
Algorithms for Software Model Checking:
Predicate Abstraction vs. IMPACT

Dirk Beyer
University of Passau, Germany

Philipp Wendler
University of Passau, Germany

Abstract—CEGAR, SMT solving, and Craig interpolation are
successful approaches for software model checking. We compare
two of the most important algorithms that are based on these
techniques: lazy predicate abstraction (as in BLAST) and lazy
abstraction with interpolants (as in IMPACT). We unify the algo-
rithms formally (by expressing both in the CPA framework) as
well as in practice (by implementing them in the same tool). This
allows us to flexibly experiment with new configurations and gain
new insights, both about their most important differences and
commonalities, as well as about their performance characteristics.
We show that the essential contribution of the IMPACT algorithm
is the reduction of the number of refinements, and compare this
to another approach for reducing refinement effort: adjustable-
block encoding (ABE).

Index Terms—Formal Verification, Software Model Checking,
Predicate Abstraction, Lazy Abstraction, Refinement Techniques,
Interpolation, Large-Block Encoding

I. INTRODUCTION

Software model checking has been successful for improving
the quality of computer programs [4]. Several fundamental
concepts were invented in the last decade which made it
possible to scale the technology from tiny examples to real
programs. Predicate abstraction [16] with counterexample-
guided abstraction refinement (CEGAR) [14] and lazy ab-
straction [19] is one such technique. It was made popular
by the tools SLAM [6] and BLAST [9], and is implemented
in a number of other tools. Lazy abstraction with inter-
polants [20] is another approach, which is implemented in
the tools IMPACT, WOLVERINE [24], and UFO [3]. More than
half of the participants in the first competition on software
verification [7], and almost all of those that are not based on
bounded model checking, use one of these two concepts. Thus,
we are interested in comparing the two concepts with each
other, identifying their essential differences, and potentially
learning new insights from them.

The contribution of our work is to systematically compare
the two approaches. First, we re-implemented the IMPACT

algorithm within the CPACHECKER framework. This is nec-
essary in order to compare predicate abstraction with the
IMPACT algorithm in the same framework: with the same parser
frontend, SMT solver, and run-time environment. This verifies
that our re-implementation shows all known characteristics in
the comparison. Second, we present a unifying framework for
predicate-based software model checking with an algorithm
that can be configured (parametrized) such that it works
like BLAST’s predicate abstraction or IMPACT’s approach. We
show that the framework causes almost no overhead and the

algorithms —when expressed in our framework— perform
similarly to their original versions.

Now, we can conceptually and experimentally identify the
differences of the algorithms. A performance comparison of
our implementations of both algorithms (in the unified frame-
work) shows that the key advantage of the IMPACT algorithm
is the forced covering optimization that was presented by
McMillan together with the algorithm [20]. This optimization
effectively reduces the number of refinements and leads to a
significant performance boost. However, without this optimiza-
tion IMPACT does not perform better than predicate abstraction.

Another technique that has been shown to effectively re-
duce the number of refinements is adjustable-block encoding
(ABE) [12] (a generalization of large-block encoding [8]),
which was originally presented for predicate abstraction. We
do not only compare the IMPACT algorithm to predicate ab-
straction with ABE, but also experiment with the combination
of the IMPACT algorithm and ABE.

Availability of Data and Tools. We implemented all presented
approaches (where not already existing) in the open-source
verification framework CPACHECKER [11]. All experiments are
based on publicly available benchmark programs from the last
competition on software verification [7]. Our extensions of
CPACHECKER are available under the Apache 2.0 license in
the project repository via http://cpachecker.sosy-lab.

org. Tables with our detailed results, as well as all benchmark
programs, the configurations files, scripts, and a ready-to-run
version of CPACHECKER are available on the supplementary
webpage http://www.sosy-lab.org/˜dbeyer/cpa-uni.

Related Work. A different approach to combine predicate ab-
straction and the IMPACT algorithm was presented by Albargh-
outhi et al. [1]. Their algorithm is similar to the IMPACT algo-
rithm, but optionally computes an abstraction using predicates
from previous refinements when creating new abstract states,
instead of always setting these states to true . Furthermore,
this approach represents the program counter symbolically (not
explicitly), and does a single refinement for all error paths after
the control-flow graph (CFA) has been completely unrolled
into an abstract reachability graph (ARG) (instead of doing
a separate refinement whenever a path to the error location
was found). McMillan presented an application of the IMPACT

principle to testing [21] and similarly proposed computing
predicate abstractions in order to speed up the convergence
of the algorithm.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

106106978-1-4673-4831-7/12/$31.00 ©2012 IEEE978-0-9835678-2-0/12/$31.00 ©2012 IEEE 106978-0-9835678-2-0/12/$31.00 ©2012 FMCAD Inc.

http://cpachecker.sosy-lab.org
http://cpachecker.sosy-lab.org
http://www.sosy-lab.org/~dbeyer/cpa-uni

Ermis et al. presented a technique for software verification
which is also based on interpolation [15]. Instead of unrolling
the CFA into an ARG by iteratively creating new abstract
states at a frontier, they start with a path to the error location
in the CFA and split all nodes along this path into two nodes,
labeling one with the interpolant computed for this node, and
the other with its negation [13]. Afterwards, all transitions
between the newly created nodes and their neighbors are
checked for feasibility and removed if appropriate. This is con-
tinued until no infeasible path to the error location is left. The
authors compared their algorithm with the IMPACT algorithm,
and applied large-block encoding to it. Complementing this
work, we compare IMPACT with predicate abstraction. Ermis
et al. support programs in the programming language Boogie
and the tool cannot be directly applied to C benchmarks.

