
A Theory of Abstraction for Arrays

Steven German

IBM T.J. Watson Research Center

October 2011

1 November 10, 2011

The Problem of Verifying Systems with Arrays

• Large arrays are often a barrier to verifying hardware designs

• Many previous approaches to abstracting arrays

• Abstracting arrays over a bounded time interval

– Many approaches, including: Velev et al 1977; Ganai et al 2004 and 2005;

Manolios et al 2006

• Prefer methods that:

– Build unbounded-time sequential models

– Are fully automatic

• Most directly related previous approach by Bjesse [FMCAD 2008]

• Limitations of previous approach

– No reduction when latency from array read to output is unbounded

– Clock gating introduces unbounded latency

2 November 10, 2011

New Results of This Paper

• New mathematical principle for abstraction of arrays

– New principle allows unbounded latency from array read to output

– Based on Small Model Theorem for a word-level logic with arrays

– Previous approaches are based on principle of overapproximating behavior

• Automatic algorithm for constructing abstract models

– Algorithm can build small abstract models for complex industrial designs

• Abstract models are sound and complete for safety properties

• To obtain these results, need to develop mathematical theory

• Details are in a longer version of paper, available from author

3 November 10, 2011

Traditional Abstract Models of Arrays

Modeled

Modeled

Modeled address: Normal array semantics

Unmodeled address: Nondeterministic value

1. Replace array with smaller array that overapproximates

• Sound for safety properties

2. Restrict safety property to cases where modeled addresses are read

p modeled → p

4 November 10, 2011

Unbounded Latency

• Bjesse 2008 shows how to define modeled(k) to mean

“k cycles in past, a modeled address was read”

– Example: modeled(2) ∧modeled(3)→ p

– Solution for bounded latency

• For unbounded latency, not helpful to use

“Array reads at all times in past were to modeled addresses”

– Only true in unabstracted model

• New idea: Define a formula that means

“Output at current time does not depend on reading unmodeled array

addresses at any time in past”

5 November 10, 2011

A New Approach to Array Abstraction

• Read, write to modeled addresses have normal semantics

• Choose modeled addresses nondeterministically (as in Bjesse 2008)

• Read to unmodeled addresses returns special value ⊥

• Value ⊥ propagates according to semantic rules

• Property p p 6= ⊥ → p = true

• Sound provided:

At all times, For all inputs,

Number of array addresses p depends on ≤ Number of modeled addresses

• If there is a counterexample to safety property p, some nondeterministic choice

of modeled addresses finds the counterexample

• Goal of talk is to make these ideas more clear

6 November 10, 2011

Steps to Realize New Approach

1. Define mathematical meaning of dependence of a signal on an array address

2. Give automatic method for determining that at all times, for all inputs,

signal p depends on ≤ n array addresses

3. Show that the proof method is sound

• Mathematics is different from traditional approach, where soundness follows

easily from overapproximate behavior on ummodeled addresses

7 November 10, 2011

A Term Logic with Arrays

Two kinds of expressions: signal expressions and array expressions.

• Signal expressions

1. Signal variable

– Represents word level signal

2. op(e1, . . . , ek), where e1, . . . , ek are signal expressions

– Represents block of combinational logic

3. mux (control , data1 , data2), where control , data1 , data2 are signal

expressions. Use data forwarding properties in abstract models.

4. a[addr], where a is an array expression and addr is a signal expression.

• Array expressions

1. Array variable

2. write(a, addr, value), where a is an array expression and addr, value are

signal expressions

8 November 10, 2011

Signal and Array Values

• Finite set of signal values (word-level), V

• Bottom value, ⊥ 6∈ V , represents subscripting array out of range

• Extended set of signal values, V + = V ∪ {⊥}

• Set of array values, V → V +

9 November 10, 2011

States

A state σ is a function mapping all signal and array variables to values.

• For signal variable s, σ(s) ∈ V

• For array variable a, σ(a) ∈ (V → V)

• States are used to represent initial conditions of systems

10 November 10, 2011

Semantics of Expressions

The semantics of expressions maps a state and an expression to a value.

• For signal expression se, σ〚se〛 ∈ V +

• For array expression ae, σ〚ae〛 ∈ (V → V +)

• Purpose of semantics is to allow reasoning about system with reduced arrays

• Reading an array outside its domain produces bottom value ⊥

• Writing an array to an address in V outside domain of array, does not change

value of array

• Writing an array with address ⊥ causes all elements of array to be ⊥

• Operator expression op(e1, . . . , en) produces output ⊥ if any input is ⊥

• Multiplexor mux (e1, e2, e3) produces output ⊥ if control input e1 is ⊥ or

selected input e2, e3 is ⊥

11 November 10, 2011

Operational Semantics

• A systemM is defined by state variables and next-state expressions

N (s) is the next-state expression for state variable s

• Define sk to be an expression for state variable s at time k

s0 = s

sk is kth expansion of N (s)

• Value of s at time k in initial state σ is σ〚sk〛

12 November 10, 2011

Checking Safety Properties

• SystemM

• Safety property represented by output signal p (p = 1 iff property is true)

