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.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
Initialize and Select first variable
Iteratively construct counterexample or fail

while true do
v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
fail if ...
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local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
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A := push((x, v, i, t, P),A)
if A is complete then return A
i, P, x := 0, P′,Select(P′)

else if A 6= [] then
backtrack

fail if ...
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Search Algorithm
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Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
fail if ...
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Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

repeat
(x, , i, t, P) := head(A)
A := pop(A)

until (t = ``decision" ∧ i ≤ blimit) ∨ A = []

fail if ...
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Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
fail if ...
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Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
if A = [] ∧ (t = ``implied" ∨ i > blimit) then

return fail
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Select Algorithm

.

.
Input: Property P with at least one free variable
Output: A free variable in P

if ∃h ∈ hyps(P) of form x = c then return x
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Select Algorithm

.

.

Input: Property P with at least one free variable
Output: A free variable in P

if ∃h ∈ hyps(P) of form x = c then return x
G= := EqualityDependencyGraph(P, vars(P))

.

1. Case: x = y. Add x ↔ y.
2. Case: x = fterm

y ∈ freeVars(fterm) and
x /∈ freeVars(fterm)
add x → y
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Select Algorithm

.

.

Input: Property P with at least one free variable
Output: A free variable in P

if ∃h ∈ hyps(P) of form x = c then return x
G= := EqualityDependencyGraph(P, vars(P))
Do SCC on G=, collect the leaf components in L
leaves= := pick x from each l ∈ L
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Select Algorithm

.

.

Input: Property P with at least one free variable
Output: A free variable in P

if ∃h ∈ hyps(P) of form x = c then return x
G= := EqualityDependencyGraph(P, vars(P))
SCC on G=
G./ := RestDependencyGraph(P, leaves=)

.

1. x ./ y where ./ ∈ {<,≤, >,≥}: No edge
2. x ./ fterm such that ./ is a binary relation,

y ∈ freeVars(fterm) and x /∈ freeVars(fterm):
Add x → y

3. R(term1, term2, . . ., termn), such that
x ∈ freeVars(termi), y ∈ freeVars(termj), i 6= j,
n ≥ 2 and R is an arbitrary n-ary relation: Add
x ↔ y.
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Select Algorithm

.

.

Input: Property P with at least one free variable
Output: A free variable in P

if ∃h ∈ hyps(P) of form x = c then return x
G= := EqualityDependencyGraph(P, vars(P))
SCC on G=
G./ := RestDependencyGraph(P, leaves=)
Do SCC on G./ to get dag D./
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Select Algorithm

.

.

Input: Property P with at least one free variable
Output: A free variable in P

if ∃h ∈ hyps(P) of form x = c then return x
G= := EqualityDependencyGraph(P, vars(P))
SCC on G=
G./ := RestDependencyGraph(P, leaves=)
Do SCC on G./ to get dag D./
X := the leaf in D./ with maximum i= value
return X

.
i=(x) denotes number of nodes that can
reach it in G=
i=(X) denotes max value of i= among
nodes ∈ X
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Hardware: Finding hazards in a pipeline

Analysing a 3-stage Pipeline

1. Fetch
2. Read
3. Execute/Write-back

84 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Hardware: Finding hazards in a pipeline

Analysing a 3-stage Pipeline

1. Fetch
2. Read
3. Execute/Write-back

Primary Concern
Avoid resource conflicts (Data/Control hazards)

85 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Hardware: Finding hazards in a pipeline

Analysing a 3-stage Pipeline

1. Fetch
2. Read
3. Execute/Write-back

Primary Concern
Avoid resource conflicts (Data/Control hazards)

Correctness
Show all behaviors of MA are observationally equivalent to
behaviors of ISA
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Hardware: Finding hazards in a pipeline

Primary Concern
Avoid resource conflicts (Data/Control hazards)

Correctness
Show all behaviors of MA are observationally equivalent to
behaviors of ISA

Can we find design errors that lead to hazards?

1. Assuming designer has modelled both ISA and MA
2. Formalize above correctness condition
3. Analyze it using our method (demo)
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Hardware: Finding hazards in a pipeline

Primary Concern
Avoid resource conflicts (Data/Control hazards)

Correctness
Show all behaviors of MA are observationally equivalent to
behaviors of ISA

Can we find design errors that lead to hazards?

Observations
1. No assertions were written
2. No lemmas were specified
3. No manual tests or test driver given.
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Software: Comparison with Alloy

Alloy

I Alloy is a declarative modeling language based on sets and
relations (relational logic with transitive closure)

I Used for describing and analyzing high-level specifications and
designs.

I Automatic Analysis
Given a bound on # model elements, called scope, Alloy models (and
its specifications) translated into Boolean formulas and shipped to
off-the-shelf SAT solvers.
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Software: Comparison with Alloy

Alloy Analyzer Our method
Property Scope Time Result Time Result

delUndoesAdd 25 26.41 -- 0.07 QED
addIdempotent 25 37.76 -- 0.19 QED

addLocal 3 0.08 CE 1.35 CE
lookupYields 3 0.05 CE 0.83 CE
writeRead 34 99.69 -- 0.02 QED

writeIdempotent 33 44.13 -- 0.01 QED
hidePreservesInv 61 24.91 -- 0.26 QED

cutPaste 3 0.20 CE 0.49 CE
pasteCut 3 0.20 CE 1.38 CE

pasteAffectsHidden 27 117.63 -- 0.42 QED
markSweepSound 8 47.34 -- 0.28 QED

markSweepComplete 7 58.12 -- 0.34 QED

Table: Comparison with Alloy Analyzer (AA)
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Software: Comparison with Alloy
Alloy Analyzer Our method

Property Scope Time Result Time Result
delUndoesAdd 25 26.41 -- 0.07 QED
addIdempotent 25 37.76 -- 0.19 QED

addLocal 3 0.08 CE 1.35 CE
lookupYields 3 0.05 CE 0.83 CE
writeRead 34 99.69 -- 0.02 QED

writeIdempotent 33 44.13 -- 0.01 QED
hidePreservesInv 61 24.91 -- 0.26 QED

cutPaste 3 0.20 CE 0.49 CE
pasteCut 3 0.20 CE 1.38 CE

pasteAffectsHidden 27 117.63 -- 0.42 QED
markSweepSound 8 47.34 -- 0.28 QED

markSweepComplete 7 58.12 -- 0.34 QED

Table: Comparison with Alloy Analyzer (AA)

1
1Ghazi and Taghdiri. Relational Reasoning by SMT Solving. In FM 2011
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Software: Comparison with Alloy

Methodology
Modeled above examples in ACL2, mimicking original formulation in
Alloy.
Used set types and map types i.e., binary relations, provided by our
data definition framework.
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Software: Comparison with Alloy

Observations
1. The ordered sets and records library in ACL2 distribution,

powerful enough to prove all the properties that Alloy posits
are true

2. No intermediate lemmas provided, no hint or guidance offered
to the theorem prover

3. Highlights effectiveness of powerful libraries by the tool-writer
put to use by the choice of right abstractions by the
programmer
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Discussion on the advantages of using ITP

I Prune away huge subspaces
I Extensible
I Domain-specific lemma libraries→ powerful domain-specific

reasoning
I User can also help formalize facts/insight

.

.
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Conclusions

I Automatically analyze properties, interleaving ITP and testing
in a fine-grained fashion

I Search algorithm guides testing when it is stuck (Decision
Procedures can also benefit)

I Select algorithm can be used as a starting point by concolic
testing

I Combining automated methods with ITP technology results in a
more powerful, yet automated method.

I Better interactive theorem proving experience
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The End

Thank you
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