
Proceedings of the 14th Conference on

Formal Methods in Computer-Aided Design (FMCAD 2014)
Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland, October 21 – 24, 2014

Edited by Koen Claessen and Viktor Kuncak

In-Cooperation

In cooperation with
ACM Special Interest Group on Programming Languages
ACM Special Interest Group on Software Engineering

Technical co-sponsorship of IEEE Council on
Electronic Design Automation

Proceedings of the 14th Conference on

Formal Methods in Computer-Aided Design

FMCAD 2014

October 21 – 24, 2014

Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland

Edited by Koen Claessen and Viktor Kuncak

ISBN: 978-0-9835678-4-4
Copyright owned jointly by the authors and FMCAD Inc.

Title page: Aerial view of Rolex Learning Center at EPFL
Photograph: Alain Herzog / EPFL
Photo provided with limited rights.

Preface

The International Conference on Formal Methods in Computer-Aided Design, FMCAD, is a series
of conferences on the theory and application of formal methods to the computer-aided design
and verification of hardware and systems. The fourteenth conference in the series, FMCAD 2014,
takes place October 20-23, 2014 in Lausanne, Switzerland.

FMCAD provides a leading forum to researchers in academia and industry for presenting and
discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning
formally about computing systems. FMCAD covers the spectrum of formal aspects of computer-
aided system design, including verification, specification, synthesis, and testing. This year, the
conference once again received an in-cooperation status with ACM under the Special Interest
Group on Programming Languages and the Special Interest Group on Software Engineering. It
also received technical sponsorship from the IEEE Council on Electronic Design Automation. Two
additional events are co-located with the conference this year: (1) MEMOCODE 2014, the 12th
ACM-IEEE International Conference on Formal Methods and Models of Codesign and (2) DIFTS
2014, Workshop on Design and Implementation of Formal Tools and Systems.

FMCAD 2014 received 101 abstracts that materialized into 70 full submissions. Each full
submission was reviewed by at least four, and on the average 4.1, program committee members.
After a thorough peer-review process that often involved vigorous electronic discussions by pro-
gram committee members, subreviewers, and additional external reviewers, 28 submissions were
selected for presentation at the conference: 25 as regular papers and 3 as short papers. Accepted
papers covered topics ranging from model checking, synthesis at various abstraction levels, solver
and prover techniques (SAT and SMT, interpolation, theorem proving frameworks). The do-
mains included hardware systems at various stages of the design, protocols, software, networks,
interfaces between software and hardware, as well as biological systems.

In addition to reviewed submissions, the program includes two keynote presentations and
four tutorials. Keynotes this year include Thomas A. Henzinger on Computer-Aided Verification
Technology for Biology and Xavier Leroy on Compiler verification for fun and profit. The tutorials
are hosted jointly by FMCAD and MEMOCODE. This year we have Armin Biere presenting
Challenges in Bit-Precise Reasoning, Ziyad Hanna discussing Challenging Problems in Industrial
Formal Verification, Morgan Deters, Andrew Reynolds and Timothy King, Clark Barrett, and
Cesare Tinelli giving A Tour of CVC4: How it works, and how to use it, and Johannes Kinder on
Efficient symbolic execution for software testing.

As in previous years, the 2014 FMCAD Proceedings are expected to be available through the
ACM Digital Library, the IEEE Xplore Digital Library, and are also available as a free download
from the FMCAD Website.

This year’s edition includes again a Student Forum that provides a platform for students to
present their research to the FMCAD community and obtain feedback. The forum includes short
presentations, and a poster by a student author of each accepted submission. The student forum
presentations were selected through a review process led by Ruzica Piskac.

We sincerely thank our industrial sponsors for their financial support of FMCAD 2014: ARM,
Atrenta, Cadence Design Systems, Centaur, IBM, Intel, Jasper Design Automation, Mentor
Graphics, Onespin, Oski Technology, Real Intent, and Synopsys. We thank FMCAD Inc. for
continuous support of the conference series. We also thank EPFL’s School for Computer and

i

Communication Sciences for substantially supporting this year’s edition.
We owe a large debt of gratitude to this year’s organizing committee, which, in addition to PC

chairs and local chairs include (alphabetically): Jason Baumgartner (Sponsorship and Steering
committee contact), Shilpi Goel (Webmaster), Warren A. Hunt Jr. (FMCAD Inc.), Barbara
Jobstmann (Publication and Registration Chair), Ruzica Piskac (Student Forum Chair), Mitra
Purandare (Publicity Chair), Vigyan Singhal (Sponsorship Co-Chair). Viktor Kuncak would also
like to thank Yvette Gallay from EPFL for her immense local organization effort, without which
it would not have been possible to have the conference at EPFL. We thank the best paper award
committee chaired by Alan J. Hu and consisting additionally of Bruno Dutertre, Cindy Eisner, and
Aarti Gupta. We thank all members of the FMCAD Steering Committee: Jason Baumgartner,
Armin Biere, Alan J. Hu, and Warren A. Hunt, for their kind advice during the conference
preparation process. Big thanks to all members of the Program Committee and all reviewers,
who did a stellar job not only of selecting this year’s exciting program, but also of providing
feedback to the authors to help them improve their papers for publication. The conference would
not be possible without all the authors that submitted high-quality papers. We thank especially
keynote and tutorial speakers that accepted to present their exciting research. Last, but not the
least, we thank all attendees, whose presence justifies the effort of organizing an exciting physical
meeting on the EPFL campus.

FMCAD 2014 Program Co-Chairs
Koen Claessen and Viktor Kuncak

14 September 2014

ii

Organization Committee

Program Co-Chairs

Koen Claessen Chalmers University of Technology
Viktor Kuncak EPFL

Local Arrangement Chair

Viktor Kuncak EPFL

Publication and Registration Chair

Barbara Jobstmann EPFL and CNRS/Verimag

Publicity Chair

Mitra Purandare IBM Research Lab, Zurich

Student Forum Chair

Ruzica Piskac Yale University

Webmaster

Shilpi Goel University of Texas at Austin

Steering Committee

Jason Baumgartner IBM, USA
Armin Biere Johannes Kepler University in Linz, Austria
Alan J. Hu University of British Columbia, Canada
Warren A. Hunt, Jr. University of Texas at Austin, USA

