FMCAD 2011

Effective Word-Level Interpolation for Software Verification

Alberto Griggio
FBK-IRST

Motivations

- Craig interpolation applied succesfully for Formal Verification of both hardware and software
- Ongoing research (at least for 6-7 years) on efficient algorithms for computing interpolants in various useful (combinations of) theories
- UF, LA (and fragments), data structures, arrays, quantifiers...
- Very little done for bit-vectors!
- ...But BV are fundamental in both hardware and software verification
- This work: a "practical" procedure for BV interpolation
- Using efficient SMT techniques
- A first step, not a general-purpose solution
- Optimized for problems arising in software verification

Outline

- Background
- Layered Interpolation for BV
- Discussion
- Experimental Evaluation

Interpolants

- (Craig) Interpolant for an ordered pair (A, B) of formulas s.t. $A \wedge B \models_{\mathcal{T}} \perp$ (or: $A \models \neg B$) is a formula I s.t.
a) $A \models_{\mathcal{T}} I$
b) $B \wedge I \models \mathcal{T} \perp(I \models \neg B)$
c) All the uninterpreted (in \mathcal{T}) symbols of I occur in both A and B

Lazy SMT and Interpolation

- $\operatorname{DPLL}(T)$ (i.e. "lazy") approach to SMT:

SAT solver (DPLL) + decision procedure for conjunctions of T-constraints (T-solver)

- Interpolants from DPLL(T)-proofs [McMillan]:

\mathcal{T}-specific part
 (for conjunctions of constraints)

- State-of-the-art approach for solving and interpolation in several important theories (UF, LA, combinations, ...)

SMT for Bit-Vectors

- State-of-the-art for SMT(BV) is NOT DPLL(T)!
- All efficient SMT(BV) solvers are based on:
- Aggressive preprocessing/simplification of the formula using word-level information
- Eager encoding into SAT ("bit-blasting")
- Problem for interpolation: proofs are a "blob of bits"
- No clear partitioning between Boolean part and BV-specific part
- Word-level structure completely lost and difficult to recover
- Some work done [Kroening\&Weissenbacher 07], but limited to equality logic only

Outline

- Background
- Layered Interpolation for BV
- Discussion
- Experimental Evaluation

Interpolation via Bit-Blasting

Interpolation via bit-blasting is easy...

- From $A_{B V}$ and $B_{B V}$ generate $A_{\text {Bool }}$ and $B_{\text {Bool }}$
- Each var x of width n encoded with n Boolean vars $b_{1}^{x} \ldots b_{n}^{x}$
- Generate a Boolean interpolant $I_{\text {Bool }}$ for ($\left.A_{\text {Bool }}, B_{\text {Bool }}\right)$
- Replace every variable b_{i}^{x} in $I_{\text {Bool }}$ with the bit-selection $x[i]$ and every Boolean connective with the corresponding bit-wise connective: $\wedge \mapsto \&, \vee \mapsto \mid, \quad \neg \mapsto \sim$
...but quite impractical
- Generates "ugly" interpolants
- Word-level structure of the original problem completely lost
- How to apply word-level simplifications?

Interpolation via Bit-Blasting - Example

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(a_{[8]} * b_{[8]}=15_{[8]}\right) \wedge\left(a_{[8]}=3_{[8]}\right) \\
& B \stackrel{\text { def }}{=} \neg\left(b_{[8]} \%_{u} c_{[8]}=1_{[8]}\right) \wedge\left(c_{[8]}=2_{[8]}\right)
\end{aligned}
$$

A word-level interpolant is:
$I \stackrel{\text { def }}{=}\left(b_{[8]} * 3_{[8]}=15_{[8]}\right)$
...but with bit-blasting we get:

$$
\begin{aligned}
& I^{\prime} \stackrel{\text { def }}{=}\left(b_{[8]}[0]=1_{[1]}\right) \wedge\left(\left(b _ { [8] } [0] \& \sim \left(\left(\left(\left(\left(\left(\sim b_{[8]}[7] \& \sim b_{[8]}[6]\right) \&\right.\right.\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.\left.\left.\sim b_{[8]}[5]\right) \& \sim b_{[8]}[4]\right) \& \sim b_{[8]}[3]\right) \& b_{[8]}[2]\right) \& \sim b_{[8]}[1]\right)\right)=0_{[1]}\right)
\end{aligned}
$$

