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Fractional Order Systems

Physical systems are usually modeled with integral and
differential equations

Dnf(x) =
dn

dxn
f(x) =

d

dx
(
d

dx
· · · d

dx
(f(x)) · · · ))∫ ∫

· · ·
∫
f(x1, x2, · · ·xn)dx1, dx2 · · · dxn

Are these traditional concepts sufficient?

Example

Resistoductance: Exhibits intermediate behavior between a
Resistor (v = iR) and an Inductor (v = L di

dt )
Cannot be modeled using an integer order Differential
Equation

Fractional Order Systems involve derivatives and integrals
of non integer order (Fractional Calculus)
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Fractional order Calculus

Fractional Calculus was born in 1695

Why a paradox?
Useful Consequences?
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Fractional order Calculus - Why a Paradox?

Analogous to fractional exponents

x3 = x • x • x

x3.7 =?

xπ =?

Integrals and Derivatives are certainly more complex than
multiplication

Fractional Integrals and Derivatives can be defined in
numerous ways

Fractional Calculus started off as a study for the best
minds in mathematics

Leibniz, Euler, Lagrange, Laplace, Fourier, Abel, Liouville,
Riemann
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Mathematical Definitions of Fractional Calculus

Definition (Euler’s Fractional Derivative for Power Function xp)

D0xp = xp, D1xp = pxp−1, D2xp = p(p− 1)xp−2 · · ·
can be generalized as follows:

Dnxp =
p!

(p− n)!
xp−n; n : integer

Gamma function generalizes the factorial for all real numbers

Γ(z) =

∫ ∞
0

tz−1e−tdt

Thus

Dnxp =
Γ(p + 1)

Γ(p− n + 1)
xp−n; n : real

Limited Scope (Only caters for power functions f(x) = xy )
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Mathematical Definitions of Fractional Calculus

Definition (Riemann-Liouville (RL) Fractional Integration)

Jv
af(x) =

∫ ∫
· · ·
∫ t

a

f(x)dx =
1

Γ(v)

∫ x

a

(x− t)v−1f(t)dt

Definition (Riemann-Liouville Fractional Differentiation)

Dvf(x) = (
d

dx
)dveJdve−va f(x)

where v is the order and dve is its ceiling (largest and closest integer).

General definition that caters for all functions that can be
expressed in a closed mathematical form

Usage requires expertise and rigorous mathematical analysis
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Mathematical Definitions of Fractional Calculus

Definition (Grünwald-Letnikov (GL) Fractional Diffintegral)

cD
v
xf(x) = lim

h→0
h−v

[ x−c
h ]∑

k=0

(−1)k
(
v

k

)
f(x− kh)

where
(
v
k

)
represents the binomial coefficient expressed in terms of the

Gamma function

(0 < v): Fractional Differentiation

(v < 0): Fractional Integration

Facilitates Numerical Methods based computerized analysis

Approximate solutions due to the infinite summation
involved
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Fractional order Calculus

Paradox Resolved!

Most of the Mathematical Fractional Calculus theory was
developed prior to the turn of the 20th century

Useful Consequences?

First book on modeling Engineering systems using
Fractional Calculus was published in 1974 by Oldham and
Spanier
Recent monographs and symposia proceedings have
highlighted the application of Fractional Calculus in

Continuum Mechanics
Signal Processing
Electro-magnetics
Control Engineering
Electronic Circuits
Biological Systems
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Analysis of Fractional Order Systems

Fractional order Systems are widely used in safety-critical
domains like medicine and transportation

Example: Cardiac tissue electrode interface

Analysis inaccuracies may even result in the loss of human
lives

Usage of Fractional Calculus guarantees correct models

What about the accuracy of Analysis techniques?
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Analysis of Fractional Order Systems: Comparison

Criteria 
Paper-and-
Pencil Proof 

Simulation 

Automated 
Formal 

Methods 
(MC, ATPs) 

Higher-
order-logic  
Theorem 
Proving 

Expressiveness 

Scalability 

Accuracy 
                      

FOS 
Fundamentals 

Automation 
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HOL4 Theorem Prover

Higher-order-logic Theorem Prover developed at the
University of Cambridge

Its core consists of

5 fundamental axioms (facts)
8 Inference rules

Soundness is assured as every new theorem must be
created from

The basic axioms and primitive inference rules
Any other already proved theorems (Theory Files)

The availability of Harisson’s seminal work on Real
analysis and Integer order Calculus has been the primary
motivation for this choice
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Formalization of Gamma function

Γ(z) =

∫ ∞
0

tz−1e−tdt

The integrand tz−1e−t becomes unbounded on the lower
limit (t = 0) for z < 1

The upper limit ∞ is undefined

Γ(z) = limn→∞

(
limb→∞

(∫ b

1
2n

tz−1e−tdt

))

Definition

` ∀ z. gamma z =

lim(λn.(lim(λb.
∫ b

1
2n

t rpow (z-1)exp(-t) dt))
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Formal Verification of Gamma function properties

Γ(z + 1) = zΓ(z)

Theorem: Pseudo-recurrence Relation

` ∀ z . (0 < z) =⇒ (gamma (z + 1)= z gamma (z))

The paper-and-pencil based proof is based on the
integration-by-parts property
We also had to utilize the concepts of limits of a real
sequence, differentiability and integrability
The formal proof required 10 main lemmas. e.g.,

(∀n.∃k.(λb.
∫ b

1
2n
tz−1e−tdt) −→ k)

(∀b.∃p.(λn.
∫ b

1
2n
tz−1e−tdt) −→ p)

It took approximately 2000 lines of ML code
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Formally Verified Properties of Gamma Function

