
Post-silicon Timing Diagnosis Made Simple using
Formal Technology

Daher Kaiss and Jonathan Kalechstain
Core CAD Technologies, Intel Corporation

Email: {dkaiss, jkalechs}@iil.intel.com

Abstract— With the increasing demand for microprocessor
core operating frequencies, debugging post silicon synchro-
nization (or speed) failures is a critical time consuming post
silicon debug activity. Inability to complete the isolation of
all possible speed failures on time, forces companies to go to
market with products that run at a lower frequency than their
upper frequency limits. This might cause revenue losses or
lead to loss of market segment shares. Laser-Assisted Device
Alternation (LADA) machines are the main vehicle for debugging
post silicon speed failures at Intel. Operating such expensive
machines consumes a substantial portion of the overall post
silicon debug effort. Moreover, with the increasing complexity
of manufacturing processes, these machines need to be renewed
from one process generation to the next, which increases the
product cost. This paper describes a novel method, based on
formal technology, which brings a productivity breakthrough in
isolating post-silicon speed failures. We demonstrate that in many
cases optical probing using LADA can be fully replaced by our
approach.

I. INTRODUCTION

Due to the increasing design size and complexity of modern
VLSI design and the decreasing time-to-market, design bugs
are more likely to escape the pre-silicon verification and are
only found after a chip has been manufactured. Therefore the
efficiency of post-silicon debugging is becoming more critical
to improve the productivity. With the rising demand for micro-
processor core operating frequencies, challenges with on-die
synchronization increase accordingly. Such synchronization
challenges limit the upper frequency bound of a complex
integrated circuit, and thus isolating and fixing performance-
limiting circuits continues to consume a significant portion of
the post-silicon validation bandwidth [1]. A speedpath is a
frequency-limiting critical path which affects the performance
of a chip [2], [3]. A speedpath that violates timing constraints
at the post-silicon stage is called failing speedpath[4].

While pre-silicon static timing analysis [5], [6], [7] plays a
vital role in facilitating fast and reasonably accurate measure-
ment of circuit timing, post-silicon speed failures appear due
to the use of simplified delay models, and due to the limited
ability of such static timing analysis tools to consider the
effects of logical interactions between signals. Such limitations
are the reasons for the mis-correlation between the pre-silicon
timing models and the post-silicon real behavior.

The process of debugging a speed failure on a multi-billion
transistor microprocessor is a challenging, yet well structured
process. It starts by applying test vectors to the microprocessor
or by running a test program, such as end-user applications

or functional tests, on the microprocessor until an error is de-
tected. Such a process is applied on dedicated machines called
testers. Post-silicon speed failures are normally observed when
similar microprocessors produce different results on a tester at
different frequencies. Post-silicon debugging is carried out to
localize and rectify the root cause of the erroneous behavior.
The fix of the failure is normally done by modifying the circuit
either by replacing a cell/gate with a faster/slower one, or by
performing a simple design retiming operation.

To assist the debugging process, design-for-test (DFT) fea-
tures such as scan [8], [9] are added to the microprocessor.
Such features increase the observability of the functional
behavior of internal gates in the microprocessor. If the test
fails, the values of the DFT scan gates are saved for debug
purposes. For historical reasons, and due to cost reduction
considerations, Intel didn’t adopt the full-scan methodology.
Instead, another technique which was developed to increase
the debuggability of speed failures is based on on-die clock
shrinking [10], [11] which helps narrow the list of failing
source candidates. Such a technique is based on driving
the microprocessor into clock regions (or domains) where
global, regional and local clock distributions are introduced.
In this way, post-silicon timing debugging can be improved by
controlling the clock behavior of each of the clock domains
in order to localize the source of the speed failure. The tester
can be configured to operate the microprocessor at different
clock frequencies for each of the above timing domains, and
thus bind the source of the timing failure into smaller regions.

However, due to the large number of gates dominated by
each clock domain (can reach thousands of sequential/storage
signals per clock domain), there is still a need to narrow the
list of failing source candidates into a smaller group of logic
gates in an efficient and reliable manner. Such a technique,
which is widely used at Intel today for debugging post-silicon
speed failures, is a laser-based analytical technique, referred
to as Laser Assisted Device Alteration - LADA [12]. LADA
provides the ability to rapidly isolate failing speedpaths and
their limiting components, down to the individual logic gate
level with high confidence.