iii

Program Committee

Jason Baumgartner IBM
Dirk Beyer University of Passau
Armin Biere Johannes Kepler University
Per Bjesse Synopsys
Nikolaj Bjorner Microsoft Research
Roberto Bruttomesso Atrenta
Gianpiero Cabodi Politecnico di Torino
Hana Chockler King’s College
Alessandro Cimatti FBK-irst
Koen Claessen Chalmers University of Technology
Bruno Dutertre SRI international
Ziyad Hanna Cadence Design Systems
Keijo Heljanko Aalto University
Alan J. Hu University of British Columbia
Warren A. Hunt University of Texas
Susmit Jha Strategic CAD Lab, Intel
Daniel Kroening University of Oxford
Viktor Kuncak EPFL
Panagiotis Manolios Northeastern University
Ken McMillan Microsoft Research
Katell Morin-Allory TIMA Laboratory, Grenoble
Lee Pike Galois, Inc.
Ruzica Piskac Yale University
Mitra Purandare IBM Research Zurich
Sandip Ray Intel Corporation
Andrey Rybalchenko Microsoft Research Cambridge
Philipp Rümmer Uppsala University
Julien Schmaltz Open University of the Netherlands
Natasha Sharygina Universita’ della Svizzera Italiana
Anna Slobodova Centaur Technology
Daryl Stewart ARM
Niklas Sörensson Mentor Graphics Corporation
Cesare Tinelli The University of Iowa
Martin Vechev ETH Zurich
Thomas Wahl Northeastern University
Georg Weissenbacher Vienna University of Technology

iv

Additional Reviewers

Abd Elkader, Karam
Albarghouthi, Aws
Alberti, Francesco
Aleksandrowicz, Gadi
Alglave, Jade
Alt, Leonardo
Andrikos, Nikolaos
Appold, Christian
Atig, Mohamed Faouzi

Backeman, Peter
Backes, John
Barner, Sharon
Bayless, Sam
Bhunia, Swarup
Boden, Eric
Borrione, Dominique
Brockschmidt, Marc
Bustan, Doron

Chau, Cuong
Cotton, Scott

Dagit, Jason
Darulova, Eva
David, Cristina
Deters, Morgan
Dimitrova, Rayna

Ebergen, Jo
Eisner, Cindy

Fedyukovich, Grigory
Finkbeiner, Bernd
Franzén, Anders
Frehse, Goran

Gacek, Andrew
Garg, Deepak
Goel, Shilpi
Goldberg, Eugene
Gopalakrishnan, Ganesh
Griggio, Alberto

Hadarean, Liana
Heizmann, Matthias
Hendrix, Joe
Heule, Marijn
Hicks, Matthew

Hjort, Håkan
Hyvärinen, Antti

Iabrudi, Andréa
Ivrii, Alexander

Jagadeesan, Radha
Jain, Himanshu
Jain, Mitesh
Jha, Sumit Kumar
Jobstmann, Barbara
Joosten, Sebastiaan

Kahsai, Temesghen
Kini, Keshav
Kiniry, Joseph
Kneuss, Etienne
Korthikanti, Vijay
Kosikinen, Eric
Kravets, Victor
Kretinsky, Jan

Lampka, Kai
Leslie-Hurd, Joe
Lewis, Matt
Li, Juncao
Liu, Lingyi
Liu, Peizun
Loiacono, Carmelo
Lopes, Nuno P.
Lundgren, Lars
Löwe, Stefan

Majumdar, Rupak
Margalit, Oded
Martins, Ruben
Mattarei, Cristian
Micheli, Andrea
Mitchell, Ian
Mover, Sergio
Mukherjee, Rajdeep

Nikolic, Mladen
Niksic, Filip
Nocco, Sergio
Nori, Aditya

Oliveras, Albert
Orni, Avigail

Palena, Marco
Papavasileiou, Vasilis
Parlato, Gennaro
Pasini, Paolo
Peter, Hans-Jörg
Pidan, Dmitry
Pinto, Alessandro
Poetzl, Daniel
Preiner, Mathias

Quer, Stefano

Rabe, Markus N.
Rager, David L.
Ramachandran, Jaideep
Roveri, Marco
Rumley, Sebastien

Saarikivi, Olli
Saha, Indranil
Schrammel, Peter
Schäf, Martin
Seidl, Martina
Selfridge, Ben
Siirtola, Antti Tapani
Singh, Satnam
Stergiou, Christos
Stigge, Martin
Sousa, Marcelo

Tabaei Befrouei, Mitra
Talupur, Murali
Tentrup, Leander
Thiemann, René

van Gastel, Bernard
Vendraminetto, Danilo
Verbeek, Freek
Viaud, Emmanuel
Vizel, Yakir

Wachter, Björn
Wendler, Philipp
Wetzler, Nathan
Wolfovitz, Guy

Xu, Jiazhao

Yorav, Karen
Yu, Andy

v

Table of Contents

Tutorials

Challenging Problems in Industrial Formal Verification – Ziyad Hanna 1

Challenges in Bit-Precise Reasoning – Armin Biere 3

Efficient symbolic execution for software testing – Johannes Kinder 5

A Tour of CVC4: How it works, and how to use it – Morgan Deters, Andrew Reynolds, Tim King,
Clark Barrett and Cesare Tinelli 7

Invited Talks and Student Forum

Compiler verification for fun and profit – Xavier Leroy 9

Computer-Aided Verification Technology for Biology – Thomas A. Henzinger 11

Student Forum – Ruzica Piskac 13

Contributed Articles

Response property checking via distributed state space exploration – Brad Bingham and Mark Green-
street 15

Towards Pareto-Optimal Parameter Synthesis for Monotonic Cost Functions – Benjamin Bittner,
Marco Bozzano, Alessandro Cimatti, Marco Gario and Alberto Griggio 23

SAT-Based Methods for Circuit Synthesis – Roderick Bloem, Uwe Egly, Patrick Klampfl, Robert
Koenighofer and Florian Lonsing 31

Synthesis of Synchronization using Uninterpreted Functions – Roderick Bloem, Georg Hofferek,
Bettina Könighofer, Robert Könighofer, Simon Außerlechner and Raphael Spörk 35

Interpolation with Guided Refinement: revisiting incrementality in SAT-based Unbounded Model
Checking – Gianpiero Cabodi, Marco Palena and Paolo Pasini 43

Efficient Verification of Periodic Programs using Sequential Consistency and Snapshots – Sagar
Chaki, Arie Gurfinkel and Nishant Sinha 51

Under-approximate Flowpipes for Non-linear Continuous Systems – Xin Chen, Sriram Sankara-
narayanan and Erika Abraham 59

