

FMCAD 2011

Effective Word-Level Interpolation for Software Verification

Alberto Griggio FBK-IRST

Motivations

- Craig interpolation applied succesfully for Formal Verification of both hardware and software
- Ongoing research (at least for 6-7 years) on efficient algorithms for computing interpolants in various useful (combinations of) theories
 - UF, LA (and fragments), data structures, arrays, quantifiers...
- Very little done for bit-vectors!
 - ...But BV are fundamental in both hardware and software verification
- This work: a "practical" procedure for BV interpolation
 - Using efficient SMT techniques
 - A first step, not a general-purpose solution
 - Optimized for problems arising in software verification

Outline

Background

- Layered Interpolation for BV
- Discussion
- Experimental Evaluation

Interpolants

- (Craig) Interpolant for an ordered pair (A, B) of formulas s.t.
 - $A \wedge B \models_{\mathcal{T}} \bot$ (or: $A \models \neg B$) is a formula *I* s.t.
 - a) $A \models_{\mathcal{T}} I$
 - b) $B \wedge I \models_{\mathcal{T}} \bot (I \models \neg B)$
 - c) All the uninterpreted (in \mathcal{T}) symbols of *I* occur in both *A* and *B*

Lazy SMT and Interpolation

- DPLL(T) (i.e. "lazy") approach to SMT: SAT solver (DPLL) + decision procedure for <u>conjunctions</u> of *T*-constraints (*T*-solver)
- Interpolants from DPLL(T)-proofs [McMillan]:

 State-of-the-art approach for solving and interpolation in several important theories (UF, LA, combinations, ...)

- State-of-the-art for SMT(BV) is NOT DPLL(T)!
 - All efficient SMT(BV) solvers are based on:
 - Aggressive preprocessing/simplification of the formula using word-level information
 - Eager encoding into SAT ("bit-blasting")
- Problem for interpolation: proofs are a "blob of bits"
 - No clear partitioning between Boolean part and BV-specific part
 - Word-level structure completely lost and difficult to recover
 - Some work done [Kroening&Weissenbacher 07], but limited to equality logic only

Outline

- Background
- Layered Interpolation for BV
- Discussion
- Experimental Evaluation

Interpolation via bit-blasting is easy...

- From A_{BV} and B_{BV} generate A_{Bool} and B_{Bool}
 - Each var x of width n encoded with n Boolean vars $b_1^x \dots b_n^x$
- Generate a Boolean interpolant I_{Bool} for (A_{Bool}, B_{Bool})
- Replace every variable b_i^x in I_{Bool} with the bit-selection x[i]and every Boolean connective with the corresponding bit-wise connective: $\land \mapsto \&, \ \lor \mapsto |, \ \neg \mapsto \sim$

...but quite impractical

- Generates "ugly" interpolants
- Word-level structure of the original problem completely lost
 - How to apply word-level simplifications?

$$\begin{split} \mathbf{A} &\stackrel{\text{def}}{=} \left(\mathbf{a}_{[8]} * b_{[8]} = 15_{[8]} \right) \land \left(\mathbf{a}_{[8]} = 3_{[8]} \right) \\ \mathbf{B} &\stackrel{\text{def}}{=} \neg \left(b_{[8]} \%_u \mathbf{c}_{[8]} = 1_{[8]} \right) \land \left(\mathbf{c}_{[8]} = 2_{[8]} \right) \end{split}$$

A word-level interpolant is:

$$I \stackrel{\text{\tiny def}}{=} (b_{[8]} * 3_{[8]} = 15_{[8]})$$

...but with bit-blasting we get:

 $I' \stackrel{\text{\tiny def}}{=} (b_{[8]}[0] = 1_{[1]}) \land ((b_{[8]}[0]\& \sim ((((((\sim b_{[8]}[7]\& \sim b_{[8]}[6])\& \sim b_{[8]}[6])\& \sim b_{[8]}[5])\& \sim b_{[8]}[4])\& \sim b_{[8]}[3])\& b_{[8]}[2])\& \sim b_{[8]}[1])) = 0_{[1]})$

- Our goal: combine the benefits of bit-blasting for efficiently solving BV with those of DPLL(T) for interpolation
- Exploit <u>lazy bit-blasting</u>
 - Bit-blast only BV-atoms, not the whole formula
 - Boolean skeleton of the formula handled by the "main" DPLL, like in DPLL(T)
 - Conjunctions of BV-atoms handled (via bit-blasting) by a "sub"-DPLL (DPLL-BV) that acts as a BV-solver

