
Enhanced Reachability Analysis via Automated

Dynamic Netlist-Based Hint Generation

Jiazhao Xu Mark Williams Hari Mony Jason Baumgartner

IBM Systems & Technology Group

Abstract— While SAT-based algorithms have largely displaced
BDD-based verification techniques due to their typically higher
scalability, there are classes of problems for which BDD-based
reachability analysis is the only existing method for an automated
solution. Nonetheless, reachability engines require a high degree
of tuning to perform well on challenging benchmarks. In addition
to clever partitioning and scheduling techniques, the use of
hints has been proposed to decompose an otherwise breadth-
first fixedpoint computation into a series of underapproximate
computations, requiring a larger number of (pre-)image iter-
ations though often significantly reducing peak BDD size and
thus resource requirements. In this paper, we introduce a novel
approach to boost the scalability of reachability computation:
automated netlist-based hint generation. Experiments confirm
that this approach can yield significant resource reductions; often
over an order of magnitude on complex problems compared to
reachability analysis without hints, and even compared to SAT-
based proof techniques.

I. INTRODUCTION

Since the advent of symbolic model checking more than two

decades ago, automated verification tools have evolved dramat-

ically in capacity. This evolution is due to a variety of inno-

vations, including (in extreme brevity) advanced BDD-based

techniques [1], [2], SAT-based proof [3], [4] and falsification

engines [5], [6], [7], a variety of simplification and abstraction

techniques to reduce problem complexity [8], [9], [10], and a

modular transformation-based tool architecture to allow all of

the above to synergistically decompose a complex verification

problem [11] under guidance of advanced orchestration tech-

niques [12]. Clever software engineering techniques, parallel

processing, and more powerful computers upon which to run

these tools have also played an important role. This boost in

scalability has yielded a boost in usability, proliferating model

checking from a craft requiring dedicated verification expertise

to pervasive use even by non-experts, e.g., for lighter-weight

assertion-based verification or sequential equivalence check-

ing. Even state-of-the-art academic solvers such as ABC [13]

and PdTrav [14] have become quite powerful through the

above techniques.

The advent of unbounded SAT-based proof techniques such

as interpolation [3] and IC3 [4] has played a particularly

pronounced role in the scalability of contemporary model

checkers. Whereas BDD-based reachability analysis tends to

become impractical if the design under verification cannot

be reduced or abstracted below several hundred state vari-

ables, SAT-based techniques on occasion can scale beyond

tens of thousands of state variables. Nonetheless, BDDs may

dramatically outperform SAT-based techniques for classes of

problems, thus a well-tuned BDD-based reachability engine is

an essential component of a state-of-the-art verification tool.

Numerous techniques have been developed to boost the scal-

ability of BDD-based reachability engines. Examples include

using a partitioned transition relation (TR) instead of a mono-

lithic representation [1], advanced quantification and conjunc-

tion scheduling based upon metrics such as variable depen-

dency [2], as well as heuristics to balance splitting and conjoin-

ing strategies [7]. The application of BDD-reduction operators

such as bdd constrain, bdd restrict and bdd compact [15] on

the transition relation and state set representations have also

yielded substantial scalability improvements.

The concept of hints was presented in [16] as a method

to mitigate the BDD size explosion that often happens during

intermediate steps of breadth-first reachability analysis, despite

the BDDs being much more compact at early and even

late stages. The intuition behind this phenomenon is that

breadth-first analysis explores many disjoint design behaviors

in parallel, causing asymmetries and thus bloat in the interme-

diate BDD representations – whereas the final reached state

representation may have many asymmetries “filled in” hence

be more compact. Hints are used to iteratively constrain the

transition relation and thereby direct the symbolic search, com-

puting states reachable along the constrained transition relation

from those reached using prior hints. Completeness is ensured

by finally restoring the original transition relation once the

hints have been exhausted. Despite requiring a greater number

of (pre-)image computations, this compaction of intermediate

BDDs results in fewer and less-expensive dynamic variable or-

dering computations. These benefits collectively often reduce

resources for complex problems, in cases enabling a solution

for problems which would otherwise exhaust time or memory

limitations. As noted in [16], as concurs with our practical

experience: even arbitrary hints often reduce complexity for

difficult problems. This preliminary work proposed the use of

manually-generated hints based upon design insight.

This work was extended toward automation in [17], [18].

In [17] the authors propose to analyze the control-data flow

graph of a behavioral Verilog design, using branch conditions

as hints that effectively decompose the design similar to pro-

gram slicing techniques. [18] extends this approach by using

these conditions as a known-complete disjunctive partitioning,

without requiring the final fixedpoint computation where the

unconstrained transition relation is used to ensure complete-

ness. While demonstrated as effective on a set of designs, these

approaches are of limited practical applicability since they

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

157157978-1-4673-4831-7/12/$31.00 ©2012 IEEE978-0-9835678-2-0/12/$31.00 ©2012 IEEE 157978-0-9835678-2-0/12/$31.00 ©2012 FMCAD Inc.

require a high-level behavioral design format which may not

be available. This becomes prohibitive in application domains

such as sequential equivalence checking which may require

analysis of post-synthesis netlists, and within a transformation-

based verification toolset which may have applied numerous

reduction and abstraction techniques to aggressively shrink the

original netlist to something feasible for BDD-based analysis.

These approaches also may not be suitable for classes of

designs which are harder to program slice such as those with

highly-pipelined or multi-threaded behavior.