• Let T be a set of states

• Safety property p holds over all initial states in T iff

∀σ ∈ T , ∀k ≥ 0 : σ〚pk〛 = 1

• This check corresponds to model checking the design on arrays of original size

– Construct circuit representation of σ〚pk〛 using the next-state expressions

• We will show how to check safety properties over arrays of a smaller size

13 November 10, 2011

Essential Array Indices

Depending on the state, some indices of an array do not need to be evaluated

• Example: Let E be the expression write(write(a, e1, a[1]), e2, a[2]) [f]

If σ〚f〛 = σ〚e2〛 =⇒ {f, 2}

If σ〚f〛 6= σ〚e2〛 ∧ σ〚f〛 = σ〚e1〛 =⇒ {f, 1}

If σ〚f〛 6= σ〚e2〛 ∧ σ〚f〛 6= σ〚e1〛 =⇒ {f}

In every state, set of needed index expressions is an element of the set

S = {{f}, {f, 1}, {f, 2}}

For general case, we can define a function

• Essential Indices, eindx(exp, σ, array variable) 7→ {array indices} ⊆ V

– Array indices that must be read from array variable to evaluate exp in σ

• Idea of Small Model Theorem

For any state σ, no matter how large the array a in σ, there exists a state σ′

where a has size 2, and σ′〚E〛 = σ〚E〛

14 November 10, 2011

Small Model Using Essential Indices

The semantics σ〚exp〛 and the function eindx(exp, σ, a) have the following

relationship:

Lemma. For all exp, σ, a, there exists a state σ′ such that

• σ′ ≤ σ

• For all array variables a, dom(σ′(a)) = eindx(exp, σ, a)

• σ′〚exp〛 = σ〚exp〛

• The state σ′ is a small model for the value of expression exp in state σ

Definition. A state σ′ is called a substate of σ, written σ′ ≤ σ iff

• For all signal variables s, σ′(s) = σ(s), and

• For all array variables a, σ′(a) ⊆ σ(a)

15 November 10, 2011

Checking Safety Properties with Small Arrays

• Let T be a set of states and a an array variable such that a has size n for all

states in T

• Let m be

m = max
σ∈T

max
k≥0

|eindx(pk, σ, a)| ≤ n

∀σ ∈ T , ∀k ≥ 0, there is a state σ′ where a has size m and σ′〚pk〛 = σ〚pk〛

• Let T ′ be the set of substates of states in T where a has size m

• Assume for all initial states in T , that p is evaluated without subscript errors

• Then, (p = 1) is always true in executions from initial states in T

iff (p = 1 ∨ p = ⊥) is always true in executions from initial states in T ′

• Model where array a has size m is sound and complete for safety property p

• See conference paper for proof

16 November 10, 2011

Size of the Abstract Model

• The function max
k≥0

max
σ
|eindx(pk, σ, a)| is difficult to compute!

• Case splitting overapproximates max
σ
|eindx(pk, σ, a)|, for a fixed k

• Example: Let E be the expression write(write(a, e1, a[1]), e2, a[2]) [f]

If σ〚f〛 = σ〚e2〛 =⇒ {f, 2}

If σ〚f〛 6= σ〚e2〛 ∧ σ〚f〛 = σ〚e1〛 =⇒ {f, 1}

If σ〚f〛 6= σ〚e2〛 ∧ σ〚f〛 6= σ〚e1〛 =⇒ {f }

In every state, set of index expressions is an element of the two-level set

S = {{f}, {f, 1}, {f, 2}}

• The set S overapproximates eindx ∀σ ∃s ∈ S : eindx(E, σ, a) ⊆ σ(s)

• Recursive algorithm constructs the two-level set for any expression

• A fixed point computation can find a set of expressions that overapproximates

the largest set of index expressions over the sequence p0, p1, p2, . . .

17 November 10, 2011

Industrial Examples

• Implementation is in development

• Preliminary results with algorithm show reduction in cases that could not be

reduced by previous methods

• Set of 255 examples not solvable in 24 hours by other methods

– Reduced some arrays in 85 examples (33%)

– Completely solved 33 examples in ≤ 2 hours

18 November 10, 2011

Sequential Equivalence of Systems with Arrays

• Due to physical limits, designers may split large array into smaller arrays

• In simple cases, new design has arrays with same number of rows, fewer columns

• Harder case is when new design has array with different number of rows

19 November 10, 2011

Model
Original

Model
Reduced

6464

1

6464

128

1

1024

16

Original

16

1

1
1

1

Reduced Model: 401 registers

Original Model: 32912 registers

Array

Reconfig Reconfig
Array 1 Array 2

Summary

• New theory of array abstraction based on Small Model Theorem

• Reduced size of arrays is computed automatically by static analysis

• Early experimental results are encouraging

• Planned Improvements

– Improve the accuracy of the array size estimate

• Longer version of paper is available

21 November 10, 2011

Extra Slides

22 November 10, 2011

Automatic Array Abstraction [Bjesse 2008]

• Define modeled(k) to mean

“k clock cycles ago, a modeled address read was read from array”

• Use abstraction-refinement to decide values of k needed to prove property p

• The modeled addresses are chosen nondeterministically at start of each run

modeled(3)→ p

• Limitations

– Many designs have unbounded latency from array read to output

– Abstraction-refinement uses long runtimes in many examples

23 November 10, 2011

Semantics

1. σ〚v〛 = σ(v), where v is a signal variable.