Extensions of the IMPACT approach have also been presented
by Heizmann et al. [17] and Albarghouthi et al. [2]. These
works add support for recursive programs.

II. BACKGROUND

We briefly provide some basic notions and concepts from
the literature [9], and describe the two algorithms.

Programs. We restrict the presentation to a simple impera-
tive programming language, where all operations are either
assignments or assume operations, and all variables range
over integers.1 A program is represented by a control-flow
automaton (CFA), which consists of a set L of program
locations (models the program counter l), an initial program
location l0, and a set G ⊆ L×Ops×L of control-flow edges
(models the operation that is executed when control flows from
one program location to another). The set of program variables
that occur in operations from Ops is denoted by X . A concrete
state of a program is a variable assignment c : X ∪ {l} → Z
that assigns to each variable an integer value. The set of all
concrete states of a program is denoted by C. A set r ⊆ C of
concrete states is called a region. Each edge g ∈ G defines a
(labeled) transition relation

g→ ⊆ C ×{g}×C. The complete
transition relation → is the union over all control-flow edges:
→ =

⋃
g∈G

g→. We write c
g→c′ if (c, g, c′) ∈ →, and c→c′ if

there exists a g with c
g→c′. A concrete state cn is reachable

from a region r, denoted by cn ∈ Reach(r), if there exists a
sequence of concrete states 〈c0, c1, . . . , cn〉 such that c0 ∈ r
and for all 1 ≤ i ≤ n, we have ci−1

g→ci.
Lazy Predicate Abstraction. Predicate abstraction in com-
bination with CEGAR and lazy abstraction is a forward
reachability analysis that unrolls the CFA into an abstract
reachability graph (ARG) until a fixed point is reached.
Abstract states are represented using predicates over program
variables from a given set (the precision), which is initially
empty. An abstract state is created by computing a boolean
combination of these predicates that over-approximates the
reachable concrete states. This abstraction computation is done
using an SMT solver. When an abstract state that belongs to

1Our implementation is based on CPACHECKER [11], which supports C pro-
grams in the CIL [22] subset of C and interprocedural program analysis.

the error location is discovered, the concrete program path that
leads to this state is reconstructed from the ARG and checked
for feasibility. If the concrete path is infeasible, the current
counterexample is said to be spurious, and the precision of the
analysis needs to be refined in order to rule out this counterex-
ample. This is done by computing a Craig interpolant [18] for
each location on the path. The predicates contained in these
interpolants are then added to the precision, and the analysis
is restarted. This guarantees that all necessary predicates for
proving program safety will be automatically discovered. For
improved performance, the previously computed ARG is not
completely deleted after refinement, but only those parts that
need to be, are re-computed. Furthermore, the new predicates
will not be used globally for all abstraction computations, but
only in the part of the ARG and only at those locations of
the CFA, for which they are relevant. The analysis terminates
if either a non-spurious counterexample is found, or a fixed
point is reached during unrolling the ARG (in which case the
program is safe). In order to speed up the coverage checks
between abstract states (which are necessary for determining
whether the fixed point was reached), binary decision diagrams
(BDDs) are used for representing the abstract states. This
approach corresponds, e.g., to what is implemented in BLAST.

Lazy Predicate Abstraction with Adjustable Block-Encoding.
Adjustable block-encoding (ABE) [12] aims at improving
the performance of predicate abstraction by reducing the
number of abstraction computations and refinements. It does
not compute an abstraction for each new abstract state, but
instead it groups abstract states into blocks and computes
abstractions only once per block (at the end). Abstract states
are now tuples of an abstract-state formula and a concrete
path formula. The path formula of any abstract state always
represents a set of concrete paths from the block entry to the
location of this state. When a new state is created, the strongest
post-condition of the previous state and the current edge is
created and used as the concrete path formula. The abstract-
state formula is copied from the previous state. If there exists
already an abstract state with the same location inside the
same block, both states are merged into one state by taking
the disjunction of their path formulas. Only at the block end,
an abstraction of the conjunction of the abstract-state formula
and the concrete path formula of the current state is computed
and used as the new abstract-state formula. The path formula
is reset to true at the block end. ABE does not only reduce
the number of abstraction computations, but also the number
of coverage checks (which are only done at block ends), and
the size of the ARG (due to merging of abstract states). The
latter is the reason for a vastly reduced number of refinements.
During refinement, interpolants are computed only for those
abstract states at the block ends, because only for those states,
predicates are needed for computing abstractions.

The block size can be freely chosen in ABE and does
not need to be statically fixed (as in LBE [8]). If the block
size is restricted to one single CFA edge (we name this
single-block encoding, or SBE), an abstraction is computed

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

107107107

for every new abstract state and the analysis behaves exactly
like predicate abstraction in BLAST. Experiments have shown
that for a good performance, the program structure should
be taken into account when defining the block encodings. A
good configuration is for example to define block ends at loop
head locations of the program (ABE-Loops), such that the
blocks will be the largest loop-free subgraphs of the CFA.
Another suitable configuration with somewhat smaller blocks
is to define block ends not only at loop heads but also at
function entry and exit points (ABE-LF). This configuration
is similar to large-block encoding [8]. ABE is implemented,
for example, in CPACHECKER.
IMPACT (Lazy Abstraction with Interpolants). The IMPACT

algorithm [20] similarly creates an unwinding of the CFA.
However, it never performs abstraction computations, and
instead initializes all new abstract-state formulas to true . This
is similar to how predicate-abstraction algorithms work while
the precision is still empty.