Other techniques have also been proposed to reduce peak

BDD size through departing from breadth-first search, such

as high-density reachability analysis [19]. This technique re-

sorts to intermediate under-approximate reachability analysis,

partitioning images when BDD sizes exceed a threshold. Our

practical experience with such approaches is that they suffer

convergence problems (e.g., requiring a virtually-unbounded

number of image computations) rendering them of limited

practical utility. In contrast, a benefit of hints is that their

impact on the number of image computations may provably

be linearly bounded given proper controls.

In this paper, we introduce a novel automated dynamic hint

generation approach to boost the scalability of reachability

computation. In contrast to [17], [18], our work is focused

upon generating high-quality hints from arbitrary netlist repre-

sentations, and is triggered on-demand only when reachability

computation exceeds a resource threshold. We have used

this technique successfully both for property checking and

sequential equivalence checking. Our specific contributions,

as detailed in Section III, include a method to dynamically

introduce hints to the reachability process based upon resource

thresholds; dynamic algorithms to compute effective hint se-

quences from a transition relation; and a method to truncate

reachability analysis under a given hint if it is deemed to

risk increasing the number of overall image computations by

too large a factor. While these techniques are all heuristic

in their attempt to reduce the complexity of a reachability

computation, our experiments in Section IV confirm that they

often significantly boost performance for complex problems,

and in many cases outperform SAT-based techniques.

II. PRELIMINARIES

A model checking problem may be expressed as a netlist: a

directed graph whose nodes (termed gates) comprise primary

inputs, state elements, and a variety of combinational logic

operators. State elements have associated initial values and

next-state functions. A state is a Boolean valuation to the

state elements. An initial state is a state consistent with the

conjunction of the initial values.

The transition relation TR(x, i, y) associated with a netlist

comprises current state variables {x1, . . . , xm}; next state

variables {y1, . . . , ym}; and input variables {i1, . . . , in}. It is

defined in a straight-forward way from the next-state functions

of the state elements of the netlist.

An image computation is used to compute the successors

of a set of states s, defined by ∃i.∃x.TR(x, i, y) ∧ s. A

Algorithm 1 Reachability using Hints

1: function FORWARDREACH(TR, hints, init states)
2: reached = init states

3: // true will be the last-used hint in hints

4: while (hint = pop(hints)) do
5: hint TR = apply hint(TR, hint) // constrain TR with hint

6: frontier = reached // first image with hint TR uses reached

7: while (true) do
8: image = compute image(hint TR, frontier)
9: frontier = compute frontier(image, reached)

10: if (frontier is empty) then break
11: end if

12: reached = bdd or(reached, frontier)
13: end while
14: end while
15: end function

reachability computation may be performed by first setting the

partial set of reached states to the initial states, then growing

that set by iteratively computing its image to add to the partial

set via union.

III. ENHANCED REACHABILITY ALGORITHMS

In this section we present our automated hint generation

algorithms. Algorithm 1 depicts a traditional framework for

reachability analysis using hints [16]. In a traditional appli-

cation, the hints are manually provided to the reachability

process, and the final hint must be true (or constant 1) to

ensure that the original transition relation will be restored for

a complete reachability computation.

There are several limitations of the use of hints in practice

which we address in this paper.

1. Requiring manual specification of hints diminishes their

utility, and enabling automation only for problems of suitable

Verilog syntax [17] is limiting in practice. We thus introduce

in Section III-A an effective automated hint generation al-

gorithm which operates directly upon the transition relation,

and in Section III-B an algorithm which iterates through the

generated hints.

2. In cases, hints may degrade performance of the reach-

ability computation because they increase the number of

image computations, while not significantly reducing effort vs.

unconstrained image computation. For easier problems, this is

a risk because the image computations are already efficient.

For complex problems, a fixed set of hints may not adequately

simplify image computation, whereas a more aggressive set of

hints may be helpful. To address this issue, we introduce in

Section III-C a reachability framework which introduces hints

upon demand, when BDDs exceed configurable thresholds.

3. In rare cases, hints may result in convergence problems

for reachability computation. A pathological example is for a

counter with a parallel load port, where any arbitrary state

may be loaded into the counter under control of a particular

input – otherwise it may take an exponential number of steps to

transition from one reachable state of the counter to another. If

a hint disables that parallel load, it may dramatically increase

the number of necessary image computations for a fixedpoint

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

158158158

Algorithm 2 Hint Introduction Algorithm

function GENERATE HINTS(TR, hints, reached, reduction limit, var limit)
2: vars = all variables that are not in hints

for all BDD variable var in vars do
4: compute rank of positive and negative literals of var

add best rank literal to array ranks

6: end for

sort ranks // ranks used to generate the initial hint cube
8: hint cube = bdd 1 ∧

∧
hints // form cube for already-selected hints

while (|ranks|) do
10: literal = best candidate from rank

prune rank from ranks

12: new cube = hint cube ∧ literal

if (new cube contradicts TR or reached) then
14: compute rank for opposite literal polarity; add to ranks

re-sort ranks; continue

16: else
hint cube = new cube

18: hints = hints ∪ literal

compute TR size reduction of TR from new cube

20: if ((TR reduction exceeds reduction limit) or (|hints| exceeds
var limit)) then

break
22: end if

end if
24: end while

return hints

26: end function

computation, slowing overall progress. We thus introduce in

Section III-D a mechanism to truncate the use of a specific

hint prior to fixedpoint if necessary, for overall robustness.