Lazy bit-blasting and DPLL(T) for BV

- Our goal: combine the benefits of bit-blasting for efficiently solving BV with those of DPLL(T) for interpolation
- Exploit lazy bit-blasting
- Bit-blast only BV-atoms, not the whole formula
- Boolean skeleton of the formula handled by the "main" DPLL, like in DPLL(T)
- Conjunctions of BV-atoms handled (via bit-blasting) by a "sub"DPLL (DPLL-BV) that acts as a BV-solver

> BV-specific Interpolation for conjunctions of constraints

- Implemented using SAT solving under assumptions

Interpolation for BV constraints

A layered approach

- Apply in sequence a chain of procedures of increasing generality and cost
- Interpolation in EUF
- Interpolation via equality inlining
- Interpolation via Linear Integer Arithmetic encoding
- Interpolation via bit-blasting

Interpolation in EUF

- Treat all the BV-operators as uninterpreted functions
- Exploit cheap, efficient algorithms for solving and interpolating modulo EUF
- Possible because we avoid bit-blasting upront!

Example:

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(x_{1[32]}=3_{[32]}\right) \wedge\left(x_{3[32]}=x_{1[32]} \cdot x_{2[32]}\right) \\
& B \stackrel{\text { def }}{=}\left(x_{4[32]}=x_{2[32]}\right) \wedge\left(x_{5[32]}=3_{[32]} \cdot x_{4[32]}\right) \wedge \\
& \quad \neg\left(x_{3[32]}=x_{5[32]}\right) \\
& \quad I_{\mathrm{UF}} \stackrel{\text { def }}{=} x_{3}=f \cdot\left(f^{3}, x_{2}\right) \\
& \quad I_{\mathrm{B} V} \stackrel{\text { def }}{=} x_{3[32]}=3_{[32]} \cdot x_{2[32]}
\end{aligned}
$$

Interpolation via Equality Inlining

- Interpolation via quantifier elimination: given (A, B), an interpolant can be computed by eliminating quantifiers from $\exists_{x \notin B} A$ or from $\exists_{x \notin A} \neg B$
- In general, this can be very expensive for BV
- Might require bit-blasting and can cause blow-up of the formula
- Cheap case: non-common variables occurring in "definitional" equalities
- Example: $(x=e) \wedge \varphi$ and x does not occur in e, then

$$
\exists_{x}((x=e) \wedge \varphi) \Longrightarrow \varphi[x \mapsto e]
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \xlongequal{\text { def }}\left(0_{[24]}::\left(x_{4[8]} \cdot x_{5[8]}\right) \leq_{s}\left(0_{[24]}:: x_{1[8]}-1_{[32]}\right)\right) \wedge$

$$
\left(x_{2[8]}=x_{1[8]}\right) \wedge\left(x_{4[8]}=192_{[8]}\right) \wedge\left(x_{5[8]}=128_{[8]}\right)
$$

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(0_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<u 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text { def }}{=}\left(0_{[24]}::\left(x_{4[8]} \cdot x_{5[8]}\right) \leq_{s}\left(0_{[24]}:: x_{1[8]}-1_{[32]}\right)\right) \wedge$

$$
\left(x_{2[8]}=x_{1[8]}\right) \wedge\left(x_{4[8]}=192_{[8]}\right) \wedge\left(x_{5[8]}=128_{[8]}\right)
$$

Definitional equalities

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(\theta_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<{ }_{u} 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \xlongequal{\text { def }}\left(0_{[24]}::\left(x_{4[8]} \cdot x_{5[8]}\right) \leq_{s}\left(0_{[24]}:: x_{1[8]}-1_{[32]}\right)\right) \wedge$

$$
\left(x_{2[8]}=x_{1[8]}\right) \wedge\left(x_{4[8]}=192_{[8]}\right) \wedge\left(x_{5[8]}=128_{[8]}\right)
$$

