A Theory of Abstraction for Arrays

Steven German

IBM T.J. Watson Research Center

October 2011

The Problem of Verifying Systems with Arrays

- Large arrays are often a barrier to verifying hardware designs
- Many previous approaches to abstracting arrays
- Abstracting arrays over a bounded time interval
 - Many approaches, including: Velev *et al* 1977; Ganai *et al* 2004 and 2005;
 Manolios *et al* 2006
- Prefer methods that:
 - Build unbounded-time sequential models
 - Are fully automatic
- Most directly related previous approach by Bjesse [FMCAD 2008]
- Limitations of previous approach
 - No reduction when latency from array read to output is unbounded
 - Clock gating introduces unbounded latency

New Results of This Paper

- New mathematical principle for abstraction of arrays
 - New principle allows unbounded latency from array read to output
 - Based on Small Model Theorem for a word-level logic with arrays
 - Previous approaches are based on principle of overapproximating behavior
- Automatic algorithm for constructing abstract models
 - Algorithm can build small abstract models for complex industrial designs
- Abstract models are sound and complete for safety properties
- To obtain these results, need to develop mathematical theory
- Details are in a longer version of paper, available from author

Traditional Abstract Models of Arrays

Modeled address: Normal array semantics

Unmodeled address: Nondeterministic value

- 1. Replace array with smaller array that overapproximates
 - Sound for safety properties
- 2. Restrict safety property to cases where modeled addresses are read

 $p \longrightarrow modeled \rightarrow p$

Unbounded Latency

- Bjesse 2008 shows how to define modeled(k) to mean
 "k cycles in past, a modeled address was read"
 - Example: $modeled(2) \land modeled(3) \rightarrow p$
 - Solution for bounded latency
- For unbounded latency, not helpful to use

"Array reads at all times in past were to modeled addresses"

- Only true in unabstracted model
- New idea: Define a formula that means

"Output at current time does not **depend** on reading unmodeled array addresses at any time in past"

A New Approach to Array Abstraction

- Read, write to modeled addresses have normal semantics
- Choose modeled addresses nondeterministically (as in Bjesse 2008)
- ullet Read to unmodeled addresses returns special value ot
- \bullet Value \perp propagates according to semantic rules
- Property $p \longrightarrow p \neq \bot \rightarrow p = true$
- Sound provided:

At all times, For all inputs,

Number of array addresses p depends on \leq Number of modeled addresses

- If there is a counterexample to safety property p, some nondeterministic choice of modeled addresses finds the counterexample
- Goal of talk is to make these ideas more clear

Steps to Realize New Approach

- 1. Define mathematical meaning of dependence of a signal on an array address
- 2. Give automatic method for determining that at all times, for all inputs,

signal p depends on $\leq n$ array addresses

- 3. Show that the proof method is sound
- Mathematics is different from traditional approach, where soundness follows easily from overapproximate behavior on ummodeled addresses

A Term Logic with Arrays

Two kinds of expressions: *signal expressions* and *array expressions*.

- Signal expressions
 - 1. Signal variable
 - Represents word level signal
 - 2. $op(e_1, \ldots, e_k)$, where e_1, \ldots, e_k are signal expressions

- Represents block of combinational logic

- 3. *mux*(*control*, *data*₁, *data*₂), where *control*, *data*₁, *data*₂ are signal expressions. Use data forwarding properties in abstract models.
- 4. a[addr], where a is an array expression and addr is a signal expression.
- Array expressions
 - 1. Array variable
 - 2. *write*(*a*, *addr*, *value*), where *a* is an array expression and *addr*, *value* are signal expressions

Signal and Array Values

- Finite set of signal values (word-level), V
- Bottom value, $\perp \not \in V$, represents subscripting array out of range
- Extended set of signal values, $V^+ = V \cup \{\bot\}$
- \bullet Set of array values, $V \to V^+$

States

A state σ is a function mapping all signal and array variables to values.

- For signal variable $s\text{, }\sigma(s)\in V$
- For array variable $a\text{, }\sigma(a)\in (V\rightarrow V)$
- States are used to represent initial conditions of systems

Semantics of Expressions

The semantics of expressions maps a state and an expression to a value.