A. Automated Hint Generation Algorithm

Algorithm 2 outlines our automated hint-generation tech-

nique. The hints that we have found most effective are BDD

cubes over input variables and/or current state variables. A

BDD cube is a conjunction of BDD literals (positive or

negative) over a set of BDD variables.

There are several heuristics that we have found effective

for selecting the best BDD literals to include in hints. One

heuristic is to first select a BDD variable using the use count

of that variable as its ranking measure; i.e., the number of

BDD nodes associated with a given variable, then to select the

positive or negative literal of that variable based on the amount

of reduction to the transition relation each literal provided. The

intuition of using this metric is that it provides an indication

that asymmetries over the corresponding variable may be the

cause of intermediate BDD growth. Another heuristic is to

rank all the BDD literals according to the criteria of how much

reduction a given variable cofactoring provides to the transition

relation, which in turn provides an estimate of how much they

may speed up image computation. We have empirically found

that the former works best. The ranking metrics, along with

the most promising variable polarity, are recorded in the ranks

data structure against which each BDD variable will be sorted.

After ranking the BDD variables the next task is to select

a set of BDD literals to form the first hint cube. This is

not merely a matter of choosing the k highest-ranked literals

from the sorted ranks data structure, as the result may yield

a “contradicting” hint cube which has an empty intersection

with the transition relation or reached set, which begins as

the initial states. We thus perform a consistencycheck on the

candidate hint cube before adding a literal to it, and in case

of a contradiction, we flip the polarity of that variable and re-

rank. To avoid adding more literals to the first hint cube than

necessary, we use two termination criteria: (1) reduction limit

measures the degree to which the given hint cube reduces the

TR, i.e.
(
sizeof (TR) − sizeof (TR ∧ hint cube)

)
/sizeof (TR),

and (2) var limit which provides an upper-bound on the

number of literals to be added to hints. Our experience shows

that reduction limit may be left large, on the order of 100%

since a small transition relation will be fast for reachability

computation anyway, and a var limit of between 10 and 15

literals yields the best results for larger netlists (see further

discussion in Section IV and Figure 3). We use the bdd and

operation to constrain the transition relation with the hint cube.

Since the hint is merely a cube, the bdd and operation is as

effective as other BDD constraining operations.

It is noteworthy that the generated hints are highly depen-

dent upon BDD variable ordering. This algorithm may be

called multiple times in the overall reachability framework

as per Algorithm 4, possibly adding additional hints to a

non-empty set of previously-generated hints. It is likely that

dynamic variable ordering was invoked between these calls,

hence the added hints will reflect the best choice under the

current ordering.

B. Hint Iteration Algorithm

In addition to deciding the set of literals that will be

used for the hints, it is important to decide the sequence

of hints that will be applied given this set. We have found

the most consistently-effective hint-successor strategy to be

iteratively eliminating literals from the original hint cube,

thus starting the computation with a maximally-restrictive con-

straint and gradually relaxing that constraint. This observation

was formed over years of relying upon the use of manual

hints for BDD-based reachability analysis in practice, prior to

the availability of more scalable alternative proof techniques.

It is consistent with the intuitive notion that hints should

be introduced to decompose an overly-complex fixedpoint

computation from following many disparate design behaviors

to focusing on a smaller yet growing set of behaviors. This

process is depicted in Algorithm 3.

The gen next hint function is called as part of the overall

reachability framework in Algorithm 4. When reachability

analysis exceeds a complexity threshold and hint literals are

generated, this algorithm determines the sequence in which

literals are removed from that set for successive hints. Note

also that the sequence of applied hints is dynamically deter-

mined, vs. merely deciding a fixed order when hint literals

are generated via Algorithm 2, as variable ordering may have

changed between those points.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

159159159

Algorithm 3 Hint Successor Algorithm

function GEN NEXT HINT(TR, hints, first, reached)
cur hint = bdd 1 ∧

∧
hints

3: if (first) then
return cur hint

end if

6: re-rank and re-sort hints

while (|hints|) do
remove lowest-rank literal from hints

9: next hint = bdd 1 ∧
∧

hints

if ((next hint ∧ reached) ⊆ (cur hint ∧ reached)) then
continue // next hint is vacuous

12: else
return next hint

end if
15: end while

return bdd 1

end function

In our experiments, we observed occasional occurrences

of “vacuous” hints which do not add any new states to

the reached set. Rather than waste resources performing a

useless image and frontier computation in such cases, we

developed an inexpensive test to detect most vacuous hints

and avoid generating them. This test consists of computing the

conjunction Ic of cur hint with the reached set, and checking if

Ic contains the conjunction In of the candidate next hint with

the reached set. If so, next hint is vacuous and we proceed to

the next literal. Since our hints are cubes, this computation is

efficient in practice. Empirically, we found that approximately

20% of candidate hints are vacuous, and this step results in

approximately 15% improvement in overall performance.

C. Dynamic Hint Introduction

In practice, a monolithic application of hints may not

be ideal for several reasons. First, for easier problems, the

use of hints often degrades performance of the reachability

computation because they increase the number of image

computations, while not significantly reducing effort compared

to the unconstrained image computations. In other cases, the

application of hints is inadequate to reduce the complexity and

make image computation tractable. We thus have developed a

framework which introduces hints only upon demand, as BDD

sizes exceed configurable thresholds.

We exploit a “node limit” feature provided by our BDD

package which limits the peak number of nodes it is allowed to

generate within a BDD operation. If an operation exceeds this

limit, a special UNKNOWN handle is returned, which is treated

similarly to the X value in ternary analysis. Every image

computation is performed using a node limit, which allows

that computation to add at most a fixed number of BDD nodes.