The LADA technique uses a laser incident from the device
backside, to generate localized photocurrent within the active
regions, temporarily altering transistor characteristics. Due to
the different effect on PMOS versus NMOS devices, LADA
can be used to speed up or slow down devices, so that
when applied to devices in critical timing paths, performance

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 131

limiting circuits can be rapidly isolated.
Despite the successes of LADA in isolating post-silicon

speed failures, such a process is still time consuming and labor
intensive. In addition to the high cost of the LADA machines
(>$1M for each machine), they require operators, sometimes
with special expertise, to configure the machine to optically
probe the regions of interest. Such a debugging process might
take hours up to weeks per speed failure, depending on the
complexity of the failure. When dealing with hundreds of
speed failures to debug per microprocessor project, the debug
process can take months, putting the whole project schedule
at risk, or alternatively, forcing project management to make
compromises on the marketed microprocessor frequency. A
previous attempt to address this issue was presented in [13],
but it was based on logic simulation and suffered from
accuracy limitations and thus resulted in a large number of
false paths. Another SAT-based attempt to address debugging
post-silicon failing speedpaths was presented at [14], however
the authors use a model which is based on using copies of a
gate to represent the value of a gate at different points in time.
In the worst case, the size of the model may be exponentially
larger than the original circuit.

This paper suggests a novel SAT-based method to dramati-
cally reduce the effort of the LADA based speed debug, saving
the cost of the machines, reducing resources for operating
them, and reducing the time-to-market (TTM) for launching
new products. We will show that our tool can potentially
replace the LADA based debug process. The superiority of
our approach is in its ability to model speed failures without
the need to have a timing model as we use a zero delay
model. In addition, we use efficient modeling which avoids
the possibility of exponential model size. As it will be shown,
such efficient modeling is translated into better performance
with the ability to deal with large instances taken from the
latest Intel microprocessor designs.

The rest of this paper is organized as follows. In the next
section, we present the notion of functional failing speedpath
and present useful characteristics of it. Section III presents a
framework for a precise, yet flexible, representation of the
circuit network. Section IV describes the way we isolate
failing speedpaths. Section V shows how our algorithm deals
with reconverging paths, while section VI describes multiple
approaches to dealing with complexity. Experimental results
are reported in Section VII. Future work is discussed in
section VIII. We conclude in section IX.

II. CHARACTERISTICS OF A FAILING SPEEDPATH

Splitting the design into multiple clock domains enables a
flexible way to control the phase of the clock dominating a
set of sequentials. The basic idea of being able to change
the relative phases is to give some paths more (or less)
time to complete. By doing this, we can trigger or remove
timing problems. One way to reduce the region of interest
that contains the source of speed failure is to perform a ”trial
and error” analysis which changes the relative phase of a given
clock. This process is performed in a semi-automatic manner

Fig. 1. Clock distribution

by iterating over the clock domains of the microprocessor.
If after changing the phase of the clock of a given domain,
the speed failure is still reproduced, we can then conclude
that the signals responsible for the failure are not controlled
by such a clock domain. We keep this process until we find
the clock domain which eliminates the failure(s). This process
is completed by finding two domains: the source (denoted
by src) and the destination (denoted by dst). These are sets
of sequential signals which bind combinational logic that
contains the signal(s) responsible for the speed failure. See
Fig. 1.

Each topological path starting from a sequential signal in
the src domain, and ending at a sequential signal in the dst
domain is called a speed path. A speedpath containing the
errornous signal responsible for the speed failure is called
a failing speedpath. A signal in a circuit M is said to be
toggling at phase t in a trace π if the value of the signal
at phase t is different from its value at phase t − 1 in π.
The failing speedpath originates normally from a toggling
sequential in the src domain, at some phase, and the new value
does not propagate properly. We refer to the first sequential
in the path as the root signal. Notice that as part of the
process of identifying the source and destination domains, the
phase of the toggling sequential is detected as well. Another
important characteristic of the failing speedpath is that it
normally originates from one toggling root.

As mentioned earlier, the traditional method to isolate the
failing speedpath is based on LADA machines. First, all the
possible topological paths between signals in the src and the
dst domains are computed. Then, using LADA machines, laser
is used to temporarily alter the operating characteristics of
transistors on the devices participating such paths. The device
being tested is electrically stimulated and the device output is
monitored. This technique is applied to the back side of the
semiconductor device, thereby allowing direct access of the
laser to the device active diffusion regions. The effect of the
laser on the active transistor region is to generate a localized
photocurrent. This photocurrent is a temporary effect and only
occurs during the time that the laser is stimulating the target
region. The creation of this photocurrent alters the transistor
operating parameters, which may be observed as a change in
the function of the device. The effect of this change in param-
eters may be to speed up or slow down the operation of the
device. This makes LADA a suitable technique for determining
critical timing paths within a semiconductor circuit [15].

