
Timing Analysis of Interrupt-Driven Programs
under Context Bounds

Jonathan Kotker Dorsa Sadigh Sanjit A. Seshia
EECS Department, UC Berkeley

jamhoot@eecs.berkeley.edu dsadigh@berkeley.edu sseshia@eecs.berkeley.edu

Abstract— Timing analysis is a key step in the design of depend-
able real-time embedded systems, yet existing analysis tools do
not work well for interrupt-driven code, which is commonly used
in embedded systems. In this paper, we present a technique for
timing analysis of interrupt-driven software. We show that for
systems that use priority pre-emptive scheduling, if there is a
finite arrival time between interrupts, one can use bounds on
the number of context switches to perform timing analysis. Our
work builds upon prior work on timing analysis for sequential
programs. We present empirical evidence to show that we can
accurately predict the execution time along any path of an
interrupt-driven program on a standard micro-controller.

I. INTRODUCTION

Timing is central to the correctness of real-time embedded
systems. Timing properties are determined by the behavior of
both the control software and the platform the software exe-
cutes on. The verification of such properties is made difficult
by their heavy dependence on characteristics of the platform,
including details of the processor and memory hierarchy. Even
so, over the past two decades, there has been steady progress
in the field of timing analysis for purely sequential software
(see [1], [2]). Most of the progress has been on the classic
problem of estimating the worst-case execution time (WCET)
of a terminating software task. Such an estimate can be used as
conservative checks on real-time constraints as well as for use
in scheduling algorithms. While determining a bound on the
WCET has many uses, it is not the only problem of interest.
As tools typically overestimate the WCET, when the WCET
exceeds the timing bound, one cannot be sure whether the
program can really miss its deadline. One would also like
to find a test case demonstrating that the program can miss
its deadline. Recent methods [2] have sought to address this
problem for sequential programs.

In practice, though, embedded software is not purely sequen-
tial. In many real-world applications, the control software com-
prises several tasks that execute concurrently. Programming
with interrupts is an extremely common form of concurrency
that the control software uses to obtain sensor data from its
physical environment. Apart from a main function, the control
software has one or more interrupt-service routines (ISRs). An
ISR is invoked when its corresponding interrupt is raised, e.g.,
when a new sensor sample is available. For such an interrupt-
driven program, there is a need to ensure that the task meets
its deadline even in the presence of interrupts. However, the
state-of-the-art of timing analysis for interrupt-driven software

is extremely poor. For instance, in NASA’s recent report on
“unintended acceleration” in certain Toyota automobiles [3],
several limitations of state-of-the-art timing analysis tools are
noted, including the lack of support for interrupts.

The reason for this lack of progress on timing analysis
of interrupt-driven software is not hard to guess. It is the
exponential explosion in the number of interleavings of various
software tasks (such as the main function and the ISRs for
various interrupts). This path explosion especially impacts
timing analysis, since timing is a highly path-sensitive property
— the execution time of a basic block of a program can
depend a great deal on the path it lies on. This is in contrast
with verifying invariants (such as assertion violations), where
one is concerned with checking if a particular “error” location
is reachable without regard to how it is reached. Moreover,
interrupts also impact processor operation, e.g., by flushing
the CPU pipeline. Most current state-of-the-art WCET analysis
techniques are based on using abstract interpretation to create
an abstract timing model of the processor [1]. Even for
sequential programs, the creation of an abstract timing model
is an extremely tedious manual process. With interrupt-driven
programs, the process is even harder due to the need to model
the impact of interrupts on hardware and also due to the
severe imprecision abstract interpretation suffers due to the
large number of joins required on reconvergent interleaved
paths.

Even with these challenges, good embedded software design
often follows rules that can ease the problem. First, in many
systems, there is a strict priority assignment between various
tasks in the system, and the task scheduler follows priority
pre-emptive scheduling — a task runs to completion unless
a higher-priority task preempts it. Second, there is usually a
finite lower bound on inter-arrival time between interrupts,
dictated, for example, by the rate at which a sensor generates
samples. This inter-arrival time bound imposes a restriction
on how frequently a task can be interrupted. Finally, careful
coding practices involve the use of “atomic sections” by
disabling interrupts in selected parts of the program.

In this paper, we present a novel approach to the problem
of timing analysis of interrupt-driven software that takes
advantage of the above design rules. In particular, we make
the following contributions:

• We show how a lower bound on inter-arrival time of

interrupts in turn imposes an upper bound on the number
of “context switches” between the interrupted task and the
ISR. This enables the use of context-bounded analysis,
similar to the work pioneered by Qadeer et al. [4],
[5]. The use of atomic sections and priority pre-emptive
scheduling further reduces the number of interleavings
that need to be considered.

• Even with these reductions, the number of interleaved
paths can still be exponential in the context bound, and
very large in practice. Obtaining measurements for a large
number of paths can be very tedious and expensive. We
show that we can leverage work for sequential program
timing analysis to mitigate this problem. In particular, we
adopt the idea of using the execution time of basis paths
to predict the times of other program paths [2], [6]. The
number of basis paths is guaranteed to be polynomial in
the size of the program.

• We demonstrate our approach with experiments on a
real embedded platform, the Luminary Micro LM3S8962
board with an ARM Cortex M-3 processor [7], interfaced
to sensors on the iRobot Create mobile robot [8]. We
show that we can accurately predict not only the WCET
of various programs, but also the execution times of
arbitrary program paths. When a particular deadline is
violated, our approach can generate a test case exhibiting
how this occurs.

