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Abstract—We propose an approach for computing under- as
well as over-approximations for the reachable sets of continuous
systems which are defined by non-linear Ordinary Differential
Equations (ODEs). Given a compact and connected initial set
of states, described by a system of polynomial inequalities, we
compute under-approximations of the set of states reachable
over time. Our approach is based on a simple yet elegant
technique to obtain an accurate Taylor model over-approximation
for a backward flowmap based on well-known techniques to
over-approximate the forward map. Next, we show that this
over-approximation can be used to yield both over- and under-
approximations for the forward reachable sets. Based on the re-
sult, we are able to conclude “may” as well as “must” reachability
to prove properties or conclude the existence of counterexamples.
A prototype of the approach is implemented and its performance
is evaluated over a reasonable number of benchmarks.

I. INTRODUCTION

In this paper, we present an approach for computing under-
approximations of the reachable sets of continuous systems
described by ODEs. Continuous systems arise in a variety
of domains including biological systems, control systems
and aggregate mean field models of parameterized systems.
Computing over-approximations of the reachable set of discrete,
continuous and hybrid systems is a fundamental primitive for
verifying safety properties. There has been much progress
towards reachable set over-approximations for linear as well
as non-linear continuous or hybrid systems through the use
of invariant computation [1], [2], [3], conservative abstraction
on dynamics [4], [5], [6], flowpipe construction [7], [8], [9],
[10], [11], level sets [12], [13], [14], and advanced interval
arithmetic techniques [15], [16], [17], [18], [19]. However, less
attention has been given to the problem of finding reachable
set under-approximations.

Whereas over-approximations represent states that “may” be
reachable, under-approximations characterize states that “must”
be reachable. As a result, under-approximations can be used
to show that the system must reach a given target (or unsafe)
set. The presence of under- as well as over-approximations can
help us prove “reach-while-avoid” properties that are common
in many control systems: the system must reach a specified
target set of states, while avoiding a set of unsafe states.
Under-approximations also help us judge the quality of related
over-approximations by comparing the states that “may” be
reachable with the states that “must” be reachable. Besides,
under-approximation techniques are also crucial in finding

counterexamples for continuous and hybrid systems, and could
be extended to carry out Counterexample-Guided Abstraction
Refinement (CEGAR) for these systems [20].

Our approach in this paper is based on the use of Tay-
lor Model-based techniques that have been used for over-
approximations [16], [19]. Starting from a given ODE ~̇x = f(~x)
and an initial set X0 defined by polynomial inequalities, we
seek to derive an under-approximation Ωt of the reachable
set Xt at time t > 0. The basic idea for deriving an under-
approximation starts by first deriving an over-approximate
backward flowmap Φ that maps a state ~xt ∈ Ωt potentially
reachable at time t to a set of possible initial states Φ(~xt). This
can be seen (roughly) as an over-approximate pre-condition
of the state ~xt. Next, we prove that a topologically connected
set Ωt which does not intersect the boundary of Xt is an
under-approximation of it, if Φ(~x) ⊆ X0 for some ~x ∈ Ωt.
The condition of topological connctedness is an important
technicality that must be checked for a set Ωt before it
can be identified as an under-approximation. Our approach
integrates interval arithmetic approaches using higher order
Taylor models [16], [19] with techniques from computational
topology for proving connectedness [21]. The contributions of
this paper are summarized as follows:

1) We show how Taylor model arithmetic can be used to over-
approximate a backward flowmap (in addition to the forward
flowmap). A key feature of our approach is that we mostly
reuse the calculations for the forward map to also derive the
backward map, using the structure of the Lagrange remainder
in the Taylor series expansion.

2) We use the Taylor model backward flowmap to construct
under-approximations. In doing so, it becomes necessary to
prove that a set implicitly defined by polynomial inequalities
is connected. We prove the property of star-connectedness
through repeated satisfiability checks.

3) Finally, we have implemented our approach based on the
computational library of FLOW* [22]. We provide experimental
evaluation on a set of interesting and challenging benchmarks.

A. Related Work

As mentioned earlier, a significant volume of work has been
devoted to the problem of finding over-approximations of the
reachable states of continuous systems. Surprisingly, very little
work has been focused on under-approximations. The main
reason is the hardness of the task.
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Several techniques of under-approximating reachable sets
are introduced in [23], [24] for the systems defined by linear
ODEs. However, they can not be easily extended to handle
non-linear systems which are most often found in applications.

The idea of using over-approximations of backward
flowmaps to compute reachable set under-approximations has
been discussed elsewhere [25], [26]. Nevertheless, very few
existing methods or tools can handle the job efficiently. We
propose a more applicable method based on TM representations
and does not require splitting the state space too often.

Under-approximation techniques have also received attention
from the interval analysis community. The technique of
modal (Kaucher) intervals provides a framework for under-
approximations using intervals [27]. This was used to pro-
vide under-approximations of reachable sets for programs
by Goubault et al. [28]. The recent work of Goubault et
al. uses modal intervals with affine forms to provide under-
approximations for the reachable sets of continuous sys-
tems [29]. In contrast, our approach relies on Taylor model
based over-approximations, but of the backward flowmap rather
than the forward map. Therefore, we are able to provide a
higher-order technique for generating under-approximations in
contrast to the first order approach of Goubault et al. using
affine forms. Given the very recent nature of Goubault et
al.’s contribution, we are unable to provide an experimental
comparison of our techniques. However, a detailed comparison
is planned as part of our extended version, in the future.