If the image computation returns UNKNOWN, additional hint

literals are generated to mitigate the BDD explosion, and

the constrained image computation is repeated. Our practical

experience is that the threshold should not be too small, nor

overly large; an allowance of 350000 nodes is the best setting

we have practically found. To allow convergence on very

complex problems, whenever we generate hints, we increase

this threshold by a configurable factor (50% is effective) to

avoid future hints from being triggered too frequently on

problems that intrinsically need large BDDs. This process is

depicted in our overall reachability flow in Algorithm 4, under

control of variable bdd threshold.

D. Hint Truncation

In a traditional hint application as per Algorithm 1, a full

fixedpoint of states reachable under the corresponding hint-

constrained transition relation is performed for each hint. How-

ever, in cases, a hint may dramatically increase the number

of necessary image computations as per the example of a

counter with parallel load capability discussed in Section III.

For robustness, we thus have found it useful to place a limit on

the maximum number of image computations that are allowed

for a given hint. Because it is difficult to predict the number of

image computations which would be necessary without hints

(i.e., the diameter of the design), this metric in practice can

be kept quite large (on the order of 10000), and optionally

increased every time this limit is encountered. Using such a

facility, one may thus ensure that the use of hints increases

the number of image computations vs. reachability without

hints by at most a linear factor. This process is depicted in

our overall reachability flow in Algorithm 4, under control of

variable hint iters.

E. Overall Enhanced Reachability Algorithm

Algorithm 4 summarizes our overall enhanced reachability

framework, combining aspects described in prior sections.

Compared to Algorithm 1, the primary differences are: (1) au-

tomated generation of hints (Section III-A); (2) dynamically-

prioritized iteration among the generated hints, taking into

account current variable ordering (Section III-B); (3) dynamic

triggering of hint introduction (Section III-C); and (4) trunca-

tion of a hint if too many image computations are required

under that hint (Section III-D).

IV. EXPERIMENTAL RESULTS

In this section we provide experimental results to illustrate

the effectiveness of our techniques. These experiments are all

derived from the Hardware Model Checking Competition 2011

benchmarks [20], pruned to the 92 that: (1) were not trivially

solved by light-weight logic optimizations or random simula-

tion; (2) could complete a reachability computation either with

or without hints within a 4 hour time limit and 4GB memory:

and (3) our dynamic hint-generation algorithm was invoked

due to resource requirements. Because these benchmarks are

provided in AIGER form, not in behavioral Verilog syntax,

the technique of [17] is not applicable. Furthermore, the

benchmarks used in [17] are a small set that are not publicly

available, hence we could not readily contrast our approaches.

restrict our focus to those of [20].

We implemented our techniques in the reachability engine

included in the IBM verification tool SixthSense [12]. This

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

160160160

Algorithm 4 Reachability using Dynamic Automated Hints

1: function FORWARDREACH(TR, init states, var limit, bdd threshold,
bdd growth factor, depth threshold, reduction limit, hint iters)

2: reached = init states

3: hints = emptyset

4: first = true

5: while (hint = GET NEXT HINT(TR, hints, first)) do
6: first = false
7: hint iters = 0
8: hint TR = apply hint(TR, hint) // constrain TR with hint

9: frontier = reached

10: while (true) do
11: image = compute image(hint TR, frontier, bdd threshold)

12: if (image ≡ UNKNOWN) then // aborted due to bdd threshold

13: bdd threshold = bdd threshold * bdd growth factor

14: hints = GENERATE HINTS(TR, hints, reached, reduc-

tion limit, var limit)
15: first = true
16: break
17: end if

18: hint iters++

19: if (hint iters ≥ depth threshold) then break // goto next hint
20: end if

21: frontier = compute frontier(image, reached)

22: if (frontier is empty) then
23: if (hints ≡ emptyset) then return // fixedpoint complete
24: end if
25: break // goto next hint
26: end if

27: reached = bdd or(reached, frontier)
28: end while
29: end while
30: end function

engine uses an internally-developed BDD package [21], with

standard features such as dynamic variable ordering, as well as

more advanced techniques such as support for multiple distinct

BDD “managers” with the ability to cast BDDs from one to the

other as long as they share the same set of variables, though not

necessarily in the same order. One occasion to use a different

BDD manager is for on-the-fly counterexample generation

when concurrently solving multiple properties, to avoid trace

generation from triggering a dynamic variable ordering which

hurts continued reachability analysis. An initial ordering of

the variables is computed using the interleaved approach

described in [22]. We use the transition relation partitioning

techniques of [2] by default. Cutpointing is supported in both

the transition relation and the BDD representing the property.

A number of optimizations are used during the reachability

computation to reduce BDD size, including backward and

forward pruning of the transition relation as described in [23].

In addition, we make use of the BDD reduction operations

described in [15] when computing frontiers.

Figures 1 and 2 summarize our experiments for runtime

and memory, respectively, of performing a reachability com-

putation after light-weight logic optimization techniques, with

and without our dynamic hint generation approach. Note that

we forced a complete reachability computation on each of

 10

 100

 1000

 10000

 10 100 1000 10000

R
e
a
c
h
a
b
ili

ty
 w

it
h
 H

in
ts

 (
s
e
c
o
n
d
s
)

Reachability without Hints (seconds)

Fig. 1. Reachability Computation Runtime with vs. without Hints

these, even if an on-the-fly failure could have enabled early

termination. None of these experiments exhausted memory,

though there were timeouts which are omitted from Figure 2.

