
Interpolation with Guided Refinement: revisiting

incrementality in SAT-based Unbounded Model

Checking

G. Cabodi, M. Palena, P. Pasini

Dipartimento di Automatica ed Informatica

Politecnico di Torino - Torino, Italy

Email: {gianpiero.cabodi, marco.palena, paolo.pasini}@polito.it

Abstract—This paper addresses model checking based on SAT
solvers and Craig interpolants. We tackle major scalability
problems of state-of-the-art interpolation-based approaches, and
we achieve two main results: (1) a novel model checking al-
gorithm; (2) a new and flexible way to handle an incremental
representation of (over-approximated) forward reachable states.
The new model checking algorithm (IGR: Interpolation with
Guided Refinement), partially takes inspiration from IC3 and
interpolation sequences. It bases its robustness and scalability on
incremental refinement of state sets, and guided unwinding/sim-
plification of transition relation unrollings. State sets, the central
data structure of our algorithm, are incrementally refined, and
they represent a valuable information to be shared among related
problems, either in concurrent or sequential (multiple-engine or
multiple property) execution schemes. We provide experimental
data, showing that IGR extends the capability of a state-of-the-art
model checker, with a specific focus on hard-to-prove properties.

I. INTRODUCTION

Craig interpolants (ITPs for short) [1], [2], introduced by

McMillan [3] in the Unbounded Model Checking (UMC)

field, have shown to be effective on difficult verification

instances. Though recently challenged by new techniques

(IC3, Incremental Construction of Inductive Clauses for In-

dubitable Correctness [4]), our experience within the field of

HWMCC competitions [5] and industrial co-operations shows

that interpolation-based approaches still play an important role

within a portfolio-based tool.

From a high-level Model-Checking perspective, Craig in-

terpolation is an operator able to compute over-approximated

images. The approach can be viewed as an iterative refine-

ment of proof-based abstractions, to narrow down a proof to

relevant facts. Over-approximations of the reachable states are

computed from refutation proofs of unsatisfied BMC-like runs,

in terms of AND/OR circuits, generated in linear time and

space, w.r.t. the proof.

Craig interpolants most interesting features are their com-

pleteness and the automated abstraction mechanism. Whereas

one of their major challenges is the inherent redundancy of

interpolant circuits, as well as the need for fast and scalable

techniques to compact them. Improvements over the base

method [3] were proposed in [6], [7], [8], [9], [10] and [11],

1This work was supported in part by SRC contract 2012-TJ-2328.

in order to push forward applicability and scalability of the

technique.

Interpolant compaction is a potential approach that we

have specifically addressed in [12]. We follow here a second

track of research: alternative ITP-based traversal schemes for

model checking algorithms, under the underlying purpose of

incrementally computing state sets and reducing the com-

plexity of their computation. We also follow the idea of

incrementality in order to support optimal data structures

for the verification of multiple properties, and for a tighter

integration with counterexample- and/or proof-based [13], [14]

abstraction/refinement approaches.

A. Contributions

The main contributions of this work are: (1) A novel model

checking algorithm based on interpolation and characterized

by: incremental computation of state sets, guided deployment

and simplification of transition relation unrollings; (2) Internal

optimizations to image computation, exploiting the incremen-

tal state representation; (3) A new and flexible way to compute

and refine state set representations.

B. Related works

Our work is related to many recent papers on SAT-based

Model Checking. Among others, let us mention that the idea

of guided search and refinement is clearly present in some

past BDD-based works (see for instance [15]), in IC3 [4], as

well as in interpolation sequences (ITPSEQ [16], [17]). More

recently, Vizel et al. [18] have proposed Dual Approximated

Reachability (DAR), an evolution of interpolation sequences

that considers mixing forward and backward reachability. Our

approach takes ideas from all above works, it is based on

interpolation, it computes just forward approximations of state

sets, which allows us to potentially reuse them for multiple

properties (or sub-properties) of the same model.

Our scheme of incremental refinement of state sets takes

equal inspiration from IC3 and ITPSEQ. Compared to IC3, we

represent state sets by circuits instead of clauses, and our state

sets relax inductiveness constraints. Compared to interpolation

sequences, though our refinement scheme is similar, we never

compute an interpolation sequence from a single SAT run (and

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 43

proof), but we activate sequences of standard interpolation

and/or approximate image calls.

Many other internal details, at the level of SAT and circuit-

based reasoning, take inspiration from the above, as well

as other existing works. Let us mention for instance clause

propagation by pushing, redundancy removal by subsumption,

that we brought from IC3 and re-implemented on circuit-based

(AIG) representations.

C. Outline

Section II introduces background notions and notation about

BMC and UMC, SAT-based Craig interpolant Model Check-

ing, IC3. Sections III, IV, V introduce our contributions.

Section III discusses incremental state sets in interpolation,

section IV introduces base concept on guiding cones through

state sets, section V presents the overall IGR algorithm. Sec-

tion VII discusses the experiments we performed. Section VIII

concludes with some summarizing remarks.

II. BACKGROUND

A. Model and Notation

We address systems modeled by labeled state transition

structures and represented implicitly by Boolean formulas.