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(0_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<u 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \xlongequal{\text { def }}\left(0_{[24]}::\left(x_{4[8]} \cdot x_{5[8]}\right) \leq_{s}\left(0_{[24]}:: x_{2[8]}-1_{[32]}\right)\right) \wedge$

$$
\wedge\left(x_{4[8]}=192_{[8]}\right) \wedge\left(x_{5[8]}=128_{[8]}\right)
$$

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(0_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<u 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \xlongequal{\text { def }}\left(0_{[24]}::\left(x_{4[8]} \cdot x_{5[8]}\right) \leq_{s}\left(0_{[24]}:: x_{2[8]}-1_{[32]}\right)\right) \wedge$

$$
\wedge\left(x_{4[8]}=192_{[8]}\right) \wedge\left(x_{5[8]}=128_{[8]}\right)
$$

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(0_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<u 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text { def }}{=}\left(0_{[24]}::\left(192_{[8]} \cdot 128_{[8]}\right) \leq_{s}\left(0_{[24]}:: x_{2[8]}-1_{[32]}\right)\right)$

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(0_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<_{u} 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via Equality Inlining

- Inline definitional equalities until either all all non-common variables are removed, or a fixpoint is reached
- Try both from A and $\neg B$
- If one of them succeeds, we have an interpolant

Example: $A \stackrel{\text { def }}{=}\left(0_{[24]}::\left(192_{[8]} \cdot 128_{[8]}\right) \leq_{s}\left(0_{[24]}:: x_{2[8]}-1_{[32]}\right)\right)$

$$
I \stackrel{\text { def }}{=}\left(0_{32} \leq_{s}\left(0_{24}:: x_{2[8]}-1_{[32]}\right)\right.
$$

$$
\begin{gathered}
B \stackrel{\text { def }}{=}\left(\left(x_{3[8]} \cdot x_{6[8]}\right)=\left(-\left(0_{[24]}:: x_{2[8]}\right)\right)[7: 0]\right) \wedge \\
\left(x_{3[8]}<_{u} 1_{[8]}\right) \wedge\left(0_{[8]} \leq_{u} x_{3[8]}\right) \wedge\left(x_{6[8]}=1_{[8]}\right)
\end{gathered}
$$

Interpolation via LIA Encoding

- Simple idea (in principle):
- Encode a set of BV-constraints into an SMT(LIA)-formula
- Generate a LIA-interpolant using existing algorithms
- Map back to a BV-interpolant
- However, several problems to solve:
- Efficiency (see paper)
- More importantly, soundness

Encoding BV into LIA

- Use encoding of e.g. [PDPAR'06]
- Encode each BV term $t_{[n]}$ as an integer variable x_{t} and the constraints $\left(0 \leq x_{t}\right) \wedge\left(x_{t} \leq 2^{n}-1\right)$
- Encode each BV operation as a LIA-formula.

Examples:
$t_{[i-j+1]} \stackrel{\text { def }}{=} t_{1[n]}[i: j] \triangleleft\left(x_{t}=m\right) \wedge\left(x_{t_{1}}=2^{i+1} h+2^{j} m+l\right) \wedge$

$$
l \in\left[0,2^{i}\right) \wedge m \in\left[0,2^{i-j+1}\right) \wedge h \in\left[0,2^{n-i-1}\right)
$$

$t_{[n]} \stackrel{\text { def }}{=} t_{1[n]}+t_{2[n]}$
$\square\left(x_{t}=x_{t_{1}}+x_{t_{2}}-2^{n} \sigma\right) \wedge(0 \leq \sigma \leq 1)$
$t_{[n]} \stackrel{\text { def }}{=} t_{1[n]} \cdot k$
$\left(x_{t}=k \cdot x_{t_{1}}-2^{n} \sigma\right) \wedge(0 \leq \sigma \leq k)$

From LIA-interpolants to BV-interpolants

- "Invert" the LIA encoding to get a BV interpolant
- Unsound in general
- Issues due to overflow and (un)signedness of operations
- Our (very simple) solution: check the interpolants
- Given a candidate interpolant \hat{I}, use our SMT(BV) solver to check the unsatisfiability of $(A \wedge \neg \hat{I}) \vee(B \wedge \hat{I})$
- If successful, then \hat{I} is an interpolant

