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Property Classification

Reactivity

Recurrence Persistence

Obligation

Safety Guarantee

Linear Time Hierarchy

Progress

Safety: IC3
Progress: FAIR over IC3
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Generalized Büchi Automata

Given:

Fair Transition System (FTS) S
LTL property P

Compute generalized Büchi automaton C = A¬P ‖ S.

If S is finite state, nonemptiness of C corresponds to the
existence of a reachable fair cycle, aka lasso.
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Strongly Connected Components

A lasso’s cycle is contained in a strongly connected
component (SCC) of the state graph

A nonempty set of states is SCC-closed if every SCC is either
contained in it or disjoint from it

A partition of the states into SCC-closed sets is a coarser
partition than the SCC partition; hence, . . .

Every cycle of a graph is contained in some SCC-closed set
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Reachable Fair Cycles

Reduce search for reachable fair cycle to a set of safety problems:

Skeleton:
•

◦ •

•

States of skeleton together satisfy all fairness constraints.

Task: Connect states to form lasso.
•

◦ •

•
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Reach Queries

Each connection task is a reach query.

Stem query: Connect initial condition to a state:

•

◦ •

•

Cycle query: Connect one state to another:

•

◦ •

•

(To itself if skeleton has only one state.)
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Witness to Nonemptiness

If all queries are answered positively:

•

◦ •

•

Witness to nonemptiness of C.
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Global Reachability

If a stem query is answered negatively: new inductive global
reachability information.

•

◦ •

•

Constrains subsequent selection of skeletons.

Constrains subsequent reach (stem and cycle) queries.

Improve proof by strengthening (using ideas from IC3).
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Barriers: Discovering SCC-Closed Sets

If a cycle query is answered negatively: new information about
SCC structure of state graph.

•

◦ •

•

Inductive proof: “one-way barrier”

Each “side” of the proof is SCC-closed.

Constrains subsequent selections of skeletons: all states on
one side.
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Using Barriers for Generalization

Can be used to constrain subsequent cycle queries.

Not necessary for completeness.
Can increase IC3’s generalization power.
But can negatively impact SAT solver.
Must choose carefully which barriers to use.

Improve proof by making smaller (using ideas from IC3).
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Key Insights

Inductive assertions describe SCC-closed sets.

Arena: Set of states all on the same side of each barrier.

Unlike previous symbolic methods:

Barrier constraints on the transition relation
combined with the over-approximating nature of
IC3 enable the simultaneous (symbolic)
consideration of all arenas.

A proof can provide information about many arenas even
though the motivating skeleton comes from one arena.
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Methodological Parallels with IC3

IC3 FAIR

Seed: CTI Skeleton

Lemma: Inductive clause Global reachability proof
One-way barrier

Relative to previously discovered lemmas.

CEX: CTI sequence Connected skeleton
Discovery guided by lemmas. Not minimal.

Proof: Inductive strengthening All arenas skeleton-free
Sufficient set of lemmas.
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Skeleton-Independent Proofs

Motivating example: n-bit counter

Latches: b0, . . . , bn−1 (least- to most-significant)

Output: o switches to 1 and stays when all bi = 1

Initially: all 0

Fairness condition: infinitely often o = 0

000..0, 0 001..1, 0 010..0, 0 011..1, 0 100..0, 0 111..1, 0 000..0, 1

Unfair: after first rollover, henceforth o = 1.
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Ideal Proof

First barrier: o

Inductive because once o = 1, it stays 1

No skeletons among o-states

Constrain cycle queries: ¬o ∧ ¬o′

000..0, 0 001..1, 0 010..0, 0 011..1, 0 100..0, 0 111..1, 0 000..0, 1

¬o o
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Ideal Proof

Second barrier: bn−1

Inductive relative to ¬o

Once bn−1 = 1, it stays 1 in the ¬o-arena

Both sides have skeletons

Constrain cycle queries: bn−1 ↔ b′

n−1

000..0, 0 001..1, 0 010..0, 0 011..1, 0 100..0, 0 111..1, 0

¬o
¬bn−1 bn−1
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Ideal Proof

Third barrier: bn−2

Inductive relative to previous barriers

Once bn−2 = 1, it stays 1 in every arena defined by the
previous barriers

Both sides have skeletons in at least one arena

Constrain cycle queries: bn−2 ↔ b′

n−2

001..1, 0 010..0, 0 011..1, 0 100..0, 0 101..1, 0 110..0, 0

¬bn−1 bn−1 ¬o
¬bn−2 bn−2 ¬bn−2 bn−2

And so on. Proof is linear in size of model.
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Skeleton-Independent Proofs

Only a lucky sequence of skeletons would yield ideal proof.

Therefore: periodically test given predicates, such as single
literals, to see if they are barriers (relative to current
information).

A predicate that is not an inductive barrier at one point can
become inductive with new information.
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Characteristics of FAIR

Property directed (except skeleton-independent proofs)

Relies on IC3, thus capitalizes on its strengths

With IC3, approximating/abstracting

Highly parallelizable even beyond IC3
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Experiments

Evaluation on 30 models from 9 families

Contributed to the HWMCC11 benchmark set
Some from literature, most of which contrived
Most from VIS benchmark set
Number of fairness constraints ranges from 1 to 33

Four different settings of FAIR considered

Results compared to those of six other methods

Three BDD-based methods: GSH, Lockstep, D’n’C
Three variations of the liveness-to-safety scheme
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FAIR Compared to GSH
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FAIR Compared to D’n’C
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FAIR Compared to LTS/IC3
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Results in Summary

FAIR solved 27–28 problems out of 30 (depending on
variation)

GSH, D’n’C, LTS/IC3 solved 21 problems each

LTS/ABC solved 20 problems

Lockstep suffers when there are many SCCs (solved 12
problems)

LTS/ITP solved 9 problems
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Going Forward

Selection of skeletons

Proof improvement

Deciding when to use a barrier to constrain cycle queries

SAT solver: efficient handling of DNF

SAT solver: highly incremental

Distributed implementation

Integrating BDDs
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Conclusions

FAIR: a new approach to SAT-based LTL model checking

In fact, to model checking all ω-regular properties

Discovery of SCC-closed sets via safety queries

One-way barriers: (relatively) inductive assertions

Property-focused, approximating

Not only uses IC3 but also follows its principles
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