From our standpoint, a system M is a triplet M = (S, S0, T),
where S is a finite set of states, S0 ⊆ S is the set of initial

states, and T ⊆ S × S is a total transition relation. The

system state space is encoded with an indexed set of Boolean

variables X = {x1, . . . , xn}, so that a state s ∈ S corresponds

to a valuation of the variables in X , and a set of states can

be represented with a Boolean formula over X . We use the

primed notation (X ′) for the next state of a variable (so a

transition relation is T (X, X ′)). Whenever more time frames

are involved, we use a superscript notation: e.g., in circuit

unrollings, we use X i for the X variables instantiated at the i-
th time frame. Support variables will be omitted for simplicity

when easily guessed from the context. A literal is a Boolean

variable or its negation. A clause is a disjunction of literals. A

CNF formula is a conjunction of clauses. Most modern SAT

solvers [19], [20] adopt clauses as their main representation

and manipulation formalism for Boolean functions. Given a

Boolean formula F, whenever we need to explicitly indicate

its before/after version, w.r.t. an evaluation (e.g., a refinement

step), we use a −1 superscript for the before version: F−1.

We will use overlined letters for arrays of functions: e.g.,

F = (F0,F1, ...).

B. Bounded and Unbounded Model Checking

Given a sequential system M and an invariant property

p, SAT-based BMC [21] is an iterative process to check the

validity of p up to a given bound. To perform this task, the

transition relation T is unrolled k times

T k(X0..k) =
∧k−1

i=0 T (X i, X i+1)

in order to implicitly represent all state paths of length k. BMC

tools use SAT checks such as:

bmck(X0..k) = S0(X0) ∧ T k(X0..k) ∧∨k
i=0 ¬p(X i)

to look for counterexamples (of length ≤ k) that start from

the initial states S0 and falsify p. The same formula can be

rewritten, in a simpler form, by omitting support variables, as

follows:

bmck = S0 ∧ T k ∧∨k
i=0 ¬p

Though BMC tools are effective at finding bugs, their verifi-

cation method is not complete. Therefore, specific techniques

are required in order to support Unbounded Model Checking

(UMC). The ability to check reachability fix-points and/or

to find inductive invariants, is thus the main difference, and

additional complication, between BMC and UMC.

C. Craig Interpolants

Let A and B be two inconsistent Boolean formulas,

i.e., such that A ∧ B ≡ ⊥. An ITP I for (A, B) is a

formula such that: (1) A ⇒ I , (2) I ∧ B ≡ ⊥, and

(3) supp(I) ⊆ supp(A) ∩ supp(B).

INTERPOLANTMC (S0, T , ¬p)
k = 0
do

Conek = CONEUNROLL(¬p, T , k)
res = FINITERUN (S0, T , Conek)
k = k + 1

while (res = undecided)
return (res)

FINITERUN (S0, T , Cone)
if SAT(S0 ∧ T ∧ Cone) return (reachable)
R = S0

while (⊤)
Image = ITP(R ∧ T , Cone)
if (Image = undefined)

return (undecided)
if (Image ⇒ R) return (unreachable)
R = R ∨ Image

Fig. 1. Interpolant-based Verification.

An interpolant I = ITP(A, B) can be derived, as an

AND/OR circuit, from the refutation proof of A ∧ B.

McMillan [3] proposed an effective fully SAT-based Un-

bounded Model Checking algorithm, exploiting interpolants,

as sketched in Figure 1.

Routine FINITERUN operates a forward traversal, where

interpolation is used as an over-approximate image operator.

The degree of accuracy or abstraction of the operation is tied

to the bound K of the Cone0..k transition relation unrolling.

Whenever the product (S0∧T ∧Cone) is UNSAT, we say that

S0 and Cone are mutually adequate. The function may end

up with three possible results:

• reachable, if it proves ¬p reachable in k steps, hence the

property has been disproved;

• unreachable, if the approximate traversal using the

IMG
+
Adq image computation reaches a fix-point. In this

case the property is proved;

• undecided, if ¬p intersects the over-approximate state

sets. Then, k in increased for a new FINITERUN call.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 44

Routine INTERPOLANTMC, on top of FINITERUN, loops

through increasing k bound values. The previous algorithm

is sound and complete [3].

D. IC3

IC3 [4] is based on incrementally refining and extending

a sequence F1, ...,Fk of sets of reachable states (bounded

invariants) represented by sets of clauses, under the following

rules:

F0 = S0

Fi ⇒ Fi+1, for1 ≤ i ≤ k − 1
Fi ⊇ Fi+1 as sets of clauses, for1 ≤ i ≤ k − 1
Fi ∧ T ⇒ Fi+1, for 1 ≤ i ≤ k − 1
Fi ⇒ p.

The introduction of IC3 [4] suggested a different way

to compute information about reachable states, as (unlike

other ITP-based approaches) IC3 requires no unrolling of the

transition relation. One of the major contributions of IC3 is

an inductive reasoning, where induction is exploited under

stepwise assumptions-assertions. IC3 is incremental in that

it finds inductive subclauses of the negations of states. The

main limitation of IC3 is the potential clause-based state set

enumeration. Some interesting ideas of IC3, that partially

influenced our work, are:

• the incremental representation of state sets;

• the push operation, that possibly re-uses clauses from

inner state sets to outer ones;

• redundancy removal by subsumption.

