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Motivations

♦ Craig interpolation applied succesfully for Formal Verification 
of both hardware and software

♦ Ongoing research (at least for 6-7 years) on efficient 
algorithms for computing interpolants in various useful 
(combinations of) theories

♦ UF, LA (and fragments), data structures, arrays, quantifiers...

♦ Very little done for bit-vectors!

♦ ...But BV are fundamental in both hardware and software 
verification

♦ This work: a “practical” procedure for BV interpolation

♦ Using efficient SMT techniques

♦ A first step, not a general-purpose solution

♦ Optimized for problems arising in software verification



  

Outline

♦ Background

♦ Layered Interpolation for BV

♦ Discussion

♦ Experimental Evaluation



  

Interpolants

♦ (Craig) Interpolant for an ordered pair (A, B) of formulas s.t.    

                                                  is a formula I s.t.

a) 

b) 

c) All the uninterpreted (in     ) symbols of I occur in both A and B

A j=T I

T
B ^ I j=T ? (I j= :B)

A ^B j=T ? (or: A j= :B)



  

Lazy SMT and Interpolation

♦ DPLL(T) (i.e. “lazy”) approach to SMT: 
SAT solver (DPLL) + decision procedure for conjunctions of 
T-constraints (T-solver)

♦ Interpolants from DPLL(T)-proofs [McMillan]:

♦ State-of-the-art approach for solving and interpolation in 
several important theories (UF, LA, combinations, ...)

Boolean part 
(ground resolution)

-specific part 
(for conjunctions of constraints)

T

Standard Boolean
interpolation

-specific
interpolation

for conjunctions only

T



  

SMT for Bit-Vectors

♦ State-of-the-art for SMT(BV) is NOT DPLL(T)!

♦ All efficient SMT(BV) solvers are based on:

♦ Aggressive preprocessing/simplification of the formula using 
word-level information

♦ Eager encoding into SAT (“bit-blasting”)

♦ Problem for interpolation: proofs are a “blob of bits”

♦ No clear partitioning between Boolean part and BV-specific part

♦ Word-level structure completely lost and difficult to recover

♦ Some work done [Kroening&Weissenbacher 07], but limited to 
equality logic only



  

Outline

♦ Background

♦ Layered Interpolation for BV

♦ Discussion

♦ Experimental Evaluation



  

Interpolation via Bit-Blasting

Interpolation via bit-blasting is easy...

♦ From          and           generate            and 

♦ Each var     of width n encoded with n Boolean vars

♦ Generate a Boolean interpolant          for

♦ Replace every variable      in          with the bit-selection
and every Boolean connective with the corresponding bit-wise 
connective:

...but quite impractical

♦ Generates “ugly” interpolants

♦ Word-level structure of the original problem completely lost

♦ How to apply word-level simplifications?

BBoolABV BBV

x bx1 : : : b
x
n

IBool

ABool

(ABool; BBool)

IBoolbxi x[i]

^ 7! &; _ 7! j; : 7!»



  

Interpolation via Bit-Blasting - Example

 

A word-level interpolant is:

...but with bit-blasting we get:

A
def
= (a[8] ¤ b[8] = 15[8]) ^ (a[8] = 3[8])

B
def
= :(b[8]%uc[8] = 1[8]) ^ (c[8] = 2[8])

I
def
= (b[8] ¤ 3[8] = 15[8])

I0
def
= (b[8][0] = 1[1]) ^ ((b[8][0]& » ((((((» b[8][7]& » b[8][6])&

» b[8][5])& » b[8][4])& » b[8][3])&b[8][2])& » b[8][1])) = 0[1])



  

Lazy bit-blasting and DPLL(T) for BV

♦ Our goal: combine the benefits of bit-blasting for efficiently 
solving BV with those of DPLL(T) for interpolation

♦ Exploit lazy bit-blasting

♦ Bit-blast only BV-atoms, not the whole formula

♦ Boolean skeleton of the formula handled by the “main” DPLL, like 
in DPLL(T)