Disproving termination with overapproximation – Byron Cook, Carsten Fuhs, Kaustubh Nimkar and
Peter O’Hearn 67

Faster Temporal Reasoning for Infinite-State Programs – Byron Cook, Heidy Khlaaf and Nir Piter-
man 75

Template-based Circuit Understanding – Adria Gascon, Ashish Tiwari, Bruno Dutertre, Pramod
Subramanyan, Sharad Malik and Dejan Jovanovic 83

Simulation and Formal Verification of x86 Machine-Code Programs that make System Calls – Shilpi
Goel, Warren Hunt, Matt Kaufmann and Soumava Ghosh 91

vii

DRUPing for Interpolants – Arie Gurfinkel and Yakir Vizel 99

Efficient Extraction of Skolem Functions from QRAT Proofs – Marijn Heule, Martina Seidl and
Armin Biere 107

Small Inductive Safe Invariants – Alexander Ivrii, Arie Gurfinkel and Anton Belov 115

On Interpolants and Variable Assignments – Pavel Jancik, Jan Kofron, Simone Fulvio Rollini and
Natasha Sharygina 123

Post-silicon Timing Diagnosis Made Simple using Formal Technology – Daher Kaiss and Jonathan
Kalechstain 131

Leveraging Linear and Mixed Integer Programming for SMT – Timothy King, Clark Barrett and
Cesare Tinelli 139

A Program Transformation for Faster Goal-Directed Search – Akash Lal and Shaz Qadeer 147

Infinite-State Backward Exploration of Boolean Broadcast Programs – Peizun Liu and Thomas Wahl155

Kuai: A Model Checker for Software-defined Networks – Rupak Majumdar, Sai Deep Tetali and
Zilong Wang 163

ILP Modulo Data – Panagiotis Manolios, Vasilis Papavasileiou and Mirek Riedewald 171

Turbo-Charging Lemmas on Demand with Don’t Care Reasoning – Aina Niemetz, Mathias Preiner
and Armin Biere 179

Reduction for Compositional Verification of Multi-Threaded Programs – Corneliu Popeea, Andrey
Rybalchenko and Andreas Wilhelm 187

Finding Conflicting Instances of Quantified Formulas in SMT – Andrew Reynolds, Cesare Tinelli and
Leonardo De Moura 195

Using Interval Constraint Propagation for Pseudo-Boolean Constraint Solving – Karsten Scheibler
and Bernd Becker 203

Patient-Specific Models from Inter-Patient Biological Models and Clinical Records – Enrico Tronci,
Toni Mancini, Ivano Salvo, Stefano Sinisi, Federico Mari, Igor Melatti, Annalisa Massini, Francesco
Davi, Thomas Dierkes, Rainald Ehrig, Susanna Röblitz, Brigitte Leeners, Tillmann Kruger, Marcel
Egli and Fabian Ille 207

Reducing CTL-live Model Checking to First-Order Logic Validity Checking – Amirhossein Vakili and
Nancy A. Day 215

Predicate Abstraction for Reactive Synthesis – Adam Walker and Leonid Ryzhyk 219

Author Index 227

viii

Challenging Problems in Industrial Formal
Verification

Ziyad Hanna

Cadence Design Systems

ABSTRACT OF TUTORIAL TALK

The electronic design industry has emerged in the recent years to adopt the system-on-chip (SoC) design methodol-
ogy, where systems become a smart and complex integration of many configurable and reusable intellectual properties
(IP) designs such as CPU, GPU, DSP, etc. SoC design methodologies have become common to a wide range of
systems, starting from high-end servers, down to tablets, smartphones, Internet-of-things and wearable devices. The
aggressive time-to-market and the hard competition add a major challenge to the electronic design companies to deliver
high volume, and high quality products. Integration and validation of such designs has become the major challenge.
The EDA industry and the academia has continued the innovation pipeline trying to cope with the complexity of such
systems however major challenges are still ahead. Formal verification has emerged in the recent years to become a
mainstream technology in SoC/IP design and verification methodologies. In the past, the usage of formal verification
was limited to a small range of applications and it was mainly for verifying complex protocols, or some tricky
logic functionality by formal experts. However in the recent years,we see a rapid adoption of formal, and we see a
widespread of formal verification applications for low power design, security, SoC connectivity, configuration status
register, and many more. In this talk, we provide an overview of the challenges that we see in designing SoC systems
and configurable IPs, and provide some ideas to stimulate the academic research, aiming at increasing the research
and innovation in such areas for keeping bridging the emerging gap that the electronic design industry is facing now
and will face in the future.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 1

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 2

Challenges in Bit-Precise Reasoning

Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

ABSTRACT OF TUTORIAL TALK

Bit-precise reasoning (BPR) precisely captures the semantics of systems down to each individual bit and thus
is essential to many verification and synthesis tasks for both hardware and software systems. As an instance of
Satisfiabiliy Modulo Theories (SMT), BPR is in essence about word-level decision procedures for the theory of
bit-vectors. In practice, quantiers and other theory extensions, such as reasoning about arrays, are important too. In
the first part of the tutorial we gave a brief overview on basic techniques for bit-precise reasoning and then covered
more recent theoretical results, including complexity classification results. We discussed challenges in developping
an efficient SMT solver for bit-vectors, like our award winning SMT solver Boolector, and in particular presented
examples, for which current techniques fail. Finally, we reviewed the state-of-the-art in word-level model checking,
and argued why it is necessary to put more effort in this direction of research.

Funded by Austrian Science Fund (FWF) NFN Grant S11408-N23 (RiSE).

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 3

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 4

Efficient symbolic execution for software testing

Johannes Kinder

Department of Computer Science at Royal Holloway, University of London
Email: johannes.kinder@rhul.ac.uk

ABSTRACT OF TUTORIAL TALK

Symbolic execution has proven to be a practical technique for building automated test case generation and bug
finding tools. While the basic technique had been introduced already in the 70s, the advent of modern SAT and
SMT solvers has lead to a surge of tools and techniques in the area over the last decade. This tutorial will introduce
and compare the different approaches to using symbolic execution for testing and discuss the specific challenges and
trade-offs.