From the perspective of logic behavior, one can consider the
failing speedpath failure as a wrong propagation of a toggling

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 132

Fig. 2. A failing speedpath from SRC to DST, and its propagation

root sequential in the src domain. Instead of propagating a
value v, the inverse value v̄ propagates through its fanout logic
and causes some observable (or scan signal) to get an inverted
value which causes the test to fail. See the illustration in Fig.
2. The line from a sequential in the src domain (root) to the
dst domain is the reported failing speedpath, while the dashed
line is the propagation of its impact till the failing scan.

III. LOGIC PRESENTATION OF THE MICROPROCESSOR

A circuit design is modeled at the gate level in terms
of combinational signals and sequential signals. Sequential
signals can be of two types: (1) a latch, which is a device
that transports its input to its output when the clock signal is
high (T), and holds the output value when the clock signal is
low (F), and (2) a flip flop, which is a device that transports
the previous value of the input when the clock signal rises,
and holds the output otherwise.

We consider ternary modeling of circuit node values. A
value could be one of the binary values, T or F, or an undefined
value, ⊥ (elsewhere also denoted by X). Given a ternary input
vector sequence π, and an initial ternary state s, nt will denote
the value of node n in a circuit M at time t after 3-valued
simulation of M with π starting in s.

A circuit M can be represented by a collection of next-state
functions (NSFs) of the sequentials as well as of the outputs,
where a NSF is a function of current and next-state values
of inputs and sequentials. For example, consider the circuit
M which is illustrated in Fig. 3. It consists of five inputs
a, b, c, clk1 and clk2, one latch l, one flop f , and an output
(o) which is the output of the circuit. We denote the current
state value of a variable ”v” using v and the next state value of
the same variable using v′. This way, the next state function of
the output o is l′∨f ′, while the NSF of the active-high latch l
is (clk1′∧a′∧b′)∨(¬clk1′∧l). The NSF of the rising-edge flop
f is (¬clk2∧clk2′∧c)∨(¬(¬clk2∧clk2′)∧f). Available con-
venient representations for next state functions can be BDDs
[16] or boolean expressions (simple graph data structures for
representing propositional logic, where nodes of the graph
represent binary operation ∧,∨, with an annotation whether
a variable is negated or not, and variables appear as leafs).
We adopted boolean expressions in our work since uniqueness

Fig. 3. Example of latch, flop and output functions

of BDDs is not needed. Modeling of sequential logic is done
using a compact representation of infinite variable sequences.
For a signal v, an infinite sequence of propositional variables
{v0, v1, v2, · · ·} represents symbolically its sequential behav-
ior. This allows one to reduce sequential verification problems
to propositional satisfiability. The sequence representations can
be unrolled to a desired depth k, producing k propositional
variables {v0, v1, · · · vk−1}, which represent all the possible
first k values of the signal v. This representation is suitable not
only for modeling sequential behavior of inputs, but also for
internal combinational signals, sequential signals, and outputs.
For example, for a given output o in Figure 3, the sequential
behavior is represented by a disjunction of the sequences
representing l and f . Similarly, we can define the behavior
of any sequential signal by using NSFs.

IV. DETECTING FAILING SPEEDPATHS USING FORMAL
TECHNOLOGY

Our goal is to detect the failing speedpath within the
hundreds (sometimes thousands) of speedpaths between the
sequential signals in the src and dst domains, and thus bypass
the manual and expensive optical probing stage. We provide
the following inputs to the tool:

• Logic representation of the circuit in gate level Register
Transfer Level (RTL) format (e.g. Verilog)

• A stimuli file containing the microprocessor simulation
trace. This file results from simulating the test program on
the RTL presenting the circuit starting from a given initial
state. Since such trace might consist of thousands of
simulation cycles, our tool extracts only a short window
of it (see below)

• The name of the src and dst clock domains
• The phase when a src candidate toggled. It will be

denoted by tsrc.
• The scan signal where the failure was observed
• The phase in which the failure at the scan signal was

observed. It will be denoted by tscan.
Definition 4.1: Given a circuit M at a given state s, which

is a result of 3-valued simulation of M with a ternary input
vector sequence π at time t, a signal l is called to be sensitive
at time t if flipping the value of l at time t in s causes the
value of the failing scan signals to flip at a given phase tscan.
A failing speedpath is thus a topological path starting from

from some sensitive sequential in the src domain at time tsrc.
Detecting failing speedpaths starts after detecting the src and