♦ Conjunctions of BV-atoms handled (via bit-blasting) by a “sub”-
DPLL (DPLL-BV) that acts as a BV-solver

♦ Implemented using SAT solving under assumptions

Standard
Boolean Interpolation

BV-specific Interpolation
for conjunctions of constraints



  

Interpolation for BV constraints

A layered approach

♦ Apply in sequence a chain of procedures of increasing 
generality and cost

♦ Interpolation in EUF

♦ Interpolation via equality inlining

♦ Interpolation via Linear Integer Arithmetic encoding

♦ Interpolation via bit-blasting



  

Interpolation in EUF

♦ Treat all the BV-operators as uninterpreted functions

♦ Exploit cheap, efficient algorithms for solving and interpolating 
 modulo EUF

♦ Possible because we avoid bit-blasting upront!

Example: A
def
= (x1[32] = 3[32]) ^ (x3[32] = x1[32] ¢ x2[32])

B
def
= (x4[32] = x2[32]) ^ (x5[32] = 3[32] ¢ x4[32])^

:(x3[32] = x5[32])
IUF

def
= x3 = f ¢(f3; x2)

IBV
def
= x3[32] = 3[32] ¢ x2[32]



  

Interpolation via Equality Inlining

♦ Interpolation via quantifier elimination: given           , an 
interpolant can be computed by eliminating quantifiers from
               or from

♦ In general, this can be very expensive for BV

♦ Might require bit-blasting and can cause blow-up of the formula

♦ Cheap case: non-common variables occurring in “definitional” 
equalities

♦ Example:                         and      does not occur in    , then

(A;B)

9x 62BA 9x 62A:B

(x = e) ^ ' x e

9x((x = e) ^ ') =) '[x 7! e]



  

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

♦ Try both from     and 

♦ If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

Example:

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])



  

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

♦ Try both from     and 

♦ If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Definitional equalities

Example:



  

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

♦ Try both from     and 

♦ If one of them succeeds, we have an interpolant

A :B

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x1[8] ¡ 1[32]))^
(x2[8] = x1[8]) ^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

Example:



  

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

♦ Try both from     and 

♦ If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^

^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])
Example:



  

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

♦ Try both from     and 

♦ If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

A
def
= (0[24] :: (x4[8] ¢ x5[8]) ·s (0[24] :: x2[8] ¡ 1[32]))^

^ (x4[8] = 192[8]) ^ (x5[8] = 128[8])
Example:



  

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

♦ Try both from     and 

♦ If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

A
def
= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^
Example:



  

Interpolation via Equality Inlining

♦ Inline definitional equalities until either all all non-common 
variables are removed, or a fixpoint is reached

♦ Try both from     and 

♦ If one of them succeeds, we have an interpolant

A :B

B
def
= ((x3[8] ¢ x6[8]) = (¡(0[24] :: x2[8]))[7 : 0])^

(x3[8] <u 1[8]) ^ (0[8] ·u x3[8]) ^ (x6[8] = 1[8])

A
def
= (0[24] :: (192[8] ¢ 128[8]) ·s (0[24] :: x2[8] ¡ 1[32]))

^ ^

I
def
= (032 ·s (024 :: x2[8] ¡ 1[32])

Example:



  

Interpolation via LIA Encoding

♦ Simple idea (in principle):

♦ Encode a set of BV-constraints into an SMT(LIA)-formula

♦ Generate a LIA-interpolant using existing algorithms

♦ Map back to a BV-interpolant

♦ However, several problems to solve:

♦ Efficiency (see paper)

♦ More importantly, soundness



  

Encoding BV into LIA

♦ Use encoding of e.g. [PDPAR'06]

♦ Encode each BV term       as an integer variable        and the 
constraints

♦ Encode each BV operation as a LIA-formula. 