Implemented using SAT solving under assumptions

A layered approach

- Apply in sequence a chain of procedures of increasing generality and cost
 - Interpolation in EUF
 - Interpolation via equality inlining
 - Interpolation via Linear Integer Arithmetic encoding
 - Interpolation via bit-blasting

Interpolation in EUF

- Treat all the BV-operators as uninterpreted functions
- Exploit cheap, efficient algorithms for solving and interpolating modulo EUF
 - Possible because we avoid bit-blasting upront!

Example:
$$A \stackrel{\text{def}}{=} (x_{1[32]} = 3_{[32]}) \land (x_{3[32]} = x_{1[32]} \cdot x_{2[32]})$$

 $B \stackrel{\text{def}}{=} (x_{4[32]} = x_{2[32]}) \land (x_{5[32]} = 3_{[32]} \cdot x_{4[32]}) \land$
 $\neg (x_{3[32]} = x_{5[32]})$
 $I_{\text{UF}} \stackrel{\text{def}}{=} x_3 = f^{\cdot}(f^3, x_2)$
 $I_{\text{BV}} \stackrel{\text{def}}{=} x_{3[32]} = 3_{[32]} \cdot x_{2[32]}$

• Interpolation via quantifier elimination: given (A, B), an interpolant can be computed by eliminating quantifiers from $\exists_{x \notin B} A$ or from $\exists_{x \notin A} \neg B$

- In general, this can be very expensive for BV
 - Might require bit-blasting and can cause blow-up of the formula
- Cheap case: non-common variables occurring in "definitional" equalities
 - \bullet Example: $(x=e)\wedge \varphi \;\;$ and $\;x\;$ does not occur in e , then

$$\exists_x ((x=e) \land \varphi) \Longrightarrow \varphi[x \mapsto e]$$

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
 - Try both from \underline{A} and $\neg \underline{B}$
 - If one of them succeeds, we have an interpolant

Example:
$$A \stackrel{\text{def}}{=} (0_{[24]} :: (x_{4[8]} \cdot x_{5[8]}) \leq_s (0_{[24]} :: x_{1[8]} - 1_{[32]})) \land (x_{2[8]} = x_{1[8]}) \land (x_{4[8]} = 192_{[8]}) \land (x_{5[8]} = 128_{[8]})$$

$$B \stackrel{\text{def}}{=} \left(\left(x_{3[8]} \cdot x_{6[8]} \right) = \left(-\left(0_{[24]} :: x_{2[8]} \right) \right) [7:0] \right) \land \\ \left(x_{3[8]} <_{u} 1_{[8]} \right) \land \left(0_{[8]} \leq_{u} x_{3[8]} \right) \land \left(x_{6[8]} = 1_{[8]} \right)$$

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
 - Try both from \underline{A} and $\neg \underline{B}$
 - If one of them succeeds, we have an interpolant

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
 - Try both from \underline{A} and $\neg \underline{B}$
 - If one of them succeeds, we have an interpolant

Example:
$$A \stackrel{\text{def}}{=} (0_{[24]} :: (x_{4[8]} \cdot x_{5[8]}) \leq_s (0_{[24]} :: x_{1[8]} - 1_{[32]})) \land$$

 $(x_{2[8]} = x_{1[8]}) \land (x_{4[8]} = 192_{[8]}) \land (x_{5[8]} = 128_{[8]})$
 $B \stackrel{\text{def}}{=} ((x_{3[8]} \cdot x_{6[8]}) = (-(0_{[24]} :: x_{2[8]}))[7:0]) \land$
 $(x_{3[8]} <_u 1_{[8]}) \land (0_{[8]} \leq_u x_{3[8]}) \land (x_{6[8]} = 1_{[8]})$

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
 - Try both from \underline{A} and $\neg \underline{B}$
 - If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text{def}}{=} (0_{[24]} :: (x_{4[8]} \cdot x_{5[8]}) \leq_s (0_{[24]} :: x_{2[8]} - 1_{[32]})) \land (x_{4[8]} = 192_{[8]}) \land (x_{5[8]} = 128_{[8]})$