III. INCREMENTAL STATE SETS IN ITP

In this section we describe our model of incremental state

sets. Instead of directly introducing the overall IGR algorithm

(see section V), we just propose here some modifications to

the standard interpolation algorithm of [3], that would allow

reusing and refining previously computed interpolants.

As already pointed out, incremental state sets are present in

ITPSEQ [16], [17] and DAR [18]. Compared to those works,

our approach, as described in the sequel, is much closer to

standard interpolation. More in detail:

• we just work on approximations of forward reachable

states, with no attempt to mix forward and backward state

sets (as in DAR);

• we keep the standard interpolation scheme, extended by

saving and reusing previously computed state sets;

• we always refine (i.e., strengthen) state sets, which does

not prevent us from possibly simplifying their represen-

tation by using ad–hoc redundancy removal.

We use for state sets a notation taken from IC3 and ITPSEQ.

F = F1, ...,Fk is a sequence of sets of reachable states

represented by circuits (AIGs) instead of sets of clauses. Let

RE
i represent the set of states reachable in exactly i steps, and

Ri = ∪j=0..iRE
j the sets of all states reachable in at most i

steps. Ri includes all previous state sets, whereas RE
i does

not necessarily.

Our implementation supports both versions:

RE
i ⇒ Fi

Ri ⇒ Fi

the choice being a user selected option1. On the one hand, the

fully inclusive (Ri) representation has nice properties, which

are at the base of the IC3 inductive reasoning. On the other

hand, state set strengthening is generally more powerful using

RE
i . In the sequel we will assume the first (non inclusive)

model. So our assumptions for the Fi sets are the following:

F0 = S0

Fi(X) ∧ T (X, X ′) ⇒ Fi+1(X ′), for1 ≤ i ≤ k − 1

In order to represent an incremental refinement of Fi sets,

we use notation F−1
i for denoting the version of Fi prior

to refinement. A refinement of F−1
i is thus the result of a

strengthening step, such that: Fi ⇒ F−1
i .

INCRITPMC (S0, T , ¬p)
k = 0

F = (S0)
do

Conek = CONEUNROLL(¬p, T , k)
res = INCREMENTALFINITERUN (F, T , Conek)
k = k + 1

while (res = undecided)
return (res)

INCRFINITERUN (F, T , Cone)
if SAT(F0 ∧ T ∧ Cone) return (reachable)
R = F0

i = 0
while (⊤)

if (Fi+1 = void) Fi+1 = ⊤
Image = IMGREF(Fi, T , Cone,Fi+1)
if (Image = undefined)

return (undecided)
Fi+1 = Image
if (Fi+1 ⇒ R) return (unreachable)
R = R ∨ Fi+1

i = i + 1

IMGREF (Fi, T , Cone, F−1
i+1)

C = SIMPLIFY (Cone,F−1
i+1)

Image = ITP(Fi ∧ T , C)
if (Image = undefined) return (Image)
return (Image∧ SIMPLIFY (F−1

i+1, Image)

Fig. 2. Interpolant-based Image with refinement.

Figure 2 shows a variant of the algorithm in Figure 1. We

explicitly use F to represent state sets. F is initialized to an

empty array, with the exception of F0 = S0. The standard

interpolation operator is replaced here by IMGREF. In this

new operator interpolation is preceded by cone simplification,

based on previously available state sets, and followed by a

refinement step. Refinement is a strenghtening step, done by

1TheRi option is internally handled by properly transforming the transition
relation.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 45

conjoining the previous set with a new term. This is done

by embedding a simplification step. SIMPLIFY is based on

the general notions of redundancy removal under external

or observability don’t cares. Strictly speaking, whenever two

functions are conjoined, either one could be pre-simplified

using the other one as care:

A ∧B = A ∧ SIMPLIFY(B, A) (1)

BDDs offered nice operators (cofactor, constrain, re-

strict [22]) for function simplification, that have no counter-

part in gate-based rapresentations. Though many redundancy

removal operators have been proposed, our experience shows

that most of them are too expensive (and poorly scalable). As

we need a fast operator, we limit ourselves to equivalences

involving state variables, exploited for simplifications based

on circuit merging.

We now prove that incrementality is guaranteeing the cor-

rectness of the Model Checking procedure. The proof is based

on Theorem 1, stating that IMGREF (including the refinement

step) is returning a correct over-approximated image.

Theorem 1 IMGREF is correct Fi ∧ T ⇒ IMGREF (Fi, T ,

Cone, F−1
i+1)

Proof. Let us start by the observation that both the previous

F−1
i+1 (assumed as ⊤ if not yet available) and Image in

IMGREF are implied by the exact image.

(a) Fi ∧ T ⇒ F−1
i+1

(b) Fi ∧ T ⇒ Image

(a) is true because Fi is a strengthening of its previous version

F−1
i (Fi ⇒ F−1

i), so its image implies the image of F−1
i .

(b) comes from Image being an interpolant. By conjoining

(a) and (b), we can derive:

(c) Fi ∧ T ⇒ F−1
i+1 ∧ Image

From the definition of the SIMPLIFY operator 1:

(d) Image ∧ SIMPLIFY(F−1
i+1, Image) ≡ Image ∧ F−1

i+1

The thesis comes from combining (c) and (d).