A main challenge in symbolic execution is path explosion, and various proposals have been made to combat it.
I will discuss how these techniques affect the number and type of solver queries that have to be made, and how
this can lead to surprising effects on the efficiency of a symbolic execution engine. Going further, we will look at
developments to increase the scope of symbolic execution to larger software systems. Specific topics covered include
state merging, procedure summaries, abstraction, search strategies, and parallelization.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 5

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 6

A Tour of CVC4: How it works, and how to use it

Morgan Deters Andrew Reynolds Tim King Clark Barrett Cesare Tinelli

ABSTRACT OF TUTORIAL TALK

CVC4 is a solver for Satisfiability Modulo Theories (SMT). This tutorial aims to give participants an overview
of SMT, describe the main features of CVC4, and walk through in-depth examples using CVC4 to demonstrate how
to solve real problems with an SMT solver. We will provide a detailed description of various aspects of CVC4’s
internals, including its architecture, its capacity for dealing with quantifiers, its finite model finder, and the linear
arithmetic solver. We will show examples of software and hardware verification problems, and how they are encoded
and handled by these features in CVC4.

Participants are expected to have only a basic knowledge of what SMT is. This tutorial will give casual users a
taste of encoding complex, real-world problems in SMT and effectively using CVC4 to solve them. Participants will
be left with some knowledge of what goes on inside a modern SMT solver and some of the practical issues that
arise in using them.

CVC4, jointly developed at New York University and the University of Iowa, is freely available for both research
and commercial use under an open-source license. The organizers of this tutorial are all architects and implementors
of CVC4 and have extensive expertise in the area of SMT.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 7

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 8

Compiler verification for fun and profit
Xavier Leroy

Inria Paris–Rocquencourt,
Domaine de Voluceau, BP 105, 78153 Le Chesnay, France

Email: xavier.leroy@inria.fr

ABSTRACT OF INVITED TALK

Formal verification of software or hardware systems — be it by model checking, deductive verification, abstract interpretation,
type checking, or any other kind of static analysis — is generally conducted over high-level programming or description languages,
quite remote from the actual machine code and circuits that execute in the system. To bridge this particular gap, we all rely
on compilers and other code generators to automatically produce the executable artifact. Compilers are, however, vulnerable to
miscompilation: bugs in the compiler that cause incorrect code to be generated from a correct source code, possibly invalidating the
guarantees so painfully obtained by source-level formal verification. Recent experimental studies [1] show that many widely-used
production-quality compilers suffer from miscompilation.

The formal verification of compilers and related code generators is a radical, mathematically-grounded answer to the
miscompilation issue. By applying formal verification (typically, interactive theorem proving) to the compiler itself, it is possible
to guarantee that the compiler preserves the semantics of the source programs it transforms, or at least preserves the properties of
interest that were formally verified over the source programs. Proving the correctness of compilers is an old idea [2], [3] that took
a long time to scale all the way to realistic compilers. In the talk, I give an overview of CompCert C [4], a moderately-optimizing
compiler for almost all of the ISO C 99 language that has been formally verified using the Coq proof assistant [5].

The CompCert project is one point in a space of code generators whose verification deserves attention. For example, functional
languages and object-oriented languages raise the issue of jointly verifying the compiler and the run-time system (memory
management, exception handling, etc) that the generated code depends on. At the other end of the expressiveness spectrum,
synchronous languages and hardware description languages also raise interesting verified generation issues, as exemplified by
Pnueli’s seminal work on translation validation for Signal [6] and Braibant and Chlipala’s recent work on verified hardware
synthesis [7].

Orthogonally, the integration of verification tools and compilers that are both verified against a shared formal semantics opens
fascinating opportunities for “super-optimizations” that generate better code by exploiting the properties of the source code that
were formally verified.

REFERENCES

[1] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding bugs in C compilers,” in PLDI 2011: Programming Language Design and
Implementation. ACM, 2011, pp. 283–294.

[2] J. McCarthy and J. Painter, “Correctness of a compiler for arithmetical expressions,” in Mathematical Aspects of Computer Science, ser. Proc. of Symposia
in Applied Mathematics, vol. 19. American Mathematical Society, 1967, pp. 33–41.

[3] R. Milner and R. Weyrauch, “Proving compiler correctness in a mechanized logic,” in Proc. 7th Annual Machine Intelligence Workshop, ser. Machine
Intelligence, B. Meltzer and D. Michie, Eds., vol. 7. Edinburgh University Press, 1972, pp. 51–72.

[4] X. Leroy, “Formal verification of a realistic compiler,” Communications of the ACM, vol. 52, no. 7, pp. 107–115, 2009.
[5] Coq development team, “The Coq proof assistant,” Software and documentation available at http://coq.inria.fr/, 1989–2014.
[6] A. Pnueli, O. Strichman, and M. Siegel, “Translation validation for synchronous languages,” in ICALP’98: Automata, Languages and Programming, ser.

LNCS, vol. 1443. Springer, 1998, pp. 235–246.
[7] T. Braibant and A. Chlipala, “Formal verification of hardware synthesis,” in CAV 2013: Computer Aided Verification, ser. LNCS, vol. 8044. Springer,

2013, pp. 213–228.

ACKNOWLEDGMENTS

This work was supported by the VERASCO project (ANR-11-INSE-003) of Agence Nationale de la Recherche.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 9

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 10

Computer-Aided Verification Technology for Biology

Thomas A. Henzinger
IST Austria

ABSTRACT OF INVITED TALK

We summarize some recent results on using computed-aided verification technology for understanding biological
systems. This includes the use of reactive models for specifying cellular mechanisms, the use of symbolic state space
exploration for analyzing molecular reaction networks, and the use of SMT solvers for studying the evolution of gene
regulatory circuits.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 11

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 12

The FMCAD 2014 Graduate Student Forum
Ruzica Piskac, Student Forum Chair

Computer Science Department, Yale University
email: ruzica.piskac@yale.edu

The Graduate Student Forum was first introduced in 2013
to the FMCAD conference series. The goal of the Forum is
to enable graduate students to attend the conference, even if
they do not have a paper accepted at the main conference
track. Students were attracted with an opportunity to present
their on-going work to a broader scientific audience and
receive valuable feedback about the research they are currently
pursuing.

Following last year’s success, FMCAD 2014 hosted the
second edition of the Graduate Student Forum. The 2014
Forum is based on a similar premise and format as the first
Forum. There was an open, widely-publicized call for papers.
In addition, the Organizing Committee personally informed
a number of renowned scientists about the Forum. In the
call, students were asked to submit a 2-page summary of
their research and on-going work. As expected, we received
a wide-range of submissions, and at the end we accepted 10
submissions. Here is a list of the accepted submissions. If there
are more authors on a submission, the main student author is
marked with ∗.