 $B \stackrel{\text{\tiny def}}{=} \left(\left(x_{3[8]} \cdot x_{6[8]} \right) = \left(-\left(0_{[24]} :: x_{2[8]} \right) \right) [7:0] \right) \land \\ \left(x_{3[8]} <_{u} 1_{[8]} \right) \land \left(0_{[8]} \leq_{u} x_{3[8]} \right) \land \left(x_{6[8]} = 1_{[8]} \right)$

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
 - Try both from \underline{A} and $\neg \underline{B}$
 - If one of them succeeds, we have an interpolant

Example:
$$A \stackrel{\text{def}}{=} (0_{[24]} :: (x_{4[8]} \cdot x_{5[8]}) \leq_s (0_{[24]} :: x_{2[8]} - 1_{[32]})) \land \land \land (x_{4[8]} = 192_{[8]}) \land (x_{5[8]} = 128_{[8]})$$

 $B \stackrel{\text{\tiny def}}{=} \left(\left(x_{3[8]} \cdot x_{6[8]} \right) = \left(-\left(0_{[24]} :: x_{2[8]} \right) \right) [7:0] \right) \land \\ \left(x_{3[8]} <_{u} 1_{[8]} \right) \land \left(0_{[8]} \leq_{u} x_{3[8]} \right) \land \left(x_{6[8]} = 1_{[8]} \right)$

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
 - Try both from \underline{A} and $\neg \underline{B}$
 - If one of them succeeds, we have an interpolant

Example:
$$A \stackrel{\text{def}}{=} (0_{[24]} :: (192_{[8]} \cdot 128_{[8]}) \leq_s (0_{[24]} :: x_{2[8]} - 1_{[32]}))$$

 $\land \qquad \land$
 $B \stackrel{\text{def}}{=} ((x_{3[8]} \cdot x_{6[8]}) = (-(0_{[24]} :: x_{2[8]}))[7:0]) \land$
 $(x_{3[8]} <_u 1_{[8]}) \land (0_{[8]} \leq_u x_{3[8]}) \land (x_{6[8]} = 1_{[8]})$

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
 - Try both from \underline{A} and $\neg \underline{B}$
 - If one of them succeeds, we have an interpolant

Example:
$$A \stackrel{\text{def}}{=} (0_{[24]} :: (192_{[8]} \cdot 128_{[8]}) \leq_s (0_{[24]} :: x_{2[8]} - 1_{[32]}))$$

 $\land \qquad \land$
 $I \stackrel{\text{def}}{=} (0_{32} \leq_s (0_{24} :: x_{2[8]} - 1_{[32]}))$
 $B \stackrel{\text{def}}{=} ((x_{3[8]} \cdot x_{6[8]}) = (-(0_{[24]} :: x_{2[8]}))[7:0]) \land$
 $(x_{3[8]} <_u 1_{[8]}) \land (0_{[8]} \leq_u x_{3[8]}) \land (x_{6[8]} = 1_{[8]}))$

- Simple idea (in principle):
 - Encode a set of BV-constraints into an SMT(LIA)-formula
 - Generate a LIA-interpolant using existing algorithms
 - Map back to a BV-interpolant

- However, several problems to solve:
 - Efficiency (see paper)
 - More importantly, soundness

- Use encoding of e.g. [PDPAR'06]
 - Encode each BV term $t_{[n]}$ as an integer variable x_t and the constraints $(0 \le x_t) \land (x_t \le 2^n 1)$
 - Encode each BV operation as a LIA-formula.

Examples:

$$t_{[i-j+1]} \stackrel{\text{def}}{=} t_{1[n]}[i:j] \quad \Longrightarrow \quad (x_t = m) \land (x_{t_1} = 2^{i+1}h + 2^jm + l) \land l \in [0, 2^i) \land m \in [0, 2^{i-j+1}) \land h \in [0, 2^{n-i-1})$$

$$t_{[n]} \stackrel{\text{def}}{=} t_{1[n]} + t_{2[n]} \quad \Longrightarrow \quad (x_t = x_{t_1} + x_{t_2} - 2^n\sigma) \land (0 \le \sigma \le 1)$$

$$t_{[n]} \stackrel{\text{def}}{=} t_{1[n]} \cdot k \quad \Longrightarrow \quad (x_t = k \cdot x_{t_1} - 2^n\sigma) \land (0 \le \sigma \le k)$$