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 133

dst clock domains. The idea behind our solution is to model the
symptom of the speedpath failure using logic representation.
Our method is based on modeling two machines: The good and
the bad machine. The good machine models the functional be-
havior of the test as it is reproduced on RTL simulation when
it is assumed to exhibit the correct functional behavior. The
bad machine models the failure at the tester where the speed
failure happens. Finding the failing speedpath is performed by
running BMC [17], [18] comparing the sequential behavior of
the two machines. The bound k for BMC is defined by the
user (default value is set as 50) and it is an upper bound to the
maximum length of the sequential depth between the phase of
the failing scan and any sequential in the src domain.

The good machine is built as follows: the machine has one
output which is the failing observed/scan signal. For the rest
of this paper, we will refer to the failing observed signal as the
failing scan signal. The sequential logic that drives the scan
signal is modeled based on the real modeling in the circuit. The
inputs, the output and the internal signals (both combinational
and sequential signals) are constrained by the concrete values
taken from each phase of the given trace window (of length
50). If for some reason, a signal does not have a trace in
the given simulation traces, it is modeled as X. All signals
have dual rail modeling [19], [20], [21], where each signal is
modeled by a pair of variables.

Since we are dealing with complete microprocessor simu-
lation, building the logic model of the complete full-chip was
normally beyond the capacity limits of our internal logic mod-
eling tools. Normally, the Verilog that models the schematics
is very low in its abstraction level, compared to normal RTL
which represents the abstract model of the design. In order
to overcome such capacity issues, we black-box the irrelevant
blocks and keep the ones between the block containing the
failing scan, and the block containing the signals in the src
domain.

The bad machine is built similarly to the good machine, but
with the following differences:

• Assuming that the scan signal is failing at phase tscan,
and assuming that the trace of the scan signal in the good
machine is [v0 v1 · · · vtscan · · · vk−1] (where every vi is
a ternary value), we constrain the behavior of the failing
scan signal in the bad machine with [v0 v1 · · · ¬vtscan

· · · vk−1] . In other words, if the variable of the failing
scan at time tscan is annotated by v and the concrete
simulation value of the failing scan at the same time is c,
then we add a constraint that v is equivalent to ¬c. Notice
that it is necessary to have a binary trace value for the
failing scan signal at the failing phase tscan. Otherwise,
the algorithm aborts.

• The set of the src candidate sequentials will be denoted
by S. For each sequential s ∈ S, we add a new XOR gate
with two entries: the first is fed by the sequential s and the
second is fed by a new free inputs s control. The logic
that was fed originally by the sequential s will be fed
now by the new XOR node. Each XOR signal enables
modeling the flipping of the value of the sequential s in

the sense that if the control signal s control has a value
of T, then the output of the XOR is simply the inverse
of the value of s. See Fig. 4 for illustration.

Fig. 4. Good and bad machine modeling

• Assuming that the failing speedpath originates from a
sequential which toggles at a given phase tsrc, we assume
that the value of each control input s control is a free
variable at phase tsrc, and is constrained to F for the rest
of the phases:

∀s∈S.∀0≤t≤k∧t ̸=tsrc .(s controlt = F) (1)

• Since we assume that the failing speedpath originates
from only one source, we add an extra constraint that
only one control variable can be T (at phase tsrc).

A SAT-based bounded model checker (BMC) is called to find
a satisfying assignment to the above constraints. If a satisfying
assignment is found, then we extract the root sequential out of
the counter examples by finding the control variable which got
a value of T. Extracting a complete path is done by backward
traversal from the scan signal, by comparing the values of each
signal in the good and bad machine.

Definition 4.2: A failing functional speedpath is a se-
quence of pairs of the form {(sig0, ph0), (sig1, ph1),
. . . , (sign, phn)}, where ph0 ≤ ph1 ≤ . . . ≤ phn, sigi is
a signal name, and phi is the first phase where the signal sigi

got different values between the good and the bad machines.

Clearly, tsrc ≤ phi ≤ tscan, and the path starts with a pair
(s, tsrc) for some sequential s in the src domain, and ends
with a pair (scan, tscan). Other signals in the speedpath can
be either sequential or combinational ones. For the rest for the
paper, the failing functional speedpath will be referred to as
the failing speedpath. Generating multiple paths is performed
via an iterative process where new constraints are added at
each iteration to direct the BMC engine not to reproduce the
found path for the next time. We annotate the value of a

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 134

signal s in the good/bad machine at time t with sgood
t and

sbad
t respectively. The constraint which is added to prevent a

failing functional speedpath P from being generated again is:

¬
∧

(s,t)∈P
(sgood

t ̸= sbad
t) (2)

Notice that paths which do not go through any sequential in the
dst domain are excluded from the tool report. The last iteration
happens when BMC does not find any new speedpath.