The algorithm consists of three basic steps, which are
applied until no further change can be made. In theory, the
steps can be executed in any order, but the right strategy is
crucial for good performance. The steps are:
Expand(e). If the state e has no successors (i.e., it is a sink in
the ARG) and is not covered, create the successor states using
true as their initial state formula, and add them to the ARG.
Refine(e). If e is an abstract state at the error location
with a state formula different from false, compute inductive
interpolants for the path from the ARG root to this state. For
each state along this path, the state formula is strengthened by
conjunctively adding the corresponding interpolant, and the
state is marked as not covered. If the error path is infeasible,
the state formula of the state at the error location is guaranteed
to be false (which marks unreachable states) after this step.
Cover(e1, e2). In this step, a state e1 is marked as covered by
another state e2 if the following properties hold:
• e2 is (and all of its ancestors are) not covered,
• both states belong to the same program location,
• the state formula of e1 implies the one of e2, and
• e1 is not an ancestor of e2.

If e1 gets marked as covered, then (1) all states that are covered
by e1 or e1’s children are uncovered, and (2) all children of e1

are implicitly considered as covered. Note that covered states
never cover any other states themselves, i.e., no chains of
coverage exist. In order to prevent an infinite loop of coverings
and uncoverings, the step Cover may be applied only to pairs
(e1, e2) where e1 was created after e2 (only older states can
cover newer states, not vice versa).

The application order of the steps as proposed by McMillan
is to expand nodes in a depth-first search. During the search, he
keeps the invariant that the currently being expanded state and
all its ancestors are not coverable by any other state (otherwise
the current state would not need to be expanded). As soon as a
state is found that belongs to the error location, the refinement
procedure is run for this state. After a successful refinement,
the invariant that no state on the path from the ARG root

to the current state is coverable, is re-established by trying to
cover all these states. (This can be optimized by checking only
those states that have been strengthened during refinement.)
This algorithm corresponds to the core algorithm of IMPACT,
as presented by McMillan [20]. It is not available in IMPACT

without the following optimization.

IMPACT with Forced Covering. When a new state is created in
the IMPACT algorithm, its state formula is always true and thus
it can only be covered by another state at the same location
with the same state formula. However, after some refinements,
most states are expected to have stronger formulas, and thus
coverage is unlikely, causing a large number of expansions and
abstract states. As an optimization, one can try to strengthen
the state formula of a new state such that this state can be
covered by an existing state at the same location. This is
called forced covering. In order to forcefully cover a state
e1 by another state e2, the path from the nearest common
ancestor of both states to e1 is considered. If it can be proven
that the state formula of e2 holds at the location of e1 after
following this path from the nearest common ancestor, the
state formula of e2 can be set as the state formula of e1.
Thus, e1 is immediately covered by e2. Additionally, the states
along the path from the nearest common ancestor to e1 are
strengthened by computing Craig interpolants for this path.
This corresponds to the algorithm used for the benchmarks in
the IMPACT article and to the tool implementation [20].

III. UNIFYING ALGORITHM

We formalize our unifying algorithm using the framework
of configurable program analysis (CPA) [10]. A CPA specifies
—independently of the analysis algorithm— the abstract do-
main and a set of operations that control the program analysis.
Such a CPA can be plugged in as a component into the
software-verification framework without the need to work on
program parsers, exploration algorithms, and their general data
structures. A CPA C = (D, ,merge, stop) consists of an
abstract domain D, a transfer relation (which computes
abstract successor states), a merge operator merge (which
specifies if and how to merge abstract states when control flow
meets), and a stop operator stop (which determines whether an
abstract state is covered by another abstract state). The abstract
domain D = (C, E , [[·]]) consists of a set C of concrete states,
a semi-lattice E over abstract-domain elements (i.e., abstract
states), and a concretization function that maps each abstract-
domain element to the represented set of concrete states.

Using this framework, program analyses can be composed
of several component CPAs. For example, we have defined and
implemented separate CPAs for tracking the program counter,
the call stack, and the successor-predecessor relationship of
the ARG. Thus, we do not need to specify these aspects when
defining a new core analysis.

Analysis Algorithm. We use the CPA algorithm for reach-
ability analysis, which gets as input a CPA and two sets of
abstract states: one is the set R0 (reached) of reachable abstract
states, and one is the set W0 (waitlist) of abstract states that

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

108108108

the algorithm is told to process next. The algorithm loops
until the set waitlist is empty (all abstract states completely
processed) and returns the two sets reached and waitlist. In
each iteration, the algorithm takes one state e from the waitlist,
computes all abstract successors and processes each of them.
The algorithm checks if there is an existing abstract state in
the set of reached states with which the new state is to be
merged (e.g., at join points where control flow meets after
completed branching). If this is the case, then the new, merged
abstract state is substituted for the existing abstract state in
both sets reached and waitlist. The stop operator ensures that
a new abstract state is inserted into the work sets only if this
is needed, i.e., the state is not already covered by a state in
the set reached.

In order to be able to use CEGAR, we modify this existing
CPA algorithm such that it terminates whenever a target state
(a state at the error location) is encountered. First, we run
the algorithm with singleton sets containing the initial state as
input. If the algorithm terminates with a non-empty waitlist
(target state found), we start the refinement procedure, which
may modify both sets. Then, if the refinement was successful
(i.e., the counterexample was infeasible), we run the CPA
algorithm again with the modified sets as input. The analysis
terminates if either the CPA algorithm finishes due to an empty
waitlist (‘safe’), or the refinement procedure determines that
a feasible error path was found (‘bug’).