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(y_{1[8]}=y_{5[4]}:: y_{5[4]}\right) \wedge\left(y_{1[8]}=y_{2[8]}\right) \wedge\left(y_{5[4]}=1_{[4]}\right) \\
& B \stackrel{\text { def }}{=} \neg\left(y_{4[8]}+1_{[8]} \leq_{u} y_{2[8]}\right) \wedge\left(y_{4[8]}=1_{[8]}\right)
\end{aligned}
$$

- Encoding into LIA:

$$
\begin{aligned}
& A_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(x_{y_{2}}=16 x_{y_{5}}+x_{y_{5}}\right) \wedge\left(x_{y_{1}}=x_{y_{2}}\right) \wedge\left(x_{y_{5}}=1\right) \wedge \\
&\left(x_{y_{1}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{2}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{5}} \in\left[0,2^{4}\right)\right) \\
& B_{\mathrm{LIA}} \stackrel{\text { def }}{=} \neg\left(x_{y_{4}+1} \leq x_{y_{2}}\right) \wedge\left(x_{y_{4}+1}=x_{y_{4}}+1-2^{8} \sigma\right) \wedge \\
&\left(x_{y_{4}}=1\right) \wedge \\
&\left(x_{y_{4}+1} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{4}} \in\left[0,2^{8}\right)\right) \wedge(0 \leq \sigma \leq 1)
\end{aligned}
$$

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(y_{1[8]}=y_{5[4]}:: y_{5[4]}\right) \wedge\left(y_{1[8]}=y_{2[8]}\right) \wedge\left(y_{5[4]}=1_{[4]}\right) \\
& B \stackrel{\text { def }}{=} \neg\left(y_{4[8]}+1_{[8]} \leq_{u} y_{2[8]}\right) \wedge\left(y_{4[8]}=1_{[8]}\right)
\end{aligned}
$$

- LIA-Interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(17 \leq x_{y_{2}}\right)
$$

- BV-interpolant:

$$
I \stackrel{\text { def }}{=}\left(17_{[8]} \leq_{u} y_{2[8]}\right)
$$

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(y_{2[8]}=81_{[8]}\right) \wedge\left(y_{3[8]}=0_{[8]}\right) \wedge\left(y_{4[8]}=y_{2[8]}\right) \\
& B \stackrel{\text { def }}{=}\left(y_{13[16]}=0_{[8]}:: y_{4[8]}\right) \wedge\left(255_{[16]} \leq_{u} y_{13[16]}+\left(0_{[8]}:: y_{3[8]}\right)\right)
\end{aligned}
$$

- Encoding into LIA:

$$
\begin{aligned}
A_{\mathrm{LIA}} \stackrel{\text { def }}{=} & \left(x_{y_{2}}=81\right) \wedge\left(x_{y_{3}}=0\right) \wedge\left(x_{y_{4}}=x_{y_{2}}\right) \wedge \\
& \left(x_{y_{2}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{3}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{4}} \in\left[0,2^{8}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
B_{\mathrm{LIA}} \stackrel{\text { def }}{=} & \left(x_{y_{13}}=2^{8} \cdot 0+x_{y_{4}}\right) \wedge\left(255 \leq x_{y_{13}+\left(0:: y_{3}\right)}\right) \wedge \\
& \left(x_{y_{13}+\left(0:: y_{3}\right)}=x_{y_{13}}+2^{8} \cdot 0+x_{y_{3}}-2^{16} \sigma\right) \wedge \\
& \left(x_{y_{13}} \in\left[0,2^{16}\right)\right) \wedge\left(x_{y_{13}+\left(0:: y_{3}\right)} \in\left[0,2^{16}\right)\right) \wedge \\
& (0 \leq \sigma \leq 1)
\end{aligned}
$$

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(y_{2[8]}=81_{[8]}\right) \wedge\left(y_{3[8]}=0_{[8]}\right) \wedge\left(y_{4[8]}=y_{2[8]}\right) \\
& B \stackrel{\text { def }}{=}\left(y_{13[16]}=0_{[8]}:: y_{4[8]}\right) \wedge\left(255_{[16]} \leq_{u} y_{13[16]}+\left(0_{[8]}:: y_{3[8]}\right)\right)
\end{aligned}
$$