These results demonstrate that hints do introduce a computa-

tional overhead for simpler problems – primarily those which

complete within several minutes. However, for a majority of

the complex problems, hints significantly improve runtime and

memory requirements. In fact, the benefit achieved by hints

is largely proportional to the complexity of the verification

problems: those which would otherwise require approximately

1000 seconds often speed up to within one order of magnitude,

and those which otherwise require approximately 10000 sec-

onds often speed up to approaching two orders of magnitude.

There are several examples which timeout without hints,

yet which complete with hints. This is a promising result,

as the practical need to improve runtimes of complex, if

not “otherwise unsolvable,” problems is at the forefront of

industrial relevance.

Note that the memory plot exhibits a fair amount of clus-

tering of data points, caused by thresholds at which dynamic

 10

 100

 1000

 10000

 10 100 1000 10000

R
e

a
c
h

a
b

ili
ty

 w
it
h

 H
in

ts
 (

M
B

)

Reachability without Hints (MB)

Fig. 2. Reachability Computation Memory with vs. without hints

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

161161161

 200

 400

 600

 800

 1000

 1200

 10 15 20 25 30

R
e

a
c
h

a
b

ili
ty

 C
o

m
p

u
ta

ti
o

n
 R

u
n

ti
m

e
 (

s
e

c
o

n
d

s
)

Number of Hints

pdtvisvsar29
nusmvbrp

pdtvsarmultip12

Fig. 3. Impact of number of hints on runtime

variable ordering is invoked. Similarly to the runtime analysis,

there are frequent benefits of one to two orders of magnitude

for more complex problems, though some penalties primarily

for simpler problems.

The observation that hints often entail an overhead for

simpler problems prompts the question of whether the intro-

duction of hints should be delayed until a larger threshold. We

performed significant experimentation to assess the validity of

this strategy and found that delaying the onset of hints almost

uniformly hurt complex problems. Invoking hints when the

reached set has grown to millions of BDD nodes often requires

more expensive dynamic variable ordering calls, and applying

a large number of hints at that point degrades performance.

Adjusting our hint heuristics to improve performance of sim-

pler problems would compromise performance on complex

problems, where hints yield the biggest advantage. We also

note that in an industrial-strength multi-engine verification

flow, slowdown of simpler problems is not as serious of a

concern since within that runtime, one likely would have spent

comparable resources trying various alternate algorithms such

as bounded model checking and IC3.

Figure 3 illustrates the impact of number of generated

hints on runtime. In the experiment, reachability analysis was

performed varying the number of hints from 8 to 25. These

experiments demonstrate that it is disadvantageous to use

too few or too many hints. With too few, the hints do not

adequately simplify image computation, while with too many

there is too large of an overall increase in the number of

computed images. Recall from Algorithm 2 that we use a

parameter var limit to limit the maximum number of literals

that may be included in a hint. Practically, we have found

it useful to bound this parameter based upon netlist size (a

percentage of the total number of inputs and state elements)

to preclude introducing too many hints for smaller problems.

To justify the importance of highly-tuned reachability en-

gine in a state-of-the-art verification tool, we ran light-weight

logic optimization techniques followed by our implementation

of IC3 [4], interpolation [3], and k-step unique-state induction

engines [24], which are all highly-tuned and competitive with

the best academic solvers. Of the 92 benchmarks, 11 resulted

in counterexamples for all their properties hence the SAT-

based techniques terminated upon finding these counterexam-

ples, whereas we disabled early-termination in our reachability

engine for these experiments. We thus omit these 11 from

the following experiments. We illustrate the runtimes for the

remaining 81 benchmarks using reachability without hints,

reachability with hints, and the three SAT-based techniques

mentioned above, in Table I. The runtime for the technique

which solves most quickly is shown in bold.

Note that 5 benchmarks are solved most quickly using

reachability with hints, whereas 14 are solved most quickly

using reachability without hints. This collectively represents

23.4% of the benchmarks which are solved more quickly using

BDD-based reachability than SAT-based techniques, often by

orders of magnitude. The converse is not surprisingly true

as well; the SAT-based techniques inherently reason about

the design in an abstract manner vs. precisely computing the

reachable states, often resulting in much faster runtimes. If we

preceded reachability computation by abstraction techniques

such as localization [8] or phase abstraction [10], or sequential

reductions such as redundancy removal [9] or retiming [11],

this would have enabled reachability computation on a larger

fragment of the benchmark suite, and have narrowed the

precise vs. abstract penalty imposed by these experiments.

IC3 solves 27 most quickly (33.3%), and induction solves 35

(43.2%)most quickly, where we broke ties in favor of induction

given the maturity and simplicity of that technique. Interpola-

tion was somewhat surprisingly not the winning engine in any

of these benchmarks. While we have found IC3 to very often

outperform interpolation in practice, there are industrial cases

where interpolation is the winning technique.

To further emphasize the role of reachability analysis and

hints, we note the following.

1. We only included examples for which hints were generated

in these experiments, thus omitted numerous easy wins for

reachability in this benchmark suite.

2. Reachability with hints solved all these benchmarks,

whereas reachability without hints has 3 timeouts, IC3 has

13, and interpolation and induction each have 41.

3. Reachability using hints outperformed reachability without

hints in 46 of these examples (56.8%). As per Figure 1, hints

offers greater benefits for more complex benchmarks; if we

increase the timeout period, our practical experience is that

hints and BDD-based techniques overall play a larger role.