V. HANDLING RECONVERGING PATHS

In this section, we describe the main challenge in achieving
this kind of symbiosis between timing analysis and formal
technology. Consider the simple AND gate illustrated in Fig.
5. From a logic analysis perspective, regardless whether it is

Fig. 5. Differences between timing and logic analysis

logic simulation or formal analysis, the output of the circuit
at output out is F, even if the value of the input a transitions
from F to T. Though, from a timing perspective, a transition
from F to T at the input a might be propagated at different
speeds through the buffer and inverter, resulting in two T’s
at the entries of the AND gate and causing the output out
to get a value of T for a short period of time. We call this
phenomenon a glitch and it can be one of the reasons for
speed failures as the output out can be captured with the wrong
value. Clearly, the logic representation of the circuit does not
capture the speed behavior described in the simple AND
illustration, and it definitely limits the tool from being able
to isolate real failing speedpaths. Looking into the problem
in a more generic view, the problem results when the cone
of influence of the scan signal contains internal signals which
form a reconvergence point of different paths starting from the
same root signal. The propagation of the toggling value on
the root signals is masked by a value of two or more signals
feeding the same reconvergence point, which masks further
propagation of the value till the failing scan signal.

In this section, we describe a novel technique for dealing
with masking values at reconvergence points. The idea is
based on performing a naive topological analysis on the cone
of influence to detect the reconvergence points. For each
convergence signal s, with n inputs denoted by Ii where
0 ≤ i < n, we perform the following modeling modifications
to the bad machine:

• For each input Ii, we introduce a new MUX gate with
two entries. The first entry will capture the signl Ii from
the good machine, while the second entry will capture the
signals Ii from bad machine. The selector of the MUX
gate will be a new free variable sensitivity selector Ii.

Fig. 6. Handling reconvergence points

• Each signal driven by the signal s will be now driven by
the new MUX gate.

• We add a constraint that only one of the sensitivity
selector variables sensitivity selector Ii (0 ≤ i < n)
can be T. To clarify, this constraint is added for each
reconvergence signal separately.

The basic assumption behind the above is the fact that a
valid failing speedpath contains signals with only one driver
that has a value in the bad machine which is inverse to the
value in the good machine. By adding the above MUX gates,
adding an assumption that only one selector can be T ensures
that only one of the immediate drivers has an inverse value
between the good and the bad machines. Fig. 6 illustrates the
approach. The upper part of the illustration models the good
machine while the lower part models the bad one. The XOR
gate models flipping the value of SRC if the selector is T.
The two MUX gates driving s are responsible for handling the
reconverging signals I1 and I2, while their selectors guarantee
that only one value out of I1 and I2 propagates to s in the bad
machine. Notice that extracting the failing speedpath is done
with a simple modification: for each reconvergence signal,
we go backwards at the immediate driver with the active
sensitivity selector.

VI. DEALING WITH COMPLEXITY

Another challenge that we faced was run time of the
algorithm for instances with a large sequential depth between
the failing scan signal and the src candidates. The cone of in-
fluence was computed using a naive breadth-first search (BFS)
on the sequential signals up to src candidates. In some cases,
this computation resulted in cones with thousands of sequential
signals which caused the core BMC engine to choke. We
have developed an iterative process for computing the cone
of influence based on functional detection of sensitivity of
sequential signals.

Sensitivity of a sequential signal s at phase t is detected
using our algorithm by assuming that s is the src candidate
and assuming that tsrc = t. The motivation behind the above
iterative expansion process is that if a sequential signal is not
sensitive during the window [tsrc, tscan], then there is no need

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 135

to expand the cone over it, and thus it can be abstracted and
considered as an input (constrained by the trace).