- LIA-interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(x_{y_{3}}+x_{y_{4}} \leq 81\right)
$$

- BV-interpolant:

$$
\hat{I} \xlongequal{\text { def }}\left(y_{3[8]}+y_{4[8]} \leq_{u} 81_{[8]}\right)
$$

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(y_{2[8]}=81_{[8]}\right) \wedge\left(y_{3[8]}=0_{[8]}\right) \wedge\left(y_{4[8]}=y_{2[8]}\right) \\
& B \stackrel{\text { def }}{=}\left(y_{13[16]}=0_{[8]}:: y_{4[8]}\right) \wedge\left(255_{[16]} \leq_{u} y_{13[16]}+\left(0_{[8]}:: y_{3[8]}\right)\right)
\end{aligned}
$$

- LIA-interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(x_{y_{3}}+x_{y_{4}} \leq 81\right)
$$

Addition might overflow in BV!

- BV-interpolant:

$$
\hat{I} \xlongequal{\text { def }}\left(y_{3[8]}+y_{4[8]} x_{u} 81_{[8]}\right)
$$

From LIA- to BV-interpolants: examples

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left(y_{2[8]}=81_{[8]}\right) \wedge\left(y_{3[8]}=0_{[8]}\right) \wedge\left(y_{4[8]}=y_{2[8]}\right) \\
& B \stackrel{\text { def }}{=}\left(y_{13[16]}=0_{[8]}:: y_{4[8]}\right) \wedge\left(255_{[16]} \leq_{u} y_{13[16]}+\left(0_{[8]}:: y_{3[8]}\right)\right)
\end{aligned}
$$

- LIA-interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(x_{y_{3}}+x_{y_{4}} \leq 81\right)
$$

Addition might overflow in BV!

- BV-interpolant:

A correct interpolant would be
$I \stackrel{\text { def }}{=}\left(0_{[1]}:: y_{3[8]}+0_{[1]}:: y_{4[8]} \leq_{u} 81_{[9]}\right)$

From LIA- to BV-interpolants: examples

$A \stackrel{\text { def }}{=} \neg\left(y_{4[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{2[8]}=y_{4[8]}+1_{[8]}\right)$
$B \stackrel{\text { def }}{=}\left(y_{2[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{7[8]}=3_{[8]}\right) \wedge\left(y_{7[8]}=y_{2[8]}+1_{[8]}\right)$

- Encoding into LIA:

$$
\begin{aligned}
& A_{\mathrm{LIA}} \stackrel{\text { def }}{=} \neg\left(x_{y_{4}+1} \leq x_{y_{3}}\right) \wedge\left(x_{y_{2}}=x_{y_{4}+1}\right) \wedge \\
&\left(x_{y_{4}+1}=x_{y_{4}}+1-2^{8} \sigma_{1}\right) \wedge \\
&\left(x_{y_{2}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{3}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{4}} \in\left[0,2^{8}\right)\right) \wedge \\
&\left(x_{y_{4}+1} \in\left[0,2^{8}\right)\right) \wedge\left(0 \leq \sigma_{1} \leq 1\right) \\
& B_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(x_{y_{2}+1} \leq x_{y_{3}}\right) \wedge\left(x_{y_{7}}=3\right) \wedge\left(x_{y_{7}}=x_{y_{2}+1}\right) \wedge \\
&\left(x_{y_{2}+1}=x_{y_{2}}+1-2^{8} \sigma_{2}\right) \wedge \\
&\left(x_{y_{7}} \in\left[0,2^{8}\right)\right) \wedge\left(x_{y_{2}+1} \in\left[0,2^{8}\right)\right) \wedge\left(0 \leq \sigma_{2} \leq 1\right)
\end{aligned}
$$

From LIA- to BV-interpolants: examples

$A \stackrel{\text { def }}{=} \neg\left(y_{4[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{2[8]}=y_{4[8]}+1_{[8]}\right)$
$B \stackrel{\text { def }}{=}\left(y_{2[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{7[8]}=3_{[8]}\right) \wedge\left(y_{7[8]}=y_{2[8]}+1_{[8]}\right)$