To our knowledge, our approach is the first timing analysis
technique for interrupt-driven software that can not only gener-
ate worst-case execution time estimates, but also can generate
accurate predictions for the actual timing (not just bounds)
along arbitrary program paths. Importantly, our approach is
extremely portable: in contrast with traditional WCET tech-
niques that rely on tedious manual modeling of the platform,
our approach only requires automated systematic generation
of measurements on the target platform, from which we make
accurate predictions of program timing on paths that have not
been tested.

The rest of the paper is organized as follows. We introduce the
problem, along with basic terminology, definitions, and related
work in Section II. The core of our approach is presented in
Section III. Section IV presents an experimental evaluation.
We conclude in Section V with directions for future work.

II. BACKGROUND AND RELATED WORK

We define terminology and the problems considered in this
paper in Section II-A, and compare with related work in
Section II-B.

A. Problem Definition

Real-time embedded programs are reactive programs that
execute repeatedly within a top-level “while(1) loop”. We
are concerned with the tasks invoked within this loop, which
are required to be terminating programs. For this paper, we
are concerned with programs structured as a single “main”

task along with one or more interrupt-service routines (ISRs)
which are written typically as other tasks (think of C func-
tions). Typically, the boot-up sequence of the system involves
registering the ISRs as handlers for the various interrupts that
the system must respond to.

We present a simple imperative language to model these
interrupt-driven programs. Figure 1 shows the program syntax.
An interrupt-driven program P is composed of N tasks,
each of which is a sequential program. Each task T has an
associated priority level p, which is a positive integer. We will
assume that each task has a unique priority level, and a larger
priority level indicates higher priority. A task of priority pi
can interrupt a task with priority pj if pi > pj . Once a higher-
priority task has interrupted a lower-priority task, it runs to
completion unless it is interrupted by a task with still higher
priority. This scheduling scheme is known as priority pre-
emptive scheduling, and is widely implemented in embedded
platforms.

S ::= v := e | skip | if e thenS1 elseS2

| S1;S2 | while edo 〈B〉S
| atomic {S } | timed while τ doS

T ::= 〈S, p〉
P ::= T1 ‖T2 ‖ . . . ‖TN

Fig. 1: Syntax for Interrupt-Driven Programs. v and e

denote an l-value and an expression in any standard imperative programming
language such as C. The skip statement is a no-op. Every while loop has
an associated loop bound B. T denotes a sequential task with an associated
priority p, and P denotes a program composed of n tasks.

The code for a task T follows standard syntax of an imperative
language such as C, with a few small exceptions. Assignments
have the form v := e where v is an l-value and e is any
expression in C including procedure calls. For simplicity, we
disallow recursive procedure calls; in any case, it is highly
desirable in real-time embedded software to impose finite
bounds on recursion depth. The syntax of Fig. 1 includes if
statements as a way of modeling all conditional constructs,
including switch statements. We will use switch statements
where required for brevity. The main exceptions to standard
program notation are with regard to while loops and the
presence of a special atomic program construct, as described
below:

1) Each while loop must have a statically-known upper
bound B on the number of loop iterations. We assume
each loop is annotated with such a bound. We will
use the standard for-loop notation where it is more
convenient to do so.

2) There is a special timed-while loop construct
timed while which has an associated deadline
τ . This loop runs for exactly τ cycles and terminates
thereafter. This construct models timed loops common
in embedded code that waits for an event for a specific
amount of time, with termination guaranteed by the
expiration of a hardware timer.

3) We include a special atomic construct which models
a piece of code S that runs uninterrupted. This con-
struct is typically implemented by disabling interrupts
before running S and re-enabling interrupts after S
completes execution. Using such atomic code sections
within sequential code is considered good programming
practice to ensure that certain operations are completed
atomically irrespective of the presence of interrupts.

We assume that interrupts cannot occur infinitely often during
the execution of P and that there is a finite lower bound
on the inter-arrival times of interrupts. We believe this is
a reasonable assumption that holds in practice for real-time
embedded systems.

Given the above model, we are concerned with answering
the following three types of timing analysis questions. For
each question, the inputs include an interrupt-driven program
P and the platform it executes on. The platform is the
complete hardware and software environment of P , including
the compiler, processor, and memory architecture.

• P1: Threshold Property Checking.
Does P always complete within τ cycles? If not, provide
a test case (counterexample).

• P2: Worst-Case Execution Time Prediction.
Predict the worst-case execution time of P and generate
corresponding test case.

• P3: Predicting Timing along All Paths.
Predict the execution time (not a bound) of program P
along all paths, where a path involves following a specific
interleaving of tasks and particular paths within tasks.

One can observe that problem P3 is more general than P1
and P2 in that if one can solve P3, one can answer questions
P1 and P2 as well. Therefore, in Section III, we focus on
addressing problem P3. We demonstrate our results for all
three problems in Section IV.

Our technique relies on the notion of context-bounded analy-
sis [4], [5]. Following the definition introduced by Qadeer and
Rehof [5], a context is an uninterrupted sequence of actions
by a single task. A bound of K on the number of contexts
implies a bound of K − 1 on the total number of context
switches between tasks.

B. Related Work

As noted above, Qadeer et al. introduced the idea of verifying
multithreaded software by using context bounds [4], [5]. How-
ever, their work focuses on traditional propositional temporal
properties. Our paper is the first to apply the idea of context-
bounded analysis to the problem of timing analysis.

Brylow and Palsberg [9] consider the topic of deadline analy-
sis in interrupt-driven programs — checking whether every
interrupt is serviced before its deadline. They assume that
worst-case execution times are already determined for certain
program fragments and use this in their analysis. In contrast,
we are concerned with predicting execution time properties

of the entire interrupt-driven program, and can generate the
WCET estimates required in their analysis.