The work of Bai Xue and Zhikun She is yet another important
contribution to the problem of under-approximating reachable
sets of continuous systems, that inspired our approach in
this paper [30]. Their approach is similar to ours in the use
of backward flowmaps to compute under-approximations. A
key difference, however is that Xue and She use an over-
approximation of the boundary of the reachable set to find
under-approximations. In our experience, the boundary of these
sets if often complex and requires a fine subdivision of the
state-space. Our approach, in comparison, avoids gridding the
boundary. Instead, we are left with the problem of proving
topological connectedness of a set, which is also hard in
practice. Furthermore, the modification of Taylor models to
compute backward flowmap over-approximations is a unique
contribution of this paper.

Recently, Gao et al. presented a relaxed notion of δ-
satisfiability to build constraint solvers for non-linear real
arithmetic [31]. δ-satisfiability argues that a formula is unsatis-
fiable, or a δ-perturbation of it is satisfiable. By adjusting δ, the
approach handles complex formulae involving real functions
such as the flowmaps of ODEs. It has been implemented in
the constraint solver dReal [32], and the tool dReach focusing
on the analysis of non-linear systems [33]. Our approach has
many fundamental differences: dReach attempts to answer a
single reachability query using constraint solving, whereas our
approach builds representations for reachable set segments that
can be used to answer more complex queries. Our approach
finds guaranteed over- and under-approximations, but does not
reason about perturbations. Finally, the approach presented

here can be a primitive inside a tool such as dReach, providing
a more powerful approach to reachability analysis.

II. PRELIMINARIES

Let R denote the set of real values. A set of variables
x1, . . . , xn, is collectively written as a vector ~x. For a vector
~x, we use xi to denote its i-th component. Let I denote the
set of all intervals I = [a, b] ⊆ R with a, b ∈ R and a ≤ b.
Multi-dimensional intervals are Cartesian products of intervals,
and we continue to call them intervals in the paper. Given a
variable or function x(t) of time, we use ẋ to denote the time
derivative of x. Given a set S, we use Int(S) to denote the
smallest interval enclosure of S.

Definition 1 (Continuous system). An n-dimensional continu-
ous system S is defined by an ODE ~̇x = f(~x), wherein ~x is a
n× 1 vector of state variables and the function f denotes the
vector field which associates each state ~c ∈ Rn a derivative
vector f(~c) ∈ Rn.

Executions of a continuous system S correspond to the
time trajectories of the ODE. We assume that the function
f defining the ODE is (locally) Lipschitz continuous in
Rn. This guarantees that for each ~x0 ∈ Rn, there exists a
unique solution ~x(t) defined over some interval of existence
(−T (~x0), T (~x0)), with initial condition ~x(0) = ~x0 ∈ Rn [34].
Here (−T (~x0), T (~x0)) is the interval of existence and depends,
in general, on the initial condition ~x0. We denote the value ~x(t)
for any time t ∈ (−T (~x0), T (~x0)) by ϕf (~x0, t). We assume
that for the models considered in this paper, the solutions exist
for T (~x0) > T , where T is a time horizon of interest. The
function ϕf (~x0, t) is also called the flowmap which is forward
if t ≥ 0, and backward otherwise. In the rest of the paper, we
assume that the dynamics f(~x) are given by a multivariate
polynomial over ~x.

The reachable set of a continuous system defined by
~̇x = f(~x) from an initial set X0 ⊆ Rn is the set of
flows {ϕf (~x0, t) | ~x0 ∈ X0}. For simplicity, we denote it by
ϕf (X0, t) if ϕf (~x0, t) exists for all ~x0 ∈ X0 in the time
interval of interest. Given a time interval ∆ ∈ I, the image of
the map ϕf (X0, t) with t ∈ ∆, is called a flowpipe.

Since we assume Lipschitz continuous ODEs, the map from
~x0 ∈ X0 to ϕf (~x0, t) is bijective. Ideally, we wish to compute
the map ϕf by solving the given ODE analytically. However,
this cannot be done exactly, since most of the ODEs do not have
closed form solutions. A typical approach is to approximate a
solution by a Taylor polynomial which can be computed based
on the higher-order Lie derivatives of the vector field. We will
address it in Sect. IV.

Definition 2 (Lie derivative). Given an ODE ~̇x = f(~x) with n
variables, the Lie derivative of a differentiable function g(~x, t)
w.r.t. f is defined by

Lf (g) =
n∑
i=1

(
∂g

∂xi
· fi
)

+
∂g

∂t

wherein fi denotes the i-th component of f . If g is k times
differentiable, the higher-order Lie derivatives of it are defined
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recursively by

Lm+1
f (g) = Lf (Lmf (g)) for m = 1, 2, . . . , k − 1

In the rest of the section, we give a brief introduction
of Taylor models (TMs). TMs were introduced by Berz
and Makino to provide a framework for constructing high-
order over-approximations of continuous functions as well as
common operations over them. They are described in detail
elsewhere [35]. A Taylor model (TM) is denoted by a pair (p, I)
such that p is a polynomial over a closed and bounded domain
and I is an interval which represents a remainder. Given a
function f(~x) over D, we say that it is over-approximated
by the TM (p(~x), I) if f(~x) ∈ p(~x) + I for all ~x ∈ D.
Intuitively, the TM maps any ~x ∈ D to an interval which
contains f(~x). In the paper, we always use TM to mean a TM
over-approximation.