4. In a state-of-the verification tool, lighter-weight algorithms

are often leveraged with a moderate resource limit before

heavier-weight techniques. If we discount benchmarks solv-

able within 10 seconds, only 29 of these benchmarks remain:

19 are solved most quickly using reachability (65.5%), 7 using

IC3 (24.1%), and 3 using induction (10.3%).

5. Cumulative runtime for reachability with hints is much

lesser than for the other techniques while counting timeouts at

4 hours, and even outperforms reachability without hints by a

factor of 1.77 when discounting the 3 timeouts for the latter.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

162162162

Benchmark Name Inputs / Ands / Reachability Reachability IC3 Interpolation Induction

Registers w/o Hints with Hints

6s4 209 / 2448 / 201 405.4 (3918) 976.1 (7738) TO TO 6081.3

6s48 72 / 796 / 66 7151.8 (17) 3884.1 (31) TO TO TO

6s48p0 72 / 795 / 66 2434.8 (17) 10620.2 (57) TO TO 430.4

6s52 35 / 1226 / 207 65.1 (52) 179.1 (245) TO TO TO

6s53 35 / 1228 / 207 115.7 (259) 557.6 (1052) TO TO TO

bjrb07amba10andenv 23 / 62516 / 58 36.0 (41) 76.8 (69) 240.1 TO TO

bjrb07amba7andenv 17 / 22312 / 45 15.6 (33) 63.2 (98) 26.2 TO TO

bjrb07amba9andenv 21 / 45216 / 52 33.3 (41) 84.5 (188) 75.1 TO TO

boblivea 5 / 540 / 102 7117.3 (49) 3130.9 (104) 8.0 TO TO

boblivear 5 / 321 / 77 2220.7 (49) 7109.3 (119) 68.8 7638.8 TO

eijkbs1512 29 / 817 / 123 TO (544) 5675.1 (1300) 1.3 TO TO

eijkbs3330 37 / 1407 / 166 TO (4) 11637.8 (48) 23.2 TO TO

intel055 222 / 3847 / 124 561.5 (24) 908.6 (75) 16.6 TO TO

intel059 280 / 1955 / 140 646.2 (24) 1257.5 (83) 13.7 TO TO

intel063 288 / 1773 / 240 34.1 (7) 67.9 (19) 0.6 0.7 TO

nusmvbrp 11 / 378 / 51 1952.2 (57) 864.8 (158) 2.2 3492.6 TO

nusmvdme1d3multi 54 / 236 / 61 TO (38) 104.6 (270) TO TO TO

nusmvqueue 82 / 1200 / 84 462.4 (45) 1270.0 (136) 5246.5 TO TO

pdtfifo1to0 6 / 860 / 142 251.6 (62) 1440.6 (398) 5517.9 TO TO

pdtpmsbufferalloc 6 / 477 / 66 78.6 (31) 46.0 (57) TO TO TO

pdtpmseisenberg 3 / 1765 / 125 544.9 (90) 366.2 (223) TO TO TO

pdtpmsfpmult 17 / 929 / 166 49.0 (7) 178.6 (37) 1.0 14176.8 TO

pdtpmsgigamax 22 / 681 / 85 6.9 (8) 22.5 (37) 0.3 4.5 TO

pdtpmsns2 16 / 1742 / 278 339.1 (16) 322.7 (38) 56.2 TO TO

pdtpmstimeout 10 / 922 / 80 12.3 (28) 27.1 (64) TO TO TO

pdtswvibs8x8p1 9 / 1039 / 96 81.5 (83) 813.3 (523) 5.1 47.3 4.6

pdtswvqis10x6p1 7 / 1609 / 92 124.0 (99) 1187.1 (487) 81.0 TO TO

pdtswvqis10x6p2 7 / 1771 / 88 84.5 (99) 1871.4 (489) TO TO TO

pdtswvqis8x8p1 9 / 1685 / 98 18.6 (79) 215.5 (325) 48.6 2492.3 6612.2

pdtswvqis8x8p2 9 / 1866 / 94 37.9 (79) 326.4 (349) TO TO TO

pdtswvrod6x8p1 9 / 1314 / 74 40.0 (132) 39.2 (748) 100.4 TO TO

pdtswvrod6x8p2 9 / 1331 / 70 38.0 (132) 371.0 (772) TO TO TO

pdtswvroz10x6p1 7 / 926 / 73 52.1 (87) 152.1 (367) 3.5 3413.2 27.6

pdtswvroz10x6p2 7 / 941 / 73 192.9 (87) 234.6 (391) 13.3 TO 2262.8

pdtswvsam6x8p4 9 / 2003 / 116 1385.7 (69) 4125.2 (453) TO TO 264.9

pdtswvtma6x4p2 5 / 457 / 42 37.5 (60) 81.4 (159) 92.4 TO 8.3

pdtswvtma6x4p3 5 / 459 / 42 14.9 (60) 24.1 (164) 918.4 TO 42.2

pdtswvtma6x6p1 7 / 640 / 58 205.4 (60) 984.1 (235) 48.6 904.2 6.7

pdtswvtma6x6p2 7 / 607 / 58 280.3 (60) 861.9 (242) 1002.1 TO 49.0

pdtvisns3p00 21 / 1210 / 100 371.3 (25) 174.8 (60) 3.6 TO TO