The WCET analysis community has mainly focused on analyz-
ing sequential programs without interrupts. A recent industrial
experience report [10] states the difficulty of estimating the
WCET of an interrupt service routine in welding control
software, writing: “It was difficult to detect if other inter-
rupts had disturbed the measurement of the current interrupt.”
While there has been work on testing non-timing “functional”
properties of interrupt-driven software (e.g., [11]), there is
no systematic work for verifying timing properties of such
programs. The work on schedulability analysis — in which
one analyzes if a task can meet its deadline in spite of pre-
emption by other tasks — is related; however, that work
treats tasks as atomic objects (see, e.g., [12]), whereas we
perform a detailed program analysis of tasks, considering
interleaved program paths and interaction of tasks through
shared variables. To the best of our knowledge, our technique
is the first systematic approach for performing WCET analysis
(and other timing analysis) on interrupt-driven programs.

Kidd et al. [13] present an approach to transform a concur-
rent real-time program with priority pre-emptive scheduling
to a sequential program so that any state reachable in the
original concurrent program can be reached by performing
reachability analysis of the sequential program. This is close
to our work in that we could conceivably use their reduction;
however, additional assumptions will be needed on inter-
arrival time of interrupts, as in our paper. Other methods
for more compactly transforming context-bounded concurrent
programs to sequential programs are also available [14], [15];
however, with priority pre-emptive scheduling the benefit of
these transformations is somewhat limited. Our contribution is
to show how the ideas of context-bounding and basis paths can
be combined to perform accurate timing analysis of interrupt-
driven software.

III. APPROACH

Consider an interrupt-driven program P = T0‖T1‖ . . . ‖TN ,
where i denotes the priority level of Ti. We will consider T0 to
be the main function, and all other tasks to be ISRs. Thus, there
are n interrupts, which we denote by ι1, ι2, . . . , ιn. As part of
the problem description, we are also supplied a lower bound
α on the time between interrupts – the “inter-arrival” time of
interrupts. Finally, the platform of interest is also specified.

The high-level idea of our approach is to reduce the problem of
timing analysis of interrupt-driven programs to timing analysis
of sequential programs, by deriving a context bound that is
adequate to explore all interleaved paths of P . The approach
operates in the following five steps.

1) Use the finite inter-arrival times of interrupts to derive
a context bound CB for P that is adequate to explore
all interleaved paths of P .

2) Use CB to generate a single sequential program Pseq
that is path-equivalent to P for the context bound CB .

3) Invoke GAMETIME [2], a timing analysis technique for
sequential programs, on Pseq. The key idea in GAME-
TIME is to extract a subset of program paths that forms
a basis (in the standard linear algebra sense) for the set
of all program paths. We term these paths as basis paths.
GAMETIME also uses an SMT solver [16] to generate
test cases that drive program execution down these basis
paths. The key difference with previous applications of
GAMETIME is that the generated basis paths are inter-
leaved paths in P , involving context switches between
the main function and ISRs.

4) Execute test cases for basis paths on the platform with
an interrupt-generation test harness, and measure the
execution time of basis paths.

5) Use measured times to infer a platform model, using
the GAMETIME learning algorithm. The inferred model
is used to predict execution times of other paths, and
answer Problems P1, P2, and P3.

For ease of presentation, we will describe the process some-
what out of order. We will start first with the third item, our
technique for timing analysis of sequential programs, then
describe the remaining steps.

A. Timing Analysis of Sequential Programs using Basis Paths

While there are several tools for estimating worst-case ex-
ecution time of sequential programs [1], the only tool we
are aware of which can address Problems P1 and P3 is
GAMETIME [2], [6]. Our approach therefore builds upon
GAMETIME.

In this section, we give a brief overview of the relevant aspects
of GAMETIME. Most important is the notion of basis paths
which helps us deal with the large number of interleaved
program paths.

Fig. 2: GAMETIME overview [17]

Figure 2 depicts the operation of GAMETIME. The process
begins (see top-left corner) with the generation of the control-
flow graph (CFG) of the program, in which all loops have
been unrolled to the maximum loop bound, and all function

calls have been inlined into the top-level function. The CFG is
assumed to have a single source node (entry point) and a single
sink node (exit point); if not, dummy source and sink nodes
are added without loss of generality. The next step is a critical
one, where a subset of program paths, called basis paths are
extracted. These basis paths are those that form a basis for
the set of all paths, in the standard linear algebra sense of a
basis. Symbolic execution is used to generate an satisfiability
modulo theories (SMT) formula for each candidate basis path.
An SMT solver is invoked to ensure that the basis paths are
feasible; it generates test cases to drive execution down those
paths.

The original program (not the unrolled, inlined version) is
compiled for the target platform, and executed on these test
cases. In the basic GAMETIME algorithm (described in [2],
[6]), the sequence of tests is randomized, with basis paths
being chosen uniformly at random to be executed. The overall
execution time of the program is recorded for each test
case. From these end-to-end execution time measurements,
GAMETIME’s learning algorithm generates a weighted graph
model that is used to make predictions about timing properties
of interest. The predictions hold with high probability; details
of theoretical results can be found in the previous papers
on GAMETIME [2], [6]. We provide here a less formal and
more intuitive description of the theoretical guarantees for the
problems of interest P1 - P3:

P3: Given any δ, GAMETIME can predict the execution time
of any program path to within a tolerance of ε with
probability 1 − δ by running a number of tests that is
polynomial in the program size, in ln(1δ), and a parameter
µmax (described below).
The tolerance ε is O(bµmax), where b is the number of
basis paths, and µmax is an upper bound on the mean
perturbation to program path timing due to path-specific
variations to basic block time. Essentially, ε depends on
how much the time of a basic block can vary based on
the path it lies on: the greater the mean variation, the
larger the value of ε.