IV. GUIDED CONE

Let us identify a refinement step as a strengthening of a

state set F−1
i+1, such that the new version implies the previous

one: (Fi+1 → F−1
i+1). We describe here how incrementality can

exploit the fact that any subset of adequate backward cones

can be used for refinement, based on two observations: (A)

convergence of the approach is guaranteed by the fact that at

worst a full cone of bound equal to the diameter is eventually

used (see [3]), or the full enumeration of used cone subsets

could completely cover the space backward reachable from the

target (¬p) (see [4]); (B) performance issues require a good

balance between the opposite needs, to (1) keep small cones,

for easier BMC-like SAT checks, and (2) to avoid activating

too many refinement steps. We also need to avoid using cones

that do not help refining previously computed state sets.

Let us thus start from the observation that any (subset of

a) backward cone is acceptable by a refinement step (a call

to IMGREF), as the cone is not required by the proof of

Theorem 1. Of course, no refinement (Fi+1 = F−1
i+1) could

come from a wrongly chosen cone, leading to explosion in

the number of iterations. As an extreme option, any state

cube backward reachable from the target (or known not to

be forward reachable) could be used, as in IC3. Though cone

subsetting is an option in view of scalability, it is not a

primary focus of this work. Cone partitioning and/or subsetting

would obviously reduce the size and depth of BMC-like

checks, whose number whould increase. In this paper limit

ourselves to cone simplification and guided rewinding/unwind-

ing, see IV-B, exploiting previously computed F−1 whenever

available in order to:

• simplify Cone, using available F−1 sets (in other words,

restricting cones to go into the known state set rings);

• drive Conek computation to a proper k depth, i.e., the

minimum required in order to produce a strengthening.

A. Cone simplification

Whenever we are computing the image of Fi, exploiting

previously computed F−1
j (j > i), we can use all available

F−1
j as care sets for Cone simplification, based on the fact

that the image will be conjoined with F−1
i+1.

So, Conek in IMGREF can be replaced by

FSIMPLIFY(Conek, F, i + 1), under the constraint that:

FSIMPLIFY(Conek,F−1, j) ∧ F−1
j ≡ Conek ∧ F−1

j

A straightforward application of the previous formula is based

on the so called latch correspondences, i.e., couples of latches

that are known to be equivalent in F−1
j . For all of them, latches

can be merged in F−1
j . More formally, for each couple of

state variables (xp, xq) such that F−1
j ⇒ (xp ↔ xq), the

substitution xp → xq can be done in Conek. A similar opera-

tion can be done for all latch correspondences at intermediate

transition relation boundaries in Cone. So for any known F−1
l

(j < l < j + k), implied equivalences can be used to simplify

Cone.
A proof of correctness of the above steps is omitted for

conciseness.

B. Guiding cones through state sets

Whenever INCREMENTALFINITERUN hits Conek (a pos-

sibly false counterexample) at step i, standard interpolation

would expand the cone by incrementing k, possibly by more

than 1, and restart a new run from the initial state F0.

Different ideas are followed in ITPSEQ and DAR, where

refinements can be triggered based on BMC-like runs with

growing depth. IC3, instead, drives refinements based on a

prioritized selection of backward reachable cubes. In IGR,

we follow two directions, that share the common goal of

potentially expanding, by adding new frames, and refining,

by strengthening, F:
• resuming forward traversal (and state refinements) with a

smaller cone;

• restarting a new traversal at an intermediate step, such

that a strengthening of the current F is guaranteed.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 46

1) Cone Rewinding: We call refinement sequence an it-

erated tail of INCREMENTALFINITERUN, that optionally re-

sumes, after hitting Conek at iteration i, by iteratively using

cones with decreasing bounds. The operation is inspired by

interpolation sequences, with a specific reference to [17].

More formally, let us assume that:

Fi ∧ T ∧ Conek 6≡ ⊥
We could resume the forward iteration using Conek−1, as it

is guaranteed that:

Fi ∧ T ∧Conek−1 ≡ ⊥ (2)

based on the observation that Fi ∧ Conek ≡ ⊥ and that

Conek = T ∧ Conek−1. We could thus operate up to

k iterations, until Cone0, and generate or refine state sets

Fi+1..Fi+k. As an alternative, one could compute an interpola-

tion sequence, directly from a single BMC call on problem 2.

As observed in [17], we prefer an iterative computation of

interpolants starting from previously computed ones.

Any sub-setting of Conek, that guarantees unsatisfiability,

could be selected (instead of decrementing k). E.g., if the cone
is generated by a set of properties/targets, one could remove

the satisfied ones, and just keep the unsat subset.

2) Cone Unwinding: Given an abstract counterexample (a

cone hit) at iteration i, the cone rewinding strategy has the

effect of refining state sets from Fi+1 to Fi+k. Let us now

find a (minimal) unwinding of Conek that insures to refine

Fi and other ones at lower i values.
Starting from the observation that bmci+k 6≡ ⊥ (i.e., the

BMC problem of depth i + k is SAT) would confirm the ab-

stract counterexample as a concrete one, and that bmci+k = 0
would refute it, we can iteratively produce BMC problems of

increasing bound, starting from k, until we obtain UNSAT.