From LIA-interpolants to BV-interpolants

- "Invert" the LIA encoding to get a BV interpolant
- <u>Unsound</u> in general
 - Issues due to overflow and (un)signedness of operations
- Our (very simple) solution: <u>check the interpolants</u>
 - Given a candidate interpolant \hat{I} , use our SMT(BV) solver to check the unsatisfiability of $(A \land \neg \hat{I}) \lor (B \land \hat{I})$
 - If successful, then \hat{I} is an interpolant

$$\begin{split} & A \stackrel{\text{def}}{=} (y_{1[8]} = y_{5[4]} :: y_{5[4]}) \land (y_{1[8]} = y_{2[8]}) \land (y_{5[4]} = 1_{[4]}) \\ & B \stackrel{\text{def}}{=} \neg (y_{4[8]} + 1_{[8]} \leq_u y_{2[8]}) \land (y_{4[8]} = 1_{[8]}) \end{split}$$

• Encoding into LIA:

$$A_{\text{LIA}} \stackrel{\text{def}}{=} (x_{y_2} = 16x_{y_5} + x_{y_5}) \land (x_{y_1} = x_{y_2}) \land (x_{y_5} = 1) \land (x_{y_1} \in [0, 2^8)) \land (x_{y_2} \in [0, 2^8)) \land (x_{y_5} \in [0, 2^4))$$

$$B_{\text{LIA}} \stackrel{\text{def}}{=} \neg (x_{y_4+1} \le x_{y_2}) \land (x_{y_4+1} = x_{y_4} + 1 - 2^8 \sigma) \land$$
$$(x_{y_4} = 1) \land$$
$$(x_{y_4+1} \in [0, 2^8)) \land (x_{y_4} \in [0, 2^8)) \land (0 \le \sigma \le 1)$$

$$\begin{split} A \stackrel{\text{def}}{=} & (y_{1[8]} = y_{5[4]} :: y_{5[4]}) \land (y_{1[8]} = y_{2[8]}) \land (y_{5[4]} = 1_{[4]}) \\ B \stackrel{\text{def}}{=} & \neg (y_{4[8]} + 1_{[8]} \leq_u y_{2[8]}) \land (y_{4[8]} = 1_{[8]}) \end{split}$$

• LIA-Interpolant:

$$I_{ ext{LIA}} \stackrel{\text{\tiny def}}{=} (17 \leq x_{y_2})$$

• BV-interpolant:

$$I \stackrel{\text{\tiny def}}{=} (17_{[8]} \leq_u y_{2[8]})$$

$$A \stackrel{\text{\tiny def}}{=} (y_{2[8]} = 81_{[8]}) \land (y_{3[8]} = 0_{[8]}) \land (y_{4[8]} = y_{2[8]})$$

 $B \stackrel{\text{\tiny def}}{=} (y_{13[16]} = 0_{[8]} :: y_{4[8]}) \land (255_{[16]} \leq_u y_{13[16]} + (0_{[8]} :: y_{3[8]}))$

Encoding into LIA:

$$A_{\text{LIA}} \stackrel{\text{def}}{=} (x_{y_2} = 81) \land (x_{y_3} = 0) \land (x_{y_4} = x_{y_2}) \land (x_{y_2} \in [0, 2^8)) \land (x_{y_3} \in [0, 2^8)) \land (x_{y_4} \in [0, 2^8))$$

$$B_{\text{LIA}} \stackrel{\text{def}}{=} (x_{y_{13}} = 2^8 \cdot 0 + x_{y_4}) \land (255 \le x_{y_{13} + (0::y_3)}) \land (x_{y_{13} + (0::y_3)} = x_{y_{13}} + 2^8 \cdot 0 + x_{y_3} - 2^{16}\sigma) \land (x_{y_{13}} \in [0, 2^{16})) \land (x_{y_{13} + (0::y_3)} \in [0, 2^{16})) \land (0 \le \sigma \le 1)$$

$$A \stackrel{\text{\tiny def}}{=} (y_{2[8]} = 81_{[8]}) \land (y_{3[8]} = 0_{[8]}) \land (y_{4[8]} = y_{2[8]})$$

 $B \stackrel{\text{\tiny def}}{=} (y_{13[16]} = 0_{[8]} :: y_{4[8]}) \land (255_{[16]} \leq_u y_{13[16]} + (0_{[8]} :: y_{3[8]}))$