Another modification of the algorithm is necessary to sup-
port forced covering. We define a new operator fcover, which
is called before an abstract state is going to be expanded. It
takes as input the current state and the set of reached states,
and returns a new set of reached states. This operator may
change the set reached only by strengthening some states if
this leads to the current state being covered afterwards. If the
current state is still in the set reached afterwards (i.e., was not
replaced by a strengthened version), then this state is explored,
otherwise we continue with the next state from the waitlist.

The modified algorithm is shown as Algorithm 1. Our
changes can be seen in lines 4–5 and 17–18. The shortness
and simplicity of these modifications show that using the CPA
framework as basis for new approaches is a good idea.

Configurable Predicate Analysis. We use a previous def-
inition of a CPA for predicate abstraction with ABE [12]
and configure it. The CPA for predicate analysis D =
(D, ,merge, stop) consists of an abstract domain D, a
transfer relation , a merge operator merge, and a stop
operator stop, which are defined as follows. (Given a pro-
gram P = (L, l0, G), we use X for denoting the set of
program variables occurring in P , P for the set of quantifier-
free predicates over variables from X , and Π : L → 2P for
the precision of the predicate abstraction.) Note that this CPA
is expected to be used in conjunction with separate CPAs for
abstract domains like program counter and call-stack tracking.

1. The abstract domain D = (C, E , [[·]]) is a tuple that consists
of a set C of concrete states, a semi-lattice E = (E,>,v,t),
and a concretization function [[·]] : E → C. The lattice

Algorithm 1 CPAfcover(D, R0,W0)

Input: a CPA D = (D, ,merge, stop),
a forced covering strategy fcover,
a set R0 ⊆ E of abstract states,
a subset W0 ⊆ R0 of frontier abstract states,
where E denotes the set of elements of the semi-lattice of D

Output: a set of reachable states and a subset of frontier states
Variables: two sets reached and waitlist of elements of E

1: reached := R0; waitlist := W0;
2: while waitlist 6= ∅ do
3: choose e from waitlist; remove e from waitlist;
4: reached = fcover(e, reached);
5: if e ∈ reached then
6: for each e′ with e e′ do
7: for each e′′ ∈ reached do
8: // Combine with existing abstract state.
9: enew := merge(e′, e′′);

10: if enew 6= e′′ then
11: waitlist :=

(
waitlist ∪ {enew}

)
\ {e′′};

12: reached :=
(
reached ∪ {enew}

)
\ {e′′};

13: // Add new abstract state?
14: if ¬ stop(e′, reached) then
15: waitlist := waitlist ∪ {e′};
16: reached := reached ∪ {e′};
17: if isTargetState(e′) then
18: return (reached,waitlist);
19: return (reached, ∅);

elements e ∈ E (or abstract states) are tuples (ψ, lψ , ϕ) ∈
(P× (L∪{l>})×P), where the state formula ψ is a boolean
combination of predicates that occur in Π(lψ), lψ is the
location at which ψ was computed, and ϕ is a disjunctive path
formula representing some or all concrete paths from lψ to the
location of state e. The top element of the lattice is the abstract
state > = (true, l>, true). The partial order v ⊆ E × E is
defined such that for any two elements e1 = (ψ1, l

ψ
1, ϕ1) and

e2 = (ψ2, l
ψ
2, ϕ2) from E the following holds:

e1 v e2 ⇔ (e2 = >) ∨
(
(lψ1 = lψ2) ∧ (ψ1 ∧ ϕ1 ⇒ ψ2 ∧ ϕ2)

)
The join operator t : E×E → E yields the least upper bound
of the two operands, according to the partial order.
2. The transfer relation ⊆ E × G × E contains all
tuples (e, g, e′) with e = (ψ, lψ , ϕ), e′ = (ψ′, lψ

′
, ϕ′) and

g = (l, op, l′) for which the following holds:
(ϕ′ = true) ∧

(
ψ′ = (SPop(ϕ) ∧ ψ)Π(l′)

)
∧ (lψ

′
= l′)

if blk(e, g)

(ϕ′ = SPop(ϕ)) ∧ (ψ′ = ψ) ∧ (lψ
′

= lψ) otherwise

The ‘mode’ of the transfer relation, i.e., whether to compute
an abstraction, is determined by a block-adjustment operator
blk : E×G→ B, which is given as parameter to the analysis.
Inside each block (the second case) the successor states are
created by purely syntactically assembling the strongest post-
condition SP of the program code attached to the current edge.
At the end of the current block (the first case), an abstraction
state is created. For such a state, the path formula is reset to
true , and the state formula is set to the result of an abstraction
computation (·)Π(·) using the path formula and previous state
formula as input. Thus, the choice of blk determines the block-
encoding (i.e., how much to collect in the path formula before

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

109109109

abstraction). The precision of the predicate abstraction can
vary between program locations (parsimonious precision [9]).
3. The merge operator merge : E × E → E for two abstract
states e1 = (ψ1, l

ψ
1, ϕ1) and e2 = (ψ2, l

ψ
2, ϕ2) is defined as

follows: merge(e1, e2) ={
(ψ2, l

ψ
2, ϕ1 ∨ ϕ2) if (ψ1 = ψ2) ∧ (lψ1 = lψ2)

e2 otherwise

This operator combines the two abstract states using a dis-
junctive path formula, if the abstraction formulas are equal
and were computed at the same program location (i.e., if they
belong to the same block).
4. The stop operator stop : E×2E → B checks if e is covered
by a state in the set reached: stop(e,R) = ∃e′ ∈ R : (e v e′)