Data: scan, tsrc, tscan

Result: Compute cone of influence
tcurrent = tscan;
ExpansionList = {} ;
while {tcurrent ̸= tsrc} do

C = ComputeConeOfInfluence(scan,

ExpansionList);
L = ExtractSetOfSequentialsAtBoundary (C);
S = FilterSensitive (L, tcurrent);
if empty S then tcurrent = tcurrent - 1;
else ExpansionList = ExpansionList ∪ S ;

end
return ComputeConeOfInfleuce(ExpansionList) ;

A pseudocode explaining the steps of the algorithm for com-
puting the cone of influence is presented herein: The function
ComputeConeOfInfluece accepts as an argument a list of
sequential signals and computes the cone of influence starting
from the failing scan signal going backwards while stopping
at the first sequential signals which do not belong to the list of
sequential signals included in ExpansionList. The function
ExtractSetOfSequentialsAtBoundary computes the se-
quential signals at the boundary of the cone of influence. The
function FilterSensitive finds sensitive sequential signals
belonging to the set L at phase tcurrent. The algorithm keeps
expanding at sensitive sequentials at phase tcurrent till no
more sensitive sequentials are found, and only then it decreases
the phase tcurrent. The algorithm stops at phase tsrc. For
illustration, during the first iteration, scan will be detected as
sensitive at tscan and thus it will be added to ExpansionList.

The algorithm computes a sub-cone of the cone computed
by the naive BFS approach, and thus the detection of the
failing speedpaths happens in a smaller cone which BMC
can handle. The algorithm is sound in the sense that if a
failing speedpath exists in the cone generated by the naive
BFS approach, then it is guaranteed to be detected at the
sub-cone generated by the iterative expansion algorithm. The
proof for the soundness of the algorithm is based on showing
a contradiction between the existence of such a path, and
the fact that the algorithm didn’t expand on a sequential in
the boundary of the the sub-cone. Illustration of the proof is
presented in Fig. 7.

Let M be a circuit with a failing scan signal scan at
phase tscan and let C be the topological cone of influence of
scan computed using the naive BFS, where the stop points
are primary inputs of M or sequential signals driving src
candidates. Let us denote the set of internal sequential signals
in C by L. Let LSRC be a set of src candidates where
LSRC ⊆ L. Let C′ be the topological cone of influence of
scan computed by expanding on a set of internal sequential
signals L′, where L′ ⊆ L. We denote the phase when a
sequential was expanded with te and the first phase when the
sequential was sensitive by ts.

Fig. 7. Iterative expansion soundness

Lemma 6.1: If a sequential signal li is sensitive at phase
tsi , and it was expanded in the iterative expansion process at
phase tei , then tsi ≤ tei .

Proof: If li is sensitive at phase tsi , then there is
some failing speedpath P starting at (li, tsi) and containing
the sequentials {(li, tsi), (li+1, t

s
i+1), . . . , (ln, tsn)} (recall that

ln = scan) where every sequential li drives li+1 through a
combinational cloud, and tsj ≤ tsj+1 for i ≤ j < n. Recall
also that if (l, t) belongs to a path, then l is sensitive at time t.
Let us denote a list of corresponding phases {tei , tei+1, . . . , t

e
n}

annotating for each sequential li the phase tei when it was
expanded in the iterative expansion. Recall that ten is the phase
when scan was expanded and tsn and is the phase when the it
was sensitive. Both values should be equal to tscan.

We will first show that for each j where i ≤ j < n, that
if tsj ≤ tej then tej+1 < tsj . Let us assume on the contrary
that tsj ≤ tej+1, since the algorithm detects sensitivity of lj
at the window [tsrc, . . . , t

e
j+1], and the fact that lj was found

sensitive only at phase tej , means that the algorithm didn’t
detect sensitivity of lj at tsj which contradicts the fact that lj
is sensitive at tsj .

Thus tej+1 < tsj and since tsj < tsj+1, we conclude that
tej+1 < tsj+1. Based on that, tei < tsi implies tej < tsj for each
i ≤ j ≤ n, implying that ten < tsn. This is a contradiction since
it means that the expansion phase for the scan signal is less
than the sensitive phase of the same signal which contradicts
the fact that they should be equal.

Theorem 6.2: If the algorithm detects a set of failing speed-
paths SP for the cone C, then it will detect the same set of
failing speedpaths for the sub-cone C ′.

