
On Interpolants and Variable Assignments
Pavel Jancik, Jan Kofroň

Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Email: name.surname@d3s.mff.cuni.cz

Simone Fulvio Rollini, Natasha Sharygina
Faculty of Informatics,

University of Lugano, Switzerland,
Email: name.surname@usi.ch

Abstract—Craig interpolants are widely used in program
verification as a means of abstraction. In this paper, we (i)
introduce Partial Variable Assignment Interpolants (PVAIs) as
a generalization of Craig interpolants. A variable assignment
focuses computed interpolants by restricting the set of clauses
taken into account during interpolation. PVAIs can be for
example employed in the context of DAG interpolation, in
order to prevent unwanted out-of-scope variables to appear in
interpolants. Furthermore, we (ii) present a way to compute
PVAIs for propositional logic based on an extension of the
Labeled Interpolation Systems, and (iii) analyze the strength of
computed interpolants and prove the conditions under which they
have the path interpolation property.

I. INTRODUCTION

In software model checking Craig interpolants play an
important role. They are typically used to refine an abstraction
of a program. Many techniques have been introduced to
compute interpolants for various theories such as proposi-
tional logic, conjunctive fragments of linear arithmetic, and
octagon domain. For propositional logic, McMillan’s [9] and
Pudlák’s [11] interpolation systems are well established; they
are generalized by the Labeled Interpolation Systems [6]
(LISs), which permit to systematically compute interpolants
of different logical strength from the same refutation.

Given two formulas A and B such that A ∧ B is un-
satisfiable, a Craig interpolant is a formula I such that A
implies I , I is inconsistent with B and I is defined over
the common variables of A and B. In other words, I is
an over-approximation of A (which can be used to abstract
the behavior of a system, represented by A) disjoint from B
(which often represents unacceptable behaviors).

In this paper, we introduce Partial Variable Assignment
Interpolants (PVAIs) – a generalization of Craig interpolants
– which, in addition to the standard subdivision of an un-
satisfiable formula (the interpolation problem) into A and
B, is parametric in a partial variable assignment (PVA). A
PVA defines a sub-problem on which a PVAI is focused. A
sub-problem is obtained from the interpolation problem by
removing the clauses (constraints) satisfied by the assignment.
Due to the specialization, (1) it is possible to restrict the vari-
ables occurring in an interpolant to those relevant to the sub-
problem, i.e. those shared between the A and B parts of the

This work is partially supported by: ICT COST Action IC0901, the Grant
Agency of the Czech Republic project 14-11384S, and Charles University
Foundation grant 203-10/253297.

sub-problem. Moreover, since the irrelevant constraints (those
not occurring in the sub-problem) need not be considered by
interpolation, (2) the interpolants for the sub-problem can be
of smaller size, compared to Craig interpolants computed from
the interpolation problem.

In the motivating example in Sec. II we show how PVAIs
apply to program verification. For instance, in the context
of abstract reachability graphs (ARG) (and DAG interpola-
tion [2]), an interpolation problem is the encoding of a whole
ARG (representing all paths in the ARG), while for a given
ARG node i the related sub-problem represents the set of
paths that pass through that node. An over-approximation of
the states reachable at i via these paths (a node interpolant)
can be computed by means of a PVAI. Properties of PVAIs
guarantee that the interpolant contains only in-scope program
variables.

An alternative approach could be to solve each sub-problem
separately, which involves calling a SAT/SMT solver for each
sub-problem and applying standard Craig interpolation. The
method we propose allows one to perform just a single call to a
solver for an interpolation problem which encompasses all the
sub-problems, thus (i) processing the parts common to multiple
sub-problems only once. A single solver call results in a single
proof from which all the interpolants for the sub-problems are
computed. The presence of a single proof, in turn, enables (ii)
generating collections of interpolants which satisfy properties
relevant to verification, such as path interpolation [7], [13].
Such collections are hard to obtain if multiple proofs are
involved. In the case of PVAIs, a collection may consist of
the interpolants associated with different sub-problems.

We also propose the new framework of Labeled Partial
Assignment Interpolation Systems (LPAISs) – a generalization
of LISs, which computes PVAIs for propositional logic. We de-
fine the notion of logical strength for LPAISs and show how in-
troducing a partial order over LPAISs allows to systematically
compare the strength of the computed interpolants (a feature
intuitively relevant to verification since it affects the coarseness
of the over-approximations realized by interpolants [12]). We
also show how LPAISs can be used to generate collections
of interpolants which enjoy the path interpolation (inductive
step) property. These results can be applied in the context
of ARGs, where the path interpolation property of computed
node interpolants (labels) guarantees well-labeledness [10] of
the ARG.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 123

1: int max(int i, int j) {
2: if (i > j)
3: return i;

else
4: return j;
5: }

// The main function
6: assert(max(random(), 0) >= 0);

Figure 1. Motivating example

2

1

3 4

5

6

τ12 ≡ j = 0
τ23 ≡ i > j τ24 ≡ ¬(i > j)

τ35 ≡ result = i τ45 ≡ result = j

τ56 ≡ ¬(result >= 0)

Figure 2. Abstract reachablity graph

µ1 ≡ (n1 ⇒ n2) ∧ ((n1 ∧ n2)⇒ τ12)
µ2 ≡ (n2 ⇒ (n3 ∨ n4)) ∧ ((n2 ∧ n3)⇒ τ23) ∧

∧ ((n2 ∧ n4)⇒ τ24)
µ3 ≡ (n3 ⇒ n5) ∧ ((n3 ∧ n5)⇒ τ35)
µ4 ≡ (n4 ⇒ n5) ∧ ((n4 ∧ n5)⇒ τ45)
µ5 ≡ (n5 ⇒ n6) ∧ ((n5 ∧ n6)⇒ τ56)