TMs are closed under arithmetic operations of addition,
scaling, multiplication and integration. The arithmetic over
TMs can be viewed as a higher-order interval arithmetic [36].
Given two intervals [a1, b1], [a2, b2] ∈ I, their sum and product
are defined by [a1, b1] + [a2, b2] = [a1 + a2, b1 + b2] and
[a1, b1] · [a2, b2] = [min{a1 ·a2, a1 ·b2, b1 ·a2, b1 ·b2},max{a1 ·
a2, a1 · b2, b1 · a2, b1 · b2} respectively. Then for two functions
f, g over the same domain, if their TMs are given by (p1, I1),
(p2, I2) respectively, a TM for f + g can be computed by
directly adding the polynomial and remainder part respectively,
i.e., (p1 + p2, I1 + I2), while an order k TM for their product
f · g can be computed by

( p1 · p2 − rk , I1 ·B(P2) + I2 ·B(P1) + I1·I2 +B(rk) )

wherein B(p) denotes an interval enclosure of the range of
p, and the truncated part rk consists of the terms in p1 · p2

of degrees > k. By TM arithmetic, we may compute an over-
approximation for a complex function based on the TMs of
its components.

TMs can be applied to provide over-approximations for
flowpipes. They serve a dual purpose: they are used to
conservatively approximate the flowmap ϕf (~x0, t) by a TM
(p, I) for some ~x0 ∈ X0 and t ∈ ∆ ∈ I, such that

∀~x0 ∈ X0, ∀t ∈ ∆, ϕf (~x0, t) ∈ p(~x0, t) + I

They also serve as implicit definition of the flowpipe that
over-approximates the image of ϕf over the set ~x0 ∈ X0 and
t ∈ ∆. That is, a flowpipe ϕf (X0, t) for some X0 ⊆ Rn and
t ∈ ∆ ∈ I can be over-approximated by a TM (p(~x0, t), I)
with ~x0 ∈ X0 and t ∈ ∆. Such a TM is also called a TM
flowpipe, its computation is presented in Sect. IV.

III. UNDER-APPROXIMATION TECHNIQUE AT A GLANCE

In this section, we present a brief sketch of our over-
and under-approximate flowpipe computation technique. This
section will serve to motivate the description of our approach
through the rest of this paper.

Given a Lipschitz continuous ODE ~̇x = f(~x) and a compact
and connected initial set X0. We want to compute an under-
approximation for the flowpipe Xt : ϕf (X0, t) with t ∈ ∆ for

ϕf (X0, t)

Ωt

Fig. 1. Illustration of the main idea. The red region denotes the boundary over-
approximation Ft, which is computed as a system of polynomial inequalities
and could be disconnected.

some small time interval ∆. To do so, we seek to compute a
set Ft which strictly contains ∂Xt, i.e., the boundary of Xt.
Since Xt is still compact and connected (see [34]), we may
conclude that a connected set Ωt which does not intersect ∂Xt

is an under-approximation of Xt if Ωt contains some state in
Xt. To ensure these properties, we could (i) prove that Ωt does
not intersect Ft, and (ii) find a state in Ωt∩Xt. An illustration
is presented in Figure 1.

It will be shown that a backward flowmap over-
approximation plays a key role in achieving both (i) and (ii).
In Sect. IV, we show how such an over-approximation can be
effectively derived as a TM (pb, Ib). The computation of Ft
based on (pb, Ib) is described in Sect. V, where we also give
a method to verify a reachable state by using (pb, Ib).

IV. TMS FOR FORWARD AND BACKWARD FLOWMAPS

In the section, we introduce a modified TM flowpipe
construction approach which is an extention of our previous
work [19]. A key feature of it is the derivation of a TM that
approximates the backward flowmap by reusing the calculations
for the forward map.

A. Modified TM flowpipe construction

Given an n-dimensional continuous system defined by ~̇x =
f(~x), and a time step δ, the reachable set for a bounded time
horizon [0, T ] and an initial set X0 ⊆ Rn is over-approximated
by a finite sequence of TMs F1, . . . ,FN , wherein N =

⌈
T
δ

⌉
.

For all 1 ≤ i ≤ N , Fi over-approximates the image ϕf (X0, t)
with t ∈ [(i− 1)δ, iδ]. The TMs are computed iteratively, such
that the segment Fi is used to compute the initial set for the
subsequent TM. In the i-th iteration, we assume that the local
initial set is given by a TM Xl. The i-th TM flowpipe Fi is
computed by the following two steps.