Proof: Let us assume on the contrary that there is a
failing speedpath P = {(l1, t1), (l2, t2), . . . , (ln, tn)} ∈ SP
which is not detected in C ′. Then there exists a sequential

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 136

Test # signals # of inputs # of latches # of reconverg. # of path length # of Run Time
No. in cone on boundary in cone signals iterations (in phases) paths (Sec.)
1 296 26 2 4 5 3 1 248
2 509 67 14 11 6 4 1 278
5 405 54 3 12 11 8 1 214
7 305 19 3 0 6 4 1 290
9 248 11 1 0 1 1 1 186
13 517 50 14 26 55 44 1 227
15 497 83 4 3 7 4 1 222
16 1528 212 59 86 14 8 1 745
18 27696 3009 635 8569 31 16 1 7168
6 3025 617 43 650 15 8 2 434
11 2403 345 22 209 12 7 2 318
12 1798 258 58 236 33 20 2 442
10 855 164 8 27 8 5 3 222
17 25895 7279 294 1070 30 16 3 6458
21 21864 4618 165 2266 33 18 3 3395
8 855 164 8 27 8 5 4 242
22 1545 303 46 5 12 6 5 5555
14 837 90 39 29 23 12 6 619
4 4665 704 106 1149 31 18 7 579
19 8789 994 125 2132 26 14 7 1713
20 26226 4035 168 2422 27 14 15 3285
3 4931 675 167 689 27 14 40 780

TABLE I
FAILING SPEEDPATHS FOUND ON NEXT GENERATION INTEL MICROPROCESSOR

signal (li, tsi) ∈ P where li belongs to L but not L′, and there
is a combinational path from li to a boundary sequential lj
where (lj , tsj) ∈ P and lj ∈ L′, and there is a combinational
path from lj to an internal sequential lk where (lk, tsk) ∈ P
and lk ∈ L′. Recall that tsj ≤ tsk. Let us assume that the lk
was expanded at phase tek. Since lk is part of the path, then
based on lemma 6.1, tsk ≤ tek, and thus tsj ≤ tek . Recall that lj
is driving lk, and lk was expanded at phase tek. The fact that
the iterative expansion couldn’t detect sensitivity for lj during
the window [tsrc . . . tek], and the fact that tsj belongs to that
window, contradicts the fact that lj is sensitive at tsj .

VII. RESULTS

We are currently at the early deployment stage of our
application to the post-silicon speedpath debug lab responsible
for the quality of the next generation Intel microprocessor.
Most of the speedpaths shown in table I were detected using
LADA first, and our tool was run afterwards to demonstrate its
ability to detect the same failing speedpaths. In all the testcases
shown in the table, we successfully found the same failing
speedpath which was detected by LADA. For some cases,
it took about two weeks trying detect the failing speedpath
using LADA with no success, but after running the tool,
the tool was able to isolate the failing speedpath easily. In
other cases, our tool was run before LADA and was able to
detect the failing speedpath and thus LADA was bypassed
totally. Table I presents some information about each failing
speedpath, when the cone of influence was produced using the
iterative expansion algorithm. Column 2 shows that number
of the signals in the cone computed by the iterative expansion

algorithm. Column 3 shows the number of variables at the
boundary of the cone, while column 4 shows the number of
the internal sequential signals in the cone of influence. Column
5 shows the number of the internal reconvergence signals in
the cone while column 6 shows the number of the expansion
iterations to compute the cone of influence. Columns 7 shows
the path length in phases from the path root to scan while
column 8 shows the number of the paths detected by the
tool. Run time of the tool is shown in column 8. These
results were produced on a 2.6 GHz Intel(R) Xeon(R) CPU
processor. The run time demonstrates that isolation of post-
silicon failing speedpaths can be completed in less than two
hours using our tool compared to the costly, manual LADA
based process, which took about a day to debug in average
per failing speedpath.

VIII. FUTURE WORK

We have already started to see first cases where the vision
of eliminating the need for optical probing for speed debug
becomes a reality. Our next steps are to penetrate this tech-
nology to be used across the different microprocessor projects
at Intel. Our next challenge is to eliminate the need to generate
the RTL simulation trace, which today consumes long hours
per test. Our alternative will be to get partial trace from the
tester which produces the trace values for the scan signals
only. Our algorithm will work the same, but will have to
deal with more signals that do not have concrete value, but
have X value instead. We hope that the scan signals will have
enough coverage of the sequential signals so that they will
be able to propagate concrete values coming from the scan

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 137

signals, forward and backward, and thus eliminating the X
values. Current results are encouraging and we are optimistic
that we will be able to reduce (and possibly eliminate) the
LADA effort for all Intel microprocessor projects.

IX. SUMMARY

We have introduced a new SAT-based algorithm that enables
detecting failing speedpaths that are detected at the post-
silicon debug stage. The value that this method brings is by
reducing (and possibly eliminating) the cost of post-silicon
speed debug using optical probing which is done today at Intel
using LADA machines. Such a process consumes expensive
machines, operators and costly TTM. Our method uses formal
technology to model the incorrect behavior of the silicon from
a functional perspective. We introduced a novel technique
to model glitches by introducing new MUX gates in the
reconvergence gates.

