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A Brief Introduction to Cryptography

Cryptography is a central feature of modern network
computing.

There are two types of cryptographic algorithms
Symmetric key encryption/decryption

Same key/algorithm for encryption and decryption
e.g. AES, SHA

Public key encryption/decryption

Different keys for encryption and decryption
e.g. RSA, PNG

Public key encryption is based on modular arithmetic such as

Modular reduction A mod N
Modular inverse A−1 mod N
Modular exponentiation AB mod N
Montgomery multiplier accelerates AB mod N computation.
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On-chip Hardware Accelerator for Modular Reduction

Hardware Accelerator

On-chip co-processor that frees up CPU cycles
Tuned for certain tasks, often computationally expensive ones.
e.g. Graphic accelerator. Encryption accelerator

We worked on an asymmetric math function accelerator

Performs modular math for public key encryption.
Used for encryption acceleration.
Takes up to 4096-bit operands
Long delays: Thousands of clock cycles for a single operation
Implemented as a finite-state machine.
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Why Is the Accelerator Difficult To Verify?

Verification is a challenge because of the vast state-space due to
wide operands and long latency.

Traditional verification techniques have problems

Simulation is too slow to provide a decent coverage.

Even post-silicon testing is slow because of slow reference
model computation by software.

Bit-level model-checking does not scale to thousands of cycles.

Very time-consuming to analyze implementation details with a
theorem prover.
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Hybrid Verification Tool

A hybrid verification tool is a combination of a model checker
and a theorem prover.

e.g. Intel Forte based on symbolic trajectory evaluation.

We believe the full potential of hybrid verification tools have
not been utilized because:

Model checker is not tuned for this kind of proofs.
Theorem prover is hard-to-use and time-consuming for many
engineers.
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ACL2SIX

Our tool ACL2SIX is a combination of

IBM SixthSense Formal Verification Tool (Model Checker)
ACL2 Theorem Prover

ACL2SIX directly works on hardware given in HDL.

A quick translation of properties, not of hardware HDL.
The theorem prover does not deal with low-level details of
hardware. The model checker abstracts them away.
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ACL2SIX Platform Data Flow
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ACL2SIX Theorem Example

Theorem to test the output of a 2-stage 32-bit adder.

(defthm adder-output
(implies (natp n)

(equal (vhdl-sigvec (adder) ”SUM” (0 31) (+ n 2))
(bv+ (vhdl-sigvec (adder) ”A” (0 31) n)

(vhdl-sigvec (adder) ”B” (0 31) n))))
:hints ((”goal” :clause-processor

(:function acl2six :hint ’((:cycle-var n))))))

Bit vectors are accessed by vhdl-sigvec with the syntax:
(vhdl-sigvec 〈DUT〉 〈vector name〉 〈field〉 〈clock cycle〉)

Clock cycle is given by (variable + constant delay)

Pre-defined and user-defined bit-vector functions can be used.

Directive to call SixthSense from ACL2
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Simplified Modular Reduction Engine

Modular reduction engine FSM to
compute A0 mod N0.

Example: compute 28 mod 5

A = 000111002

N = 000001012

Actual Operands are very long.

Many arithmetic operations are
repeated in each transition.

State transition takes fixed but
long clock cycles.

Align Data

Subtract or add
while shifting

S0

Input A0 and N0

S1

S2

S3

S4

A = A0 mod N0

If N > A

Shift amt calculation
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S0

Input A0 and N0

S1

S2

S3

S4

A = A0 mod N0

If N > A

Shift amt calculation
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Overall Approach to Verifying a State Transition Machine

Use a divide-and-conquer approach.

Model checker is used to verify properties over each state
transition.
Theorem prover is used to combine verified properties to form
a complete proof, and also reason about high-level math.

Make the model checker to work on bigger, more abstract
sub-problems.

Hide the hardware details from the theorem prover.
Theorem prover requires smaller steps to create a proof.
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How Should We Write Properties over State Transition?

Typical state transition with pre-condition Pi and
post-condition Pi+1:

Pi (n) =⇒ Pi+1(n + ∆i )

∆i is typically constant over 10 but less than 100.

Actual conditions are written at high-level.
e.g. Multi-word subtraction is simply written as A− N in Pi .
The hardware may repeat multiple subtractions over
discontinuous data.

Frequently, we need to add global and state invariants to prove

(inv(n) ∧ condi (n) ∧ Pi (n)) =⇒ Pi+1(n + ∆i )

Invariant definitions are in VHDL and hidden from theorem
prover.
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Algorithm to verify Pi(n) =⇒ Pi+1(n + ∆i)

Algorithm

1 Convert Pi (n) =⇒ Pi+1(n + ∆i ) to a circuit and combine it
with DUT and the driver. Result is Qi (n).

2 Simplify Qi (n) by a number of combinational and sequential
logic reduction algorithms. Result is Q ′

i (n). If Q ′
i (n) = T ,

return.

3 Prove Q ′
i (n) by k-induction. Base cases are proved by BMC.

Inductive step is proved:
Qi (n) ∧ Qi (n + 1) ∧ · · · ∧ Qi (n + k − 1) =⇒ Qi (n + k).

4 Increase k and repeat Step 3.

Step 1 is performed by the theorem prover. Step 2-4 by the model
checker.
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Generation of Counter-Examples for Induction Proof

Often an induction proof fails and a
counter-example helps debugging.

Counter-example generation is difficult for
transformation-based verification tool like
SixthSense.

An inductive counter-example does not
start with an initial state.
Some information is lost during
transformation.

Implemented a trace lifting to reflect true
root cause of induction failure.

Reduction
Engine 1

Reduction
Engine 2

Reduction
Engine 3

Original

Problem Counter
Example

Lifted

Find a counter−example
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Verification Results of Modular Reduction

Data Width 56-bit 256-bit 384-bit 512-bit

Total Time 10442s 20646s 37607s 98199s

Theorem Prover Time 257s 289s 474s 1690s

Property Check Time 10188s 20261s 37139s 97012s

Avg. Time per Prop. 118s 151s 223s 489s

Max Time per Prop. 138s 368s 1232s 3456s

We finished modular reduction proof up to 512-bit.

1024-bit operation has properties that time-out in 24 hours.

Individual property time increases rapidly as both state
transition delay and input data increase.

Most time spent in the model checker.
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Conclusion

We verified a number of modular operations.

Modular reduction, modular addition and subtraction.
Montgomery multiplier

Analysis of modular inverse uncovered an overflow problem.

The key is to use a powerful model checker to verify a larger
sub-problems. Reduced theorem proving effort.

Still full 4096-bits operation is hard to verify. Need to improve
model checker for this type of proof.

Theorem proving is still a bottleneck to apply in an industrial
setting. Need more automation or more productivity.
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