Let ν (0 < ν < i) be the minimum cone unwinding, from

Conek to Coneν+k, such that, with j = i− ν − 1:

Fj ∧ T ∧ Coneν+k ≡ ⊥ (3)

We can restart the next INCREMENTALFINITERUN from

Fj , using cone Coneν+k. From a more practical point of view,

we are unwinding Cone in a guided way through Fj state sets,

in order to fine the outermost one able to provide an UNSAT

BMC problem (against the unwinded Cone).
Alternative options, for the choices of j and ν, include going

to larger ν values, combined with j values such that j < i−ν,
and that Equation 3 is still UNSAT.

Overall, guided cone unwinding/rewinding allows us to

dynamically tune unrollings. In this respect, standard in-

terpolation is too rigid, as refinement is always done by

expanding cones and using them for newly restarted traversals.

ITPSEQ introduces incrementality, but with a fixed and rigid

scheme. Much more flexibility is present in DAR where local

and global strengthening techniques introduce the notion of

refinement just when and where needed. Although backward

refinement in DAR has similarities with our approach, it

is based on the idea of using over-approximated backward

reachable states when refining forward reachable ones. Our

approach, instead, is fully based on backward cones (i.e., T
unrollings), in order to represent the backward exact behavior.

V. IGR: INTERPOLATION WITH GUIDED REFINEMENT

We now describe the overall IGR model checking procedure

which combines the techniques mentioned in the previous

sections. Figure 3 shows the top level function IGRMC,

that iteratively chooses the bound k for an unwinded cone

and activates IGRFINITERUN. The latter is a variant of

INCRFINITERUN, that receives as additional parameters the

index i of the Fi state set where to start a forward traversal,

and the bound k, to be used for cone unwinding. The function

returns the index ihit of the state set where reachability hits

a cone. At each iteration, i and k are properly computed

by SEEKBESTUNSAT, starting from ihit and khit (related

to the previous abstract counterexample) Following the cone

unwinding strategy described in section IV-B, the cone bound

k is extended, and i is decremented, until an UNSAT BMC

check is obtained. As a side effect, function SEEKBESTUNSAT

also detects true failures whenever the unwinded cone hits

F0 (this check has been removed from IGRFINITERUN). The

overall task of IGRMC can thus be summarized as:

• Iteratively choose a starting Fi set and a cone Conek,

unwinded in a guided manner throughout the (abstract)

F sets. This is done by function SEEKBESTUNSAT;

• Start a new forward traversal (INCRFINITERUN), that

is expected to refine F and filter out the last (abstract)

counterexemple found within the Fihit
state set.

INCRFINITERUN, though heavily based on the skeleton

of FINITERUN and INCRFINITERUN (its variant supporting

incremental state sets), is more flexible in selecting the starting

point for a traversal and the backward cone:

• Traversals start at Fi, with i received as parameter (see

IGRMC), and reachable states are initialized as the union

of all F0..Fi state sets;

• The backward cone is not kept constant as in FINITERUN.

As in INCRFINITERUN, it is simplified exploiting F sets

at outer indexes. It is kept until an abstract counterexam-

ple is generated, or a maximum number of iterations is

reached. After that, Cone is rewinded by one time frame

at each iteration (see section IV-B).

Convergence is tested as in all interpolation-based ap-

proaches, based on set containment. The value of vari-

able ForceRewind is assigned as a set-up parameter that

heuristically controls activation of cone rewinding. Whenever

ForceRewind = 0, rewinding is always active, so the ap-

proach obtains a minimal refinement, and it mimics the effect

of interpolation sequences. High values of ForceRewind keep

the k value constant until a hit, a scheme much closer to

standard interpolation. We empirically observed that small

values are better at small sequential depths, as they can

produce more light-cost refinement steps.

Figures 4 and 5 report experimental data on a case study,

circuit INTEL015 from [5], that we selected among the ones

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 47

IGRMC (S0, T , ¬p)
ihit = khit = 0

F = (S0)
do

(res, i, k) = SEEKBESTUNSAT(¬p, T , ihit, khit)
if (res = reachable)

return (res)

(res, ihit, khit) = IGRFINITERUN (¬p, T , F, i, k)
while (res = undecided)
return (res)

IGRFINITERUN (¬p, T , F, i, k)
R =

⋃
l=0..i Fl

rewindEnabled = ⊥
while (⊤)

if (Fi+1 = {}) Fi+1 = ⊤
if (rewindEnabled ∧ k > 0) k = k-1

Conek = CONEUNROLL(¬p, T , k)

ConeF =FSIMPLIFY(Conek, F, i + 1)

Image = IMGREF(Fi ∧ T , ConeF ,Fi+1)
if (Image = undefined)

if (rewindEnabled) return (undecided, i, k)
rewindEnabled = ⊤

else
Fi+1 = Image
if (Fi+1 ⇒ R) return (unreachable, -, -)
R = R ∨ Fi+1

i = i + 1
if (i > ForceRewind) rewindEnabled = ⊤

SEEKBESTUNSAT(¬p, T , ihit, khit)
i = ihit

k = khit

while (i ≥ 0 ∧ SAT(Fi ∧ T ∧ CONEUNROLL(¬p, T , k)))
i = i− 1
k = k + 1

if (i < 0) return (reachable, -, -)
return (undecided, i, k)

Fig. 3. Interpolation with Guided Refinement.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80

B
M
C

b
o
u
n
d

(
i
+
k
)

Iterations

Std Itp
Igr A
Igr B

Fig. 4. BMC bound comparison in intel015, between standard interpolation
and IGR in two versions: Igr A (rewind always enabled), Igr B (rewind
disabled until hit).

where standard interpolation could be compared with IGR.