REFERENCES

[1] S. Mitra, S. A. Seshia, N. Nicolici, ”Post-silicon Validation Oppor-
tunities, Challenges and Recent Advances”, in Design Automation
Conference (DAC), 2010.

[2] P. Bastani, K. Killpack, L.-C. Wang, and E. Chiprout, ”Speedpath
prediction based on learning from a small set of examples”, in Design
Automation Conf., 2008, pp. 217222.

[3] L. Lee, L.-C. Wang, P. Parvathala, and T. M. Mak, ”On silicon-based
speed path identification”, in VLSI Test Symp., 2005, pp. 3541.

[4] L. Xie, A. Davoodi, and K. K. Saluja, ”Post-silicon diagnosis of
segments of failing speedpaths due to manufacturing variations”, in
Design Automation Conf., 2010, pp. 274279.

[5] T.M. McWilliams, ”Verification of timing constraints on large digital
systems”, in DAC, 1980, pp. 139-147.

[6] G. Martin, J. Berrie, T. Little, D. Mackay, J. McVean, D. Tomsett, L.
Weston. ”An integrated LSI design aids system”, in Microelectronics
Journal, Vol. 12, Issue 4, 1981, Pages 1822.

[7] R. Hitchcock, G.L. Smith, and D.D. Cheng. ”Timing analysis of
computer hardware”, in IBM Journal of Research and Development
(IBM), Vol. 26, Issue 1, 1982, pp. 100105.

[8] R. S. Venkataraman, ”A Technique for Fault Diagnosis of Defects in
Scan Chains”, in Int. Test Conference Proc., 2001, pp. 268-277.

[9] K. Cheng, ”Partial Scan Designs Without Using a Separate Scan
Clock”, in VLSI Test Symposium. Proc., 13th IEEE, pp. 277-282.

[10] S. Rusu and S. Tam, ”Clock Generation and Distribution for the First
IA-64 Microprocessor”, in IEEE Solid State Circuits Conference, 2000,
pp. 176-177.

[11] S. Tam, S. Rusu, U. Nagarji Desai, R. Kim, Ji Zhang, I. Young, ”Clock
Generation and Distribution for the First IA-64 Microprocessor”, in
IEEE Journal of Solid State Circuits, Vol. 35, 2000, pp. 1545- 1552.

[12] R. Rowlette; T. Eiles, ”Critical Timing Analysis in Microprocessors
Using Near-IR Laser Assisted Device Alteration (LADA)”, in Proc.
IEEE International Test Conf., 2003, pp. 264-273.

[13] R. McLaughlin; S. Venkataraman and C. Lim, ”Automated Debug of
speedpath Failures Using Functional Tests”, in VLSI Test Symposium,
2009, pp. 91-96.

[14] M. Dehbashi; G. Fey, ”Automated Post-Silicon Debugging of Failing
Speedpaths”, in Asian Test Symposium, 2012, pp. 13-18.

[15] C. H. Kong and E. P. Castro. ”Application of LADA for Post-Silicon
Test Content and Diagnostic Tool Validation”, in Proceedings of the
32nd International Symposium for Testing and Failure Analysis, pp.
4317, 2006.

[16] Randal E. Bryant. ”Graph-Based Algorithms for Boolean Function
Manipulation” in IEEE Transactions on Computers, Vol. 35 Issue 8,
1986, pp. 677-691.

[17] A. Biere, A. Cimatti, E. Clarke. ”Symbolic model checking without
BDDs” in Tools and Algorithms for the Construction and Analysis of
Systems, Vol. 1579, 1999, pp. 193-207.

[18] A. Biere, A. Cimatti, E. Clarke, M. Fujita. Y. Zhu, ”Symbolic model
checking using SAT procedures instead of BDDs” in DAC, 1999.

[19] R. E. Bryant, ”Boolean Analysis of MOS Circuits”, in IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 6, No. 4, 1987, pp. 634 - 649.

[20] C-J.H. Seger, R.E. Bryant, ”Formal verification by symbolic evaluation
of partially-ordered trajectories”, in Formal Methods in System Design,
Vol 6, No. 2, 1995, pp. 147-189.

[21] D. Kaiss, M. Skaba, Z. Hanna, Z. Khasidashvili, ”Industrial Strength
SAT-based Alignability Algorithm for Hardware Equivalence Verifica-
tion”, in FMCAD, 2007.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 138