2. σ〚op(e1, . . . , en)〛 =

OP(σ〚e1〛, . . . , σ〚en〛), if σ〚ei〛 6= ⊥, for i = 1, . . . , n,
where OP is the interpretation of op

⊥ if for some i, σ〚ei〛 = ⊥

3. σ〚mux (e1, e2, e3)〛 =

σ〚e2〛 if σ〚e1〛 = 0
σ〚e3〛 if σ〚e1〛 = 1
⊥ if σ〚e1〛 6∈ {0, 1}

4. σ〚a[e]〛 =

{

(σ〚a〛)(σ〚e〛) if σ〚e〛 ∈ D(a, σ)
⊥ if σ〚e〛 6∈ D(a, σ)

5. σ〚a〛 = σ(a), where a is an array variable.

6. σ〚write(a, e1, e2)〛 =

(σ〚a〛) [σ〚e1〛← σ〚e2〛] if σ〚e1〛 ∈ D(a, σ)
σ〚a〛 if σ〚e1〛 ∈ V − D(a, σ)
bottom(a, σ) if σ〚e1〛 = ⊥

24 November 10, 2011

Substates

Definition. A state σ′ is called a substate of σ, written σ′ ≤ σ iff

• For all signal variables s, σ′(s) = σ(s), and

• For all array variables a, σ′(a) ⊆ σ(a)

25 November 10, 2011

Systems

A systemM has the form (S, I,N ,O, E)

• S set of state variables

• I set of input variables

• N next-state expressions N : S → expressions

• O set of output variables

• E output expressions

26 November 10, 2011

Approximating Over All States

• Want to compute an overapproximate value for maxσ |eindx(e, σ, a)|

• Define a function φ(expression, array variable)→ {s1, . . . , sn},

where the si are sets of expressions.

• We call S = {s1, . . . , sn} a two-level set.

• Each si ∈ φ(e, a) is a set of possible expressions for the values of eindx(e, σ, a)

• For all σ, ∃si ∈ φ(e, a) : eindx(e, σ, a) ⊆ σ(si)

• ∀σ : |eindx(e, σ, a)| ≤ ‖φ(e, a)‖,

where ‖{s1, . . . , sn}‖ = maxi |si|, maximum size of element in {s1, . . . , sn}

27 November 10, 2011

Definition of φ

Define X ⊎ Y = {x ∪ y | x ∈ X, y ∈ Y }

φ(v , a) = {∅}, if v is a signal variable or an array variable

φ(c, a) = {∅}, if c is a constant

φ(b[e], a) =

{

φ(b, a) ⊎ φ(e, a) ⊎ {{e}} if root(b) = a

φ(b, a) ⊎ φ(e, a) otherwise

φ(op(e1, . . . , en), a) = φ(e1, a) ⊎ . . . ⊎ φ(en, a)

φ(mux (e1, e2, e3), a) = (φ(e1, a) ⊎ φ(e2, a)) ∪ (φ(e1, a) ⊎ φ(e3, a))

φ(write(b, e1, e2), a) = (φ(e1, a) ⊎ φ(e2, a)) ∪ (φ(e1, a) ⊎ φ(b, a))

28 November 10, 2011

Building Abstract Model

• Original design over word-level values V Design over V ∪ {⊥}

• Add boolean v field to each signal

value valuev

• v = true represents values in V ; v = false represents ⊥

• Concern about adding many bits to model

– Work with word level values

• Replace blocks of combinational logic and mux with versions over V ∪ {⊥}

– Abstract models do not need to have ⊥ version of each gate

• Safety property p

p p.v → p.value

29 November 10, 2011

Abstract Arrays

• Each row of abstract array has address field and v field

value

value

value

value

value

valuevaddress

value

valuevaddress

vaddress

• Address field is set nondeterministically in initial state

• Read and write operations search the address field

30 November 10, 2011

Early Results on Industrial Examples

• Reductions on 401 industrial examples.

• Algorithm reduced arrays in 187 examples.

• Implementation in development – some examples not fully processed.

Reduced Number of Rows
Original Rows 1 2 3 4 6 8 > 8

2 144
8 1 1

16 14 13 55
32 37 1 25
39 24
48 24
64 46 29 20 18

128 4 158 14 23 1 11
256 3 40 10

1024 3 10 2

31 November 10, 2011

Reconfigured Arrays Example

• Reconfigured large array into two smaller arrays

• Problem is to verify sequential equivalence

• Original design has array with 1024 rows × 16 columns

• New design has two arrays, each 128 rows × 64 columns

• Array addressing, data alignment and staging logic substantially redesigned

• Design uses clock gating, so method of Bjesse does not reduce arrays

32 November 10, 2011