• Petr Bauch: Bit-Precise LTL Model Checking
• Seyedhassan Daryanavard∗, Thomas Marconi, Moham-

mad Eshghi: Design of CAD Module for JIT Extensible
Processor Customized for Placement and Routing

• Marko Doko∗, Viktor Vafeiadis: Reasoning about Mem-
ory Fences in C11 Relaxed Memory Model

• Usman Khalid: Bayesian Networks based Probablistic
Approach for Digital Circuits Reliability

• Christian Krieg∗, Michael Rathmair, Florian Schupfer:
Device Library Attack: Silently Compromising the FPGA
Design Flow

• Siddharth Krishna: Learning Linear Invariants using De-
cision Trees

• Andrey Kupriyanov∗, Bernd Finkbeiner: Causality-based
LTL Model Checking without Automata

• Michael Rathmair∗, Florian Schupfer: Structural System
Analysis from Design Level down to Netlist Level

• Thorsten Tarrach: Using synthesis to fix concurrency bugs
• Leander Tentrup: Verifying Partial Designs with Partial

Observability

Es evident, the student submissions covered a broad spec-
trum of topics present in the FMCAD community. The Orga-
nizing Committee discounted submissions that were out of the
scope of FMCAD.

The main purpose of the Student Forum is that the student
authors of the accepted papers present their work in the poster

session at the main conference. This way they can receive
feedback from all conference participants. In addition, every
student received a written review from an expert in their re-
search area. Those reviews were also used to decide about the
acceptance of the submitted papers. The experts were chosen
from the FMCAD’s Program Committee, or if there was no
relevant expert in the PC, the Organizing Committee asked
well-established scientists for help with reviewing. Hereby we
would like to express our gratitude to all reviewers of the
FMCAD Student Forum for their work.

Looking at the seniority of students, this Forum featured
students at various stages of their PhD studies: there were
students who just started their graduate studies, as well as
students who were close to defending their thesis. While the
junior students looked at the Forum as an opportunity to
formulate their research goals better, for the senior students the
Forum provided a chance to search for post-doctoral positions.

The heterogeneity of the students also resulted in different
styles of submissions. The senior students mostly presented a
summary of their results, and the submissions of the junior
students were mainly surveys of existing work. However,
common to all the accepted papers is that they outlined
interesting and promising new research directions.

Every student author of an accepted paper received a travel
grant covering all the costs to attend the FMCAD conference.
The students in general did not have access to other travel
funds, and these grants enabled them to benefit from attending
the conference. We are deeply grateful to the sponsors of the
FMCAD conference for their contributions: FMCAD, Inc. and
the EPFL School of Computer and Communication Sciences,
as well as (listed in alphabetical order): ARM, Atrenta Inc.,
Cadence, Centaur, IBM Corporation, Intel Corporation, Jasper
Design Automation, Mentor Graphics, Microsoft Corporation,
OneSpin Solutions, Oski Technology Inc., Real Intent, Synop-
sys. Their generous contributions made this Forum possible.

This Student Forum takes place because of the students and
their submissions. It is their excellent work that is making this
forum series a success. The Organizing Committee would like
to thank all the students who submitted a proposals to this
Forum, and wishes them success in their future research.

Finally, we express our gratitude for their input and guid-
ance to Thomas Wahl, last year’s Student Forum Chair, to
Barbara Jobstmann, the Publication Chair of FMCAD 2014,
and to Koen Claessen and Viktor Kuncak, General and Pro-
gram Chairs of FMCAD 2014.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 13

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 14

Response property checking via distributed state
space exploration
Brad Bingham and Mark Greenstreet

Department of Computer Science, University of British Columbia
201-2366 Main Mall, Vancouver, B.C., Canada, V6T 1Z4

{binghamb, mrg}@cs.ubc.ca

Abstract—A response property is a simple liveness property
that, given state predicates p and q, asserts “whenever a p-state
is visited, a q-state will be visited in the future”. This paper
presents an efficient and scalable implementation for explicit-
state model of checking response properties on systems with
strongly- and weakly-fair actions, using a network of machines.
Our approach is a novel twist on the One-Way-Catch-Them-
Young (OWCTY) algorithm. Although OWCTY has a worst-
case time complexity of O(n2m) where n is the number of states
of the model, and m is the number of fair actions, we show
that in practice, the run-time is a very small multiple of n.
This allows our approach to handle large models with a large
number of fairness constraints. Our implementation builds upon
PREACH, a distributed, explicit-state model checking tool. We
demonstrate the effectiveness of our approach by applying it to
several standard benchmarks on some real-world, proprietary,
architectural models. Index Terms—distributed model checking,
explicit-state model checking, murphi, liveness, fairness

I. INTRODUCTION

Response properties are liveness properties of the form
“From any state in which proposition p is satisfied, execution
will eventually reach a state in which proposition q is satis-
fied.” In LTL such properties are expressed as �(p→ ♦q); the
corresponding CTL specification is AG (p → AF q). Specifi-
cations of cache protocols and high-level architectural models
often include response properties – e.g. if a processor attempts
to write to a memory location, the processor will eventually
have an exclusive copy of that location in its cache; or, if an
instruction is fetched, eventually either it will be executed and
committed or that (speculative) path will be aborted.

The standard approach to explicit state model checking
of LTL properties involves constructing a product automaton
that is the synchronous cross product of the Büchi automaton
that accepts the negation of the property in question, and the
Büchi automaton for the system itself [1], [2]. If the language
accepted by the product automaton is empty, then the LTL
property holds; otherwise, a counterexample trace is found. All
model checking approaches are vulnerable to state-explosion
problems, and the product-automaton construction for LTL
model checking exacerbates this problem. If the original
system has n reachble states, and the LTL specification, φ,
consists of |φ| symbols and operators, then constructing the
product automaton takes O(n2|φ|) time and space.

This research was funded in part by generous support from NSERC Canada
and Intel through their CRD and URO grants.

Response properties can be expressed with a Büchi au-
tomaton with only 2 states, and thus the blowup from the
formula size is curbed. Unfortunately, only contrived systems
that contain no cycles along any path from a p-state to a q-
state will satisfy response. In practice, response is verified
subject to fairness assumptions that attempt to characterize
realistic traces. Response may be verified under those fair-
ness assumptions that can be written as the LTL formula
Fair , by using LTL model checking to verify the formula
Fair → �(p → ♦q). The Büchi automaton for this formula
will grow exponentially in |Fair |, which in turn causes the
number of states of the product automaton to explode.