Cond ≡ n1 ∧ µ1 ∧ µ2 ∧ µ3 ∧ µ4 ∧ µ5

Figure 3. The Cond formula

II. MOTIVATION

In the following, we illustrate a possible application of
PVAIs, which originally motivated this work; nonetheless, the
proposed PVAIs are not limited to this context. As an example,
consider the source code on the left-hand side of Fig. 1 and
the corresponding ARG in Fig. 2. Node i is associated with
location i in the program. Node 1 is the initial node, while
node 6 is the node representing an error location. The edge
constraints τij encode the semantics of the corresponding
program statements. Note that τ12 originates from the call to
the max function in main, on line 6. Further, in node 3, the
parameter i is the only in-scope variable; similarly in node 4
the parameter j is the only in-scope variable. A variable is
in-scope at a given node, if there is a path through the node
where the variable is used before as well as after the node.

In the context of software verification, an important question
is whether an error location is actually reachable from the
initial location of a program – this is known as the reachability
problem. The question can be answered by computing, for
each node i, the set of states reachable at i via paths in the
program ARG [4], [10]. Typically, it is enough to compute
an over-approximation of these states, i.e. a node interpolant.
To this end, the ARG is converted into a Cond formula1,
which represents all execution paths in the ARG. An auxiliary
structure-encoding Boolean variable ni is introduced for each
node i in the ARG; for each i (except for the error node), a
node formula µi is created, which encodes the labels on the
outgoing edges (Fig. 3).

For illustration, we describe the meaning of µ2. The first
conjunct n2 ⇒ (n3∨n4) expresses that after reaching node 2,
a path has to proceed to a successor node (3 or 4). The second
conjunct (n2 ∧ n3) ⇒ τ23 guarantees that if a path goes via
the edge 2 → 3, the semantics of the edge is preserved (i.e.,
the constraint τ23 is satisfied). Similarly, the third conjunct
enforces the semantics of the edge 2→ 4.

The Cond formula is satisfiable if and only if a feasible path
exists that leads from node 1 to node 6 in the ARG. Suppose
now that Cond is unsatisfiable; then a node interpolant for each
node i can be computed. First the ARG needs to be partitioned
into A and B – so that A corresponds to the antecedents of i, B
to all the other nodes in the ARG – and then a Craig interpolant
I is generated as an over-approximation of the states reachable
at i. For instance, in the case of node 3, A would be set to

1Cond has the same meaning as ArgCond in [3].

n1 ∧ µ1 ∧ µ2 and B to µ3 ∧ µ4 ∧ µ5. However, employing
standard Craig interpolation in this manner to compute a node
interpolant I is not sufficient; out-of-scope variables might
in fact belong to both A and B, they could therefore appear
in I , and should be consequently eliminated. Variable j, for
example, could appear in the interpolant for node 3. Even
though out-of-scope variables can be eliminated by resorting
to quantification, followed by a quantifier-elimination phase,
this approach is a well-known bottleneck in verification.

Computing node interpolants using PVAIs effectively solves
the problem of out-of-scope program variables. Suppose that
a node interpolant is to be computed for a node k; the
created PVA assigns False to all structure-encoding variables
corresponding to nodes not lying on the paths through k.
By setting a variable nj to False, in fact, the paths via
node j are blocked; moreover, the whole node formula µj
is satisfied and thus µj is not a part of the sub-problem for
node k. On the other hand, the PVA assigns nk to True to
express that each considered path has to pass through k (the
node for which the interpolant is computed). In particular, to
compute an interpolant for node 3, we assign n3 to True and
n4 to False to block the path through node 4; the rest of
variables remain unassigned. This assignment satisfies (and
thus removes) n2 ⇒ (n3 ∨n4), (n2 ∧n4)⇒ τ24 and µ4 from
the sub-problem (see Fig. 4). In the A part, the sub-problem for
node 3 contains the edge labels (and consequently the program
state variables) related to the path from node 1 to node 3, and
in the B part information related to the path from node 3 to
node 6. The program state variables shared by the A and B
parts of the sub-problem are the in-scope variables, which are
exactly those that may appear in PVA interpolants.

III. PRELIMINARIES

A clause is a finite disjunction of literals. We use angle
brackets 〈Θ〉 to denote the clause built over the literals in Θ.
Let 〈Θ, p〉 and 〈Θ′, p〉 be clauses. Using variable p as the pivot,
their resolution yields the clause 〈Θ,Θ′〉. In the following, we
consider propositional formulas in conjunctive normal form,

π3 ≡ n3 ∧ n4
A3 ≡ n1∧

(n1 ⇒ n2) ∧ ((n1 ∧ n2)⇒ j = 0)∧
∧ ((n2 ∧ n3)⇒ i > j)

B3 ≡ (n3 ⇒ n5) ∧ ((n3 ∧ n5)⇒ result = i)∧
(n5 ⇒ n6) ∧ ((n5 ∧ n6)⇒ ¬(result >= 0))

Figure 4. The A and B parts of the sub-problem for node 3

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 124

i.e., as conjunctions (or equivalently sets) of clauses. We use
Var(l) to denote the variable of literal l and Var(A) for the
variables occurring in the set of clauses A.

We adopt the definition of resolution proof from [6]: a
resolution proof is a tuple (V,E, cl, piv, s), where V is a set of
vertices in the proof, E is a set of edges. Each inner vertex v
represents resolution of its antecedent vertex-clauses (specified
by cl) using the pivot piv(v). A refutation proof derives an
empty clause in the sink vertex s.