- For signal expression se, $\sigma[\![se]\!] \in V^+$
- For array expression ae, $\sigma[\![ae]\!] \in (V \to V^+)$
- Purpose of semantics is to allow reasoning about system with reduced arrays
- ullet Reading an array outside its domain produces bottom value ot
- \bullet Writing an array to an address in V outside domain of array, does not change value of array
- ullet Writing an array with address ot causes all elements of array to be ot
- Operator expression $op(e_1,\ldots,e_n)$ produces output \perp if any input is \perp
- Multiplexor $mux(e_1, e_2, e_3)$ produces output \perp if control input e_1 is \perp or selected input e_2, e_3 is \perp

Operational Semantics

- A system \mathcal{M} is defined by state variables and next-state expressions $\mathcal{N}(s)$ is the next-state expression for state variable s
- Define s^k to be an expression for state variable s at time k $s^0 = s$ s^k is k^{th} expansion of $\mathcal{N}(s)$
- Value of s at time k in initial state σ is $\sigma[s^k]$

Checking Safety Properties

 \bullet System ${\cal M}$

- Safety property represented by output signal p (p = 1 iff property is true)
- \bullet Let ${\mathcal T}$ be a set of states
- \bullet Safety property p holds over all initial states in ${\mathcal T}$ iff

$$\forall \sigma \in \mathcal{T}, \ \forall k \ge 0: \ \sigma[\![p^k]\!] = 1$$

• This check corresponds to model checking the design on arrays of original size

- Construct circuit representation of $\sigma \llbracket p^k \rrbracket$ using the next-state expressions

• We will show how to check safety properties over arrays of a smaller size

Essential Array Indices

Depending on the state, some indices of an array do not need to be evaluated

• Example: Let E be the expression write(write(a, e1, a[1]), e2, a[2])[f]

If
$$\sigma[\![f]\!] = \sigma[\![e2]\!] \implies \{f, 2\}$$

If $\sigma[\![f]\!] \neq \sigma[\![e2]\!] \land \sigma[\![f]\!] = \sigma[\![e1]\!] \implies \{f, 1\}$
If $\sigma[\![f]\!] \neq \sigma[\![e2]\!] \land \sigma[\![f]\!] \neq \sigma[\![e1]\!] \implies \{f\}$

In every state, set of needed index expressions is an element of the set $S=\{\{f\},\ \{f,\ 1\},\ \{f,\ 2\}\}$

For general case, we can define a function

• Essential Indices, $eindx(exp, \sigma, array_variable) \mapsto \{array_indices\} \subseteq V$

– Array indices that must be read from $array_variable$ to evaluate exp in σ

• Idea of Small Model Theorem

For any state σ , no matter how large the array a in σ , there exists a state σ' where a has size 2, and $\sigma' \llbracket E \rrbracket = \sigma \llbracket E \rrbracket$

Small Model Using Essential Indices

The semantics $\sigma[\![exp]\!]$ and the function $eindx(exp, \sigma, a)$ have the following relationship:

Lemma. For all exp, σ , a, there exists a state σ' such that

- $\sigma' \leq \sigma$
- For all array variables a, $dom(\sigma'(a)) = eindx(exp, \sigma, a)$
- $\sigma' \llbracket exp \rrbracket = \sigma \llbracket exp \rrbracket$
- \bullet The state σ' is a small model for the value of expression exp in state σ

Definition. A state σ' is called a *substate* of σ , written $\sigma' \leq \sigma$ iff

- \bullet For all signal variables $s,~\sigma'(s)=\sigma(s),$ and
- \bullet For all array variables a , $\sigma'(a)\subseteq\sigma(a)$

Checking Safety Properties with Small Arrays

- Let ${\mathcal T}$ be a set of states and a an array variable such that a has size n for all states in ${\mathcal T}$
- \bullet Let m be

$$m = \max_{\sigma \in \mathcal{T}} \max_{k \ge 0} |\mathsf{eindx}(p^k, \sigma, a)| \le n$$

 $\forall \sigma \in \mathcal{T}, \forall k \geq 0$, there is a state σ' where a has size m and $\sigma'[p^k] = \sigma[p^k]$

- \bullet Let \mathcal{T}' be the set of substates of states in $\mathcal T$ where a has size m
- \bullet Assume for all initial states in ${\cal T}$, that p is evaluated without subscript errors
- Then, (p = 1) is always true in executions from initial states in \mathcal{T} iff $(p = 1 \lor p = \bot)$ is always true in executions from initial states in \mathcal{T}'
- Model where array a has size m is sound and complete for safety property p
- See conference paper for proof