Instead of expressing fairness as an antecedent to the LTL
property of interest, fairness can be expressed in terms of
how the original system is defined or as a specially handled
input to the model checking algorithm. Kesten et al. [3]
compare expressing fairness as a property antecedent with
a “fair-aware” approach and show that latter achieves better
performance. Manna and Pnueli [4], [5] present a model-
checking algorithm property checking for response properties
that takes advantage of two notions of action-based fairness.
The Divine distributed explicit-state model checking tool has a
specific mode where all transitions are assumed to be weakly
fair [6]. In this paper, we follow suit and employ an algorithm
that directly utilizes fairness assumptions for Manna and
Pneuli’s notions of strong and weak fairness. In the worst-case,
the algorithm could perform O(n2|Fair |) state expansions,
where n is the number of reachable system states. In the
typical scenario where |Fair | is much smaller than log(n),
this far exceeds the number of worst-case expansions of the
Büchi automaton approach which is O(n2|Fair |). However, our
results show on benchmark models that the algorithm vastly
outperforms the worst case, which is indeed achievable (see
online Appendix [7]). In contrast, Section VII reports results
for a tool that implements the Büchi automaton approach and
uses time and memory as one would expect from the worst-
case analysis.

Our contributions are as follows:
1) present a novel, efficient, parallel approach for model

checking response properties;
2) an implementation of the algorithm built as an extension

of the PREACH [8], [9] model checker. PREACH is a
distributed, explicit-state model checker based on Stern
and Dill’s [10] algorithm;

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 15

3) demonstrate that verifying liveness in large, realistic
systems augmented with both strong and weak fairness
is tractable using a modest network of machines;

4) show that the time requirements for One-Way-Catch-
Them-Young style algorithms are far better in practice
than would be expected from the worst case analysis. In
practice, we observe that each state is visited a small
number of times (typically less than 30).

II. OVERVIEW

Stern and Dill’s distributed model checking algorithm [10]
partitions the state space among processes with a uniform
random hash function. Processes are said to own states that
hash to their process IDs. Once a state has been visited,
its owner process is responsible for storing it locally. In
PREACH this is done with the Murϕ model checker’s hash
table [11] which uses a predetermined number of bits1 to
represent each state. The use of hash compaction and bloom
filters in explicit-state model checking is a thoroughly studied
area [12], [13] and lends itself to practical approaches. Hash
table compression admits a small probability that some state
will erroneously be viewed as visited when it actually hasn’t
been. In our experience this probability is tiny; for example, a
very large model checking experiment with about 100 billion
states had only a 0.03% chance of a missed state [8]. The
experiments in this paper admit a much smaller probability
than this; the German6 model with over 316 million states
had a probability of a missed state of less than 7.36× 10−5.
If this probability were of practical concern, the user could
simply re-run the tool using a different seed for randomization
and reduce the probability of a missed state in both runs to
less than (7.36× 10−5)2 < 5.42× 10−9.

Once a state has been checked in the hash table, HT, it
is queued for expansion in the work queue, WQ, the other
key data structure of the Stern-Dill algorithm. Unlike the HT
which has static size and resides in memory, the WQ has
dynamic size and stores full state descriptors. Typically only
a small percentage of the WQ is in memory; the rest is
delegated to disk. Because states can be read and written
in large batches, using disk storage for the WQ does not
create a bottleneck. A key feature to PREACH performance,
particularly in a heterogeneous computing environment, is load
balancing. Once a state enters WQ, it is irrelevant which
process actually checks the invariants, computes the successor
states and sends them off to their respective owners. Thus,
processes that amass a longer WQ will offload a chunk of
their states to another process with a shorter WQ.

Erlang’s message passing system relies on nonblocking
sends. When a message arrives for some process, it resides in a
message inbox in memory until a matching RECEIVE is called.
The dynamic nature of distributed state space exploration
and the performance asymmetry introduced by heterogeneous
machines, or any other performance irregularities, can lead to

1This number is a configuration parameter. The results in this paper use
the default value of 40 bits.

very long messages queues. This is especially problematic as
we have observed that the time it takes the Erlang runtime
to consume an inbox message increases with the number
of messages in the process’s inbox. To combat this issue,
PREACH employs a crediting mechanism that bounds the size
of each process’ inbox. If process A has states to send to their
owner, process B, but it does not have sufficient credits to
do so, the states are simply queued in A’s “outbox” for B.
Outboxes that grow large are also written to disk.

To check response properties, we have implemented an
algorithm inspired by the set-based One-Way-Catch-Them-
Young algorithm described in [14], [15]. We focus on systems
with both strongly fair actions (a.k.a. compassion), denoted C
and weakly fair actions (a.k.a. justice), denoted J .

A. Preliminaries

A fair transition system, FTS, is a tuple (S, I, T,J , C)
where
• S is a finite set of states;
• I ⊆ S is the set of initial states;
• transition relation T ⊆ S × S;
• weakly fair actions J ⊆ 2T ;
• strongly fair actions C ⊆ 2T .
An action is a subset of T . Function En : S → 2C∪J gives

the set of actions enabled at state s, i.e. En(s) = {a ∈ C∪J :
∃s′. (s, s′) ∈ a}. State s enables action a if a ∈ En(s). Given
state s we use the shorthand notations Cs and Js to refer to
the sets of enabled actions that are strongly and weakly fair,
respectively. Formally, Js = J ∩En(s) and Cs = C ∩En(s).
For convenience we assume transitions that are not members
of any element of J ∪ C are members of the non-fair set, i.e.
NF = T \(⋃a∈J∪C a). For A ⊆ S, 〈A〉 denotes the subgraph
of the digraph (S, T) induced by A.

A trace is a finite sequence of states s0 ◦ s1 ◦ . . .◦ sk where
so ∈ I , and (si, si+1) ∈ T for 0 ≤ i < k. A predecessor trace
for state s is any trace where sk = s.

An execution is an infinite sequence of states, s0 ◦ s1 ◦ . . .,
where s0 ∈ I , and ∀i ≥ 0. (si, si+1) ∈ T . For a given trace,
action a satisfies
• InfOftenTaken(a), if ∀i ≥ 0. ∃j ≥ i. (sj , sj+1) ∈ a,
• InfOftenEn(a), if ∀i ≥ 0. ∃j ≥ i. a ∈ En(sj), and
• InfOftenDisabled(a), if ∀i ≥ 0. ∃j ≥ i. a /∈ En(sj).