Since the resolution proofs take the set of clauses as input,
the input formula is first converted into a conjunction of
clauses. Thus in the following we use the terms formula and
set of clauses interchangeably.

A Craig interpolant [5] for the pair of formulas (A,B) such
that A∧B is unsatisfiable is a formula I such that (1) A⇒ I ,
(2) B ∧ I ⇒ ⊥, and (3) Var(I) ⊆ Var(A) ∩ Var(B).

An interpolant sequence for the unsatisfiable formula A1 ∧
A2 ∧ ... ∧ An is a tuple of formulas (I0, I1,In), where Ii
is an interpolant for (A1 ∧ ... ∧ Ai, Ai+1 ∧ ... ∧ An). If for
all i, Ii ∧Ai ⇒ Ii+1, then (I0, I1,In) is said to satisfy the
path interpolation (PI) property. In [7], it was proved that the
path interpolation property holds for any LISs, including the
well-known McMillan’s and Pudlák’s systems, whenever the
interpolant sequence is computed from the same proof.

Let A be a set of clauses. A variable assignment assigns
either True (>) or False (⊥) to each variable in the Var(A)
set. The variable assignment can be seen as a conjunction of
literals. A partial variable assignment (PVA) π assigns values
only to a subset of variables in Var(A). A PVA π can be used
as an assumption w.r.t. A (i.e., π |= A) to restrict the set of
models of A to those compatible with π.

Definition 1 (Clauses under assignment): Let A be a set of
clauses and π be a PVA over Var(A). We define the sets of
satisfied clauses Aπ = {〈Θ〉|〈Θ〉 ∈ A and π |= 〈Θ〉} and
unsatisfied clauses Aπ = {〈Θ〉|〈Θ〉 ∈ A and π 6|= 〈Θ〉}.

Satisfied clauses contain at least one literal evaluated to >
under π, while, for unsatisfied clauses, every literal is either
unassigned or falsified. The unsatisfied clauses Aπ determine
the sub-problem. We use π |= l to express that a literal l
evaluates to > in a given PVA π.

IV. PARTIAL VARIABLE ASSIGNMENT INTERPOLANTS

In this section, we formally define partial variable as-
signment interpolation, which, in addition to the subdivision
of an unsatisfiable formula into A and a B parts, requires
specification of a PVA.

Definition 2: Let R be an (A,B)-refutation and π a partial
variable assignment over Var(A ∧ B). A partial variable
assignment interpolant (PVAI) is a formula I such that:

(D2.1) π |= A⇒ I
(D2.2) π |= B ∧ I ⇒ ⊥
(D2.3) Var(I) ⊆ Var(Aπ) ∩ Var(Bπ)
(D2.4) Var(I) ∩ Var(π) = ∅

In the following we use (A,B, π) to denote that a PVAI is
computed from an (A,B)-refutation using the partial assign-
ment π.

Since π |= (A ⇔ Aπ), D2.1 and D2.2 can be equivalently
rewritten as π |= Aπ ⇒ I and π |= Bπ ∧ I ⇒ ⊥; in other
words, I is an interpolant for the sub-problem (Aπ ∧ Bπ).
Note that even after removing (the satisfied) clauses, the sub-
problem remains unsatisfiable (assuming π).

On the other hand, a PVAI cannot be obtained from standard
interpolants by application of a partial assignment (I[π]). The
reason is that, in addition to assigned variables (disallowed
by D2.4), rule D2.3 excludes from the PVAI also all unas-
signed (out-of-scope) variables that occur in satisfied clauses
only, which can still appear in I[π].

Calling a solver multiple times can be quite resource-
consuming. An (A,B)-refutation proof is independent of a
PVA; this important fact allows to call the solver only once
on the overall problem A ∧ B, and later to introduce various
PVAs (representing relevant sub-problems) for which the PVAI
can be efficiently computed.

Although Craig interpolation has many applications in pro-
gram verification, verification tools often require interpolation
sequences with specific properties [7]. The PVAI for all the
sub-problems are computed from the same proof, thus they are
related to each other. The existence of a single proof permits
the application of a standard proving technique in the area of
interpolation – structural induction over a refutation proof –
to show various properties of PVA interpolant sequences. All
the techniques where interpolants for different sub-problems
are computed using different proofs (e.g., applying a solver
directly on each sub-problem, or incremental solving with
assumptions) do not, per se, guarantee any properties of their
sequences.

V. LABELED PARTIAL ASSIGNMENT INTERPOLATION
SYSTEM

To show that PVAIs are not just a theoretical concept, we
present the framework of Labeled Partial Assignment Interpo-
lation Systems, a generalization of LISs [6], which computes
PVAIs for propositional logic, and prove its soundness. Next,
in order to prove the path interpolation property, we introduce
the concept of logical strength on LPAISs, which allows
one to systematically compare the strength of the generated
interpolants.

In order to define LPAISs, first we have to extend the
definitions of labeling functions and locality from LISs to take
variable assignments into account. Note that if no variable is
assigned, LPAISs are equivalent to LISs.

A labeling function assigns labels to literals in a refutation;
the labeling drives the computation of an interpolant from the
proof and determines its strength.