pdtvisns3p01 21 / 1220 / 100 157.7 (25) 84.7 (83) 5.6 TO TO

pdtvisns3p02 21 / 1206 / 100 322.8 (25) 191.8 (130) 3.0 TO TO

pdtvisns3p03 21 / 1200 / 100 249.4 (25) 121.1 (43) 2.2 TO TO

pdtvisns3p04 21 / 1183 / 100 246.5 (25) 134.6 (146) 3.9 TO TO

pdtvisns3p05 21 / 1179 / 100 95.3 (25) 105.7 (150) 3.3 TO TO

pdtvisns3p06 21 / 1181 / 100 256.4 (25) 159.9 (42) 6.7 TO TO

pdtvisns3p07 21 / 1190 / 100 236.6 (25) 169.2 (78) 3.9 TO TO

pdtvisns3p08 21 / 1176 / 100 242.4 (25) 148.5 (127) 0.8 TO TO

pdtvisns3p09 21 / 1178 / 100 119.5 (25) 89.7 (90) 0.9 TO TO

pdtvissoap1 11 / 1510 / 124 23.8 (46) 40.5 (77) 1.7 TO TO

pdtvissoap2 11 / 1548 / 124 21.0 (46) 39.0 (118) 1.2 149.7 TO

pdtvisvsar27 17 / 898 / 62 1622.1 (36) 217.5 (192) 0.1 0.3 0.1

pdtvisvsar29 17 / 1081 / 61 3994.4 (36) 383.9 (111) 120.2 5049.6 0.3

pdtvsarmultip 17 / 1473 / 77 2922.6 (36) 541.6 (116) 65.2 1891.5 0.8

pdtvsarmultip00 17 / 860 / 61 1683.8 (36) 133.8 (139) 0.1 0.2 0.1

pdtvsarmultip03 17 / 873 / 61 1942.7 (36) 199.7 (118) 0.1 0.1 0.1

pdtvsarmultip04 17 / 873 / 61 3285.1 (36) 125.1 (237) 0.1 0.1 0.1

pdtvsarmultip05 17 / 850 / 61 855.9 (36) 914.6 (187) 0.5 0.3 0.1

pdtvsarmultip06 17 / 862 / 61 7017.1 (36) 104.3 (261) 0.2 0.2 0.1

pdtvsarmultip07 17 / 890 / 61 4134.4 (36) 137.3 (94) 0.4 0.4 0.1

pdtvsarmultip08 17 / 857 / 61 3584.0 (36) 2650.1 (478) 0.1 0.2 0.1

pdtvsarmultip09 17 / 852 / 61 1653.3 (36) 291.2 (180) 0.1 0.2 0.1

pdtvsarmultip10 17 / 852 / 61 2065.2 (36) 241.1 (131) 0.4 0.3 0.1

pdtvsarmultip11 17 / 870 / 62 1252.5 (36) 438.4 (132) 0.1 0.1 0.1

pdtvsarmultip12 17 / 866 / 61 1229.7 (36) 121.1 (214) 0.1 0.1 0.1

pdtvsarmultip13 17 / 869 / 64 3613.9 (36) 237.8 (173) 0.1 0.1 0.1

pdtvsarmultip14 17 / 900 / 61 1074.4 (36) 100.9 (170) 0.1 0.1 0.1

pdtvsarmultip15 17 / 880 / 61 1057.6 (36) 228.4 (124) 0.1 0.1 0.1

pdtvsarmultip17 17 / 879 / 63 3326.2 (36) 143.7 (121) 0.1 0.1 0.1

pdtvsarmultip19 17 / 876 / 62 977.3 (36) 130.7 (109) 0.1 0.1 0.1

continued on next page

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

163163163

Benchmark Name Inputs / Ands / Reachability Reachability IC3 Interpolation Induction

Registers w/o Hints with Hints

pdtvsarmultip21 17 / 874 / 62 496.3 (36) 375.0 (254) 0.1 0.1 0.1

pdtvsarmultip22 17 / 846 / 62 1356.7 (36) 197.6 (115) 0.1 0.1 0.1

pdtvsarmultip23 17 / 865 / 62 1852.7 (36) 159.1 (121) 0.1 0.1 0.1

pdtvsarmultip24 17 / 861 / 62 5350.6 (36) 158.4 (170) 0.1 0.1 0.1

pdtvsarmultip26 17 / 865 / 62 2016.4 (36) 612.8 (234) 0.1 0.1 0.1

pdtvsarmultip27 17 / 882 / 62 1186.4 (36) 121.8 (220) 0.1 0.3 0.1

pdtvsarmultip29 17 / 1064 / 61 1735.2 (36) 1747.5 (176) 802.6 2636.6 0.5

pdtvsarmultip31 17 / 1002 / 62 1781.9 (36) 502.7 (167) 0.1 0.1 0.1

pdtvsarmultip32 17 / 983 / 61 6739.3 (36) 491.7 (179) 25.5 86.0 0.2

pj2009 304 / 7498 / 269 3734.3 (31) 5748.3 (159) 4.3 20.4 TO

sm98a7multi 82 / 3337 / 89 12346.1 (37) 1632.9 (161) 2.8 1.4 1.1

Cumulative 158558.6 82707.6 201872.0 632409.5 606195.3

TABLE I. Runtimes for various proof engines. Column 2 provides size of the benchmark after light-weight reductions. Subsequent columns list runtimes in
seconds; TO refers to 4-hour timeout. The number in parenthesis in Columns 3 and 4 indicates the number of image computations until fixedpoint or TO.

