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Goal:  Build a program verification framework that can be deployed in the 

software industry.

Observations:

 Machine code verification frameworks can serve as general-purpose 

program analysis frameworks.

Analysis of program behavior is done by both simulation and formal 
verification.

There are separate tools for simulation and formal verification.
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Approach

Develop a formal and executable model of the x86 instruction set architecture  

in the            theorem proving system. 



Simulate x86 machine code programs produced by GCC/LLVM compilers.
Co-simulations are done to validate the model.

‣ We believe that we have the fastest formal x86 simulator.
                   (~580K - 2.4 million instructions/sec)
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Simulate x86 machine code programs produced by GCC/LLVM compilers.
Co-simulations are done to validate the model.

‣ We believe that we have the fastest formal x86 simulator.
                   (~580K - 2.4 million instructions/sec)

Prove or disprove the correctness of machine code programs with respect 

to their specifications.
Reason about straight-line code automatically using a verified bit-blasting library in ACL2.
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Mechanically verify non-trivial programs like cat, standard library functions, 

operating system processes, etc.
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Program comprehension and bug identification
Is there any set of inputs for a program that can produce a desired output?
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