Figure 4 plots i + k, the sum of state set indexes (i) and

cone bounds (k). This is usually logged as an equivalent BMC

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

C
P
U

t
i
m
e

(
s
)

Iterations

Std Itp
Igr A
Igr B

Fig. 5. CPU time comparison in intel015, between standard interpolation, Igr
A and Igr B.

bound. ITERATIONS (on the X axis) indicate algorithm iter-

ations (with image computation). The standard interpolation

line clearly shows that BMC bounds grow linearly within

FINITERUN, and they restart from the newly adjusted cone

bound2 at new FINITERUN calls. The IGR A line plots a run of

IGR with cone rewinding always enabled: this means that the

iterative decrease of k compensates the increase of i, keeping
the BMC bound constant within IGRFINITERUN (except when

we reach k = 0). The IGR B line plots a run of IGR with cone

rewinding disabled until a BMC hit. In this case we observe

an initial increase of BMC bounds, followed by a phase with

constant BMC bound. Overall, IGR exploits its ability to avoid

restarting from low bounds and seeking for optimal restarts,

which can provide convergence at lower iteration indexes.

A comparison between IGR A and B shows that the latter

can converge in fewer iterations, due to its ability to increase

BMC bounds. However figure 5, that plots cumulative CPU

times, shows that IGR A can be faster.

Intuitively, guided and simplified cones in IGR can produce

cheaper BMC problems, as compared to standard interpo-

lation. IGR A benefits from triggering more, but possibly

simpler, refinement steps (SAT calls). Although this is a good

way to avoid highly expensive BMC problems, IGR B often

performs better in case of models with higher diameters (e.g.,

in the range of hundredths).

3) Other Implementation Issues: A few more points are

worth being noticed, as having an impact on performance:

• We implemented a light weight redundancy removal

procedure used for SIMPLIFY when applied to state sets,

inspired by clause subsumption. Whenever a set is a con-

junction of several terms, the procedure iteratively finds

redundant ones through an incremental SAT formulation;

• We implemented a SAT-based procedure able to partially

reuse and push forward components of Fi to Fi+1,

whenever Fi is a conjunction. This process, which is

similar to clause pushing in IC3, relies on an efficient

incremental SAT formulation.

2Following [7], we heuristically increment cone bounds by more that 1,
based on the depth of the previous FINITERUN run.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 48

VI. LAXY ABSTRACTION AND MULTIPLE PROPERTIES

Due to the fully incremental representation chosen for

reachable states, IGR can be tightly embedded in lazy ab-

straction, as well as multiple property verification loops.

Typical abstraction-refimenent loops [13], [14] are based

on the idea of looping through incremental model refine-

ments, and restarting a new model checking problem after

each new refinement step. Recent work [23] has explored

a tighter integration of a model checking algorithm (IC3)

within a lazy abstraction algorithm. As IGR is based on a

similar data structure (the Fi over-approximations of forward

reachable state sets), its integration within a lazy abstraction

loop is straightforward: Fi state sets can be inherited by all

refined models, as refinements can be considered as model

strengthening steps. Let M j and M j+1 be two abstract models

(after refinement steps j and j + 1). Let Rj
i and Rj+1

i be the

states reachable by them in i steps. As refinement strengthens

a model, Rj+1
i ⊆ Rj

i , so state set overapproximations for M j

also overapproximate states in M j+1.

A similar framework can be adopted in multiple property

verification, where Fi can be inherited and reused by all

properties under check on the same model. Reusability of

state sets is guaranteed here by sharing the same model over

different property checks.

Though we already implemented both the above mentioned

frameworks, their detailed description goes beyond the scope

of this paper.

VII. EXPERIMENTAL RESULTS

We implemented a prototype version of our methodology

on top of the PdTRAV tool [24], a state-of-the-art verification

framework. The experimental data in this section provide an

evaluation of the techniques proposed, as well as a comparison

with standard interpolation. Our experiments ran on a Quad-

core workstation, with 2.5 GHz CPU frequency and 16 GB of

main memory. We set time and memory limits to 1200 seconds

and 2 GB, respectively.

We performed an extensive experimentation on a se-

lected sub-set of publicly available benchmarks from the

HWMCC’12 and HWMCC’13[5] suites. We selected them

by excluding problems that PdTRAV could originally solve

in less than 1 minute, and those that we could not solve

with any technique (including the one presented here). It is

worth noticing that all of the selected benchmarks are from

industrial origin (IBM, Intel). In most cases, we operated a

pre-processing using the ABC tool for combinational and/or

sequential light weight optimizations, i.e., latch and signal

correspondence, rewriting and refactoring. For the intel bench-

marks, we also operated implicit invariant extraction and phase

abstraction.