• LIA-interpolant:

$$I_{\text{LIA}} \stackrel{\text{\tiny def}}{=} (x_{y_3} + x_{y_4} \le 81)$$

• BV-interpolant:

$$\hat{I} \stackrel{\text{\tiny def}}{=} (y_{3[8]} + y_{4[8]} \le_u 81_{[8]})$$

$$A \stackrel{\text{\tiny def}}{=} (y_{2[8]} = 81_{[8]}) \land (y_{3[8]} = 0_{[8]}) \land (y_{4[8]} = y_{2[8]})$$

 $\mathbf{B} \stackrel{\text{\tiny def}}{=} (\mathbf{y_{13}}_{[16]} = \mathbf{0}_{[8]} :: y_{4[8]}) \land (255_{[16]} \leq_u \mathbf{y_{13}}_{[16]} + (\mathbf{0}_{[8]} :: y_{3[8]}))$

LIA-interpolant:

$$I_{\text{LIA}} \stackrel{\text{def}}{=} (x_{y_3} + x_{y_4} \le 81)$$

Addition might overflow in BV!

• BV-interpolant:

$$\hat{I} \stackrel{\text{\tiny def}}{=} (y_{3[8]} + y_{4[8]}) u 81_{[8]})$$

$$A \stackrel{\text{\tiny def}}{=} (y_{2[8]} = 81_{[8]}) \land (y_{3[8]} = 0_{[8]}) \land (y_{4[8]} = y_{2[8]})$$

 $\mathbf{B} \stackrel{\text{\tiny def}}{=} (\mathbf{y_{13}}_{[16]} = \mathbf{0}_{[8]} :: y_{4[8]}) \land (255_{[16]} \leq_u \mathbf{y_{13}}_{[16]} + (\mathbf{0}_{[8]} :: y_{3[8]}))$

LIA-interpolant:

$$I_{\text{LIA}} \stackrel{\text{def}}{=} (x_{y_3} + x_{y_4} \le 81)$$

Addition might overflow in BV!

BV-interpolant:

A correct interpolant would be $I \stackrel{\text{\tiny def}}{=} (0_{[1]} :: y_{3[8]} + 0_{[1]} :: y_{4[8]} \leq_u 81_{[9]})$

$$\begin{split} & A \stackrel{\text{def}}{=} \neg (\mathbf{y}_{4[8]} + \mathbf{1}_{[8]} \leq_{u} y_{3[8]}) \land (y_{2[8]} = \mathbf{y}_{4[8]} + \mathbf{1}_{[8]}) \\ & B \stackrel{\text{def}}{=} (y_{2[8]} + \mathbf{1}_{[8]} \leq_{u} y_{3[8]}) \land (\mathbf{y}_{7[8]} = \mathbf{3}_{[8]}) \land (\mathbf{y}_{7[8]} = y_{2[8]} + \mathbf{1}_{[8]}) \end{split}$$

• Encoding into LIA:

$$A_{\text{LIA}} \stackrel{\text{def}}{=} \neg (x_{y_4+1} \le x_{y_3}) \land (x_{y_2} = x_{y_4+1}) \land \\ (x_{y_4+1} = x_{y_4} + 1 - 2^8 \sigma_1) \land \\ (x_{y_2} \in [0, 2^8)) \land (x_{y_3} \in [0, 2^8)) \land (x_{y_4} \in [0, 2^8)) \land \\ (x_{y_4+1} \in [0, 2^8)) \land (0 \le \sigma_1 \le 1)$$

$$B_{\text{LIA}} \stackrel{\text{def}}{=} (x_{y_2+1} \le x_{y_3}) \land (x_{y_7} = 3) \land (x_{y_7} = x_{y_2+1}) \land (x_{y_2+1} = x_{y_2} + 1 - 2^8 \sigma_2) \land (x_{y_7} \in [0, 2^8)) \land (x_{y_2+1} \in [0, 2^8)) \land (0 \le \sigma_2 \le 1)$$

$$\begin{split} & A \stackrel{\text{def}}{=} \neg (y_{4[8]} + 1_{[8]} \leq_{u} y_{3[8]}) \land (y_{2[8]} = y_{4[8]} + 1_{[8]}) \\ & B \stackrel{\text{def}}{=} (y_{2[8]} + 1_{[8]} \leq_{u} y_{3[8]}) \land (y_{7[8]} = 3_{[8]}) \land (y_{7[8]} = y_{2[8]} + 1_{[8]}) \end{split}$$