Step 1: Compute a Taylor polynomial pf for the forward
flow ϕf(Xl, t) up to order k in t. The polynomial pf can
be derived as the following Taylor polynomial of ϕf (Xl, t),

pf (~xl, t) = ~xl + Lf (~xl) · t+ · · ·+ Lkf (~xl) · t
k

k!
(1)

wherein ~xl ∈ Xl and we simply denote Ljf (~x)|~x=~xl
by Ljf (~xl)

for 1 ≤ j ≤ k. Unlike our previous work, the degrees of ~xl in
pf are not limited.

Step 2: Evaluate a safe remainder interval If for pf over
t ∈ [0, δ]. The purpose is to find an interval If such that
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the TM (pf (~xl, t), If ) is an over-approximation of ϕf (~xl, t)
over ~xl ∈ Xl and t ∈ [0, δ]. As we have the assumption that
f is at least locally Lipschitz continuous, then an interval If
is sufficient (or safe) if the Picard operator

Pf (g)(~xl, t) = ~xl +
∫ t

0

f(g(~xl, s)) ds (2)

is contractive over (pf , If ) (see [16], [19]). To find such an
interval, we may start with an estimation Ie which could be
incorrect, and then conservatively check the contractiveness of
the Picard operation by means of TM arithmetic. If it can not be
verified, we enlarge the interval Ie until we obtain a contractive
interval. The resulting interval Ie may be further refined by
repeatedly performing the Picard operation on (pf , Ie). We
then set If = Ie. Unlike previous work, we only truncate
the polynomial terms whose degrees of t are larger than k.
Afterwards, if i > 1, the TM Fi can be derived by substituting
Xl in the place of ~xl in (pf , If ) by TM arithmetic, otherwise
it is the first iteration and we simply rename ~xl by ~x0.

B. Compute over-approximations for backward flowmaps

The flowpipe construction presented thus far only produces
a TM that over-approximates the forward flowmap from
X0 to Xt : ϕf (X0, t) for t ∈ [0, T ], and the under-
approximation approach requires over-approximations for the
backward flowmaps.

Even though the backward flowmap is conceptually obtained
by negating the time variable, a TM over-approximation for the
backward flowmap is not easy to obtain. A simple way to do
that is performing a backward flowpipe computation from an
over-approximation of Xt which is obtained by a forward one.
However, it is not only time consuming but also inaccurate,
since the overestimation generated in the forward computation
is also considered in estimating the remainder intervals for the
backward flowmaps by the Picard operation. Thus, we need a
method to obtain backward over-approximations without using
flowpipe construction.

We introduce a novel method to generate accurate backward
over-approximations by reusing the calculation of the forward
modified TM flowpipe construction. Let us fix a time t ≥ 0
and consider the initial set Xl for the i-th step of the forward
flowpipe construction. Let us denote Yl(t) = ϕf (Xl, t), as
the image of the forward flowmap for any t ∈ [0, δ]. We
assume that ϕf is over-approximated by a TM (pf (~xl, t), If ),
wherein ~xl ∈ Xl. Our goal is to construct a TM (pb, Ib) that
over-approximates the flowmap from Yl back to Xl.
Constructing pb It is easy to see that while ϕf (~x0, t) for
~x0 ∈ X0, t ≥ 0 represents the forward map, the backward
map is represented by ϕ(~y0,−t) where ~y0 ∈ ϕf (X0, t), t ≥ 0.
Therefore, its Taylor expansion is related to that of ϕ(~x0, t)
when t ≥ 0. Using this observation, the polynomial pb is
derived from pf by syntactically replacing ~xl, the variables
denoting the starting state, by ~yl, the variables denoting the
ending state. Likewise, we replace the time variable t by −t.
The renaming of ~xl is not technically necessary, we do it to
distinguish the domains of the TMs for forward and backward

X0 X1 · · · XN

Φ1 Φ2 ΦN

Ψ1 Ψ2 ΨN

Fig. 2. Flowmap automaton

flowmaps. The challenge remains to construct the remainder
interval Ib. In doing so, we wish to avoid computing Picard
operation by TM arithmetic which could potentially introduce
a large overestimation.

The Lagrange remainder term of pf at some ~xl ∈ Xl and
t ∈ [0, δ] is

ε(~xl, t) =
1

(k + 1)!
Lk+1
f (ϕf (~xl, ξ)) · tk+1 (3)

wherein ξ is between 0 and t. Then an interval enclosure
E(Xl, [0, δ]) of all ε(~xl, t) over ~xl ∈ Xl and t ∈ [0, δ] can be
evaluated as

1
(k+1)!

Lk+1
f (Int({ϕf (~xl, ξ)|~xl ∈ Xl, ξ ∈ [0, δ]}))·([0, δ])k+1

Similarly, since the remainder term for pb at some ~yl ∈ Yl(t)
and t ∈ [0, δ] can be expressed by ε(~yl,−t) such that ξ is be-
tween 0 and −t. An interval enclosure of those remainders over
~yl ∈ Yl(t) and t ∈ [0, δ] could be obtained as E(Yl(δ), [−δ, 0]).
By Lemma 3, we have that E(Yl(δ), [−δ, 0]) = (−1)k+1 ·
E(Xl, [0, δ]). In other words, Ib can be computed as an interval
enclosure of (−1)k+1 · E(Xl, [0, δ]).