An execution is called fair if

∀a ∈ C. InfOftenEn(a)⇒ InfOftenTaken(a)
∧ ∀a ∈ J . InfOftenTaken(a) ∨ InfOftenDisabled(a).

In other words, an execution is fair if all actions of C are
taken infinitely often or are never enabled beyond some finite
prefix of the execution, and all actions of J are taken infinitely
often or are disabled infinitely often. A strongly connected
component (SCC) is called fair (a FSCC) if all enabled
strongly fair actions in the SCC’s states are taken within the
SCC, and all enabled weakly fair actions in the SCCs states
are either taken within the SCC or disabled at some state.
Section III presents an algorithm that detects FSCCs within

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 16

the subgraph of reachable states that can be reached on a path
from some p-state without visiting a q-state along the way (this
subset is referred to as pending; see Figure 1). Such SCCs
are counterexamples to the response property �(p → ♦q);
furthermore, every counterexample execution has an infinite
suffix that only visits states in a FSCC. Note that p is a subset
of pending , and q is disjoint with pending . The initial states
are usually disjoint from both p and pending , but this need
not be the case.

reachable

init
p

q

pending

Fig. 1: Sets of interest when checking a system adheres to
�(p→ ♦q).

B. A note about stuttering
We note that fair systems may be defined with or without

inherent stuttering, the former assuming that every state has a
transition to itself and the latter does not. For simplicity in the
following presentation, we assume that stuttering is allowed,
thereby requiring a fair “reason” why indefinite stuttering
cannot occur. This assumption requires that T is reflexive.
Including stuttering simplifies the presentation; for example,
it ensures that all traces can be extended to infinite executions.

III. ALGORITHM

Our distributed response checking algorithm is based on
the One-Way-Catch-Them-Young (OWCTY) [14] approach.
The key idea of the algorithm is to begin by initializing a
set, MaybeFair , with the pending states, and then iteratively
remove states from MaybeFair that cannot belong to a FSCC.
A state, s, is removed when it is discovered that there is no
predecessor trace of s in 〈MaybeFair〉 along which action
a ∈ C is taken, where a ∈ Cs. Similarly, s is removed
if it is found that there is no predecessor trace of s in
〈MaybeFair〉 along which action a ∈ Js is either taken
or disabled at some state s′ of the trace, where a ∈ Js.
The response property holds iff MaybeFair is empty when
the algorithm terminates. To see this, note that any state
that is removed from MaybeFair cannot belong to a FSCC;
thus, 〈MaybeFair〉 contains all of the FSCCs of 〈pending〉.
The FSCCs of 〈MaybeFair〉 form a DAG. Let F be any
FSCC of 〈MaybeFair〉 that has no predecessor FSCCs. It
is straightforward to construct a cycle in F that satisfies all
fairness constraints. By construction, this cycle is reachable
from some initial state.

The description of OWCTY from [15] for model checking
LTL formulas with strong and weak state-based fairness oper-
ates on sets of states performing union and disjunction opera-
tions, as well as deleting all members from a set which have

Algorithm 1 High level algorithm
1 procedure FINDFAIRCYCLE(S, I, T, C,J , p, q)
2 . Compute the pending states
3 pending ← REACHABILITY(S, I, T, p, q)
4 ptfa ← new bit [pending][J ∪ C] . array of bit-strings
5 CLEAR(ptfa) . initialize to all 0s
6 MaybeFair ← pending
7 Prev ← ∅
8 while MaybeFair 6= Prev do
9 Prev ← MaybeFair

10 ToExpand ← MaybeFair
11 while ToExpand 6= ∅ do
12 s← REMOVESOMEELEMENT(ToExpand)
13 . Weakly fair actions not enabled at s
14 for all a ∈ J \ Js do
15 ptfa[s][a]← 1
16 end for
17 Next← SUCCESSORS(s) \ q
18 for all s′ ∈ Next do
19 OldActions ← ptfa[s′]
20 a← WHATACTIONTAKEN(s, s′)
21 if a ∈ J ∪ C then
22 ptfa[s′][a]← 1 . Record action taken
23 end if
24 . Actions preceeding s also preceed s′
25 ptfa[s′]← BITWISEOR(ptfa[s], ptfa[s′])
26 if (ptfa[s′] 6= OldActions) then
27 ToExpand ← ToExpand ∪ {s′}
28 end if
29 end for
30 end while
31 for all s ∈ MaybeFair do
32 if ∃a ∈ Js ∪ Cs : ptfa[s][a] = 0 then
33 MaybeFair ← MaybeFair − {s}
34 end if
35 end for
36 CLEAR(ptfa)
37 end while
38 return MaybeFair 6= ∅
39 end procedure

no predecessor within the set until a fixed point is reached2.
As described in Section II, PREACH uses lossy compression
when hashing states; thus, we cannot reconstruct states from
hashtable entries. To retain the efficiency advantages of the
Murϕ hashtables, we avoid the explicit representation of large
sets of states, and replace the union and intersection operations
of OWCTY with tag bit manipulations, where each hash table
entry includes one such tag bit per fair action. In Algorithm 1,
these bits are stored in ptfa (predecessor trace fair actions),
which is a two-dimensional array of bits initialized to all
0s. Bit ptfa[s][a] is set for action a ∈ J ∪ C and state
s ∈ MaybeFair is set if a is taken in a predecessor trace
of s in 〈MaybeFair〉, or if b ∈ J is disabled at some state
of a predecessor trace of s in 〈MaybeFair〉. The set pending
stores the states of interest for response, those that can be
reached on a path from a p-state without visiting a q-state.

Each iteration of the outer while-loop is called a round, and
involves two phases.
Action Propagation Phase (AP):
This step is the while-loop from lines 11 to 30. Some state s
is removed from ToExpand and the tag bits are set for each

2To the best of our knowledge, the algorithm from [15] not been imple-
mented.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 17

weakly fair action that is disabled at s; this is because any
eventual successor of s within 〈pending〉 may be part of an
SCC with s. If so, this SCC is fair with respect to these weakly
fair actions. Then, the successors of s within 〈pending〉 are
computed. For each of these the current tag bits are saved in
OldActions . If the transition that is taken from s to reach a
successor s′ is a member of some a ∈ J ∪ C, the ptfa[s′][a]
is set (line 22). Then, the bit-string ptfa[s] is ORed with the
ptfa[s′], as any predecessor trace ρ for s implies a predecessor
trace for s′, namely ρ ◦ s′. If any of these operations have set
new bits for s′, it must be added to ToExpand so the bits are
propagated along. Otherwise, the s′ is discarded. This loop
continues until a fixed point is reached for the contents of
ptfa .