Definition 3 (Labeling function): Let L = (S,v,u,t) be
the lattice of Fig. 6, where S = {⊥, a, b, ab, d+} and ⊥ is the
least element, and let R = (V,E, cl, piv, s) be a resolution
proof over a set of literals Lit. A function LabR,L : V×Lit→ S

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 125

Leaf v: 〈Θ〉, [I]

I =

〈Θ〉[π]|b,v,Lab if 〈Θ〉 ∈ Aπ Hyp-Aπ
¬〈Θ〉[π]|a,v,Lab if 〈Θ〉 ∈ Bπ Hyp-Bπ
> if 〈Θ〉 ∈ Aπ ∪Bπ Hyp-Aπ , Hyp-Bπ

Inner vertex v:
v1 : 〈p,Θ1〉, [I1] v2 : 〈p̄,Θ2〉, [I2]

〈Θ1,Θ2〉, [I]

I =

I1 ∨ I2 if Lab(v1, p) t Lab(v2, p) = a Res-a
I1 ∧ I2 if Lab(v1, p) t Lab(v2, p) = b Res-b
(I1∨p)∧ (I2∨p) if Lab(v1, p)t Lab(v2, p) = ab Res-ab
I2 if Lab(v1, p) = d+ Res-d+

I1 if Lab(v2, p) = d+ Res-d+

Figure 5. Labeled Partial Assignment Interpolation System

ab

d+

a b

⊥

Figure 6. Lattice of labels (according to v)

is called labeling function for a refutation R iff ∀v ∈ V and
∀l ∈ Lit, LabR,L satisfies the following conditions:

(D3.1) LabR,L(v, l) = ⊥ if and only if l /∈ cl(v), and
(D3.2) LabR,L(v, l) = LabR,L(v1, l)tLabR,L(v2, l), where
v1, v2 are the predecessor vertices.

From condition D3.2 it follows that the labeling function
is fully determined once the labels in the leaves have been
specified. We omit subscripts R and L if clear from the
context.

Naming conventions: Let us assume a pair of sets of clauses
(A,B) and a PVA π. The clause sets are split into four groups,
the unsatisfied clauses Aπ and Bπ which specify the sub-
problem and are taken into account during interpolation, and
the satisfied clauses Aπ and Bπ , which are disregarded.

We distinguish among the following kinds of variables,
depending on the standard notions of locality and sharedness,
as well as on where the variables appear in the four groups of
clauses. We say that a variable k is unassigned if k 6∈ Var(π).
An unassigned variable k is:

Aπ-local if k ∈ Var(Aπ) and k 6∈ Var(Bπ)
Bπ-local if k 6∈ Var(Aπ) and k ∈ Var(Bπ)
AπBπ-shared if k ∈ Var(Aπ) and k ∈ Var(Bπ)
AπBπ-clean if k 6∈ Var(Aπ) and k 6∈ Var(Bπ)

The properties above are independent of the occurrence of k
in Var(Aπ) and Var(Bπ). The “clean” variables occur only in
the satisfied clauses, thus are out-of-scope and cannot appear
in a PVA interpolant.

We say that a variable k is McMillan-labeled if, whenever
k is AπBπ-shared or AπBπ-clean, k is labeled b (the labels of
the remaining variables are not limited to b). If all variables are
McMillan-labeled, a LIS reduces to McMillan’s interpolation
system [6], which yields the strongest interpolant that LISs
(and LPAISs) can produce from a given refutation proof.

A variable k is labeled consistently if all occurrences of k
in a refutation have the same label.

Not all labeling functions can be used to generate inter-
polants; in LPAIS, interpolants are computed if a locality
preserving labeling is used.

Definition 4: A labeling function Lab for an (A,B, π)-
refutation R is locality preserving iff ∀v ∈ V, ∀l ∈ cl(v):

(D4.1) Lab(v, l) = d+ ⇔ π |= l
(D4.2) Var(l) is unassigned and Aπ-local ⇒ Lab(v, l) = a
(D4.3) Var(l) is unassigned and Bπ-local ⇒ Lab(v, l) = b
(D4.4) Var(l) is unassigned and AπBπ-clean ⇒

it is consistently labeled a or b.
Locality constraints provide freedom in labeling AπBπ-shared
and AπBπ-clean variables; the choice of labels directly affects
the strength of the computed interpolants. The label of AπBπ-
shared variables can be set freely to a, b, or ab. The same holds
for falsified literals; their labels are irrelevant since they are
removed by the assignment filter (defined below).

The D4.2 and D4.3 rules are equivalent to the locality
requirements of LIS, where A-local and B-local variables must
be labeled a and b, respectively. D4.1 concerns the satisfied
literals. The label d+ is used in the interpolation process to
identify resolutions with an assigned pivot and parts of the
proof which are not relevant to the sub-problem. The D4.4
requirement is specific to PVAI and deals with variables which
occur in the satisfied clauses only. The requirement guarantees
that such variables do not occur in the interpolant, because ab-
resolution cannot be applied. Further, note that for the empty
assignment the locality constraints reduce to those of LISs,
since D4.1 and D4.4 do not apply to any literal.

Filters: For a clause 〈Θ〉, a labeling function Lab, a resolution-
proof vertex v ∈ V, and a label c, we define the match filter |
as 〈Θ〉|c,v,Lab = {l ∈ 〈Θ〉 | c = Lab(v, l)}; it preserves only
the literals with the specified label. Similarly, we define the
upward filter � as 〈Θ〉�c,v,Lab= {l ∈ 〈Θ〉 | c v Lab(v, l)};
it preserves the literals with labels above c in Fig. 6. The
subscripts Lab, v are omitted if clear from the context. Given
a partial assignment π and a clause 〈Θ〉, we also define the
assignment filter 〈Θ〉[π] = {l ∈ 〈Θ〉 | Var(l) 6∈ Var(π))},
which removes all the assigned literals (satisfied and falsified
ones).

Moreover, we assume that filters have a higher precedence
than negation. E.g., ¬〈Θ〉[π]�a can be equivalently rewritten
as ¬((〈Θ〉[π])�a).