Lemma 3. For an order k ≥ 0 and a time interval [0, δ], we
have that

E(Yl(δ), [−δ, 0]) = (−1)k+1 · E(Xl, [0, δ])

Although the interval Int({ϕf (~xl, ξ) | ~xl ∈ Xl, ξ ∈ [0, δ]})
is hard to compute, we may obtain an interval enclosure I~x
for it from an interval evaluation of Fi, and hence

Iε =
1

(k + 1)!
Lk+1
f (I~x) · ([0, δ])k+1 (4)

is an interval enclosure of E(Xl, [0, δ]). At last, we have the
safe remainder interval Ib = (−1)k+1 · Iε.

Notice that Ib is sufficiently large for any point in
(pf (~xl, t), If ) with ~xl ∈ Xl, t ∈ [0, δ], i.e., Fi. In other words,
for any point ~yl ∈ (pf (~xl, t), If ), (pb(~yl, t), Ib) defines an over-
approximation for the backward map ϕf ((pf (~xl, t), If ),−t).
The reason is that Iε is computed based on the over-
approximation Fi.

The TMs of the forward and backward flowmaps computed
in all time steps can be organized as an automaton shown
in Fig.2. For 1 ≤ i ≤ N , the state Xi denotes the exact
reachable set ϕf (X0, iδ). The forward edge Φi(~xl, t) denotes
the forward TM (pf (~xl, t), If ) in the i-th time step, while
the backward edge Ψi(~yl, t) is the backward TM (pb(~yl, t), Ib)
there. When we take t = δ, they are over-approximations
of the maps between the states. Then for any τ ∈ [0, T ], an
order k TM for the backward map from ϕf (X0, τ) to X0
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can be obtained by composing the TMs along the path from
Xi to X0 such that τ ∈ [(i − 1)δ, iδ]. It can be done by
Algorithm 1. In the TM computation, we take the TM flowpipe
Fi with t = τ − (i − 1)δ as the range of ~yl. To achieve a
good accuracy, some preconditioning techniques proposed for
intervals [37] and TMs [38] can be applied. Additionally, we
may also consider the case that τ ranges in a time interval by
taking an additional variable t.

Algorithm 1 Composing TMs for backward flows
Π← Ψi(~yl, τ − (i− 1)δ); # by TM arithmetic
for all j = i− 1 to 1 do

Π← Ψj(Π, δ); # by TM arithmetic
end for
return Π;

V. UNDER-APPROXIMATION GENERATION

In the section, we show how flowpipe under-approximations
can be generated based on the TMs of backward flowmaps.

A. Main theorem

Given an n-dimensional continuous system defined by
~̇x = f(~x). If the initial set is defined by X0 = {~x ∈
Rn | ∧mi=1(pi(~x) ≤ 0)} which is compact and connected, then
the reachable set at time t ≥ 0 can be characterized by

ϕf (X0, t) = {~x ∈ Rn |
m∧
i=1

(pi(ϕf (~x,−t)) ≤ 0)} (5)

which is also compact and connected (see [34]). Intuitively, a
state ~x is in ϕf (X0, t) iff the backward flow maps it to a state
in X0 at time −t. We present an example in Fig. 3 to show
such evolution of a constraint. Given a time point t = τ , if
(pb(~x), Ib) is a TM for the backward flowmap from ϕf (X0, τ)
to X0, then we may compute an order k TM (φi(~x), [`i, vi])
for pi(ϕf (~x,−τ)) from evaluating pi((pb(~x), Ib)) by TM
arithmetic for all 1 ≤ i ≤ m. Such a TM of the backward
flowmap as well as a TM F of ϕf (X0, τ) can be obtained
using the forward as well as backward flowmap computation
presented in Sect. IV by taking a TM of X0. Then the
constrained flowpipe Fo = {~x ∈ F | ∧mi=1(φi(~x) + `i ≤ 0)}
defines a refined over-approximation of the reachable set
ϕf (X0, τ) since F is derived based on a TM of X0, while
an under-approximation of ϕf (X0, τ) can be computed as a
connected subset Ω of Fu = {~x ∈ IF |

∧m
i=1(φi(~x)+ui ≤ 0)}

wherein IF is an interval enclosure of F and ui = vi + ε for
some ε > 0, if Ω∩ϕf (X0, τ) 6= ∅. The purpose to raise those
upper bounds is to ensure that Fu has no intersection with
the boundary of ϕf (X0, τ) which is strictly over-approximated
by Fτ = Fo\Fu. The detail is explained in the proof of
Theorem 4.

Theorem 4. The constrained flowpipe Fo is an over-
approximation of ϕf (X0, τ). For any connected subset Ω of
Fu, if ϕf (X0, τ) ∩ Ω 6= ∅, then Ω is an under-approximation
of ϕf (X0, τ).

X0

ϕf (X0, t)

p(~x) ≤ 0

p(ϕf (~x,−t)) ≤ 0

Fig. 3. Evolution of a constraint p(~x) ≤ 0

Proof. We first prove the over-approximation. Since the TM
(φi(~x), [`i, ui]) is an over-approximation of pi(ϕf (~x,−τ)) for
1 ≤ i ≤ m, more precisely, we have that

φi(~x) + `i ≤ pi(ϕf (~x,−τ)) < φi(~x) + ui (6)

for all ~x ∈ ϕf (X0, τ). Then for any ~x ∈ ϕf (X0, τ), the
implication pi(ϕf (~x,−τ)) ≤ 0→ φi(~x) + `i ≤ 0 holds, and
hence ϕf (X0, τ) ⊆ {~x ∈ Rn | ∧mi=1(φi(~x) + `i ≤ 0)}. Since
ϕf (X0, τ) ⊆ F , we conclude that ϕf (X0, τ) ⊆ Fo.