P2: For WCET estimation, GAMETIME provides a similar
high-probability guarantee on finding the path along
which the WCET is exhibited. Once this path is identified,
one can simply execute this on the target platform and
measure the corresponding execution time. Thus, if GA-
METIME correctly finds the worst-case path, it accurately
computes the WCET.
More specifically, given the mean perturbation bound
µmax, if the worst-case path timing is larger than the
timing of any other path by a margin ρ (which is also
O(bµmax)), then GAMETIME is guaranteed to find the
worst-case path with probability 1 − δ by running a
number of tests that is polynomial in the program size,
in ln(1δ), and µmax.

It is easy to see how Problem P1 also receives a similar high-
probability theoretical guarantee. However, if the underlying
assumption on the margin ρ does not hold, GAMETIME might

not correctly predict the WCET. In general, it is possible
for GAMETIME to generate an estimate that under- or over-
approximates the timing of a program path. In practice,
though, we have found the estimates to be accurate (within
a few percent relative error) and the worst-case path has been
always correctly predicted, even on architectures that include
caches, complex pipelines, and branch prediction [6].

We explain the basis path generation process using a simple se-
quential program that performs modular exponentiation, given
in Figure 3(a). Modular exponentiation is a necessary primitive
for implementing public-key encryption and decryption. In this
operation, a base b is raised to an exponent e modulo a large
prime number. In this particular benchmark, we use the square-
and-multiply method to perform the modular exponentiation,
based on the observation that

be =

{
(b2)e/2 = (be/2)2, e is even,
(b2)(e−1)/2 · b = (b(e−1)/2)2 · b, e is odd.

(1)

The unrolled version of the code of Figure 3(a) for a 2-bit
exponent is given in Figure 3(b).

In the CFG extracted from a program, nodes correspond to
program counter locations, and edges correspond to basic
blocks or branches.

(a) CFG for
modexp

(unrolled)

1

2
3

4

5

6
7

8

9

1

2

5

6

9

1

3

4

5

6

9

1

2

5

7

8

9

(b) Basis paths
x1 , x2 , x3

1

3

4

5

7

8

9

(c) Additional
path x4

x1 = (1, 1, 0, 0, 1, 1, 0, 0, 1)
x2 = (1, 0, 1, 1, 1, 1, 0, 0, 1)
x3 = (1, 1, 0, 0, 1, 0, 1, 1, 1)

x4 = (1, 0, 1, 1, 1, 0, 1, 1, 1)

x4 = x2 + x3 - x1

(d) Vector
representations

Edge labels indicate
Edge IDs, and

positions in vector
representation

Fig. 4: CFG and Basis Paths for Code in Fig. 3(b)

Figure 4(a) denotes the control-flow graph for the code in Fig-
ure 3(b). Each source-sink path in the CFG can be represented
as a 0-1 vector with m elements, where m is the number of
edges. The interpretation is that the ith entry of a path vector
is 1 iff the ith edge is on the path (and 0 otherwise). For
example, in the graph of Fig. 4(a), each edge is labeled with
its index in the vector representation of the path. Edges 2 and
3 respectively correspond to the else (0th bit of exponent
= 0) and then branches of the condition statements at lines 3
and 9 respectively in the code, while edge 5 corresponds to
the basic block comprising lines 6 and 7. We denote by P the
subset of {0, 1}m corresponding to valid program paths. Note
that this set can be exponentially large in m.

A key feature of GAMETIME is the ability to exploit correla-
tions between paths so as to be able to estimate program timing
along any path by testing a relatively small subset of paths.
This subset is a basis of the path-space P , with two valuable
properties: any path in the graph can be written as a linear
combination of the paths in the basis, and the coefficients in
this linear combination are bounded in absolute value. The
first requirement says that the basis is a good representation
for the exponentially-large set of possible paths; the second
says that timings of some of the basis paths will be of the
same order of magnitude as that of the longest path. These
properties enable us to repeatedly sample timings of the basis
paths to reconstruct the timings of all paths. As GAMETIME
constructs each basis path, it ensures that it is feasible by
formulating and checking an SMT formula that encodes the
semantics of that path; a satisfying assignment yields a test
case that drives execution down that path.

Fig. 4(b) shows the basis paths for the graph of Fig. 4(a). Here
x1, x2, and x3 are the paths corresponding to exponent
taking values 00, 10, and 01 respectively. Fig. 4(c) shows the
fourth path x4, expressible as the linear combination x2+x3−
x1 (see Fig. 4(d)).

The number of feasible basis paths b is bounded by m−n+2
(where n is the number of CFG nodes). Note that our example
graph has a “2-diamond” structure, with 4 feasible paths, any 3
of which make up a basis. In general, an “N -diamond” graph
with 2N feasible paths has at most N + 1 basis paths.

B. Using Context Bounds to Generate a Sequential Program

Let us assume for this section that we are given a fixed context
bound CB . We will explain in Section III-C how a finite
inter-arrival time of interrupts can be used to generate a finite
context bound.

Given a context bound CB and an interrupt-driven program
P = T0‖T1‖ . . . ‖TN , we generate a sequential program Pseq
that is path-equivalent to P up to context bound CB . Recall
that Tj has higher priority than Ti if j > i, and that the main
function is T0. The procedure iteratively replaces each Tj ,
starting with j = N , with a replacement sequential program
T ′j , such that every interleaved path starting in Tj and possibly
involving higher-priority tasks is a program path in T ′j . Thus,
T ′0 is the desired sequential program Pseq.