An interpolation system is a procedure for computing an
interpolant from a refutation. It assigns a partial vertex-

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 126

interpolant to each vertex of the refutation, yielding the final
interpolant at the sink vertex.

Definition 5: For a locality preserving labeling function Lab
and an (A, B, π)-refutation R, Fig. 5 defines the Labeled
Partial Assignment Interpolation System LpaItp(Lab, R).

An LPAIS produces interpolants in the following way:
first the vertex-interpolants for leaves of the refutation proof
are computed using the rules in the upper part of Fig. 5
(hypothesis rules). Depending on the occurrence of the vertex-
clause 〈Θ〉 in A or B sets, the corresponding rule describes the
transformation of the vertex-clause into a vertex-interpolant.
Later, going down through the proof from leaves to the sink,
the vertex-interpolants for inner vertices are computed using
rules in the lower part of Fig. 5. The labels assigned to the
pivots determine how vertex-interpolants of both predecessors
are combined. This process ends at the sink vertex where the
PVAI is derived. The interpolants are computed in time linear
to the size of the proof.

The main difference compared to LISs are the additional d+

rules. For instance, consider the last rule, where Lab(v2, p) =
d+. In contrast to the standard rules, the partial interpolant
is simpler, because it does not contain I2, omitted due to the
variable assignment. Generally, these rules cut out the satisfied
sub-tree of the proof. Usually, the later in the refutation the
assigned variable is resolved, the larger sub-tree is pruned and
the smaller the resulting interpolant is.

The differences between LPAISs and LISs are motivated
by the way variable assignments work. The new d+ rules
can be seen as a specialization of the ab resolution rule if
a PVA π is assumed. A similar relationship holds for the
hypothesis rules in the leaves of a refutation. These rules are
equivalent to LIS hypothesis rules if applied on a clause under
the assumed assignment. The changes we introduce w.r.t. LISs
are of two kinds: those in LPAISs rules force specialization
of the interpolant on a sub-problem, while the changes in the
locality constraints remove unassigned out-of-scope variables
from the interpolant.

Theorem 1 (Correctness): LpaItp(Lab, R), for an (A, B, π)-
refutation R and a locality preserving labeling function Lab,
generates a partial variable assignment interpolant.

Proof sketch: By structural induction over R we show that,
for each vertex v of a resolution proof, the following invariants
hold:

π |= A ∧ ¬〈Θ〉�a,v,Lab⇒ Iv

π |= B ∧ ¬〈Θ〉�b,v,Lab⇒ ¬Iv

Iv is the partial vertex-interpolant and 〈Θ〉 is a vertex-clause
of v. These invariants yield the PVAI constraints (D2.1, D2.2)
at the sink vertex, where ¬〈Θ〉 = >. The full proof can be
found in [8].

The attentive reader may notice that the locality constraints,
as well as the way LPAISs compute interpolants, are symmetric
for the Aπ and Bπ sets of satisfied clauses. It reflects the fact

that these clauses are not a part of the sub-problem under
consideration, thus irrelevant for PVAI interpolants. Given a
fixed π, the satisfied clauses can be moved freely between
the A and B sets; both computed interpolants and locality of
the labeling functions are not affected if satisfied clauses are
moved. This fact allows us to articulate the strength theorem
in an elegant way.

A. Strength

b

ab = d+

a

⊥

Figure 7. Strength ordering (�)

Interpolation systems based
on labeling provide some free-
dom in the choice of labels
(e.g., for shared variables); this
choice affects the resulting in-
terpolants, in particular their
strength. In the following we
investigate this relationship in
more detail.

Definition 6 (Strength order): Let � be a pre-order relation
defined on the set of labels S = {⊥, a, b, ab, d+} as: b �
ab = d+ � a � ⊥ (see Fig. 7). Let Lab and Lab′ be labeling
functions for a refutation R. We say Lab is stronger than Lab′,
denoted as Lab � Lab′, if for all vertices v ∈ V and for all
literals l ∈ cl(v) it holds that Lab(v, l) � Lab′(v, l).

Note that labels ab and d+ are of the same strength and
can be exchanged if the locality requirements permit; b is the
strongest label, while a is the weakest one a literal can get.

The following theorem states that the introduced strength or-
der on labeling functions also orders the produced interpolants
by logical strength.

Theorem 2 (Interpolant strength): Let Lab be a locality
preserving labeling function for an (A, B, π)-refutation R,
and Lab′ be a locality preserving labeling function for (A, B,
π′)-R. Let I be a partial variable assignment interpolant for
LpaItp(Lab, R) and I ′ be a PVAI for LpaItp(Lab′, R).

If Lab � Lab′ then π, π′ |= I ⇒ I ′.

Note that when π and π′ are empty assignments, we obtain
exactly the theorem on interpolant strength from [6]. Also note
that the theorem permits different variable assignments for
the interpolants. Thus it relates the interpolants generated for
different sub-problems (e.g., interpolants considering different
sets of paths through a given ARG node). Since both π and π′

are assumptions of the formula I ⇒ I ′, the theorem applies to
cases common to both sub-problems (i.e., to the shared paths).
Both interpolants (I and I ′) have to be computed using the
same A and B parts, thus interpolants for different ARG nodes
cannot be compared using this theorem; a generalization in this
direction is shown in the following sub-section.

In the following proof, we need a new type of filter. Let Lab
and Lab′ be labeling functions to be compared by strength and
v be a vertex of the refutation proof. The new weakened-labels
filter |�Lab,Lab′

v preserves the literals whose label is weaker in
Lab′ than in Lab. E.g., the filter preserves a literal l if the
strongest labels b (Lab(v, l) = b) is weakened into label a or

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 127

ab in Lab′(v, l), while it filters-out a literal if both functions
assign label a to it. The vertex and the labeling functions are
omitted if clear from the context.