We turn to the under-approximation. The boundary of
ϕf (X0, τ) is given by

∂ϕf (X0, τ)=

(
m⋃
i=1

{~x ∈ Rn | pi(ϕf (~x,−τ))=0}
)
∩ϕf (X0, τ)

Then the set S = {~x ∈ Rn |φi(~x)+ui ≤ 0} does not intersect
∂ϕf (X0, τ). The reason is that for any ~x ∈ S, if ~x ∈ ϕf (X0, τ)
there is pi(ϕf (~x,−τ)) < 0 for all 1 ≤ i ≤ m by the inequality
(6), otherwise pi(ϕf (~x,−τ)) > 0 for all 1 ≤ i ≤ m. It is also
the case for all subsets of S. Therefore, any connected subset
of S(t) either is entirely contained in ϕf (X0, τ) or has no
intersection with ϕf (X0, τ). Since Fu ⊆ S, we conclude that
Ω ⊂ ϕf (X0, τ) for any connected set Ω ⊆ Fu if ϕf (X0, τ)∩
Ω 6= ∅.

By taking t as an additional variable over a small time
interval ∆, Theorem 4 can be extended to produce under- as
well as over-approximation for the reachable set over ∆.

B. Methodologies to find an under-approximation

From Theorem 4, we need three steps to compute an under-
approximation of the TM F for the reachable set ϕf (X0, τ).
The first step is to obtain a subset Ω of Fu. It can be done
by taking Ω as Fu or a subset of it. Then in the second
step, we need to prove that Ω is connected, and ensure that the
intersection Ω∩ϕf (X0, τ) is nonempty in the third step. There
are various ways to achieve this, we present some methods
based on interval arithmetic. Again, the following methods can
be extended to handle the reachable set over a time interval
by taking an additional variable t.

Taking Ω = Fu. To limit the underestimation, we mainly
consider the case that Ω = Fu. Then it requires to verify
that Fu is a connected set. Since it is defined by a system
of polynomial inequalities, to verify its connectedness is at
least as hard as solving the same problem on a basic closed
semialgebraic set, and it is intractable in general (see [39]).
Fortunately, we could use the sufficient condition given in [21]
on which the connectedness may possibly be proved efficiently.
The idea is to find a star point in Fu.
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X0

ϕf (X0, τ)

~c0

~c

pf (~c0)
X0

ϕf (X0, τ)

~c
pb(~c) + Ib

Fig. 4. (L) Compute a candidate star point ~c, and (R) verify ~c is reachable

Given a set S, a point s∗ ∈ S is a star point if for any
s ∈ S the line segment connecting s∗, s is contained in S.
Furthermore, if S has a star point then it is connected. To
find a star point in Fu, we may first compute a candidate
point ~c ∈ Fu. Assume that the forward flowmap from X0 to
ϕf (X0, τ) is over-approximated by (pf (~x), If ). The point ~c
can be computed as pf (~c0) wherein ~c0 is an approximation of
the geometric center of X0. Fig. 4(right) shows the idea. When
the TM order is sufficiently high, the inclusion ~c ∈ Fu can
be ensured. To verify that ~c is a star point in Fu, as stated by
Theorem 5 and Corollary 6, we may prove the unsatisfiability
of the constraints

φi(~x) + ui = 0 ∧
n∑
j=1

(
∂φi
∂xj
· (xj − cj)

)
≤ 0

over ~x ∈ IF for all 1 ≤ i ≤ m. This may be efficiently done
by using Interval Constraint Propagation (ICP) [40].

Theorem 5 ([21]). Given a set S = {~x ∈ D ⊂ Rn |ψ(x) ≤ 0}
wherein D is a convex set and ψ has continuous derivatives
in D. For any ~c ∈ S, if the constraint

ψ(~x) = 0 ∧
n∑
i=1

(
∂ψ

∂xi
· (xi − ci)

)
≤ 0

is unsatisfiable for ~x ∈ D, then ~c is a star point in S.

Corollary 6. Given a set S = {~x ∈ D ⊂ Rn | ∧mi=1(ψi(x) ≤
0)} wherein D is a convex set and ψ1, . . . , ψm have continuous
derivatives in D. If ~c is a star point in Si = {~x ∈ D |ψi(x) ≤
0} for all 1 ≤ i ≤ m, then it is also a star point in S.

Fig. 5. Sets Fo, Fu

In the last step, we should
prove that the intersection Fu ∩
ϕf (X0, τ) is nonempty. To do
so, we assume that the backward
flowmap from X0 to ϕf (X0, τ)
is over-approximated by the TM
(pb(~x), Ib) based on the method in
Sect. IV-B. Then, as we pointed
out, Ib is safe for all states in
(pf , If ). Hence we may check
whether the interval pb(~c) + Ib is
included by X0. If so, then ~c is in ϕf (X0, τ), and Fu is an
under-approximation of ϕf (X0, τ). The idea is illustrated in
Fig. 4 (Left). It will be shown in Sect. VI that the three steps
succeed in most of our experiments. A simple example is given
as below.