The sequential programs T ′j update a set of dummy shared
variables that track the number of context switches and the
program locations at which context switches occur. We de-
scribe below how we obtain T ′j from Tj .

Without loss of generality, suppose that Tj is a sequence of k
atomic statements:

Tj , S1;S2;S3; . . . Sk

Thus, for each higher-priority task Ti, i > j, there are
k + 1 possible locations where it may be invoked, plus the
possibility that it may not interrupt Tj at all. We encode the
possible switching points as well as the choice of tasks at

1 modexp(base, exponent) {
2 result = 1;
3 for(i=EXP_BITS; i>0; i--) {
4 // EXP_BITS = 2
5 if ((exponent & 1) == 1) {
6 result = (result * base) % p;
7 }
8 exponent >>= 1;
9 base = (base * base) % p;

10 }
11 return result;
12 }

(a) Original code P

1 modexp_unrolled(base, exponent) {
2 result = 1;
3 if ((exponent & 1) == 1) {
4 result = (result * base) % p;
5 }
6 exponent >>= 1;
7 base = (base * base) % p;
8 // unrolling below
9 if ((exponent & 1) == 1) {

10 result = (result * base) % p;
11 }
12 exponent >>= 1;
13 base = (base * base) % p;
14 return result;
15 }

(b) Unrolled code Q

Fig. 3: Modular exponentation. Both programs compute the value of baseexponent modulo p.

those switching points using a nondeterministic choice symbol
“∗”, which is replaced by a fresh Boolean variable when
generating an SMT formula by symbolic path execution. Also,
each invocation of a higher-priority task increments a global
variable C that tracks the number of context switches. C is
initialized to 0 when P begins execution, and a higher-priority
task can interrupt a lower-priority task only if C < CB .

The sequential program T ′j has the format

R1;S1;R2;S2;R2; . . . Rk;Sk;Rk+1

where each Rl, l = 1, 2, . . . , k + 1, is the following piece of
code:

for i = 1..CB do
if C < CB then

switch(∗) {
case j + 1 : C := C + 1;T ′j+1;break
case j + 2 : C := C + 1;T ′j+2;break
. . .

case N : C := C + 1;T ′N ;break
default : skip
}

In the above code snippet, the outer for loop encodes the fact
that there can be at most CB invocations of a higher-priority
task between atomic statements. The nondeterministic choice
“∗” encodes the choice of an arbitrary higher-priority task or
no ISR invocation (in the event the “default” case is chosen).

It is easy to see that each intermediate statement Rl in T ′N
reduces to skip and hence T ′N is path-equivalent to TN .
Building on this base case, we can easily obtain the following
theorem by induction on N .

Theorem 1: For all j = 0, 1, 2, . . . , N , the set of pro-
gram paths of T ′j equals the set of all interleaved paths of
Tj‖Tj+1‖Tj+2‖ . . . ‖TN with at most CB−1 context switches.

In particular, the set of program paths of T ′0 = Pseq is equal
to the set of all interleaved paths of P with at most CB − 1
context switches (i.e., a context bound of CB).

C. From Inter-Arrival Times to Context Bounds

Let α be the lower bound on the inter-arrival time of interrupts
on the platform of interest. We argue how α can be used to
generate a context bound CB that is sufficient to include all
executions of the interrupt-driven program P .

We start by hypothesizing that CB = 1. With this context
bound, we generate a sequential program as described in
Sec. III-B and compute the WCET TW . If TW is less than
α, we know that P will complete execution before a second
interrupt is raised. Thus, we can terminate with CB = 1.

However, if TW ≥ α, it is possible that the main function of
P is interrupted twice before terminating. Thus, we set CB =
2, regenerate the corresponding sequential program, and re-
compute the WCET TW . This time, we compare TW with 2α.
If TW < 2α, we can terminate with CB = 2. Otherwise, we
increase CB by one and repeat the procedure. In general, when
CB = k, we compare TW with kα, terminating when TW <
kα, and otherwise incrementing CB to k + 1 and iterating.

If the time taken by an ISR (in the presence of higher-
priority interrupts) is less than the minimum inter-arrival time
of interrupts, this procedure is guaranteed to terminate with a
finite context bound. To see this, note that on each iteration,
TW will grow by a smaller factor than α. This is typically
the case for real-time embedded software: the rule of thumb
is that ISRs must terminate very quickly in order to guarantee
that every interrupt is serviced. The execution time of ISRs are
typically a small fraction of the minimum inter-arrival time α.

D. Generating Measurements for Basis Paths and Predictions

The sequential program Pseq is fed as input to GAMETIME,
which generates basis paths for this program along with the
corresponding test cases. Each test case includes an assignment
to program variables as well as to the nondeterministic choice
variables that indicate where tasks are interrupted and by
which higher-priority tasks.

We then execute the test cases within a harness that triggers
interrupts at the right locations as indicated by the test case.

This harness is specific to each platform, involving the use of a
few inline assembly instructions at each interrupt point (loca-
tion). While this involves a slight modification to the original
code, given the small number of inline assembly instructions,
we believe any skew to program timing is miniscule.