While points 2 and 3 above are skewed by the selection of

benchmarks for which reachability in some form converges,

these experiments do emphasize that reachability often out-

performs SAT-based techniques, and hints increase the overall

robustness of reachability computation.

V. CONCLUSION

Despite many advances in SAT-based proof techniques,

BDD-based reachability remains a critical technology which

is able to significantly outperform alternative proof techniques

on numerous classes of problems. In this paper, we introduce

a novel technique to increase the scalability of reachability

computation: automated dynamic netlist-based hint generation.

Experiments demonstrate that this approach is able to reduce

resources well over an order of magnitude on many complex

verification problems, outperforming SAT-based techniques in

many cases. These techniques have played a vital role in

revitalizing reachability analysis as a core industrial-strength

proof technique in our multi-algorithm verification toolsuite.

REFERENCES

[1] J. R. Burch, E. M. Clarke, and D. E. Long, “Symbolic model checking
with partitioned transition relations,” in VLSI, pp. 49–58, Aug. 1991.

[2] I.-H. Moon, G. D. Hachtel, and F. Somenzi, “Border-block triangular
form and conjunction schedule in image computation,” in FMCAD, Nov.
2000.

[3] K. McMillan, “Interpolation and SAT-based model checking,” in CAV,
2003.

[4] A. Bradley, “SAT-based model checking without unrolling,” in VMCAI,
Jan. 2011.

[5] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in TACAS, March 1999.

[6] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco,
J. Taylor, and J. Long, “Smart simulation using collaborative formal
and simulation engines,” in ICCAD, Nov. 2000.

[7] I.-H. Moon, J. H. Kukula, K. Ravi, and F. Somenzi, “To split or to
conjoin: the question in image computation,” in DAC, June 2000.

[8] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in CAV, July 2000.

[9] H. Mony, J. Baumgartner, A. Mishchenko, and R. Brayton, “Speculative
reduction-based scalable redundancy identification,” in DATE, 2009.

[10] P. Bjesse and J. Kukula, “Automatic generalized phase abstraction for
formal verification,” in ICCAD, Nov. 2005.

[11] A. Kuehlmann and J. Baumgartner, “Transformation-based verification
using generalized retiming,” in CAV, July 2001.

[12] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann,
“Scalable automated verification via expert-system guided transforma-
tions,” in FMCAD, Nov. 2004.

[13] Berkeley Logic and Synthesis Group, ABC: A System for Sequential

Synthesis and Verification. http://www.eecs.berkeley.edu/alanmi/abc.

[14] G. Cabodi, S. Nocco, and S. Quer, “Benchmarking a model checker for
algorithmic improvements and tuning for performance,” Formal Methods

in System Design, vol. 39, no. 2, pp. 205–227, 2011.

[15] P. A. Beerel, J. R. Burch, and K. L. McMillan, “Sibling-substitution-
based BDD minimization using don’t cares,” TCAD, vol. 19, Jan. 2000.

[16] K. Ravi and F. Somenzi, “Hints to accelerate symbolic traversal,” in
CHARME, Oct. 1999.

[17] D. Ward and F. Somenzi, “Automatic generation of hints for symbolic
traversal,” in CHARME, Sept. 2005.

[18] D. Ward and F. Somenzi, “Decomposing image computation for sym-
bolic reachability analysis using control flow information,” in ICCAD,
Nov. 2006.

[19] K. Ravi and F. Somenzi, “High-density reachability analysis,” in ICCAD,
Nov. 1995.

[20] Hardware Model Checking Competition 2011.
http://fmv.jku.at/hwmcc11.

[21] G. Janssen, “Design of a pointerless BDD package.,” in IWLS, 2001.

[22] H. Fujii, G. Ootomo, and C. Hori, “Interleaving based variable ordering
methods for ordered binary decision diagrams,” in ICCAD, Nov. 1993.

[23] H. Jin, A. Kuehlmann, and F. Somenzi, “Fine-grain conjunction schedul-
ing for symbolic reachability analysis,” in Tools and Algos. Construction

and Analysis of Systems, April 2002.

[24] N. Eén and N. Sörennson, “Temporal induction by incremental SAT
solving,” in Workshop on Bounded Model Checking, 2003.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

164164164

	03t
	04t
	05t
	06t
	07kn
	08p
	09p
	10p
	11p
	12p
	13p
	14p
	15p
	16p
	17p
	18p
	Introduction
	Previous Approaches and Related Work
	Preliminaries
	Basic Notation
	General strategies
	Binary Decision Diagrams

	Learning Small Circuits
	Decomposition
	Learning circuits with a single output bit
	Learning CNFs
	Learning CDNFs

	Experimental Results
	Implementation and Experimental Setup
	Experiments with Ratsy
	Experiments with Unbeast
	Discussion

	Conclusions and Future Work
	References
	Appendix

	19p
	20p
	21p
	Introduction
	Background and Previous Work
	Upgrade Checking
	Basic Algorithm
	Optimization and Refinement
	Correctness

	Evaluation
	Related Work
	Conclusion
	References

	22p
	23p
	24p
	25p
	26p
	27p
	28p
	Introduction
	Related Work

	Preliminaries
	SAT-based Reachability via IC3
	Abstraction
	Lazy Abstraction

	Lazy Abstraction and IC3
	Abstract Model Checking via A-IC3
	Refinement
	Correctness Arguments
	Detailed Description of Strengthening

	Experimental Results
	Acknowledgments
	References

	29p
	30it
	31p
	32p
	33p
	34ai