Example 7. We consider the Moore-Greitzer model of a jet
engine described in [41]. It is the continuous system defined

by the following ODE.{
ẋ = −y − 1.5 · x2 − 0.5 · x3 − 0.5
ẏ = 3 · x− y

The initial set is given by the simplex

X0 = {(x, y) ∈ R2 | −x ≤ −0.9∧−y ≤ −0.9∧x+y−2 ≤ 0}
We try to compute the under-approximation Fu as well as the
over-approximation Fo at t = 0.04 based on the TMs of the
forward and backward flowmaps. Those TMs are computed
on the interval enclosure IX0 = {(x, y) |x ∈ [0.9, 1.1], y ∈
[0.9, 1.1]} of X0. An interval enclosure of the TM flowpipe F
at time 0.04 is

IF =
{

(x, y)
∣∣∣ x ∈ [0.78063344, 0.95902894],
y ∈ [0.96380802, 1.1772562]

}
By transferring the constraints defining X0 to the time 0.04,
we obtain the polynomials φ1, φ2, φ3 and constant bounds
`1, `2, `3, u1, u2, u3 in the definition of Fu, Fo:
φ1 =−4.0810848e-2 · y − 9.9877519e-1 · x− 3.3480961e-5 · y2

−2.4637920e-3 · x · y − 6.0550400e-2 · x2 − 3.6608001e-7 · y3
−3.7006081e-5 · x · y2 − 1.4139012e-3 · x2 · y − 2.3644942e-2 · x3

−1.1520000e-7 · x · y3 − 7.8739201e-6 · x2 · y2
−2.4417472e-4 · x3 · y − 3.2465277e-3 · x4

φ2 =−1.0383459 · y + 1.2238309e-1 · x+ 1.0022399e-6 · y2
+9.8899199e-5 · x · y + 3.6712367e-3 · x2 + 7.6799999e-9 · y3
+1.0828799e-6 · x · y2 + 5.4915839e-5 · x2 · y + 1.3629942e-3 · x3

+1.7280000e-7 · x2 · y2 + 7.2460800e-6 · x3 · y + 1.2865439e-4 · x4

φ3 = 1.0791566 · y + 8.7639208e-1 · x+ 3.2478719e-5 · y2
+2.3648927e-3 · x · y + 5.6879162e-2 · x2 + 3.5840000e-7 · y3
+3.5923200e-5 · x · y2 + 1.3589852e-3 · x2 · y
+2.2281947e-2 · x3 + 1.1519999e-7 · x · y3 + 7.7011199e-6 · x2 · y2
+2.3692863e-4 · x3 · y + 3.1178732e-3 · x4

`1 = 0.88000760, `2 = 0.90121569, `3 = −1.9812255
u1 = 0.88000946, u2 = 0.90121597, u3 = −1.9812233

We choose the point ~c0 = (0.95, 0.95) ∈ X0 and its
image under the forward flowmap approximation pf is
~c = (0.82910752, 1.0171865) which can be easily verified
by iSAT [42] as a star point in Fu. Therefore Fu is connected.
To ensure that the intersection of Fu and the reachable set
at t = 0.04 is nonempty, we compute the interval image of ~c
under the TM of the backward flowmap and it is contained in
X0. Hence, Fu is an under-approximation of the reachable
set at t = 0.04. To visualize the sets Fu and Fo, we plot the
grids with a specified size that intersect Fo in cyan, and the
grids that are covered by Fu in red. They are shown in Fig. 5.
Besides, we also give the simulations 1 in blue.

To further investigate the performance of our method, we
consider to under- as well as over-approximate a flowpipe over
a time step. We set the step-size δ = 0.02 and compute the
TMs of forward and backward flowmaps for the time horizon
[0, 3]. In Fig. 6(a) and 6(b) respectively, we plot the set Fo in
cyan, the set Fu in red and the unconstrained TM flowpipe F
in yellow for t ranges in a time step. Additionally, we also plot
the similar approximation sets in Fig. 6(c) and 6(d) for the
ellipsoidal initial set {(x, y) ∈ R2 | (x−1)2+(y−1)2 ≤ 0.01}.
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(a) t ∈ [0.98, 1] from the simplex (b) t ∈ [2.98, 3] from the simplex

(c) t ∈ [0.98, 1] from the ellipsoid (d) t ∈ [2.98, 3] from the ellipsoid

Fig. 6. Reachable set under- and over-approximations for the jet engine model.
Numerical simulations are given in blue.

Other methods. The under-approximate set Ω may also be
defined as a geometric object, such as a set of connected boxes
or polytopes. To do so, we may follow the methods presented
in [43] and [44]. The main idea is to first randomly generate a
set of points in Fu, and then successively bloat each point to
a set which is made as large as possible but still contained in
Fu. Then Ω is the union of those sets which are connected to
the others. To verify that Ω intersects the exact reachable set
ϕf (X0, τ), we may just compute the images of those random
points under the backward TM map, if at least one of them is
in X0, then Ω is an under-approximation of ϕf (X0, τ).