LIA-interpolant:

$$I_{\text{LIA}} \stackrel{\text{\tiny def}}{=} (-255 \le x_{y_2} - x_{y_3} + 256\lfloor -1\frac{x_{y_2}}{256} \rfloor)$$

- BV-interpolant: (after fixing overflows)
- $\hat{I'} \stackrel{\text{\tiny def}}{=} (65281_{[16]} \leq_u (0_{[8]} :: y_{2[8]}) (0_{[8]} :: y_{3[8]}) + 256_{[16]} \cdot (65535_{[16]} \cdot (0_{[8]} :: y_{2[8]}) / _u 256_{[16]}))$

Still

Wrong!

$$\begin{split} & A \stackrel{\text{def}}{=} \neg (y_{4[8]} + 1_{[8]} \leq_u y_{3[8]}) \land (y_{2[8]} = y_{4[8]} + 1_{[8]}) \\ & B \stackrel{\text{def}}{=} (y_{2[8]} + 1_{[8]} \leq_u y_{3[8]}) \land (y_{7[8]} = 3_{[8]}) \land (y_{7[8]} = y_{2[8]} + 1_{[8]}) \end{split}$$

LIA-interpolant:

$$I_{\text{LIA}} \stackrel{\text{\tiny def}}{=} (-255 \le x_{y_2} - x_{y_3} + 256\lfloor -1\frac{x_{y_2}}{256} \rfloor)$$

BV-interpolant: (after fixing overflows)

 $\hat{I'} \stackrel{\text{\tiny def}}{=} (65281_{[16]} \leq_u (0_{[8]} :: y_{2[8]}) - (0_{[8]} :: y_{3[8]}) + 256_{[16]} \cdot (65535_{[16]} \cdot (0_{[8]} :: y_{2[8]}) / _u 256_{[16]}))$

In this case, the problem is also the sign

$$\begin{split} & A \stackrel{\text{def}}{=} \neg (y_{4[8]} + 1_{[8]} \leq_{u} y_{3[8]}) \land (y_{2[8]} = y_{4[8]} + 1_{[8]}) \\ & B \stackrel{\text{def}}{=} (y_{2[8]} + 1_{[8]} \leq_{u} y_{3[8]}) \land (y_{7[8]} = 3_{[8]}) \land (y_{7[8]} = y_{2[8]} + 1_{[8]}) \end{split}$$

LIA-interpolant:

$$I_{\text{LIA}} \stackrel{\text{\tiny def}}{=} (-255 \le x_{y_2} - x_{y_3} + 256\lfloor -1\frac{x_{y_2}}{256} \rfloor)$$

- BV-interpolant:
- $I \stackrel{\text{def}}{=} (65281_{[16]} \leq_s (0_{[8]} :: y_{2[8]}) (0_{[8]} :: y_{3[8]}) + 256_{[16]} \cdot (65535_{[16]} \cdot (0_{[8]} :: y_{2[8]}) / u \, 256_{[16]}))$

Correct interpolant

Outline

- Background
- Layered Interpolation for BV
- Discussion
- Experimental Evaluation

- In the worst case, our algorithm is not much different than bitblasting
- Actually, it can be even worse, performance-wise
 - Need to re-process the BV-lemmas after having checked unsatisfiability of $A \wedge B$
- However:
 - for interpolation problems arising in software verification, our specialized procedures succeed most of the times
 - In general, the overhead of running them is minor
 - The BV-lemmas occurring in the proof are only a small percentage of the total generated during search; and
 - They are typically small (close to minimal)

Interpolants in software verification

- Refinements of "spurious" paths in an abstract program unwinding
- Two observations:
 - Most arithmetic constraints are "simple"
 - Esp. In typical domains for sw verification (e.g. device drivers)
 - LIA encoding works well
 - Use of an SSA encoding:
 - Many "definitional" equalities, corresponding to assignment operations
 - Exploited by our equality inlining layer

SSA Example: $\mathbf{x} := \mathbf{z}$ $assume(x \ge 0)$ x := x + 2z = y - 3assume(z = 1) $x_0 = z_0 \wedge$ $x_0 > 0 \wedge$ $x_1 = x_0 + 2 \wedge$ $z_1 = y_0 - 3 \wedge$ $z_1 = 1$

