB denote the
ALU outputs and pcA and pcB denote the PC outputs for designs
A and B, respectively. The property we prove is: outA = outB ∧
pcA = pcB. Aside from the top-level modules, the design consists
of only two modules, the instruction memory (IMEM) and the

ALU. We do not consider the instruction memory for abstraction
because we do not address automatic memory abstraction. The
ALU passes the random simulation stage, so it is an abstraction
candidate.

The features we use in this case are arguments to the ALU; the
instruction and the data arguments. The interpretation condition
learned from the trace data is op = JMP where op is the top 4
bits of the instruction. As shown in Table I, the runtime for CAL
is comparable with that of ABC.

Runtime (sec)
Interpretation UCLID

Condition ABC SAT SMT
true 0.02 28.51 27.01

op = JMP — 0.31 0.01

TABLE I
Performance comparison Runtime comparison between ABC and

UCLID for the processor fragment shown in 4. The runtime associated
with the model abstracted with CAL is shown in bold.

B. The Y86 Processor

In this experiment, we verify two versions of the well-known Y86
processor model introduced by Bryant and O’Hallaron [13]. The
Y86 processor is a pipelined CISC microprocessor styled after the
Intel IA32 instruction set. While the Y86 is relatively small for a
processor, it contains several realistic features, such as a dual read,
dual write register file, separate data and instruction memories,
branch prediction, hazard resolution, and an ALU that supports
bit-vector arithmetic and logical instructions. Note that we have
extended the ALU to include multiplication in order to create a
harder verification problem. Of the several variants of the Y86
processor we focus on two that have different versions of branch
prediction logic: NT and BTFNT. These versions are the only
versions where the ALU cannot be fully abstracted (i.e., partial
abstraction is required). In NT branches are predicted as not taken,
whereas in BTFNT branches backwards in the address space are
predicted as taken, while branches forward in the address space
are predicted as not taken. NT and BTFNT were the designs that
the ATLAS approach had the most difficulty abstracting [8]. The
property we wish to prove on the Y86 variants is Burch-Dill style
correspondence-checking [14].

Both NT and BTFNT versions have the same module hierarchy
and differ only in the logic pertaining to branch prediction. The
following modules are candidates for abstraction: register file
(RF), condition code (CC), branch function (BCH), arithmetic-
logic unit (ALU), instruction memory (IMEM), and data memory
(DMEM). The RF module is ruled out as a candidate for abstrac-
tion during the random simulation stage due to a large number
of failures during verification via simulation. This occurs because
an uninterpreted function is unable to accurately model a mutable
memory. We do not consider IMEM and DMEM for automatic
abstraction because they are memories and we do not address
automatic memory abstraction in this work. Instead, we man-
ually model IMEM and DMEM with completely uninterpreted
functions. The CC and BCH modules are also removed from
consideration due to the relatively simple logic contained within
them. Abstracting these modules is unlikely to yield substantial

verification gains and may even hurt performance due to the
overhead associated with uninterpreted functions. This leaves us
with the ALU module.

1) Decision tree feature selection: In the case of both BTFNT
and NT using only the arguments of the abstracted ALU is not
sufficient to generate a useful decision tree. The ALU takes three
arguments, the op-code op and two data arguments a and b. Closer
inspection of the data provided to the decision tree learner reveals
a problem. In almost every cycle of both good and bad traces,
the ALU op is equal to ALUADD and the b argument is equal to
0.

In this situation, the arguments to the ALU are not good features
by themselves (i.e., there is not enough diversity within the
traces to learn a useful classifier). Conceptually, the unit-of-
work that we are performing in a pipelined processor is a
sequence of instructions, specifically the instructions that are
currently in the pipeline. The most relevant instruction is the
instruction currently in the execute stage (i.e., the stage containing
the ALU). When InstrE , op, a, and b are used as features,
the resulting decision tree yields the interpretation condition:
cE,b := InstrE = JXX ∧ b = 0.

The main reason we need a partial abstraction is so that the target
address of a jump instruction can pass through the ALU unaltered.
Thus, this is the best interpretation condition we can hope for. In
fact, in previous attempts to manually abstract the ALU in the
BTFNT version, we used: cHand := op = ALUADD ∧ b = 0.

When we compare the runtimes for verification of the Y86-
BTFNT processor, we see that verifying BTFNT with the inter-
pretation condition cE,b outperforms the unabstracted version and
the previously best known abstraction condition (cHand). Table II
compares the UCLID runtimes for the Y86 BTFNT model with
the different versions of the abstracted ALU.