Proof sketch (Theorem 2): By structural induction over
R, we show that for each vertex of the resolution proof the
following invariant holds:

π, π′ |= Iv ∧ ¬〈Θ〉|�v⇒ I ′v

〈Θ〉 is the vertex-clause, Iv and I ′v are the partial vertex-
interpolants for the vertex v as generated by our interpolation
system using the labeling functions Lab and Lab′, respectively.
The full proof in [8] shows that the invariant holds for all
combinations of rules that can be used to define the vertex-
interpolants Iv and I ′v .

Similarly to LISs, for a fixed variable assignment there
is a lattice of LPAISs ordered according to the strength of
labeling functions. The top element of the lattice involves the
strongest labeling function, which assigns label b to AπBπ-
shared and AπBπ-clean variables, while the labeling function
of the bottom element assigns label a to them. Theorem 2
claims that LPAISs produce interpolants ordered by strength
according to the lattice.

B. Path interpolation property
Several verification approaches such as [3], [10], [14]

depend on the path interpolation property (PI). In [13] the
authors show that LISs can be employed to generate path
interpolants by providing a sequence of labeling functions that
are decreasing in terms of strength. In this subsection we study
conditions for labeling functions that have to be satisfied in
order to guarantee the PI property of interpolant sequences
generated by LPAISs.

First, we show that the PI property holds if the same
partial assignment along a sequence is used to compute the
interpolants (i.e., considering the same set of paths at different
ARG nodes). Later on, we generalize the result to permit
different partial assignments for particular interpolants (i.e.,
relating node interpolants).

Fixed PVA: To show the PI property, it is enough to prove
that, for any consecutive interpolants in the sequence, it holds:
I ∧ S ⇒ I ′, where I is an interpolant for (A,S ∪B, π), I ′ is
an interpolant for (A ∪ S,B, π), and S is a set of clauses.

For LISs, [13] defines a set of labeling constraints on the
labeling functions used to compute the interpolants I and
I ′; if the labeling constraints are satisfied, the interpolants
have the PI property. However, we prove the PI property
in another way, more suitable for LPAISs. Given a labeling
function to compute the interpolant I , we define the strongest
labeling function which can be used to compute the successor
interpolant I ′.

Definition 7: Let Lab be a labeling function for an (A,S ∪
B, π)-refutation R. The strongest successor labeling function
LabS (for the set S) is defined in Fig. 8.

It is easy to see that LabS is a valid labeling function
and that if Lab is locality preserving, then LabS is locality

preserving for (A ∪ S,B, π). Hence, LabS can be used to
compute an interpolant for (A ∪ S,B, π).

The first alternative (D7.1) forces label a for all literals
which become (Aπ ∪Sπ)-local due to the shift of the clauses
in S from the B to the A part. Any locality preserving function
Lab′ has to also assign the label a to these literals. So, it is
easy to see that if Lab � Lab′ then also LabS � Lab′. This
expresses the meaning of strongest. Moreover, Lab � LabS ,
because either the labels are equal or the weakest label a is
used in the labeling LabS .

The following lemma states the PI property for the strongest
successor labeling.

Lemma 1: Let Lab be a locality preserving labeling function
for an (A, S∪B, π)-refutation R and let LpaItp(Lab, R) = I .
Let LabS be the strongest successor labeling for Lab and S,
and LpaItp(LabS , (A ∪ S,B, π)) = I ′.

Then π |= I ∧ S ⇒ I ′.

Proof sketch: By structural induction over R, we show that
for each vertex v of the resolution proof the following invariant
holds:

π |= Iv ∧ S ∧ ¬〈Θ〉|�v⇒ I ′v

〈Θ〉 is the vertex-clause, Iv and I ′v are the partial vertex-
interpolants for the vertex v as generated by our interpolation
system using the labeling functions Lab and LabS , respec-
tively. The full proof can be found in [8].

Lemma 1 guarantees the PI property only if the sequence
of the strongest successors labeling functions is used. Below
we generalize this result in such a way that the strength of the
labeling function can decrease along the sequence; Theorem 3
states the main result for a fixed partial assignment – the path
interpolation property.

Theorem 3: Let Lab and Lab′ be locality preserving la-
beling functions for an (A, S ∪ B, π)-refutation R and
(A ∪ S, B, π)-R, respectively. Let LpaItp(Lab, R) = I and
LpaItp(Lab′, R) = I ′.

If Lab � Lab′ then π |= I ∧ S ⇒ I ′.

Proof: Let IS be the partial variable interpolant for the
strongest successor labeling function LabS . From Lemma 1
it holds that π |= I ∧S ⇒ IS . As shown above LabS � Lab′;
so Theorem 2 can be applied and π |= IS ⇒ I ′.

The result in this case is the same as for LISs. In the
following we focus on the case when different PVAs are used,
and the situation becomes more challenging.

Different PVAs: The goal to prove when different partial
assignments π and π′ are used to compute interpolants I and
I ′ (respectively) is:

π, π′ |= I ∧ S ⇒ I ′

Looking back at the motivating example, for each node in
the ARG a different partial variable assignment is typically
used; thus, the generalization done in this section is needed to
relate the interpolants of adjacent ARG nodes. Assume node

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 128

LabS(v, l) =
{
a if Var(l) ∈ Var(Sπ) ∧ Var(l) 6∈ Var(Bπ) ∧ Var(l) 6∈ Var(π) (D7.1)
Lab(v, l) otherwise (D7.2)

Figure 8. Strongest successor labeling function

interpolants I2 for node 2 and I3 for node 3. The desired
property is then I2∧τ23 ⇒ I3 (well-labeledness in the context
of ARGs [3], [10]), which follows from the aforementioned
goal. In Theorem 4, we work out the conditions the labeling
functions (for I2 and I3) have to satisfy so that the interpolants
have the desired property.