Table I provides detailed data, showing (column Best ITP)

the best results we could obtain through standard interpolation,

without the techniques described in this paper. Column Best

IGR shows the best we could obtain with Igr, whereas column

BEST HWMCC shows best results attained during past HWM-

CCs. To this respect, it is worth noticing that time statistics

from competitions were measured on a different machine, with

a time limit of 900 seconds, by portfolio based (concurrent)

model checkers. In the Best ITP and IGR experiments we

used a single engine and we increased our time limit to 7200
seconds (2 hours), in an attempt to observe potentially difficult

problems.

Table I highlights IGR as a clear winner with respect to stan-

dard interpolation, in most challenging problems. Higher run-

nign times in some of the easier examples simply witness some

overhead for state set handling and cone winding/unwinding

phases. Overall, IGR proves more scalable. The comparison

with other engines is not as easy. To this respect it is worth

noticing that the best model checkers at HWMCCs highly

rely on aggressive transformational techniques, that seek to

pre-simplify problems under various equivalence-preserving

notions, before getting to Model Checking engines.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120

c
u
m
u
l
a
t
i
v
e

w
a
l
l

c
l
o
c
k

t
i
m
e

(
s
)

Benchmark Instances

All Engines
No IC3

No IC3 - No IGR

Fig. 6. Wall clock cumulative time comparison on hwmcc’12 instances solved
by PdTrav (concurrent multi-engine version), with all engines active, without
IC3, and without IC3 and IGR. Time limit 900 seconds per instance.

In order to gather more data, we did a second experimental

evaluation of IGR, extended to the full set of HWMCC’12

(single property track, including more and easier benchmarks

than HWMCC’13) benchmark instances. We repeated a com-

petition run with 900 seconds time limit, using our multi-

engine portfolio in three different setups: with the full set of

engines, excluding IC3 and excluding both IC3 and IGR.

The results are plotted in figure 6, which clearly confirms

IC3 as the most powerful engine. But it also shows a good

impact of IGR, as a relevant contribution to the portfolio. The

run with the full set of engines solved 116 problems, of which

47 were covered by IC3, and 10 by IGR. When disabling

IC3, the overall result decreased to 81, with IGR solving 18
problems. Data also show that IGR is still not oriented to fast

runs (within minutes). As seen in table I, a 2 hours timeout

better shows the gain of IGR over ITP.

VIII. CONCLUSIONS

We addressed the problem of optimizing interpolants for

SAT-based Unbounded Model Checking. Our main contri-

bution is to provide a new approach, that improves over

standard interpolation, by exploiting the ideas of incremental

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 49

Model Best IGR Best ITP Best HWMCC
Name #PI #FF #AIG Time Time Time # of Solver

6s8 86 396 3016 835.40 - 147.82 4
6s34 77 1565 11098 2002.76 - 87.18 9
6s35 77 1571 11504 525.54 - - 0
6s38 343 1931 10847 392.22 - 606.89 2
6s102 72 1108 7700 488.47 726.62 10.58 8
6s144 480 3337 45470 291.48 160.62 155.98 6
6s148 480 3337 45470 2011.54 1713.52 - 0
6s189 479 2436 39830 214.46 282.66 110.48 3
6s194 532 2131 13617 423.45 852.17 54.38 7
6s366r 86 1998 20560 612.28 - - 0
6s428rb093 410 3790 29084 746.75 - 273.34 2

intel010 1111 280 10156 200.91 265.70 96.37 3
intel011 1024 273 9362 190.73 899.89 440.09 4
intel015 1024 273 9362 130.30 - 272.22 3

6s160(*) 149 559 8716 97700.21 - - 0

TABLE I
RESULTS ON SELECTED HWMCC BENCHMARKS. COMPARING OUR BASIC VS. OPTIMIZED INTERPOLATION VERSIONS. (*) 6S160 WAS SOLVED WITHOUT

TIME LIMIT, USING LAZY ABSTRACTION (STANDARD INTERPOLATION WENT OUT OF MEMORY). THE # of Solver COLUMN REPORTS HOW MANY MODEL

CHECKERS SOLVED THE PROBLEM, OUT OF 21 (17) IN HWMCC’12 (HWMCC’13).

refinement and guidance through state sets. We experimentally

observed that the proposed optimizations have improved both

performance and scalability of our existing UMC approaches.

Albeit we need to put some extra effort in a better engineering

and overall integration of the proposed techniques, as well as

more experimental work, we deem that current experimental

data clearly witness the improvements attained.

REFERENCES

[1] W. Craig, “Three Uses of the Herbrand-Gentzen Theorem in Relating
Model Theory and Proof Theory,” The Journal of Symbolic Logic,
vol. 22, no. 3, pp. 269–285, 1957.

[2] R. C. Lyndon, “An Interpolation Theorem in the Predicate Calculus,”
Pacific Journal of Mathematics, pp. 155–164, 1959.

[3] K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in
Proc. Computer Aided Verification, ser. LNCS, vol. 2725. Boulder,
CO, USA: Springer, 2003, pp. 1–13.