- LIA-interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(-255 \leq x_{y_{2}}-x_{y_{3}}+256\left\lfloor-1 \frac{x_{y_{2}}}{256}\right\rfloor\right)
$$

- BV-interpolant: (after fixing overflows)

$$
\begin{aligned}
& \hat{I}^{\prime} \stackrel{\text { def }}{=}\left(65281_{[16]} \leq_{u}\left(0_{[8]}:: y_{2[8]}\right)-\left(0_{[8]}:: y_{3[8]}\right)+\right. \\
&\left.256_{[16]} \cdot\left(65535_{[16]} \cdot\left(0_{[8]}:: y_{2[8]}\right) / u 256_{[16]}\right)\right)
\end{aligned}
$$

From LIA- to BV-interpolants: examples

$A \stackrel{\text { def }}{=} \neg\left(y_{4[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{2[8]}=y_{4[8]}+1_{[8]}\right)$
$B \stackrel{\text { def }}{=}\left(y_{2[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{7[8]}=3_{[8]}\right) \wedge\left(y_{7[8]}=y_{2[8]}+1_{[8]}\right)$

- LIA-interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(-255 \leq x_{y_{2}}-x_{y_{3}}+256\left\lfloor-1 \frac{x_{y_{2}}}{256}\right\rfloor\right)
$$

- BV-interpolant: (after fixing overflows)

$$
\begin{aligned}
& \hat{I}^{\prime} \stackrel{\text { def }}{=}\left(65281_{[16} \leq_{u} 00_{[8]}:: y_{2[8]}\right)-\left(0_{[8]}:: y_{3[8]}\right)+ \\
&\left.256_{[16]} \cdot\left(6555_{[16]} \cdot\left(0_{[8]}:: y_{2[8]}\right) / u 256_{[16]}\right)\right)
\end{aligned}
$$

In this case, the problem is also the sign

From LIA- to BV-interpolants: examples

$A \stackrel{\text { def }}{=} \neg\left(y_{4[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{2[8]}=y_{4[8]}+1_{[8]}\right)$
$B \stackrel{\text { def }}{=}\left(y_{2[8]}+1_{[8]} \leq_{u} y_{3[8]}\right) \wedge\left(y_{7[8]}=3_{[8]}\right) \wedge\left(y_{7[8]}=y_{2[8]}+1_{[8]}\right)$

- LIA-interpolant:

$$
I_{\mathrm{LIA}} \stackrel{\text { def }}{=}\left(-255 \leq x_{y_{2}}-x_{y_{3}}+256\left\lfloor-1 \frac{x_{y_{2}}}{256}\right\rfloor\right)
$$

- BV-interpolant:

$$
\begin{aligned}
I \stackrel{\text { def }}{=} & \left(65281_{[16]} \leq_{s}\left(0_{[8]}:: y_{2[8]}\right)-\left(0_{[8]}:: y_{3[8]}\right)+\right. \\
& \left.256_{[16]} \cdot\left(65535_{[16]} \cdot\left(0_{[8]}:: y_{2[8]}\right) / u 256_{[16]}\right)\right)
\end{aligned}
$$

Correct interpolant

Outline

- Background
- Layered Interpolation for BV
- Discussion
- Experimental Evaluation

Discussion

- In the worst case, our algorithm is not much different than bitblasting
- Actually, it can be even worse, performance-wise
- Need to re-process the BV-lemmas after having checked unsatisfiability of $A \wedge B$
- However:
- for interpolation problems arising in software verification, our specialized procedures succeed most of the times
- In general, the overhead of running them is minor
- The BV-lemmas occurring in the proof are only a small percentage of the total generated during search; and
- They are typically small (close to minimal)

Interpolants in software verification

- Refinements of "spurious" paths in an abstract program unwinding
- Two observations:
- Most arithmetic constraints are "simple"
- Esp. In typical domains for sw verification (e.g. device drivers)
- LIA encoding works well
- Use of an SSA encoding:
- Many "definitional" equalities, corresponding to assignment operations
- Exploited by our equality inlining layer