Outline

- Background
- Layered Interpolation for BV
- Discussion
- Experimental Evaluation

- Implementation within the MathSAT 5 SMT solver
- Integration with the Kratos SW model checker
 - CEGAR-based lazy predicate abstraction with interpolation-based refinement
- Comparison with the other bit-precise engines available
 - Satabs
 - Wolverine
- Benchmarks that require a bit-precise semantics, collected from multiple sources

Results – programs requiring BV

			Kratos			SATABS	WOLVERINE
Program	BV-1	BV-2	BV-3	BV-4	BV-5		
byte_add_1.c	31.00	T.O.	M.O.	57.30	31.54	T.O.	T.O.
byte_add_2.c	47.98	T.O.	M.O.	72.17	44.42	T.O.	T.O.
num_conversion_1.c	1.85	3.20	3.67	2.67	1.13	23.78	2.16
num_conversion_2.c	48.04	776.53	72.12	763.16	47.73	T.O.	T.O.
gcd_1.c	1.75	20.45	20.56	1.05	1.27	FAIL	515.31
gcd_2.c	29.21	M.O.	M.O.	39.21	28.21	339.86	185.56
gcd_3.c	70.05	T.O.	M.O.	209.34	70.59	T.O.	290.03
gcd_4.c	3.58	М.О.	Т.О.	T.O.	4.25	T.O.	1.26
interleave_bits.c	45.90	T.O.	T.O.	T.O.	49.01	836.78	T.O.
modulus.c	4.87	34.00	M.O.	3.30	4.15	T.O.	M.O.
parity.c	387.56	М.О.	M.O.	T.O.	391.84	T.O.	T.O.
soft_float_1.c.cil.c	48.02	T.O.	T.O.	T.O.	T.O.	T.O.	136.88
soft_float_2.c.cil.c	61.34	T.O.	T.O.	70.02	T.O.	1101.54	177.63
soft_float_3.c.cil.c	T.O.	T.O.	T.O.	T.O.	T.O.	T.O.	T.O.
soft_float_4.c.cil.c	51.67	Т.О.	M.O.	247.31	49.88	Т.О.	T.O.
soft_float_5.c.cil.c	61.70	T.O.	Т.О.	78.54	Т.О.	Т.О.	193.76
s3_clnt_1.BV.c.cil.c	41.06	50.82	T.O.	48.77	42.32	FAIL	T.O.
s3_clnt_2.BV.c.cil.c	20.96	9.92	116.03	8.59	22.01	T.O.	T.O.
s3_clnt_3.BV.c.cil.c	7.66	T.O.	93.77	T.O.	6.68	T.O.	T.O.
s3_srvr_1.BV.c.cil.c	11.59	35.91	240.77	34.74	11.63	160.74	T.O.
s3_srvr_2.BV.c.cil.c	150.64	62.22	116.54	61.26	152.10	342.11	T.O.
s3_srvr_3.BV.c.cil.c	48.35	124.32	43.63	125.19	48.36	405.48	T.O.
jain_1.c	0.34	0.39	0.30	0.12	0.36	FAIL	T.O.
jain_2.c	0.43	0.48	0.35	0.21	0.44	FAIL	T.O.
jain_4.c	0.55	0.60	0.40	0.33	0.54	FAIL	T.O.
jain_5.c	T.O.	T.O.	Т.О.	Т.О.	T.O.	FAIL	T.O.
jain_6.c	0.18	0.12	0.09	0.15	0.16	FAIL	T.O.
jain_7.c	0.29	0.23	0.15	0.26	0.27	FAIL	T.O.
TOTAL (solved/time)	26/1176.57	14/1119.19	13/708.38	21/1823.69	23/1008.89	7/3210.29	8/1500.43

Conclusions

- Interpolation in BV is hard...
- ...this is a conceptually-simple approach:
 - Exploits efficient SMT solving and interpolation techniques
 - Aimed at "practical" problems arising in software verification
 - Promising experimental results
 - A first step, not a general-purpose solution
- Several directions for future work
 - Incorporate more layers
 - Investigate more deeply encoding into LIA
 - "Lifting" of bit-level proofs to word-level interpolants beyond equality logic

Thank You