Our refinement procedure first reconstructs all program
paths to the error state by traversing the ARG, and creates
a concrete path formula for them. This formula is checked for
satisfiability using an SMT solver. If it is satisfiable, a feasible
error path was found. Otherwise we split the formula, such that
one formula is for one block. This way the cut points exactly
match the abstraction states in the ARG. We query the solver
to produce an inductive Craig interpolant for each cut point.
Configuration / Instantiation. This framework can now be
configured to behave similar to the lazy predicate abstraction
of BLAST as well as the lazy abstraction with interpolants
algorithm of IMPACT by defining the following three items:
(1) how the state formula ψ of each abstract state (ψ, lψ , ϕ)
is represented and how the abstraction computation (·)Π(·)

is defined, (2) how the partial order v of the lattice is
implemented, and (3) how the interpolants are used to modify
the ARG during refinement.

The configuration for BLAST-like lazy predicate abstraction
works as follows: (1) Each state formula is represented by
a binary decision diagram (BDD). It is computed by taking
either the cartesian or the boolean abstraction [5] of the
conjunction of the previous abstract-state formula and con-
crete path formula. Which abstraction mechanism is chosen
needs to depend on the block size, to achieve a reasonable
performance [8]. (2) Coverage checks are done by checking
the entailment of the BDDs that represent the state formulas of
the two abstraction states for which coverage is checked. (The
path formulas of such states are always equal to true and thus
need not be considered.) (3) During refinement, the obtained
interpolants are split into their basic atoms, and a predicate
is created for each of these atoms. All those predicates are
added to the precision for the program location for which the
interpolant was computed. The first abstraction state in the
paths to the error state, for which a new predicate was found,
is identified. This state and all states in the ARG that are
reachable from it are removed from the ARG (and from the
sets reached and waitlist). Its predecessor state is re-added to
the waitlist with the new precision. States that were covered
by one of the removed states are also re-added to the waitlist.

To configure the framework as IMPACT algorithm, we use
the following setup: (1) State formulas are represented by

symbolic formulas. All abstraction states have true as their
initial state formula, and ϕΠ(l) = true for all formulas ϕ and
locations l. (2) Coverage checks are done by querying an SMT
solver whether the implication of the state formulas of the two
states holds. (3) After the interpolants are computed during
refinement, we conjunct them to the state formulas of the
abstract states to which they belong. If a state is strengthened
(i.e., the interpolants actually added a conjunct to the state
formula), we need to re-check all coverage relations of this
state. If a previously covered state is now uncovered, we re-add
all sink states in the subgraph of the ARG that starts with this
state, to the waitlist. We also check each of the strengthened
states whether it is now covered by any other state at the same
location. If this is successful, we mark the subgraph that starts
with that state as covered and remove all leafs therein from the
waitlist (we do not need to expand covered states). The only
change to the set reached is the removal of all states whose
state formula is false and their successors. It is guaranteed that
this is the case for the error state (if the error path is infeasible).
This refinement procedure is similar to the function REFINE
in the original presentation of the IMPACT algorithm [20].

One last configuration option of our framework is the
choice of the fcover operator. For the IMPACT algorithm, we
may decide to use interpolation-based forced covering. For
predicate abstraction, we use an implementation that always
returns the set of reached states that was given as parameter
(i.e., no change).

This unification makes the essential differences between
these two algorithms explicit and removes those differences
that have no impact on the performance. We show in our
experimental evaluation in Sect. IV that our version of the
IMPACT algorithm has similar performance to the original one.
Discussion. Now that we have identified the important differ-
ences, we can evaluate them and discuss their meaning. One
main difference is that lazy predicate abstraction computes
costly abstractions in order to have cheap coverage checks
later on. This is an eager technique: computing effort is spent
ahead, not knowing whether this will actually pay off. For
example, along a long path within a single loop we might
compute abstractions for every state, but check coverage only
for the states at the loop head. On the other hand, the IMPACT

algorithm delays all computation effort until it is actually
needed, which means that whenever some information is
needed about a state, a costly SMT-solver query is needed.

A further difference is how the coverage relationship is
determined. In order to find as much coverage situations as
possible and guarantee termination, the IMPACT algorithm may
check coverage for a single node several times, specifically
whenever it starts expanding nodes in the subtree below this
state. Predicate abstraction checks coverage only once directly
after the state has been created. However, states are deleted
during refinement and might get rediscovered, where they are
again checked for coverage.

For predicate abstraction, two choices exist for how to
compute an abstraction when creating a state, cartesian ab-
straction and boolean abstraction. It was shown that if using

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

110110110

single-block encoding, boolean abstraction is too slow to be
useful and only cartesian abstraction is feasible. However, the
latter is imprecise if there are disjunctions in the formulas
that represent program operations, because it can infer truth
values only for predicates independently from each other.
Disjunctions occur, e.g., if pointer-alias information is encoded
in the formulas, and thus predicate abstraction with cartesian
abstraction may fail to prove properties that rely on this.
Boolean abstraction can handle all boolean combinations of
predicates and is thus more precise, but is only usable with
large blocks. The IMPACT algorithm does not have this prob-
lem: it uses the interpolant directly and never loses precision.

