

FMCAD 2011

Effective Word-Level Interpolation
for Software Verification

Alberto Griggio
FBK-IRST

Motivations

♦ Craig interpolation applied succesfully for Formal Verification
of both hardware and software

♦ Ongoing research (at least for 6-7 years) on efficient
algorithms for computing interpolants in various useful
(combinations of) theories

♦ UF, LA (and fragments), data structures, arrays, quantifiers...

♦ Very little done for bit-vectors!

♦ ...But BV are fundamental in both hardware and software
verification

♦ This work: a “practical” procedure for BV interpolation

♦ Using efficient SMT techniques

♦ A first step, not a general-purpose solution

♦ Optimized for problems arising in software verification

Outline

♦ Background

♦ Layered Interpolation for BV

♦ Discussion

♦ Experimental Evaluation

Interpolants

♦ (Craig) Interpolant for an ordered pair (A, B) of formulas s.t.

 is a formula I s.t.

a)

b)

c) All the uninterpreted (in) symbols of I occur in both A and B

A j=T I

T
B ^ I j=T ? (I j= :B)

A ^B j=T ? (or: A j= :B)

Lazy SMT and Interpolation

♦ DPLL(T) (i.e. “lazy”) approach to SMT:
SAT solver (DPLL) + decision procedure for conjunctions of
T-constraints (T-solver)

♦ Interpolants from DPLL(T)-proofs [McMillan]:

♦ State-of-the-art approach for solving and interpolation in
several important theories (UF, LA, combinations, ...)

Boolean part
(ground resolution)

-specific part
(for conjunctions of constraints)

T

Standard Boolean
interpolation

-specific
interpolation

for conjunctions only

T

SMT for Bit-Vectors

♦ State-of-the-art for SMT(BV) is NOT DPLL(T)!

♦ All efficient SMT(BV) solvers are based on:

♦ Aggressive preprocessing/simplification of the formula using
word-level information

♦ Eager encoding into SAT (“bit-blasting”)

♦ Problem for interpolation: proofs are a “blob of bits”

♦ No clear partitioning between Boolean part and BV-specific part

♦ Word-level structure completely lost and difficult to recover

♦ Some work done [Kroening&Weissenbacher 07], but limited to
equality logic only

Outline

♦ Background

♦ Layered Interpolation for BV

♦ Discussion

♦ Experimental Evaluation

Interpolation via Bit-Blasting

Interpolation via bit-blasting is easy...

♦ From and generate and

♦ Each var of width n encoded with n Boolean vars

♦ Generate a Boolean interpolant for

♦ Replace every variable in with the bit-selection
and every Boolean connective with the corresponding bit-wise
connective:

...but quite impractical

♦ Generates “ugly” interpolants

♦ Word-level structure of the original problem completely lost

♦ How to apply word-level simplifications?

BBoolABV BBV

x bx1 : : : b
x
n

IBool

ABool

(ABool; BBool)

IBoolbxi x[i]

^ 7! &; _ 7! j; : 7!»

Interpolation via Bit-Blasting - Example

A word-level interpolant is:

...but with bit-blasting we get:

A
def
= (a[8] ¤ b[8] = 15[8]) ^ (a[8] = 3[8])

B
def
= :(b[8]%uc[8] = 1[8]) ^ (c[8] = 2[8])

I
def
= (b[8] ¤ 3[8] = 15[8])

I0
def
= (b[8][0] = 1[1]) ^ ((b[8][0]& » ((((((» b[8][7]& » b[8][6])&

» b[8][5])& » b[8][4])& » b[8][3])&b[8][2])& » b[8][1])) = 0[1])

Lazy bit-blasting and DPLL(T) for BV

♦ Our goal: combine the benefits of bit-blasting for efficiently
solving BV with those of DPLL(T) for interpolation

♦ Exploit lazy bit-blasting

♦ Bit-blast only BV-atoms, not the whole formula

♦ Boolean skeleton of the formula handled by the “main” DPLL, like
in DPLL(T)

♦ Conjunctions of BV-atoms handled (via bit-blasting) by a “sub”-
DPLL (DPLL-BV) that acts as a BV-solver

♦ Implemented using SAT solving under assumptions

Standard
Boolean Interpolation

BV-specific Interpolation
for conjunctions of constraints

Interpolation for BV constraints

A layered approach

♦ Apply in sequence a chain of procedures of increasing
generality and cost

♦ Interpolation in EUF

♦ Interpolation via equality inlining

♦ Interpolation via Linear Integer Arithmetic encoding

♦ Interpolation via bit-blasting

Interpolation in EUF

♦ Treat all the BV-operators as uninterpreted functions

♦ Exploit cheap, efficient algorithms for solving and interpolating
 modulo EUF

♦ Possible because we avoid bit-blasting upront!