Property HOL Formalization

Pseudo-Recurrence Relation
` ∀ z.(0 < z) =⇒
(gamma (z + 1)= z gamma (z))

Functional Equation
` gamma 1 = 1

Factorial Generalization
` ∀ n ∈ N. gamma(n + 1) = n!
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Formalization of Fractional Integration

We follow Riemann-Liouville Definition

Jvaf(x) =
1

Γ(v)

∫ x

a
(x− t)v−1f(t)dt

The integrand (x− t)v−1f(t) becomes undefined on upper
limit (x) of integration

Jvaf(x) = limn→∞

(
1

Γ(v)

∫ x− 1
2n

a
(x− t)v−1f(t)dt

)

Definition

` ∀ f v a x.frac int f v a x = if (v = 0) then f

else lim(λn. 1
gamma v

(
∫ x− 1

2n

a ((x - t) rpow (v-1)) f(t) dt)
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Formalization of Fractional Differentiation

Dvf(x) = (
d

dx
)dveJdve−va f(x)

Definition

` ∀ f v a x. frac diff f v a x =

n order deriv (clg v) (frac int f (clg v - v) a x)
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Formally Verified Properties of Differintegrals

Property HOL Formalization

Identity
` ∀ f a x.

(a < x) =⇒ (frac int f 0 a x = f)∧
(frac diff f 0 a x = f)

Generalized Integral

` ∀ f a x v ∈ N.

(a < x)∧ (1 < v) =⇒
frac int f v a x = lim(λn.

1
(v-1)!

∫ x− 1
2n

a (x - t) rpow (v-1)f(t) dt)

frac int Linearity

` ∀ f v x a b.

(frac exists f x v)∧
(frac exists g x v) =⇒
frac int (a f + b g) v 0 x =

a(frac int f v 0 x)+

b(frac int g v 0 x)

frac diff Linearity

` ∀ f v x a b.

(frac exists f x v)∧
(frac exists g x v)∧
(∀ m. (m <= clg v) ⇒
(n order deriv m (frac int f v 0 x))

differentiable x)∧
(∀ m. (m <= clg v) ⇒
(n order deriv m (frac int g v 0 x))

differentiable x)=⇒
( frac diff (a f + b g) v 0 x =

a(frac diff f v 0 x)+

b(frac diff g v 0 x))
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HOL Formalization of Fractional Caclulus
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System
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Logic Description
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Theorems

The formalization took around 7500 lines of ML code and
approximately 600 man hours
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Case Studies

We apply our framework to analyze three real world
fractional order systems

Resistoductance
Fractional Differentiator circuit
Fractional Integrator circuit
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Resistoductance

An electrical component with characteristics between
ohmic resistor and an Inductor

v(t)= K D  i(t) α i(t)=     J    v(t) α1
Κ

+

−

α = 0 : Purely resistive behavior with K = R ohms

α = 1 Purely inductive behavior with K = L henrys
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Formal Model of Resistoductance

The governing current-voltage relationship is given as
follows:

i(t) =
1

K
Jαv(t)

Definition (Resistoductance Current)

` ∀ K v i alpha x.

i t K v i alpha x = (1/K)frac int v i(t) alpha 0 x

v i = Input voltage

i t = Resistoductance current

alpha = Order of integration
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Verification of Resistoductance properties

i t for constant voltage V 0

` ∀ K V 0 alpha x. (0 < x) ∧ (0 < alpha) =⇒
(i t K V 0 alpha x =

(1/(K Gamma (alpha + 1))) (V 0(x rpow alpha)))

Theorem: Special Cases for i t

` ∀ x. (0 < x) =⇒
(alpha = 0) ⇒ i t K V 0 alpha x = V 0 / K ∧
(alpha = 1) ⇒ i t K V 0 alpha x = (V 0 / K) x

Proof heavily relies upon the formally verified properties of
Gamma function and Differintegrals
350 lines of HOL code

Approximately 2 man-hours by an expert user
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Fractional integrator and differentiator circuits

(a)

(b)

Used in fractional-order PID and PI controllers

Offer more flexibility for gain adjustment
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Formal Models

The output voltage equations for a fractional integrator

vo(t) = − 1

RC
Jµvi(t)

Definition (Fractional Order Integrator)

` ∀ R C v i mu x. v I 0 R C v i mu x =

-(1/RC)frac int v i(t) mu 0 x

The output voltage equations for a fractional differentiator

v0(t) = −RCDµvi(t)

Definition (Fractional Order Differentiator)

` ∀ R C v i mu x. v D 0 R C v i mu x=

-(RC)frac diff v i(t) mu 0 x
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Formal Analysis: For Unit Step signal

Theorem: Output of Fractional Integrator Circuit

` ∀ R C mu x. (0 < x) ∧ (0 < mu) ∧ (mu < 1) =⇒
(v I 0 R C (unit t) mu x =

-1/(RC Gamma (mu + 1)) (x rpow mu)

Theorem: Output of Fractional Differentiator Circuit

` ∀ R C mu x. (0 < x) ∧ (0 < mu) ∧ (mu < 1) =⇒
(v D 0 R C (unit t) mu x =

(-(RC (Gamma (1 - mu)))(x rpow -mu))

The proof relies heavily upon the proposed formalization

400 lines of HOL code

Approximately 2.5 man-hours
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Formal Analysis of Fractional order Systems

Future Work
Enriching the library of the formally verified Fractional
Calculus properties

Law of Exponents
Relationship with the Beta function

Development of the current framework using Complex
Numbers
More Case Studies

Fractional Electromagnetic Systems (Fractional
Rectangular Waveguides)
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Thank You!

www.save.seecs.nust.edu.pk
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