Size of the Abstract Model

- The function $\max_{k\geq 0} \max_{\sigma} |\operatorname{eindx}(p^k,\sigma,a)|$ is difficult to compute!
- Case splitting overapproximates $\max_{\sigma} |\operatorname{eindx}(p^k, \sigma, a)|$, for a fixed k
- Example: Let E be the expression write(write(a, e1, a[1]), e2, a[2]) [f]If $\sigma[\![f]\!] = \sigma[\![e2]\!] \implies \{f, 2\}$ If $\sigma[\![f]\!] \neq \sigma[\![e2]\!] \land \sigma[\![f]\!] = \sigma[\![e1]\!] \implies \{f, 1\}$ If $\sigma[\![f]\!] \neq \sigma[\![e2]\!] \land \sigma[\![f]\!] \neq \sigma[\![e1]\!] \implies \{f\}$ In every state, set of index expressions is an element of the two-level set $S = \{\{f\}, \{f, 1\}, \{f, 2\}\}$
- The set S overapproximates eindx $\forall \sigma \exists s \in S : eindx(E, \sigma, a) \subseteq \sigma(s)$
- Recursive algorithm constructs the two-level set for any expression
- A fixed point computation can find a set of expressions that overapproximates the largest set of index expressions over the sequence p^0 , p^1 , p^2 ,...

Industrial Examples

- Implementation is in development
- Preliminary results with algorithm show reduction in cases that could not be reduced by previous methods
- Set of 255 examples not solvable in 24 hours by other methods
 - Reduced some arrays in 85 examples (33%)
 - Completely solved 33 examples in \leq 2 hours

Sequential Equivalence of Systems with Arrays

- Due to physical limits, designers may split large array into smaller arrays
- In simple cases, new design has arrays with same number of rows, fewer columns
- Harder case is when new design has array with different number of rows

Original Model: 32912 registers

Reduced Model: 401 registers

Summary

- New theory of array abstraction based on Small Model Theorem
- Reduced size of arrays is computed automatically by static analysis
- Early experimental results are encouraging
- Planned Improvements
 - $-\ensuremath{\,\text{Improve}}$ the accuracy of the array size estimate
- Longer version of paper is available

Extra Slides

Automatic Array Abstraction [Bjesse 2008]

 \bullet Define modeled(k) to mean

"k clock cycles ago, a modeled address read was read from array"

- Use abstraction-refinement to decide values of k needed to prove property p
- The modeled addresses are chosen nondeterministically at start of each run

- Limitations
 - $-\ensuremath{\,\text{Many}}$ designs have unbounded latency from array read to output
 - Abstraction-refinement uses long runtimes in many examples

Semantics

1. $\sigma \|v\| = \sigma(v)$, where v is a signal variable. 2. $\sigma[\![op(e_1,\ldots,e_n)]\!] =$ $\begin{cases} OP(\sigma[\![e_1]\!], \dots, \sigma[\![e_n]\!]), \text{ if } \sigma[\![e_i]\!] \neq \bot, \text{ for } i = 1, \dots, n, \\ \text{where } OP \text{ is the interpretation of } op \\ \bot \quad \text{if for some } i, \ \sigma[\![e_i]\!] = \bot \end{cases}$ 3. $\sigma[[mux(e_1, e_2, e_3)]] = \begin{cases} \sigma[[e_2]] & \text{if } \sigma[[e_1]] = 0 \\ \sigma[[e_3]] & \text{if } \sigma[[e_1]] = 1 \\ \bot & \text{if } \sigma[[e_1]] \notin \{0, 1\} \end{cases}$ 4. $\sigma[\![a[e]]\!] = \begin{cases} (\sigma[\![a]\!])(\sigma[\![e]\!]) & \text{if } \sigma[\![e]\!] \in D(a,\sigma) \\ \bot & \text{if } \sigma[\![e]\!] \notin D(a,\sigma) \end{cases}$ 5. $\sigma[\![a]\!] = \sigma(a)$, where a is an array variable. 6. $\sigma [\![write(a, e_1, e_2)]\!] =$ $\left\{ \begin{array}{ll} (\sigma \llbracket a \rrbracket) \left[\sigma \llbracket e_1 \rrbracket \leftarrow \sigma \llbracket e_2 \rrbracket \right] \text{ if } \sigma \llbracket e_1 \rrbracket \in \mathrm{D}(a, \sigma) \\ \sigma \llbracket a \rrbracket & \text{ if } \sigma \llbracket e_1 \rrbracket \in V - \mathrm{D}(a, \sigma) \\ \mathrm{bottom}(a, \sigma) & \text{ if } \sigma \llbracket e_1 \rrbracket = \bot \end{array} \right.$