Runtime (sec)
Interpretation UCLID

Condition ABC SAT SMT
true > 1200 > 1200 > 1200
cHand — 133.03 105.34
cE,b — 101.10 65.52

TABLE II
Performance comparison Runtime comparison between ABC and UCLID

for Y86-BTFNT for different interpretation conditions. The runtime
associated with the model abstracted with CAL is shown in bold.

2) Abstraction-refinement: The NT version of the Y86 processor
requires an additional level of abstraction refinement. In general,
requiring multiple iterations of abstraction refinement is not
interesting by itself. However, it is interesting to see how the
interpretation conditions change using this machine learning-
based approach.

Attempting unconditional abstraction of the ALU in the NT
version results in a spurious counterexample. The interpreta-
tion condition learned from the traces generated in this step
is c := a = 0. It is interesting that the same interpretation
condition is generated regardless of whether we consider all of the
instructions as features, or only the instruction in the same stage
as the ALU. Not surprisingly, the second attempt at verification
using the interpretation condition c results in another spurious

counterexample. In this case, the interpretation condition learned
is cE := InstrE = ALUADD, which states that we must interpret
anytime an addition operation is present in the ALU. Similarly
with the first iteration, the interpretation condition learned is the
same regardless of whether we use all of the instructions as
features, or only the instruction in the execute stage. Verification
is successful when cE is used as the interpretation condition.

A performance comparison for the NT variant of the Y86
processor is shown in Table III. Unlike the BTFNT case, the
abstraction condition we learn for the NT model is not quite
as precise as the previously best known interpretation condition,
and the performance isn’t as good. However, the runtimes for
conditional abstraction, including the time spent in abstraction-
refinement, are smaller than that of verifying the original word-
level circuit. That is, the runtime when the interpretation condition
is cE is accounting for two runs of UCLID that produce a
counterexample and an additional run when the property is
proven Valid. Note that the most precise abstraction condition
is the same for both BTFNT and NT. The best performance
on the NT version is obtained when the interpretation condition
cBTFNT := InstrE = JXX ∧ b = 0 is used.

Runtime (sec)
UCLID

Condition ABC SAT SMT
true > 1200 > 1200 > 1200
cHand — 154.95 89.02
cE — 191.34 187.64

cBTFNT — 94.00 52.76

TABLE III
Performance comparison Runtime comparison between ABC and UCLID

for Y86-BTFNT for different interpretation conditions. The runtime
associated with the model abstracted with CAL is shown in bold.

The reason the interpretation condition for BTFNT differs from
that of NT is because the root cause of the counterexamples are
different. The counterexample generated for the BTFNT model
arises because the branch target that would pass through the
ALU unaltered, gets mangled when the ALU is abstracted. The
counterexample generated for the NT model arises because the
abstracted ALU incorrectly squashes a properly predicted branch.

C. Comparison with ATLAS

ATLAS and CAL compute the same interpretation conditions
for the processor fragment described in Sec. V-A. Thus, the only
interesting comparison with regard to the interpretation conditions
is for the Y86 design.

ATLAS is able to verify both BTFNT and NT Y86 versions with
one caveat—the multiplication operator was removed from the
ALU to create a more tractable verification problem. When multi-
plication is present inside the ALU, the ATLAS approach can not
verify BTFNT or NT in under 1200 seconds. In the case where the
multiplication operator is removed, the interpretation conditions
generated by ATLAS simplify to true. In this case, ATLAS
actually takes longer to verify BTFNT, with the abstracted version
taking 1390 seconds and the word-level version taking only
1077 seconds. This behavior highlights the main drawback of
ATLAS. The static analysis procedure blindly takes into account
the structure of the design, giving equal importance to every

signal. This was the inspiration behind using machine learning
to compute interpretation conditions. Not only is CAL able to
verify the BTFNT and NT Y86 versions when multiplication is
included in the ALU, but it does so with an order of magnitude
speedup over the unabstracted version.

D. Remarks

The runtimes listed in Tables I, II, and III focus only on the
time taken by ABC and UCLID. The remaining runtime taken by
the other components of the CAL procedure is, in comparison,
negligible. First, the runtime of the decision tree learner is less
than 0.1 seconds in every case. Second, the simulation time
is quite small. For instance, simulating 1000 correspondence
checking runs for the Y86 model takes less than 5 seconds.
However, we are unable to verify the original word-level Y86
designs within 1200 seconds, so the CAL runtime is negligible.
Similarly, the runtime of generating an AIG for input to ABC is
less than 1 second.

The number of good and bad traces required to produce a quality
decision tree for the processor fragment example in Sec. V-A is
5 (10 total). For the Y86 examples, the number of good and bad
traces was 50 (100 total). Thus, in every example, it takes only
a fraction of a second to generate enough data for the machine
learning algorithm to be able to produce useful results.