Assignments: Having two different PVAs π and π′, the ex-
pression (π, π′) represents the PVA formed by the union of
π and π′. We say that a PVA σ is an extension of a PVA π,
if σ ⇒ π (viewing the PVAs as conjunctions of literals). In
other words, σ can be created from π by assigning additional
variables. In case of conflicting π and π′ (assigning one >
and the other ⊥ to a particular variable), the goal above holds
trivially and therefore we omit the case from now on.

Definition 8: We say that the variable is assignable if it is
McMillan-labeled and not Aπ-local.

Each assignable variable must have label b, therefore, after
assigning it, its label becomes weaker. The following theorem
states the main result for different PVAs.

Theorem 4: Let Lab be a locality preserving labeling
function for an (A,S ∪ B, π)-refutation R and let I =
LpaItp(Lab, (A,S ∪ B, π)). Let Lab′ be a locality preserv-
ing labeling function for (A ∪ S,B, π′)-R and let I ′ =
LpaItp(Lab′, (A ∪ S,B, π′)).

Suppose that (i) Aπ ⊆ Aπ′ , (ii) Bπ′ ⊆ Bπ , (iii) the variables
assigned by π′ and not by π are assignable in Lab, and (iv)
the variables assigned by π and not by π′ are not Bπ′ -local.

If Lab � Lab′ then it holds π, π′ |= I ∧ S ⇒ I ′.

Intuitively, the constraints (i) and (ii) prevent from com-
paring interpolants of unrelated sub-problems. The only way
to violate the constraint (i) Aπ ⊆ Aπ′ is to assign a new
variable by π′. In terms of ARGs, it means that π′ blocks
some paths in addition to those blocked by π. The interpolant
I over-approximates the states reachable in the corresponding
node via non-blocked paths in the A part. If the assignment π′

blocks some paths related to I ′ in addition to those blocked by
π, then I ′ may not cover (over-approximate) the states coming
from the blocked paths, thus it may be not implied by I . A
similar reasoning can be used for (ii).

Proof sketch: The overall idea of the proof is shown in
Fig. 9. The proof consists of four simpler steps. In the first
step (1 → 2) new variables get assigned by π′, in the second
step (2 → 3) the clauses of S are moved. In the third step
(3 → 4) the assignment π is removed, in the last step (4 →
5) the labeling function is weakened. In the second line of

Fig. 9, it is expressed how the interpolation problem is divided
into A and B parts and which PVA is used. In all but the
second step the division into A and B parts does not change,

thus Theorem 2 can be used to relate particular interpolants
with each other via implications; in the second step the partial
variable assignment does not change, so Theorem 3 is utilized.

To be able to apply this scheme (Theorems 2 and 3),
locality preserving labeling functions of decreasing strength
are needed. The third line of Fig. 9 specifies a labeling function
for each step. The idea of the approach is similar to the one
used for fixed variable assignments. In each step, we create
the strongest possible labeling function; in particular for the
first step (1 → 2) we create an extended-assignment label-
ing function (Lab+

π→(π,π′)) – the strongest locality-preserving
labeling function if new variables get assigned. For the second
step (2 → 3) we use the strongest successor labeling
function as defined in Def. 7. For the third step (3 → 4) we
create a restricted-assignment labeling function (Lab−(π,π′)→π′)
– the strongest locality-preserving labeling function if vari-
ables get unassigned. For the sake of space, we skip the
definitions of the aforementioned labeling functions and proofs
of the required properties; they can be found in [8].

Via the above construction we create the strongest locality-
preserving labeling function (Lab−(π,π′)→π′) for (A∪S,B, π′)
which satisfies Lab � Lab−(π,π′)→π′ . In the last step (4 → 5)
we decrease the strength into Lab′, in the same way as it is
done for LabS in Theorem 3.

The last line of Fig. 9 shows how the interpolants in each
step are related to each other and how the overall claim of this
theorem follows from the particular steps.

C. Application to ARGs

While the locality constraints are simple to satisfy for a
single interpolant, the situation becomes more complicated if
several interpolants need to be related by the path interpolation
property. In such a case, the labels of the literals have to be
chosen in an appropriate way. In the following, we briefly
discuss how to set labels for ARG nodes (using the same
encoding as in our motivating example) to apply Theorem 4
and, thus, to obtain well-labeled node interpolants.

Recall that in ARGs there are two kinds of variables –
(1) structure encoding (ni), which can be assigned, and (2)
program variables, which are not assigned. The first rule is
that the structure encoding variables have to be McMillan-
labeled (obtaining the strongest possible labels). This rule and
the properties of ARG encoding are enough to satisfy the (i)–
(iv) requirements of Theorem 4.

Only the last requirement – Labi � Labj – restricts also
the labels for program variables. It is easily satisfied in ARGs
by a quite simple general rule: once an AπBπ-shared or an
AπBπ-clean literal gets a label weaker than the strongest label
b at a node, the same or a weaker label has to be assigned at
all its successor nodes, until it becomes Aπ-local.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 129

1 → 2 → 3 → 4 → 5
(A,S ∪B, π) (A,S ∪B, (π, π′)) (A ∪ S,B, (π, π′)) (A ∪ S,B, π′) (A ∪ S,B, π′)

Lab � Lab+
π→(π,π′) � LabS(π,π′) � Lab−(π,π′)→π′ � Lab′

π, π′ |= I ∧ S T2=⇒ I+ ∧ S T3=⇒ IS
T2=⇒ I−

T2=⇒ I ′

Figure 9. Idea of Theorem 4

Apparently, if for all nodes in an ARG the strongest possible
labeling functions are used (i.e., all variables are McMillan-
labeled), the aforementioned rules on labeling functions are
satisfied, and well-labeled node interpolants are obtained.