Example: A
def
= (x1[32] = 3[32]) ^ (x3[32] = x1[32] ¢ x2[32])

B
def
= (x4[32] = x2[32]) ^ (x5[32] = 3[32] ¢ x4[32])^

:(x3[32] = x5[32])
IUF

def
= x3 = f ¢(f3; x2)

IBV
def
= x3[32] = 3[32] ¢ x2[32]

Interpolation via Equality Inlining

♦ Interpolation via quantifier elimination: given , an
interpolant can be computed by eliminating quantifiers from
 or from

♦ In general, this can be very expensive for BV

♦ Might require bit-blasting and can cause blow-up of the formula

♦ Cheap case: non-common variables occurring in “definitional”
equalities

♦ Example: and does not occur in , then

(A;B)

9x 62BA 9x 62A:B

(x = e) ^ ' x e

9x((x = e) ^ ') =) '[x 7! e]

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

♦ Try both from and

♦ If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Example:

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

♦ Try both from and

♦ If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Definitional equalities

Example:

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

♦ Try both from and

♦ If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example:

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

♦ Try both from and

♦ If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^

^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])
Example:

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

♦ Try both from and

♦ If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^

^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])
Example:

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

♦ Try both from and

♦ If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

A
def
= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^
Example:

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common
variables are removed, or a fixpoint is reached

♦ Try both from and

♦ If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

A
def
= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^

I
def
= (032 ·s (024 :: x2[8] ¡ 1[32])

Example:

Interpolation via LIA Encoding

♦ Simple idea (in principle):

♦ Encode a set of BV-constraints into an SMT(LIA)-formula

♦ Generate a LIA-interpolant using existing algorithms

♦ Map back to a BV-interpolant

♦ However, several problems to solve:

♦ Efficiency (see paper)

♦ More importantly, soundness

Encoding BV into LIA

♦ Use encoding of e.g. [PDPAR'06]

♦ Encode each BV term as an integer variable and the
constraints

♦ Encode each BV operation as a LIA-formula.

t[n] xt
(0 · xt) ^ (xt · 2n ¡ 1)

t[i¡j+1]
def
= t1[n][i : j] (xt = m) ^ (xt1 = 2i+1h + 2jm+ l)^

l 2 [0; 2i) ^m 2 [0; 2i¡j+1) ^ h 2 [0; 2n¡i¡1)

t[n]
def
= t1[n] + t2[n] (xt = xt1 + xt2 ¡ 2n¾) ^ (0 · ¾ · 1)

t[n]
def
= t1[n] ¢ k (xt = k ¢ xt1 ¡ 2n¾) ^ (0 · ¾ · k)

Examples:

From LIA-interpolants to BV-interpolants

♦ “Invert” the LIA encoding to get a BV interpolant

♦ Unsound in general

♦ Issues due to overflow and (un)signedness of operations

♦ Our (very simple) solution: check the interpolants

♦ Given a candidate interpolant , use our SMT(BV) solver to

check the unsatisfiability of

♦ If successful, then is an interpolant

Î

Î

(A ^ :Î) _ (B ^ Î)

From LIA- to BV-interpolants: examples

♦ Encoding into LIA:

ALIA
def
=(xy2 = 16xy5 + xy5) ^ (xy1 = xy2) ^ (xy5 = 1)^
(xy1 2 [0; 28)) ^ (xy2 2 [0; 28)) ^ (xy5 2 [0; 24))

BLIA
def
=:(xy4+1 · xy2) ^ (xy4+1 = xy4 + 1¡ 28¾)^
(xy4 = 1)^
(xy4+1 2 [0; 28)) ^ (xy4 2 [0; 28)) ^ (0 · ¾ · 1)

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])

From LIA- to BV-interpolants: examples

♦ LIA-Interpolant:

♦ BV-interpolant:

ILIA
def
= (17 · xy2)

I
def
= (17[8] ·u y2[8])

Good!