Implementation. In order to effectively compare the perfor-
mance of two algorithms, it is important to implement them
in the same tool. Separate tools typically differ in many ways,
which have an impact on the performance, for example the
programming language, the parser frontend, the used SMT
solver, support for additional features like function pointers or
pointer aliasing, and optimizations like constant propagation,
which are independent from the core algorithm. As a basis
for our implementation we took the open-source software
verification platform CPACHECKER [11]. It supports verifying
C programs, is based on the CPA framework and already has
an implementation of lazy predicate abstraction with CEGAR
and adjustable-block encoding. We took the existing CPA for
predicate abstraction, made the state-formula representation
configurable (providing a BDD-based and a symbolic repre-
sentation with their respective forms of coverage checks), and
added an IMPACT-like refinement strategy. We also extended
the CPA algorithm to support forced coverings. Thus the
implementations of both algorithms differs only in the points
listed above; everything else is the same code. The common
code includes for example parsing, the traversal algorithm, the
encoding of C code into SMT formulas, and the SMT solver.

For comparison, we also implemented the unchanged IM-
PACT algorithm as described by McMillan [20]. All code that
is not related to the algorithm itself and the representation of
abstract states is still shared with the other algorithms, so the
same parser, formula encoding, and SMT solver are used.

Basic optimizations like caching queries to the SMT solver
were implemented in the common code and are thus used by
all algorithms. For both versions of the IMPACT algorithm (the
original and ours), an optional implementation of the forced-
covering optimization was added.

IV. EXPERIMENTAL EVALUATIONS

Benchmark Programs. For our experimental evaluation, we
took all 277 C programs from the last competition on software
verification [7], out of which 119 programs contain a known
specification violation.

Experimental Setup. All experiments were performed on
machines with a 3.4 GHz Quad Core CPU and 16 GB of
RAM. The operating system was Ubuntu 10.04 (64 bit), using
Linux 2.6.35 and OpenJDK 1.6. A time limit of 15 minutes and
a memory limit of 15 GB were used. We took CPACHECKER

 1

 10

 100

 1000

 0 50 100 150 200

Ti
m

e
 i
n
 s

n-th fastest result

Impact (Original)
Impact with FC (Original)

Impact (Framework)
Impact with FC (Framework)

Fig. 1. Original IMPACT algorithm and our framework version; both
implemented in CPACHECKER; quantile functions for verification results

from revision 6013 of the ‘forced-covering’ branch in the
repository, and configured it with a Java heap size of 12 GB
and MathSAT 4.2.17 as SMT solver. For comparison, we also
executed benchmarks with BLAST 2.7 [23] (a tool for lazy
predicate abstraction) and WOLVERINE 0.5c [24] (a tool im-
plementing the IMPACT algorithm). For both tools we used the
version and the configuration parameters which were submit-
ted to the last software-verification competition. Unfortunately,
the original IMPACT tool was not available for benchmarking.
We also did benchmarks with UFO 0.1 2 [3]. For this tool, the
programs needed to be pre-processed with a special variant
of CIL, compiled with LLVM, and optimized (we ignored the
run time necessary for this). This pre-processing failed for
11 benchmarks.

Tables with the detailed results, as well as all benchmark
programs, the used configurations, scripts, and a ready-to-run
version of CPACHECKER are available on the supplementary
webpage http://www.sosy-lab.org/˜dbeyer/cpa-uni.
Variants of the IMPACT Algorithm. As a first set of bench-
marks, we compare our implementation of the original IMPACT

algorithm with the IMPACT algorithm expressed in our unifying
framework, both without and with forced covering enabled.
The original version is able to solve 86 and 142 instances,
respectively, whereas the unifying version is able to solve 80
and 146 instances. The few differences are due to some out-
of-memory conditions in the configuration. Figure 1 shows
the performance for all successful verification runs of all
four configurations using a plot of the quantile functions.
The function graph for a configuration yields the maximum
run time y (measured as used CPU time) for the xth fastest
computed correct results. For example, a time of 10 s for the
100th fastest result would mean that this configuration could
successfully verify 100 programs in under 10 s each, and took
longer than that for all remaining programs. The x-value for
which a graph ends at the top gives the maximal number
of successfully verified programs for the configuration. The
area below a graph (its integral) represents the accumulated
verification time that the configuration needed for all programs
that it could verify.

From these results we draw the conclusion that the original
version of the IMPACT algorithm and our variant perform

2Taken from http://www.cs.utoronto.ca/˜aws/ufo/

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

111111111

http://www.sosy-lab.org/~dbeyer/cpa-uni
http://www.cs.utoronto.ca/~aws/ufo/

 10

 100

 1000
Ti

m
e
 i
n
 s

Impact
Impact with FC

Pred. Abstraction
Blast

Wolverine
uUFO

cpUFO

 1

 0 50 100 150 200

n-th fastest result

Fig. 2. SBE-based CPACHECKER configurations, BLAST, WOLVERINE, and
UFO; quantile functions for verification results

TABLE I
CHARACTERISTICS OF DIFFERENT CPACHECKER CONFIGURATIONS

a) Number of successfully verified programs
SBE ABE-LF ABE-Loops

IMPACT 80 124 139
IMPACT with Forced Covering 146 182 176
Predicate Abstraction 102 168 196

b) Average number of refinements for successfully verified programs
SBE ABE-LF ABE-Loops

IMPACT 513 304 42.5
IMPACT with Forced Covering 52.2 19.6 14.6
Predicate Abstraction 887 79.5 8.47

similar enough and we are able to further experiment with
our unifying framework only.

Benchmarks using Single-Block Encoding. Now we compare
the configurations of our analysis framework against each
other: the IMPACT algorithm and lazy predicate abstraction.
The former is run with and without the forced-covering
optimization. For reference, we also run benchmarks with
other tools that implement one of these algorithms: BLAST,
WOLVERINE, and UFO. The latter is run in two configurations,
without abstraction computations (uUFO, similar to IMPACT)
and with cartesian predicate abstraction (cpUFO). All con-
figurations except the two UFO configurations use single-
block encoding, i.e., the former do not group several program
statements into larger blocks.