VI. EXPERIMENTS

We implemented our approach based on the TM library of
FLOW* [22]. The experiments are described as follows.
System models. We select 9 non-linear continuous systems
whose dimensions range from 2 to 7. In order to evaluate
our method on tough examples, some chaotic systems are
also included. They are Lorenz system, Rössler attractor and
Shimizu-Morioka system [45].
Initial sets. We want to handle the initial sets defined
by polynomial constraints. Such a set is usually not TM
definable but the TM forward and backward flowmaps can
be computed on a TM of it. In our experiments, we con-
sider two initial sets for each system: a simplex defined by
S0 = {~x ∈ Rn | (∧ni=1(−xi + ai − r ≤ 0)) ∧ (

∑n
i=1 xi −∑n

i=1 ai) ≤ 0}, and an ellipsoid defined by E0 = {~x ∈
Rn | ∑n

i=1(xi − ai)2 ≤ r2}. The constants ~a and r for the
systems are listed as follows: jet engine: ~a = (1, 1), r = 0.1;
Brusselator: ~a = (0.95, 0.05), r = 0.05; Rössler attractor:
~a = (0,−8.4, 0), r = 0.1; Lorentz system: ~a = (15, 15, 36),
r = 0.01; Shimizu-Morioka system: ~a = (15, 15, 36), r = 0.01;
Lotka-Volterra system [46]: ~a = (0.5, 0.5, 0.5, 0.5), r = 0.1;
coupled Van-der-Pol system: ~a = (1, 1, 1, 1), r = 0.1; Watt

1A numerical simulation is only an approximation whose error bound is
not guaranteed. However, it usually can be made very accurate.

TABLE I
EVALUATION OF THE APPROXIMATIONS FOR ~x(T ) WITH INITIAL SETS AS

simplices. VAR: # VARIABLES, δ: STEP-SIZES, k: TM ORDERS, TIME: TOTAL
RUNNING TIME.

# systems var T δ k time (s) γmin
1 jet engine 2 4 0.02 4 56 ∼0.8
2 jet engine 2 5 0.02 4 71 ∼0.75
3 Brusselator 2 3 0.02 4 55 ∼0.7
4 Brusselator 2 4 0.02 4 89 ∼0.55
5 Rössler 3 1.5 0.01 5 165 ∼0.5
6 Rössler 3 1.6 0.01 5 178 Fail
7 Lorenz 3 0.5 0.01 5 35 ∼0.65
8 Lorenz 3 0.6 0.01 5 45 ∼0.35
9 Shimizu-Morioka 3 1 0.01 5 58 ∼0.7
10 Shimizu-Morioka 3 1.2 0.01 5 69 ∼0.3
11 Lotka-Volterra 4 1 0.01 4 297 ∼0.4
12 coupled Van-der-Pol 4 4 0.01 4 118 ∼0.45
13 steam governor 5 2.5 0.01 5 16 ∼0.35
14 biological system 7 0.2 0.002 3 632 ∼0.25

steam governor [47]: ~a = (0, 0, 0, 0, 0), r = 0.1; biological
system [48]: ~a = (0.1025, . . . , 0.1025), r = 0.0025. Notice
that these initial sets are at least in the same scale as those
typically used in evaluating verified integration methods. Also,
we evaluate the accuracy of an approximation at the end of
the time horizon.
Results. Since the exact accuracy evaluation is very
hard, we intuitively only measure the widths w.r.t. a set
of directions. Given an over-approximation So, an under-
approximation Su and a set of vectors V , we conservatively
compute the widths of So, Su w.r.t. each ~v ∈ V : γo(~v) ≥
|max{~vT ·~x | ~x∈So}+ max{−~vT ·~x | ~x∈So}| and γu(~v) ≤
|max{~vT ·~x | ~x∈Su}+ max{−~vT ·~x | ~x∈Su}|. Then we com-
pute the minimum width ratio γmin = min{γu(~v)/γo(~v) |~v ∈
V } which gives an intuitive evaluation on the accuracy, i.e.,
the larger the value the better the approximation. In Table I
and II, we present the experimental results on our benchmarks.
The over- and under-approximations are the sets Fo and Fu
respectively at time T . The vectors are selected along the
dimensions (axis-aligned). It can be seen that our method found
a valid under-approximation in most cases, and even could
handle chaotic behaviors in reasonably long time horizons.

On one hand, our prototype produces interesting results on
most of the benchmark examples. Since interval (as well as
TM) based integration methods are very sensitive to the size
of the initial set and the length of the time horizon, our under-
approximation method underperforms on hard case studies,
such as the test #6. However, there is still a lot of room for
engineering improvements to our prototype implementations.
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5 Rössler 3 1.5 0.01 5 153 ∼0.4
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2009.

[25] G. Frehse, B. H. Krogh, and R. A. Rutenbar, “Verifying analog
oscillator circuits using forward/backward abstraction refinement,” in
Proc. DATE’06, 2006, pp. 257–262.

[26] I. M. Mitchell, “Comparing forward and backward reachability as tools
for safety analysis,” in HSCC, ser. LNCS, vol. 4416. Springer, 2007,
pp. 428–443.
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