Measurements can be obtained using one of a range of execu-
tion time measurement techniques – again these are platform-
specific. Perhaps the most non-intrusive (but rather expensive)
method is the use of a logic analyzer. Somewhat simpler is the
use of on-chip cycle counters or on-board timers. These are
applicable provided the code fragment is small enough that the
timer register does not overflow. We use the latter approach as
it is applicable for our benchmarks. Any alternative accurate
measurement technique can be used instead. It is important
to note that getting accurate measurements on the embedded
platform can be a time-consuming process, involving repeated
re-compilation and logging of measurements — therefore, it
is desirable to limit the number of measurements taken. (We
will see in the next section how the notion of basis paths helps
us to limit the number of measurements taken, while retaining
prediction accuracy.) Further platform-specific details about
measurement are given in Section IV-B.

Once the measurements are obtained for the basis paths,
we invoke GAMETIME’s learning algorithm (as described in
Section III-A) to provide answers to the problem of interest
(P1, P2, or P3).

E. Efficiency Analysis

In this section, we calculate the number of basis paths that
GAMETIME requires to perform its timing analysis and com-
pare it to the total number of paths that are possible through
a sequential program, to demonstrate the efficiency of the
GAMETIME approach.

We assume that the control-flow graph of a task Ti
(1 ≤ i ≤ j) has mi edges, ni nodes, and pi possible
interrupt points, with a context bound of CB . Let m =
maximi and p = maxi pi. Since, in the worst case, the
number of interrupt points can exceed the number of basic
blocks, mi = O(pi) and m = O(p). For ease of analysis, we
first consider a specific task Ti that can only be interrupted
by exactly one higher priority task Tj , j > i. To generate the
sequential task T ′i corresponding to task Ti, we make copies
of the control-flow graph of Tj and attach a copy to each
interrupt point in task Ti. The control-flow graph of T ′i thus has
O(mi+pi ·CB ·mj) edges, which is O(p2 ·CB). As described
earlier and in [2], the number of basis paths is linear in the
number of edges, and so GAMETIME will infer O(p2 · CB)
basis paths. In contrast, since there are pi possible interrupt
points, and each interrupt point can be taken at least once and
at most CB times, we have at least one unique program path
through Ti for every choice of CB out of pi · CB interrupt
points. Thus, there are O((pCB)CB) total paths through the
control-flow graph of Ti. This simple case of two tasks is
representative of the difference between the total number of

paths through the control-flow graph of a sequentialized task
and the number of basis paths that GAMETIME requires.

We can generalize this to the case of multiple tasks: consider a
specific task Ti that can be interrupted by any higher priority
task Tr, (i < r ≤ j). We can generate the sequential task
T ′i corresponding to task Ti as follows: We do not need to
sequentialize Tj since it is the highest priority thread and thus
cannot be pre-empted by any other thread. Thus, the sequential
task T ′j is the same as Tj . We sequentialize the task Tj−1 as
described in the case of two tasks to create a control-flow
graph with O(mj−1 + pj−1 · CB · mj) edges. We can then
sequentialize the task Tj−2 by noticing that either T ′j−1 or
T ′j can interrupt at each interrupt point of Tj−2. The task
T ′j−2 thus has O(pj−2 · CB · (mj−1 + pj−1 · CB · mj)) =

O(pj−2 ·CB ·mj−1+pj−2 ·pj−1 ·CB2 ·mj) edges. Proceeding
inductively, we see that the size of the control-flow graph of
the sequential task T ′i is O(

∑j−1
r=i (

∏r
`=i p`CB)mr+1)) edges.

However, not all the paths through this CFG are feasible, due
to the context bound. In fact, to determine the number of basis
paths, notice that with a context bound of CB , the effective
product

∏r
`=i p`CB , after eliminating paths with more than

CB context switches, has at most CB terms. Thus, the number
of basis paths grows as O((pCB)CBm). Note that this is
polynomial in the size of the tasks and is independent of the
number of tasks. Using more compact transformations to a
sequential program (e.g., [14], [15]) it might be possible to
further reduce this bound.

To determine the total number of paths through the sequential
task T ′i , we recognize that any of the pi ·CB interrupt points
can be the location of one of the (at most) CB context
switches. An interleaving through k tasks is a combination
of CB out of (p · CB)k choices of combinations of interrupt
points. Thus, the total number of paths grows as O((p ·
CB)(k·CB)). Note that this grows exponentially in the number
of tasks.

IV. EXPERIMENTAL RESULTS

The goal of the experiments reported here is to demonstrate
that our approach can, by measuring only a small linear
subset of interleaved paths, accurately predict (i) the worst-
case execution time for interrupt-driven programs (which we
check by exhaustively enumerating all program paths), and (ii)
the execution time along any arbitrary program path.

A. Physical Apparatus and Benchmarks

We used the Luminary Micro LM3S8962 board [7], interfaced
to the iRobot Create autonomous robot platform [8] for our
experiments. This microcontroller is shown in Figure 5(a) and
the iRobot Create in Figure 5(b). The Luminary Micro board
contains a 32-bit ARM Cortex M3 microcontroller, running
at 50 MHhz. This microcontroller is interfaced to a range
of peripherals: of special interest for our experiments is the
UART interface to built-in iRobot sensors and the analog-to-
digital interface to an ADXL-322 accelerometer. The built-in

(a) Board (b) iRobot Create

Fig. 5: Luminary Micro LM3S8962 and iRobot Create

sensors include buttons that a human can press, cliff sensors,
and a bump sensor. Since the robot moves slowly, and humans
cannot press buttons very quickly twice in a row, the minimum
inter-arrival time of interrupts α was estimated at about 1ms
for our experiments.

Our benchmarks included a toy example based on the modular
exponentiation program introduced earlier, plus several real
iRobot control programs. A summary of the benchmarks used
is presented in Table I. The benchmarks are described in more
detail below, and are also available online at http://uclid.
eecs.berkeley.edu/gametime/fmcad11/.