Figure 2 shows the performance of these configurations and
tools. The number of solved instances for the CPACHECKER

configurations can also be seen in the column ‘SBE’ of
Table I a). Comparing the IMPACT algorithm (1st row) with
predicate abstraction (3rd row), we can see that the latter can
solve 22 more programs, and is somewhat faster (cf. graph).
This indicates that the eagerness of predicate abstraction pays
off, and the amount of work spent for computing abstractions
is worth the effort. Omitting the abstraction computation and
delegating the coverage checks to an SMT solver needs more
time, although the SMT solver queries are cached. However,
when forced covering is enabled for the IMPACT algorithm, it
can solve 66 more programs, and is much faster than predicate
abstraction. These results show that reducing the number of
paths in the ARG and the number of refinements is worth-
while, even if substantial effort is needed. One forced covering
consists of a satisfiability check and an interpolation query, and

 1

 10

 100

 1000

 0 50 100 150 200

Ti
m

e
 i
n
 s

n-th fastest result

Impact (ABE-LF)
Impact with FC (ABE-LF)

Predicate Abstraction (ABE-LF)
Impact (ABE-Loops)

Impact with FC (ABE-Loops)
Predicate Abstraction (ABE-Loops)

Fig. 3. Large-block CPACHECKER configurations to reduce the number of
refinements; quantile functions for verification results

can thus be similarly expensive as a refinement. However, the
formulas used during a check for forced covering are smaller
than those during refinements, and a single successful forced
covering can prevent the expansion of a whole subgraph of
the ARG and thus save several refinements.

Comparing these results to the results of the other tools
that are also shown in the graph is difficult, because the
performance characteristics of tools written in Java, OCaml,
and C/C++ are typically quite different, different SMT solvers
are used, and the amount of work that was put into the
tools for adding optimizations and performance tuning differs
vastly. This can be seen, for example, by the fact, that in
this comparison the lazy predicate abstraction implementations
of CPACHECKER and BLAST have a significant performance
difference, although they are conceptually the same.
Benchmarks with Large Blocks. We have already identified
that the most important performance factor is the number of re-
finements, and not the algorithm itself. Thus, we are interested
in seeing how both algorithms perform when adjustable-block
encoding (ABE) is used to group many program statements
into larger blocks. This approach is known to vastly reduce
the number of refinements [12]. One important advantage of
our unified framework is that we can now use ABE with both
algorithms without any further work, although it was originally
only designed and implemented for predicate abstraction. Of
course, ABE does not save abstraction computations if the
IMPACT algorithm is used, but it still does allow to merge
paths and does reduce the number of refinements, and it saves
coverage checks as these are only done at block ends. The
first results have shown that the original version of IMPACT

behaves similarly to our framework version, therefore, we did
not implement adjustable-block encoding for it.

For the larger blocks, we use two different block sizes:
ABE-LF (block ends at function entries/exits and loop heads)
and ABE-Loops (block ends only at loop heads). The number
of solved instances is shown in Table I a) and the performance
results in Fig. 3. First of all, the results show the expected
improvement in performance and number of solved instances
if the block size is increased from SBE to ABE-LF and further
to ABE-Loops. This holds for all three configurations with one
exception which we will discuss below. The results further
confirm that the IMPACT algorithm without forced covering
is the slowest of those configurations regardless of the block

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

112112112

Lazy

More refinements

Eager

Fewer refinements

Impact Impact
(ABE-LF)

Impact
(ABE-Loops)

Impact
with FC

Impact with FC
(ABE-LF/Loops)

Pred. Abs.
(SBE)

Pred. Abs.
(ABE-LF)

Pred. Abs.
(ABE-Loops)

Fig. 4. Classification of various combinations of lazy predicate abstraction
and IMPACT with forced covering and adjustable-block encoding

size. For ABE-LF (the medium block size), forced covering
provides a performance benefit for the IMPACT algorithm
similar to when SBE is used, making it faster than predicate
abstraction. However, for ABE-Loops (the largest block size)
the results differ: The performance improvement of forced
covering still exists, but is smaller than for the other block
sizes. The IMPACT algorithm is now slower than predicate
abstraction, even with forced covering enabled. Furthermore,
this configuration solves fewer instances with ABE-Loops than
with ABE-LF, although for all other configurations an increase
in the block size also leads to a significant performance
increase. The reason for this is that the ABE-Loops block
size has reduced the number of refinements already so much
that the forced-covering optimization has little chance to
achieve a further reduction. Because the only abstraction states
that remain belong to loop-head locations, forced covering is
attempted only for such states. However, for loop heads the
abstract states need to be annotated with loop invariants in
order to reach the fixed point, and those invariants are only
discovered by refinements, not by forced-covering attempts.
The overhead for the unsuccessful attempts then leads to a
performance decrease. Table I b) shows the average number of
refinements for each successful verification run and confirms
this. For SBE and ABE-LF, forced covering can reduce the
number of refinements by one order of magnitude, however,
for ABE-Loops it only manages to reduce it to one third.

V. CONCLUSION

We have presented a new unifying framework for predicate-
based model checking, and expressed the two most successful
existing approaches in this framework. This allowed us to
gain new insights about these algorithms, especially that
the performance benefit of IMPACT compared to SBE-based
predicate abstraction is not due to the omitted abstractions,
but instead due to the reduction of the number of refinements
using forced covering. We can now classify all existing and
new configurations as in Fig. 4. We showed that using our
framework does not add overhead compared to the original
versions of the algorithms. Instead it is beneficial for flexibly
experimenting with new configurations, such as combining the
IMPACT-based algorithm and adjustable-block encoding.