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])

From LIA- to BV-interpolants: examples

♦ Encoding into LIA:

ALIA
def
=(xy2 = 81) ^ (xy3 = 0) ^ (xy4 = xy2)^
(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))

BLIA
def
=(xy13 = 2

8 ¢ 0 + xy4) ^ (255 · xy13+(0::y3))^
(xy13+(0::y3) = xy13 + 2

8 ¢ 0 + xy3 ¡ 216¾)^
(xy13 2 [0; 216)) ^ (xy13+(0::y3) 2 [0; 216))^
(0 · ¾ · 1)

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

♦ LIA-interpolant:

♦ BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

♦ LIA-interpolant:

♦ BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might
overflow in BV!

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

♦ LIA-interpolant:

♦ BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might
overflow in BV!

A correct interpolant would be

I
def
= (0[1] :: y3[8] + 0[1] :: y4[8] ·u 81[9])

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))

From LIA- to BV-interpolants: examples

♦ Encoding into LIA:

ALIA
def
=:(xy4+1 · xy3) ^ (xy2 = xy4+1)^
(xy4+1 = xy4 + 1¡ 28¾1)^
(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))^
(xy4+1 2 [0; 28)) ^ (0 · ¾1 · 1)

BLIA
def
=(xy2+1 · xy3) ^ (xy7 = 3) ^ (xy7 = xy2+1)^
(xy2+1 = xy2 + 1¡ 28¾2)^
(xy7 2 [0; 28)) ^ (xy2+1 2 [0; 28)) ^ (0 · ¾2 · 1)

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

From LIA- to BV-interpolants: examples

♦ LIA-interpolant:

♦ BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î 0
def
= (65281[16] ·u (0[8] :: y2[8])¡ (0[8] :: y3[8])+
256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)

From LIA- to BV-interpolants: examples

♦ LIA-interpolant:

♦ BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î 0
def
= (65281[16] ·u (0[8] :: y2[8])¡ (0[8] :: y3[8])+
256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)

Still
Wrong!

In this case, the problem
is also the sign

From LIA- to BV-interpolants: examples

♦ LIA-interpolant:

♦ BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Correct interpolant

I
def
= (65281[16] ·s (0[8] :: y2[8])¡ (0[8] :: y3[8])+
256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

Outline

♦ Background

♦ Layered Interpolation for BV

♦ Discussion

♦ Experimental Evaluation

Discussion

♦ In the worst case, our algorithm is not much different than bit-
blasting

♦ Actually, it can be even worse, performance-wise

♦ Need to re-process the BV-lemmas after having checked
unsatisfiability of

♦ However:

♦ for interpolation problems arising in software verification, our
specialized procedures succeed most of the times

♦ In general, the overhead of running them is minor

♦ The BV-lemmas occurring in the proof are only a small
percentage of the total generated during search; and

♦ They are typically small (close to minimal)

A ^B

Interpolants in software verification

♦ Refinements of “spurious” paths in an abstract program unwinding

♦ Two observations:

♦ Most arithmetic constraints are
“simple”

♦ Esp. In typical domains for sw
verification (e.g. device drivers)

♦ LIA encoding works well

♦ Use of an SSA encoding:

♦ Many “definitional” equalities,
corresponding to assignment
operations

♦ Exploited by our equality
inlining layer

SSA Example:

x := z
assume(x >= 0)
x := x + 2
z = y – 3
assume(z = 1)

x0 = z0^
x0 ¸ 0^
x1 = x0 + 2^
z1 = y0 ¡ 3^
z1 = 1

Outline

♦ Background

♦ Layered Interpolation for BV

♦ Discussion

♦ Experimental Evaluation

Experimental evaluation

♦ Implementation within the MathSAT 5 SMT solver

♦ Integration with the Kratos SW model checker

♦ CEGAR-based lazy predicate abstraction with interpolation-based
refinement

♦ Comparison with the other bit-precise engines available

♦ Satabs

♦ Wolverine

♦ Benchmarks that require a bit-precise semantics, collected
from multiple sources

Results – programs requiring BV

Conclusions

♦ Interpolation in BV is hard...

♦ ...this is a conceptually-simple approach:

♦ Exploits efficient SMT solving and interpolation techniques

♦ Aimed at “practical” problems arising in software verification

♦ Promising experimental results

♦ A first step, not a general-purpose solution

♦ Several directions for future work

♦ Incorporate more layers

♦ Investigate more deeply encoding into LIA

♦ “Lifting” of bit-level proofs to word-level interpolants beyond
equality logic

Thank You

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41