Name LOC Size of CFG Total Num. b Context
n m of paths bound

modexp 60 60 70 500 12 1
iRobot-1 210 55 60 33 5 1
iRobot-2 230 141 160 3362 17 1
iRobot-3 230 97 108 1281 10 2
iRobot-4 280 213 244 33728 30 1
iRobot-5 250 179 206 65088 27 1

TABLE I: Characteristics of Benchmarks. “LOC” indicates
number of lines of C code for the task. The Control-Flow Graph (CFG) size
refers to that of the sequential program Pseq fed as input to GAMETIME: n
is the number of nodes, m is the number of edges. The column b refers to
the number of basis paths in the graph, as deduced by GAMETIME. The total
number of paths indicates the total number of interleaved execution paths, not
accounting for path feasibility.

B. Generating Interrupts and Measurements

To measure the timing of each basis path, we need to force
an interrupt at one or more program points, depending on
the context bound. There are two types of interrupts that
can be forced: software and hardware interrupts. For this
platform, the overhead of invoking an ISR through hardware
interrupts is similar to that using software interrupts; therefore,
for convenience, we decided to force software interrupts.

Software interrupts can be modeled by embedding the ARM
assembly instruction SVC into the C code under analysis. This
instruction is a supervisor call that forces a software interrupt.
To use this instruction, we modify the interrupt vector table to

include a custom interrupt handler. In the code under analysis,
we then insert an SVC assembly instruction whose argument
is the position of the interrupt handler in the vector table, so
that on execution, the instruction goes directly to the vector
table and invokes the interrupt handler for the interrupt we
wish to trigger.

Obtaining Timing Measurements: The execution time of
the program was measured using an on-board timer called
SysTickTimer. This timer can be set to periodically gen-
erate an interrupt by counting down from a large starting
value. The period of the timer is user-specified and is large
enough that it will not finish until long after the program under
analysis finishes. To get the execution time for the program
under analysis, we start the timer off before the program runs
and read off its value when the program finishes. We assume
that the program would finish within 16,777,261 cycles (the
highest possible value for the SysTickTimer period), which
is a realistic assumption for our set of benchmarks.

C. Modular Exponentiation

Our first example is a version of the modular exponentiation
example introduced in Sec. III-A. An arbitrary prime number
was used for our benchmarks. For our experiments, we used
a base of two, with four-bit exponents. Two of the four
conditionals were moved into a mock ‘interrupt handler’; the
program comprising the remaining two conditions formed the
“main” task. Thus, the program comprises two tasks: each
with two of the conditionals. Each code fragment of the form
below is considered an atomic statement.

if ((exponent & 1) == 1)
result = (result * base) % p;

exponent >>= 1;

base = (base * base) % p;

We used GAMETIME to determine the values that would
sensitize the basis paths in the control flow graph of the “main”
task, and it provided 12 test cases. With a context bound of 1,
there are three program points where the ISR can be invoked.
Since there are 16 values of exponent, and three possible
interrupt points, the total number of test cases is 16 ∗ 3 = 48.

With the measurements for the 12 test cases corresponding to
the basis paths, GAMETIME was employed to infer a timing
model using which it predicted the runtimes of each of the 48
different test cases.

In figure 6, we plot the predicted values and the measured
values for each of the 48 test cases. The predicted values
match the measured values with an error of less than 5%.
In particular, our approach accurately predicts the worst-case
execution time and produces the corresponding test case. We
observe that the WCET estimate, about 290 cycles or 5.8µs,
is much less than the 1ms inter-arrival time of interrupts,
implying that the context bound of 1 is sufficient.

Fig. 6: Time taken by the Modular Exponentiation bench-
mark

D. iRobot Driving Code

The iRobot Create control programs we consider here involve
a sample operation where the robot attempts to keep moving
forward until it senses an obstacle, in which case it will try to
back up, turn, and move around the obstacle. The robot can be
stopped by pushing a button on its console. The accelerometer
detects changes in the speed of the robot, such as when it
accelerates on level ground or when it climbs a hill.

All iRobot sensors (with the exception of the accelerometer)
trigger the same UART interrupt that is serviced with a single
ISR. This ISR reads the values of the sensors or the status of
the buttons from a UART queue, and updates local variables
accordingly. The accelerometer triggers a different interrupt
that is serviced by a different routine that also updates local
variables with the accelerometer readings.

The code that produces the iRobot behavior described above
is an infinite loop encoding a state machine. The body of this
loop involves the next-state update operation based on sensor
data, and this is what we used the five iRobot benchmarks
shown in Table I. The “main task” in all benchmarks has a
similar structure: it updates the state of the robot based on
sensor readings, button presses, or accelerometer readings, if
any, and the new state, if changed, modifies the velocity of the
iRobot. All benchmarks also have at least two interrupt points:
each conditional in the state update is considered atomic, and
the velocity modification is also considered atomic. The first
four benchmarks used only the sensor interrupt handler; the
last used only the accelerometer interrupt handler.

The first iRobot benchmark, iRobot-1, is a highly simplified
version of the behavior described above. A context bound of
1 was sufficient. The simplified state machine allows us to
manually enumerate and time all of the feasible paths, and
also to use the basis paths to predict the time for all paths. The
measured and predicted timings for the ten feasible paths are
shown in figure 7: the timings agree within one percent, and
the path that was predicted to take the longest time is also the

path that was measured to take the longest time. The WCET is
less than 2500 cycles, which is less than 50µs, much smaller
than the 1ms inter-arrival time, ensuring that the context bound
of 1 is sufficient.