A well-known inherent property of node interpolants is
that for a path p in ARG the resulting node interpolants do
not form path interpolants. A node interpolant summarizes
information about all paths via the node. To be able to express
this “summary”, the variables shared (between A and B) on
any path via the node need to be employed; we call these in-
scope variables. However these variables are not necessarily
AB-shared in the selected path p.

Still, path interpolants for a single path can be computed
from the overall problem by means of PVAIs. Using a PVA
that blocks all paths except for the one of interest, LPAISs
yield path interpolants focused only on that path and over the
variables shared on that path.

VI. RELATED WORK

To the best of our knowledge, the only strongly related
works in this area are [1], [3].

The approach of [3], implemented in the UFO tool, can han-
dle linear integer arithmetic. The main idea of the technique
is to linearize a DAG into a single path; after that, standard
path interpolants are computed and, if out-out-scope variables
are present in the interpolants, quantification is used to remove
these variables. So, in general the approach leads to quantified
interpolants, while LPAISs yield quantifier-free interpolants.

In [1], the authors present a different solution to the problem
of out-of-scope variables. Instead of quantification, the fol-
lowing operations are proposed to remove them: (a) assigning
constants to variables in the interpolant (> or ⊥ in case of
propositional logic) or (b) modifying the structure of the DAG
encoding. Comparing to (a), our approach is more general. We
naturally handle any provided assignments, thus it is possible
to assign additional variables to obtain the same interpolant
as suggested by [1]. Moreover, we provide more flexibility,
e.g., in the case of AπBπ-clean variables one may choose
either label b to obtain a stronger interpolant, or label a to
get a weaker one. In our work we also show the constraints
under which a property relevant to verification – the path
interpolation property – holds, which is not guaranteed in [1].

An aspect common to the above approaches is that they are
applied as post-processing techniques, after an interpolant has
been computed and only if it contains out-of-scope variables.
On the contrary, our method is integrated into the computation
of the interpolant, and simplifies the proof on the fly according

to the corresponding variable assignment, yielding a possibly
smaller interpolant.

VII. CONCLUSION

In this paper, we introduced the new concept of Partial
Variable Assignment Interpolants, which, unlike Craig inter-
polants, permits specialization to sub-problems specified in the
form of variable assignments. We showed how PVAIs find
application in the context of Abstract Reachability Graphs and
DAG interpolation. We also developed the new framework of
Labeled Partial Assignment Interpolation Systems, which can
be used to compute PVAIs for propositional logic, and showed
its properties.

As future work, we plan to extend the framework of
LPAISs and to introduce a PVA interpolation system for linear
integer arithmetic – a theory particularly relevant to program
verification.

Acknowledgment.: Special thanks go to Ondřej Šerý for his
valuable contribution.

REFERENCES

[1] Albarghouthi, A., Gurfinkel, A.: DAG-Interpolation for Software Model
Checking (2013), http://cav2013.forsyte.at/files/aws_albarghouthi.pdf

[2] Albarghouthi, A., Gurfinkel, A., Chechik, M.: Craig Interpretation. In:
SAS ’12. LNCS, vol. 7460, pp. 300–316 (2012)

[3] Albarghouthi, A., Gurfinkel, A., Chechik, M.: From Under-Approxima-
tions to Over-Approximations and Back. In: TACAS ’12. LNCS, vol.
7214, pp. 157–172 (2012)

[4] Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Ufo: A Framework
for Abstraction- and Interpolation-Based Software Verification. In: CAV
’12. LNCS, vol. 7358, pp. 672–678 (2012)

[5] Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory. J. of Symbolic Logic pp. 269–285 (1957)

[6] D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant
strength. In: VMCAI’10. LNCS, vol. 5944, pp. 129–145 (2010)

[7] Gurfinkel, A., Rollini, S.F., Sharygina, N.: Interpolation Properties and
SAT-Based Model Checking. In: ATVA ’13. LNCS, vol. 8172, pp. 255–
271 (2013)

[8] Jančík, P., Kofroň, J.: On Partial Variable Assignment Interpolants.
Tech. Rep. 2013/5, Dept. of Distributed and Dependable Systems,
Charles University in Prague (2013), http://d3s.mff.cuni.cz/publications/
download/D3S-TR-2013-05-PVAI.pdf

[9] McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: CAV
’03. LNCS, vol. 2725, pp. 1–13 (2003)

[10] McMillan, K.L.: Lazy Abstraction with Interpolants. In: CAV ’06.
LNCS, vol. 4144, pp. 123–136 (2006)

[11] Pudlák, P.: Lower Bounds for Resolution and Cutting Plane Proofs and
Monotone Computations. Journal of Symbolic Logic 62(3), 981–998
(1997)

[12] Rollini, S., Alt, L., Fedyukovich, G., Hyvärinen, A., Sharygina, N.:
PeRIPLO: A Framework for Producing Effective Interpolants in SAT-
Based Software Verification. In: LPAR (2013)

[13] Rollini, S.F., Sery, O., Sharygina, N.: Leveraging Interpolant Strength in
Model Checking. In: CAV ’12. LNCS, vol. 7358, pp. 193–209 (2012)

[14] Vizel, Y., Grumberg, O.: Interpolation-sequence based Model Checking.
In: FMCAD ’09. pp. 1–8. IEEE (2009)

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 130