Substates

Definition. A state σ' is called a *substate* of σ , written $\sigma' \leq \sigma$ iff

- \bullet For all signal variables s , $\sigma'(s)=\sigma(s),$ and
- For all array variables a, $\sigma'(a)\subseteq\sigma(a)$

Systems

A system $\mathcal M$ has the form $(\mathcal S,\mathcal I,\mathcal N,\mathcal O,\mathcal E)$

- \bullet S set of state variables
- $\bullet \ensuremath{\mathcal{I}}$ set of input variables
- \mathcal{N} next-state expressions $\mathcal{N}: \mathcal{S} \rightarrow \mathit{expressions}$
- $\bullet \ensuremath{\mathcal{O}}$ set of output variables
- $\bullet \ \mathcal{E}$ output expressions

Approximating Over All States

- Want to compute an overapproximate value for $\max_{\sigma} |\mathsf{eindx}(e,\sigma,a)|$
- Define a function $\phi(expression, array_variable) \rightarrow \{s_1, \dots, s_n\}$, where the s_i are sets of expressions.
- We call $S = \{s_1, \ldots, s_n\}$ a two-level set.
- Each $s_i \in \phi(e, a)$ is a set of possible expressions for the values of $eindx(e, \sigma, a)$
- For all σ , $\exists s_i \in \phi(e, a) : \mathsf{eindx}(e, \sigma, a) \subseteq \sigma(s_i)$
- $\bullet \; \forall \sigma: |\mathsf{eindx}(e,\sigma,a)| \leq \|\phi(e,a)\| \text{,}$

where $||\{s_1, \ldots, s_n\}|| = \max_i |s_i|$, maximum size of element in $\{s_1, \ldots, s_n\}$

Definition of ϕ

Define $X \uplus Y = \{x \cup y \mid x \in X, y \in Y\}$

 $\phi(v, a) = \{\emptyset\}$, if v is a signal variable or an array variable $\phi(c, a) = \{\emptyset\}, \text{ if } c \text{ is a constant}$ $\phi(b[e], a) = \begin{cases} \phi(b, a) \uplus \phi(e, a) \uplus \{\{e\}\} & \text{if } \operatorname{root}(b) = a \\ \phi(b, a) \uplus \phi(e, a) & \text{otherwise} \end{cases}$ $\phi(op(e_1,\ldots,e_n),a) = \phi(e_1,a) \uplus \ldots \uplus \phi(e_n,a)$ $\phi(mux(e_1, e_2, e_3), a) = (\phi(e_1, a) \uplus \phi(e_2, a)) \cup (\phi(e_1, a) \uplus \phi(e_3, a))$ $\phi(write(b, e_1, e_2), a) = (\phi(e_1, a) \uplus \phi(e_2, a)) \cup (\phi(e_1, a) \uplus \phi(b, a))$

Building Abstract Model

- Original design over word-level values $V \longrightarrow$ Design over $V \cup \{\bot\}$
- Add boolean v field to each signal

- v = true represents values in V; v = false represents \perp
- Concern about adding many bits to model
 - $-\operatorname{Work}$ with word level values
- Replace blocks of combinational logic and mux with versions over $V \cup \{\bot\}$
 - Abstract models do not need to have \perp version of each gate
- Safety property p

$$p \rightarrow p.v \rightarrow p.value$$

Abstract Arrays

• Each row of abstract array has address field and v field

- Address field is set nondeterministically in initial state
- Read and write operations search the address field

Early Results on Industrial Examples

- Reductions on 401 industrial examples.
- Algorithm reduced arrays in 187 examples.
- Implementation in development some examples not fully processed.

	Reduced Number of Rows							
Original Rows	1	2	3	4	6	8	>	8
2	144							
8	1	1						
16	14	13	55					
32	37	1	25					
39	24							
48	24							
64	46	29	20	18				
128	4	158	14	23	1	11		
256	3	40	10					
1024	3		10					2

Reconfigured Arrays Example

- Reconfigured large array into two smaller arrays
- Problem is to verify sequential equivalence
- \bullet Original design has array with 1024 rows \times 16 columns
- \bullet New design has two arrays, each 128 rows \times 64 columns
- Array addressing, data alignment and staging logic substantially redesigned
- Design uses clock gating, so method of Bjesse does not reduce arrays