
A Formal Model of x86 for
Machine-Code Proofs

Shilpi Goel
shigoel@cs.utexas.edu

The University of Texas at Austin

mailto:shigoel@cs.utexas.edu
mailto:shigoel@cs.utexas.edu

Goal: Build a program verification framework that can be deployed in the

software industry.

1

Research Goal

Goal: Build a program verification framework that can be deployed in the

software industry.

Observations:

 Machine code verification frameworks can serve as general-purpose

program analysis frameworks.

1

Research Goal

Goal: Build a program verification framework that can be deployed in the

software industry.

Observations:

 Machine code verification frameworks can serve as general-purpose

program analysis frameworks.

Analysis of program behavior is done by both simulation and formal
verification.

1

Research Goal

Goal: Build a program verification framework that can be deployed in the

software industry.

Observations:

 Machine code verification frameworks can serve as general-purpose

program analysis frameworks.

Analysis of program behavior is done by both simulation and formal
verification.

There are separate tools for simulation and formal verification.

1

Research Goal

2

Approach

Develop a formal and executable model of the x86 instruction set architecture

in the theorem proving system.

Simulate x86 machine code programs produced by GCC/LLVM compilers.
Co-simulations are done to validate the model.

‣ We believe that we have the fastest formal x86 simulator.
 (~580K - 2.4 million instructions/sec)

2

Approach

Develop a formal and executable model of the x86 instruction set architecture

in the theorem proving system.

Simulate x86 machine code programs produced by GCC/LLVM compilers.
Co-simulations are done to validate the model.

‣ We believe that we have the fastest formal x86 simulator.
 (~580K - 2.4 million instructions/sec)

Prove or disprove the correctness of machine code programs with respect

to their specifications.
Reason about straight-line code automatically using a verified bit-blasting library in ACL2.

2

Approach

Develop a formal and executable model of the x86 instruction set architecture

in the theorem proving system.

Automated reasoning about machine code
Mechanically verify non-trivial programs like cat, standard library functions,

operating system processes, etc.

3

Future Work

Automated reasoning about machine code
Mechanically verify non-trivial programs like cat, standard library functions,

operating system processes, etc.

3

Future Work

Analysis of resource usage
Memory consumption

Automated reasoning about machine code
Mechanically verify non-trivial programs like cat, standard library functions,

operating system processes, etc.

3

Future Work

Analysis of resource usage
Memory consumption

Program comprehension and bug identification
Is there any set of inputs for a program that can produce a desired output?

A Formal Model of x86 for
Machine-Code Proofs

Shilpi Goel
shigoel@cs.utexas.edu

The University of Texas at Austin

mailto:shigoel@cs.utexas.edu
mailto:shigoel@cs.utexas.edu