t[n] xt
(0 · xt) ^ (xt · 2n ¡ 1)

t[i¡j+1]
def
= t1[n][i : j] (xt = m) ^ (xt1 = 2i+1h + 2jm+ l)^

l 2 [0; 2i) ^m 2 [0; 2i¡j+1) ^ h 2 [0; 2n¡i¡1)

t[n]
def
= t1[n] + t2[n] (xt = xt1 + xt2 ¡ 2n¾) ^ (0 · ¾ · 1)

t[n]
def
= t1[n] ¢ k (xt = k ¢ xt1 ¡ 2n¾) ^ (0 · ¾ · k)

Examples:



  

From LIA-interpolants to BV-interpolants

♦ “Invert” the LIA encoding to get a BV interpolant

♦ Unsound in general

♦ Issues due to overflow and (un)signedness of operations

♦ Our (very simple) solution: check the interpolants

♦ Given a candidate interpolant    , use our SMT(BV) solver to 

check the unsatisfiability of 

♦ If successful, then     is an interpolant

Î

Î

(A ^ :Î) _ (B ^ Î)



  

From LIA- to BV-interpolants: examples

 

♦ Encoding into LIA:

ALIA
def
=(xy2 = 16xy5 + xy5) ^ (xy1 = xy2) ^ (xy5 = 1)^
(xy1 2 [0; 28)) ^ (xy2 2 [0; 28)) ^ (xy5 2 [0; 24))

BLIA
def
=:(xy4+1 · xy2) ^ (xy4+1 = xy4 + 1¡ 28¾)^
(xy4 = 1)^
(xy4+1 2 [0; 28)) ^ (xy4 2 [0; 28)) ^ (0 · ¾ · 1)

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])



  

From LIA- to BV-interpolants: examples

 

♦ LIA-Interpolant:

♦ BV-interpolant:

ILIA
def
= (17 · xy2)

I
def
= (17[8] ·u y2[8])

Good!

A
def
= (y1[8] = y5[4] :: y5[4]) ^ (y1[8] = y2[8]) ^ (y5[4] = 1[4])

B
def
= :(y4[8] + 1[8] ·u y2[8]) ^ (y4[8] = 1[8])



  

From LIA- to BV-interpolants: examples

 

♦ Encoding into LIA:

ALIA
def
=(xy2 = 81) ^ (xy3 = 0) ^ (xy4 = xy2)^
(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))

BLIA
def
=(xy13 = 2

8 ¢ 0 + xy4) ^ (255 · xy13+(0::y3))^
(xy13+(0::y3) = xy13 + 2

8 ¢ 0 + xy3 ¡ 216¾)^
(xy13 2 [0; 216)) ^ (xy13+(0::y3) 2 [0; 216))^
(0 · ¾ · 1)

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

♦ LIA-interpolant:

♦ BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

♦ LIA-interpolant:

♦ BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might 
overflow in BV!

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

♦ LIA-interpolant:

♦ BV-interpolant:

ILIA
def
= (xy3 + xy4 · 81)

Î
def
= (y3[8] + y4[8] ·u 81[8])

Wrong!
B ^ Î 6j= ?

Addition might 
overflow in BV!

A correct interpolant would be

I
def
= (0[1] :: y3[8] + 0[1] :: y4[8] ·u 81[9])

A
def
=(y2[8] = 81[8]) ^ (y3[8] = 0[8]) ^ (y4[8] = y2[8])

B
def
= (y13[16] = 0[8] :: y4[8]) ^ (255[16] ·u y13[16] + (0[8] :: y3[8]))



  

From LIA- to BV-interpolants: examples

 

♦ Encoding into LIA:

ALIA
def
=:(xy4+1 · xy3) ^ (xy2 = xy4+1)^
(xy4+1 = xy4 + 1¡ 28¾1)^
(xy2 2 [0; 28)) ^ (xy3 2 [0; 28)) ^ (xy4 2 [0; 28))^
(xy4+1 2 [0; 28)) ^ (0 · ¾1 · 1)