[4] A. R. Bradley, “Sat-based model checking without unrolling,” in VMCAI,
Austin, Texas, Jan. 2011, pp. 70–87.

[5] A. Biere and T. Jussila, “The Model Checking Competition Web Page,
http://fmv.jku.at/hwmcc.”

[6] K. L. McMillan and R. Jhala, “Interpolation and SAT-Based Model
Checking,” in Proc. Computer Aided Verification, ser. LNCS, vol. 3725.
Edinburgh, Scotland, UK: Springer, 2005, pp. 39–51.

[7] J. Marques-Silva, “Improvements to the implementation of Interpolant–
Based Model Checking,” in Proc. Correct Hardware Design and Ver-

ification Methods, ser. LNCS, vol. 3725. Edinburgh, Scotland, UK:
Springer, 2005, pp. 367–370.

[8] V. D’Silva, M. Purandare, and D. Kroening, “Approximation Refine-
ment for Interpolation-Based Model Checking,” in Verification, Model

Checking and Abstract Interpretation, ser. Lecture Notes in Computer
Science, vol. 4905. Springer, 2008, pp. 68–82.

[9] G. Cabodi, M. Murciano, S. Nocco, and S. Quer, “Boosting Interpolation
with Dynamic Localized Abstraction and Redundancy Removal,” ACM

Transactions on Design Automation of Electronic Systems, vol. 13, no. 1,
pp. 309–340, Jan. 2008.

[10] G. Cabodi, P. Camurati, and M. Murciano, “Automated Abstraction by
Incremental Refinement in Interpolant-based Model Checking,” in Proc.

Int’l Conf. on Computer-Aided Design. San Jose, California: ACM
Press, Nov. 2008, pp. 129–136.

[11] B. Li and F. Somenzi, “Efficient Abstraction Refinement in
Interpolation-Based Unbounded Model Checking,” in Tools and Algo-
rithms for the Construction and Analysis of Systems, vol. 3920, 2006,
pp. 227–241.

[12] G. Cabodi, C. Loiacono, and D. Vendraminetto, “Optimization tech-
niques for Craig Interpolant compaction in Unbounded Model Check-
ing,” in Proc. Design Automation & Test in Europe Conf. Grenoble,
France: IEEE Computer Society, Mar. 2013, pp. 1417–1422.

[13] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in CAV, 2000, pp.
154–169.

[14] A. Gupta, M. Ganai, Z. Yang, and P. Ashar, “Iterative Abstraction using
SAT-based BMC with Proof Analysis,” in Proc. Int’l Conf. on Computer-
Aided Design, San Jose, California, Nov. 2003, pp. 416–423.

[15] G. Cabodi, S. Nocco, and S. Quer, “Mixing Forward and Backward
Traversals in Guided-Prioritized BDD-Based Verification,” in Proc.
Computer Aided Verification, ser. LNCS, E. Brinksma and K. G. Larsen,
Eds., vol. 2102. Copenhagen, Denmark: Springer-Verlag, Jul. 2002, pp.
471–484.

[16] Y. Vizel and O. Grumberg, “Interpolation-Sequence based Model Check-
ing,” in Proc. Formal Methods in Computer-Aided Design, ser. LNCS,
vol. 2517. Austin, Texas, USA: Springer, Nov. 2009, pp. 1–8.

[17] G. Cabodi, S. Nocco, and S. Quer, “Interpolation Sequences Revisited,”
in Proc. Design Automation & Test in Europe Conf. Grenoble, France:
IEEE Computer Society, Mar. 2011, pp. 316–322.

[18] Y. Vizel, O. Grumberg, and S. Shoham, “Intertwined Forward-Backward
Reachability Analysis Using Interpolants,” in Tools and Algorithms for
the Construction and Analysis of Systems, ser. LNCS, vol. 7795. Rome,
Italy: Springer, Mar. 2013, pp. 308–323.

[19] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an Efficient SAT Solver,” in Proc. 38th Design Automation
Conf. Las Vegas, Nevada: IEEE Computer Society, Jun. 2001.

[20] N. Eén and N. Sörensson, “The Minisat SAT Solver, http://minisat.se,”
Apr. 2009.

[21] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic
Model Checking using SAT procedures instead of BDDs,” in Proc. 36th

Design Automation Conf. New Orleans, Louisiana: IEEE Computer
Society, Jun. 1999, pp. 317–320.

[22] O. Coudert, C. Berthet, and J. C. Madre, “Verification of Sequential
Machines Based on Symbolic Execution,” in Lecture Notes in Computer

Science 407, Berlin, Germany, 1989, pp. 365–373.
[23] Y. Vizel and S. S. O. Grumberg, “Lazy Abstraction and SAT-Based

Reachability in Hardware Model Checking,” in Proc. Formal Methods

in Computer-Aided Design. Cambridge, UK: IEEE, Oct. 2012, pp.
173–181.

[24] G. Cabodi, S. Nocco, and S. Quer, “Benchmarking a model checker for
algorithmic improvements and tuning for performance,” Formal Methods

in System Design, vol. 39, no. 2, pp. 205–227, 2011.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 50