These experiments confirm that the common property of
the most successful configurations is to reduce the number of
refinements. The new insights from this experimental study
are useful for directing future research on software model

checking. Specifically, we have provided an experimental
infrastructure to study the impact of the various parameters
that distinguish the algorithms.

We plan to extend our framework by incorporating further
model-checking algorithms. A comprehensive framework will
allow us to learn more about other algorithms and to experi-
ment with new —perhaps even more powerful— strategies for
software model checking that were not possible before.

REFERENCES

[1] A. Albarghouthi, A. Gurfinkel, and M. Chechik. From under-
approximations to over-approximations and back. In Proc. TACAS,
LNCS 7214, pages 157–172. Springer, 2012.

[2] A. Albarghouthi, A. Gurfinkel, and M. Chechik. WHALE: An
interpolation-based algorithm for inter-procedural verification. In Proc.
VMCAI, LNCS 7148, pages 39–55. Springer, 2012.

[3] A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik. UFO: A
framework for abstraction- and interpolation-based software verification.
In Proc. CAV, LNCS 7358, pages 672–678. Springer, 2012.

[4] T. Ball, E. Bounimova, V. Levin, R. Kumar, and J. Lichtenberg. The
Static Driver Verifier research platform. In Proc. CAV, LNCS 6174,
pages 119–122. Springer, 2010.

[5] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstrac-
tions for model checking C programs. In Proc. TACAS, LNCS 2031,
pages 268–283. Springer, 2001.

[6] T. Ball and S. K. Rajamani. The SLAM project: Debugging system
software via static analysis. In Proc. POPL, pages 1–3. ACM, 2002.

[7] D. Beyer. Competition on software verification (SV-COMP). In Proc.
TACAS, LNCS 7214, pages 504–524. Springer, 2012.

[8] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani.
Software model checking via large-block encoding. In Proc. FMCAD,
pages 25–32. IEEE, 2009.

[9] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software
model checker BLAST. Int. J. Softw. Tools Technol. Transfer, 9(5-6):505–
525, 2007.

[10] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software
verification: Concretizing the convergence of model checking and pro-
gram analysis. In Proc. CAV, LNCS 4590, pages 504–518. Springer,
2007.

[11] D. Beyer and M. E. Keremoglu. CPACHECKER: A tool for configurable
software verification. In Proc. CAV, LNCS 6806, pages 184–190.
Springer, 2011.

[12] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with
adjustable-block encoding. In Proc. FMCAD, pages 189–197. FMCAD,
2010.

[13] I. Brückner, K. Dräger, B. Finkbeiner, and H. Wehrheim. Slicing
abstractions. Fundam. Inform., 89(4):369–392, 2008.

[14] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50(5):752–794, 2003.

[15] E. Ermis, J. Hoenicke, and A. Podelski. Splitting via interpolants. In
VMCAI, LNCS 7148, pages 186–201. Springer, 2012.

[16] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS.
In Proc. CAV, LNCS 1254, pages 72–83. Springer, 1997.

[17] M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In
Proc. POPL, pages 471–482. ACM, 2010.

[18] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstrac-
tions from proofs. In Proc. POPL, pages 232–244. ACM, 2004.

[19] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In Proc. POPL, pages 58–70. ACM, 2002.

[20] K. L. McMillan. Lazy abstraction with interpolants. In Proc. CAV,
LNCS 4144, pages 123–136. Springer, 2006.

[21] K. L. McMillan. Lazy annotation for program testing and verification.
In Proc. CAV, LNCS 6174, pages 104–118. Springer, 2010.

[22] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate
language and tools for analysis and transformation of C programs. In
Proc. CC, LNCS 2304, pages 213–228. Springer, 2002.

[23] P. Shved, M. Mandrykin, and V. Mutilin. Predicate analysis with BLAST
2.7. In Proc. TACAS, pages 525–527. Springer, 2012.

[24] G. Weissenbacher, D. Kröning, and S. Malik. WOLVERINE: Battling
bugs with interpolants. In Proc. TACAS, pages 556–558. Springer, 2012.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

113113113

	03t
	04t
	05t
	06t
	07kn
	08p
	09p
	10p
	11p
	12p
	13p
	14p
	15p
	16p
	17p
	18p
	Introduction
	Previous Approaches and Related Work
	Preliminaries
	Basic Notation
	General strategies
	Binary Decision Diagrams

	Learning Small Circuits
	Decomposition
	Learning circuits with a single output bit
	Learning CNFs
	Learning CDNFs

	Experimental Results
	Implementation and Experimental Setup
	Experiments with Ratsy
	Experiments with Unbeast
	Discussion

	Conclusions and Future Work
	References
	Appendix

	19p
	20p
	21p
	Introduction
	Background and Previous Work
	Upgrade Checking
	Basic Algorithm
	Optimization and Refinement
	Correctness

	Evaluation
	Related Work
	Conclusion
	References

	22p
	23p
	24p
	25p
	26p
	27p
	28p
	Introduction
	Related Work

	Preliminaries
	SAT-based Reachability via IC3
	Abstraction
	Lazy Abstraction

	Lazy Abstraction and IC3
	Abstract Model Checking via A-IC3
	Refinement
	Correctness Arguments
	Detailed Description of Strengthening

	Experimental Results
	Acknowledgments
	References

	29p
	30it
	31p
	32p
	33p
	34ai