VI. CONCLUSION

In this paper, we present CAL, an automatic abstraction proce-
dure based on a combination of random simulation and machine
learning. We evaluate the effectiveness and efficiency of our
approach on equivalence and refinement checking problems in
the context of pipelined processors. We have shown that we are
able to automatically learn conditional abstractions that lead to
better verification performance. Additionally, we learned abstrac-
tion conditions that were better than the previously best known
abstraction conditions for two variants of the Y86 microprocessor
design.

Acknowledgements. This research was supported in part by SRC
contract 2045.001 and an Alfred P. Sloan Research Fellowship.

REFERENCES

[1] UCLID Verification System. Available at http://uclid.eecs.berkeley.edu.
[2] Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. Refinement strategies

for verification methods based on datapath abstraction. In Proceedings of
ASP-DAC, pages 19–24, 2006.

[3] Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. CEGAR-based formal
hardware verification: A case study. Technical Report CSE-TR-531-07,
University of Michigan, May 2007.

[4] Z. S. Andraus and K. A. Sakallah. Automatic abstraction and verification of
Verilog models. In Proceedings of the 41st Design Automation Conference
(DAC), pages 218–223, 2004.

[5] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo
theories. In Handbook of Satisfiability, volume 4, chapter 8. IOS Press,
2009.

[6] Berkeley Logic Synthesis and Verification Group. ABC: A System for Se-
quential Synthesis and Verification. http://www.eecs.berkeley.edu/∼alanmi/
abc.

[7] P. Bjesse. A practical approach to word level model checking of industrial
netlists. In CAV ’08: Proceedings of the 20th international conference
on Computer Aided Verification, pages 446–458, Berlin, Heidelberg, 2008.
Springer-Verlag.

[8] B. A. Brady, R. E. Bryant, S. A. Seshia, and J. W. O’Leary. ATLAS:
automatic term-level abstraction of RTL designs. In Proceedings of the
Eighth ACM/IEEE International Conference on Formal Methods and Models
for Codesign (MEMOCODE), July 2010.

[9] B. A. Brady, S. A. Seshia, S. K. Lahiri, and R. E. Bryant. A User’s Guide
to UCLID Version 3.0, October 2008.

[10] R. K. Brayton and A. Mishchenko. ABC: An academic industrial-strength
verification tool. In CAV, pages 24–40, 2010.

[11] R. D. Brummayer and A. Biere. Boolector: An efficient SMT solver for
bit-vectors and arrays. In In Proc. of TACAS, pages 174–177, March 2009.

[12] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying
systems using a logic of counter arithmetic with lambda expressions and
uninterpreted functions. In Proc. Computer-Aided Verification (CAV’02),
LNCS 2404, pages 78–92, July 2002.

[13] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Programmer’s
Perspective. Prentice-Hall, 2002. Website: http://csapp.cs.cmu.edu.

[14] J. R. Burch and D. L. Dill. Automated verification of pipelined micropro-
cessor control. In D. L. Dill, editor, Computer-Aided Verification (CAV ’94),
LNCS 818, pages 68–80. Springer-Verlag, June 1994.

[15] E. M. Clarke, A. Gupta, J. H. Kukula, and O. Strichman. SAT based
abstraction-refinement using ilp and machine learning techniques. In Proc.
Computer-Aided Verification (CAV), volume 2404 of Lecture Notes in
Computer Science, pages 265–279, 2002.

[16] N. Eén and N. Sörensson. The MiniSAT Page. http://minisat.se.
[17] A. Gupta and E. M. Clarke. Reconsidering CEGAR: Learning good

abstractions without refinement. In Proc. International Conference on
Computer Design (ICCD), pages 591–598, 2005.

[18] W. A. Hunt. Microprocessor design verification. Journal of Automated
Reasoning, 5(4):429–460, 1989.

[19] P. Johannesen. BOOSTER: Speeding up RTL property checking of digital
designs through word-level abstraction. In Computer Aided Verification,
2001.

[20] S. K. Lahiri and R. E. Bryant. Deductive verification of advanced out-of-
order microprocessors. In Proc. 15th International Conference on Computer-
Aided Verification (CAV), volume 2725 of LNCS, pages 341–354, 2003.

[21] P. Manolios and S. K. Srinivasan. Refinement maps for efficient verification
of processor models. In Design, Automation, and Test in Europe (DATE),
pages 1304–1309, 2005.

[22] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[23] R. Quinlan. Rulequest research. http://www.rulequest.com.
[24] The CAL Approach. CAL: Conditional Abstraction through Learning. http:

//uclid.eecs.berkeley.edu/cal.
[25] S. Williams. Icarus Verilog. http://www.icarus.com/eda/verilog/.