BLIA
def
=(xy2+1 · xy3) ^ (xy7 = 3) ^ (xy7 = xy2+1)^
(xy2+1 = xy2 + 1¡ 28¾2)^
(xy7 2 [0; 28)) ^ (xy2+1 2 [0; 28)) ^ (0 · ¾2 · 1)

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])



  

From LIA- to BV-interpolants: examples

 

♦ LIA-interpolant:

♦ BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î 0
def
= (65281[16] ·u (0[8] :: y2[8])¡ (0[8] :: y3[8])+
256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)



  

From LIA- to BV-interpolants: examples

 

♦ LIA-interpolant:

♦ BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Î 0
def
= (65281[16] ·u (0[8] :: y2[8])¡ (0[8] :: y3[8])+
256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])

(after fixing overflows)

Still
Wrong!

In this case, the problem
is also the sign



  

From LIA- to BV-interpolants: examples

 

♦ LIA-interpolant:

♦ BV-interpolant:

ILIA
def
= (¡255 · xy2 ¡ xy3 + 256b¡1

xy2
256

c)

Correct interpolant

I
def
= (65281[16] ·s (0[8] :: y2[8])¡ (0[8] :: y3[8])+
256[16] ¢ (65535[16] ¢ (0[8] :: y2[8])=u 256[16]))

A
def
=:(y4[8] + 1[8] ·u y3[8]) ^ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ·u y3[8]) ^ (y7[8] = 3[8]) ^ (y7[8] = y2[8] + 1[8])



  

Outline

♦ Background

♦ Layered Interpolation for BV

♦ Discussion

♦ Experimental Evaluation



  

Discussion

♦ In the worst case, our algorithm is not much different than bit-
blasting

♦ Actually, it can be even worse, performance-wise

♦ Need to re-process the BV-lemmas after having checked 
unsatisfiability of 

♦ However:

♦ for interpolation problems arising in software verification, our 
specialized procedures succeed most of the times

♦ In general, the overhead of running them is minor

♦ The BV-lemmas occurring in the proof are only a small 
percentage of the total generated during search; and

♦ They are typically small (close to minimal)

A ^B



  

Interpolants in software verification

♦ Refinements of “spurious” paths in an abstract program unwinding

♦ Two observations:

♦ Most arithmetic constraints are 
“simple”

♦ Esp. In typical domains for sw 
verification (e.g. device drivers)

♦ LIA encoding works well

♦ Use of an SSA encoding:

♦ Many “definitional” equalities, 
corresponding to assignment 
operations

♦ Exploited by our equality 
inlining layer

SSA Example:

x := z
assume(x >= 0)
x := x + 2
z = y – 3
assume(z = 1)

x0 = z0^
x0 ¸ 0^
x1 = x0 + 2^
z1 = y0 ¡ 3^
z1 = 1



  

Outline

♦ Background

♦ Layered Interpolation for BV

♦ Discussion

♦ Experimental Evaluation



  

Experimental evaluation

♦ Implementation within the MathSAT 5 SMT solver

♦ Integration with the Kratos SW model checker

♦ CEGAR-based lazy predicate abstraction with interpolation-based 
refinement

♦ Comparison with the other bit-precise engines available

♦ Satabs

♦ Wolverine

♦ Benchmarks that require a bit-precise semantics, collected 
from multiple sources



  

Results – programs requiring BV

 



  

Conclusions

♦ Interpolation in BV is hard...

♦ ...this is a conceptually-simple approach:

♦ Exploits efficient SMT solving and interpolation techniques

♦ Aimed at “practical” problems arising in software verification

♦ Promising experimental results

♦ A first step, not a general-purpose solution

♦ Several directions for future work

♦ Incorporate more layers

♦ Investigate more deeply encoding into LIA

♦ “Lifting” of bit-level proofs to word-level interpolants beyond 
equality logic



  

Thank You
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