Outline

- Background
- Layered Interpolation for BV
- Discussion
- Experimental Evaluation

Experimental evaluation

- Implementation within the MathSAT 5 SMT solver
- Integration with the Kratos SW model checker
- CEGAR-based lazy predicate abstraction with interpolation-based refinement
- Comparison with the other bit-precise engines available
- Satabs
- Wolverine
- Benchmarks that require a bit-precise semantics, collected from multiple sources

Results - programs requiring BV

Program		Kratos				SatAbs	Wolverine
	BV-1	BV-2	BV-3	BV-4	BV-5		
byte_add_1.c	31.00	T.O.	M.O.	57.30	31.54	T.O.	T.O.
byte_add_2.c	47.98	T.O.	M.O.	72.17	44.42	T.O.	T.O.
num_conversion_1.c	1.85	3.20	3.67	2.67	1.13	23.78	2.16
num_conversion_2.c	48.04	776.53	72.12	763.16	47.73	T.O.	T.O.
gcd_1.c	1.75	20.45	20.56	1.05	1.27	FAIL	515.31
gcd_2.c	29.21	M.O.	M.O.	39.21	28.21	339.86	185.56
gcd_3.c	70.05	T.O.	M.O.	209.34	70.59	T.O.	290.03
gcd_4.c	3.58	M.O.	T.O.	T.O.	4.25	T.O.	1.26
interleave_bits.c	45.90	T.O.	T.O.	T.O.	49.01	836.78	T.O.
modulus.c	4.87	34.00	M.O.	3.30	4.15	T.O.	M.O.
parity.c	387.56	M.O.	M.O.	T.O.	391.84	T.O.	T.O.
soft_float_1.c.cil.c	48.02	T.O.	T.O.	T.O.	T.O.	T.O.	136.88
soft_float_2.c.cil.c	61.34	T.O.	T.O.	70.02	T.O.	1101.54	177.63
soft_float_3.c.cil.c	T.O.						
soft_float_4.c.cil.c	51.67	T.O.	M.O.	247.31	49.88	T.O.	T.O.
soft_float_5.c.cil.c	61.70	T.O.	T.O.	78.54	T.O.	T.O.	193.76
s3_cInt_1.BV.c.cil.c	41.06	50.82	T.O.	48.77	42.32	FAIL	T.O.
s3_clnt_2.BV.c.cil.c	20.96	9.92	116.03	8.59	22.01	T.O.	T.O.
s3_clnt_3.BV.c.cil.c	7.66	T.O.	93.77	T.O.	6.68	T.O.	T.O.
s3_srvr_1.BV.c.cil.c	11.59	35.91	240.77	34.74	11.63	160.74	T.O.
s3_srvr_2.BV.c.cil.c	150.64	62.22	116.54	61.26	152.10	342.11	T.O.
s3_srvr_3.BV.c.cil.c	48.35	124.32	43.63	125.19	48.36	405.48	T.O.
jain_1.c	0.34	0.39	0.30	0.12	0.36	FAIL	T.O.
jain_2.c	0.43	0.48	0.35	0.21	0.44	FAIL	T.O.
jain_4.c	0.55	0.60	0.40	0.33	0.54	FAIL	T.O.
jain_5.c	T.O.	T.O.	T.O.	T.O.	T.O.	FAIL	T.O.
jain_6.c	0.18	0.12	0.09	0.15	0.16	FAIL	T.O.
jain_7.c	0.29	0.23	0.15	0.26	0.27	FAIL	T.O.
TOTAL (solved/time)	26/1176.57	14/1119.19	13/708.38	21/1823.69	23/1008.89	7/3210.29	8/1500.43

Conclusions

- Interpolation in BV is hard...
- ...this is a conceptually-simple approach:
- Exploits efficient SMT solving and interpolation techniques
- Aimed at "practical" problems arising in software verification
- Promising experimental results
- A first step, not a general-purpose solution
- Several directions for future work
- Incorporate more layers
- Investigate more deeply encoding into LIA
- "Lifting" of bit-level proofs to word-level interpolants beyond equality logic

FONDAZIONE
BRUNO KESSLER

Thank You