Fig. 7: Time taken by iRobot-1 benchmark

The second benchmark adds one more state to the state
machine. For this and the remaining benchmarks, the number
of interleaved program paths (as seen from Table I) is over
1000 — thus, it is not possible to time all the possible paths.
Therefore, for these benchmarks, we arbitrarily selected 16
paths to be measured. The true (measured) execution times
of these paths are compared with the runtimes predicted from
measuring just the basis paths and running GAMETIME. The
resulting plot for the iRobot-2 is shown in Figure 8. Again, a
context bound of 1 suffices.

To experiment with a larger context bound, we assumed the
minimum inter-arrival time to be α = 50µs, and analyzed
the third benchmark iRobot-3. With a context bound of 1, the
WCET exceeded this value. However, with a context bound of
2, the WCET is 4357 cycles, or about 87µs, which is less than
2α = 100µs. As shown in Figure 9, the error margin between
predicted and true (measured) values is almost zero.

Fig. 8: Time taken by iRobot-2 benchmark

The fourth benchmark iRobot-4 adds more states to the state
machine, while the fifth benchmark iRobot-5 keeps only those
states that use the accelerometer. Nonetheless, the error margin

Fig. 9: Time taken by iRobot-3 benchmark. Note that there are
only two execution times exhibited by these paths: 4357 and 4356 cycles.

in both benchmarks, for the 16 chosen paths, is less than 2
percent. In both cases, a context bound of 1 sufficed.

Fig. 10: Time taken by iRobot-4 benchmark

Fig. 11: Time taken by iRobot-5 benchmark

V. CONCLUSION AND FUTURE WORK

In this paper, we present a new approach for timing analysis
of interrupt-driven programs. The key ideas in our approach
are to bound the exploration of the path space using the
twin notions of context bounds and basis paths. We have
demonstrated for a real embedded platform and control

software that our approach can accurately predict not only
the worst-case execution time, but also the execution time
of arbitrary interleaved program paths without needing to
exhaustively enumerate and test them. For future work, we
plan to expand our experimental evaluation to include larger
benchmarks with several interrupt service routines (tasks).

Acknowledgments. This work was supported in part by NSF grants
CNS-0644436 CNS-0627734, and CNS-1035672, an Alfred P. Sloan
Research Fellowship, the Toyota Motor Corporation, and the Hellman
Family Faculty Fund. We thank the anonymous referees for their
comments.

REFERENCES

[1] Reinhard Wilhelm et al., “The Determination of Worst-Case Execution
Times—Overview of the Methods and Survey of Tools,” ACM Trans-
actions on Embedded Computing Systems (TECS), 2007.

[2] S. A. Seshia and A. Rakhlin, “Game-theoretic timing analysis,” in
Proc. IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2008, pp. 575–582.

[3] NASA Engineering and Safety Center, “NASA report on Toyota un-
intended acceleration investigation, appendix a: Software,” http://www.
nhtsa.gov/staticfiles/nvs/pdf/NASA FR Appendix A Software.pdf.

[4] S. Qadeer and D. Wu, “KISS: keep it simple and seqeuential,” in In
PLDI 04: Programming Language Design and Implementation, 2004,
pp. 14–24.

[5] S. Qadeer and J. Rehof, “Context-bounded model checking of concurrent
systems,” in Proceedings of the 11th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2005.

[6] S. A. Seshia and A. Rakhlin, “Quantitative analysis of systems using
game-theoretic learning,” ACM Transactions on Embedded Computing
Systems (TECS), 2011, to appear.

[7] Luminary Micro, Inc., “Luminary Micro microcontroller datasheet,”
http://chess.eecs.berkeley.edu/eecs149/sp09/docs/Datasheet LM3S8962.
pdf.

[8] iRobot Corporation, “iRobot Create User’s Manual,” http://www.irobot.
com/filelibrary/pdfs/hrd/create/Create\%20Manual Final.pdf.

[9] D. Brylow and J. Palsberg, “Deadline analysis of interrupt-driven
software,” IEEE Transactions on Software Engineering, 2004.

[10] J. Gustafsson and A. Ermedahl, “Experiences from applying WCET
analysis in industrial settings,” in Proc. IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC), 2007,
pp. 382–392.

[11] J. Regehr, “Random testing of interrupt-driven software,” in Proc.
5th ACM International Conference on Embedded Software (EMSOFT),
2005, pp. 290–298.

[12] M. G. Harbour, M. H. Klein, and J. P. Lehoczky, “Timing analysis
for fixed-priority scheduling of hard real-time systems,” IEEE Trans.
Software Engineering, vol. 20, no. 1, pp. 13–28, 1994.

[13] N. Kidd, S. Jagannathan, and J. Vitek, “One stack to run them all
- reducing concurrent analysis to sequential analysis under priority
scheduling,” in 17th International SPIN Workshop on Model Checking
Software (SPIN), 2010, pp. 245–261.

[14] A. Lal and T. W. Reps, “Reducing concurrent analysis under a context
bound to sequential analysis,” in CAV’08, ser. LNCS, vol. 5123, 2008,
pp. 37–51.

[15] S. K. Lahiri, S. Qadeer, and Z. Rakamarić, “Static and precise detection
of concurrency errors in systems code using SMT solvers,” in CAV’09,
ser. LNCS, vol. 5643, 2009, pp. 509–524.

[16] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, A. Biere, H. van Maaren,
and T. Walsh, Eds. IOS Press, 2009, vol. 4, ch. 8.

[17] S. A. Seshia and J. Kotker, “GameTime: A toolkit for timing analysis of
software,” in Proceedings of the 17th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2011.