Figure 2 illustrates some operations of AP with an ex-
ample. For this example, J = {a0, a1, a2, a3} and C =
{a4, a5, a6, a7}, and PTFAs are represented as a7 . . . a0, as
seen below each state. Assume that En(b) = {a0, a2, a3, a4},
En(c) = {a0, a1, a7}, and En(d) = {a0, a1, a3, a5}. When
b is expanded, the PTFA on the arc is passed to state e
which changes the PTFA for e and requires e to be expanded.
Subsequently, c is expanded and the PTFA for e is again
updated and another e expansion is needed to communication
the new PTFA to successors. Finally, when d is expanded the
PTFA sent to e contains no new actions, so e does not need
another expansion.

c

d

e

b

{a2, a7}

{a2, a3, a5, a7}

{a1,
a2,

a7}

{a
1 , a

4 , a
5}

a7 taken

a
4 taken

{a2, a3, a5, a7}

{a1, a5}

a1
tak

en {a1, a4, a5}
{a1, a2, a3, a4, a5, a7}

∅

Fig. 2: Example of PTFA updates as states are expanded.

State Deletion Phase (SD):
This phase appears from lines 31 to 36. Any states that enabled
a fair action a but with the corresponding tag bit cleared cannot
be part of a FSCC and are removed from MaybeFair .

Soundness for the algorithm was described at the beginning
of this section. To see that the algorithm terminates, we first
note that the while loop at lines 10–28 must terminate because
the flag bits in ptfa are strictly increasing with successive
iterations of the loop. The while-loop at lines 7–35 terminates
because the loop adds no new elements to MaybeFair .

IV. DISTRIBUTED IMPLEMENTATION

The distributed version of this algorithm starts with a Stern-
Dill style reachability computation that identifies all p and
pending states. Each worker process stores its p states on disk,

and pending states are marked with tag bits in the hash-table.
Initially, the PTFA for pending states are set to all fair actions,
J ∪ C. The distributed algorithm then performs rounds that
correspond to those of the sequential version, Algorithm 1. As
described in more detail below, each round propagates PTFA
tags according to the next state relation until a fix point is
reached. At the boundary between rounds, states are identified
whose PTFAs do not satisfy the fairness constraints for the
state. Such states cannot be part of an FSCC and are marked
as “dead” (i.e, removed from MaybeFair). The number of live,
MaybeFair states is non-increasing. The algorithm terminates
when this number no-longer decreases. If at this point, all
MaybeFair states have been eliminated, then the response
property is satisfied. Otherwise, counter-example is generated.
The remainder of this section describes this algorithm in more
detail.

Algorithm 2 shows pseudo-code for the root process. It
initiates the initial reachability computation to identify p and
pending states. It then initiates rounds of propagating PTFA
tags and eliminating pending states until no further states
can be eliminated. The termination detection algorithm from
the original Stern and Dill approach is used to identify the
end of each round and compute the total number of pending
states. This provides a barrier separating the computations
of successive rounds. After the final round, the root process
notifies the workers that the computation is complete and
reports either that the response property has been verified or
provides a counter-example.

Algorithm 3 shows pseudo-code for the worker processes.
Like the reachability computation, each worker has two main
activities: receiving incoming states and checking if they have
been “seen” previously, and expanding states to send their suc-
cessors to their owners. Algorithm 3 augments each of these
activities to maintain the tags for PTFAs. At the beginning
of each round, each process checks its subset of the p states
to determine which ones satisfied their associated fairness
constraints in the previous round. Those that don’t are marked
as dead. All p-states are added to the work-queue, ToExpand ,
even if they are dead to ensure that their successors are
examined in this round. When a state is received, the algorithm
first checks to see if this is the first time the state has been
seen for the current round. If so, the state’s PTFA is checked
to see if the state should be marked as dead, and all states are
entered into ToExpand the first time they are visited in each
round. If the state has been seen before, then if the new PTFA
indicates incoming paths for fairness constraints that haven’t
already been satisfied, these constraints are added to the state’s
PTFA, and the state is enqueued in ToExpand to propagate
this information to its successors.

When a worker removes a state from its work queue,
ToExpand , it computes all successor states as in the original
reachability algorithm. Because the incoming paths to this
state are prefixes of incoming paths for its successors, the
PTFA of the successor must contain the PTFA for this state.
Furthermore, if the transition to the new state corresponds to
a fair action, then this action is added to the PTFA. These

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 18

updates are made to the PTFA for the successor, and the
successor with this PTFA set is sent to the successor’s owner.

Every operation either marks a state a dead or adds a fair
action to some state’s PTFA. Thus, the activities for updating
fairness information eventually reach a fixpoint and the round
terminates. Many optimizations are possible to improve the
performance of this algorithm. These are described in the next
section.

Algorithm 2 Root Process
1 function ROOTSTART(I, p, q)
2 . Tags for initial states
3 for all s ∈ I do
4 SENDSTATE((s, ∅))
5 end for
6 CurMaybeFairCount ← TALLY(nstates)
7 PrevMaybeFairCount ← CurMaybeFairCount+ 1
8 while CurMaybeFairCount 6= PrevMaybeFairCount do
9 BROADCAST(doRound)

10 PrevMaybeFairCount ← CurMaybeFairCount
11 CurMaybeFairCount ← TALLY(nstates)
12 end while
13 BROADCAST(stop)
14 if CurStates > 0 then
15 return GENERATECOUNTEREXAMPLETRACE(. . .)
16 else
17 return verified
18 end if
19 end function

V. OPTIMIZATIONS

Early experiments with a prototype implementation revealed
several opportunities to improve performance. We aim to
address the average number of state expansions during a phase,
the number of states visited during a phase, and the number
of rounds. A key observation is that for many examples, the
number of states in the pending set decreases rapidly with
successive rounds. Thus, it is important to avoid touching
“dead” states so that the work done in later rounds decreases
with the smaller size of pending . This also means that most
of the time is spent in the initial reachability computation
and the first two or three rounds of the liveness computa-
tion. Thus, optimization should focus on these early rounds.
Furthermore, the same state can be updated several times
during a single round. Consolidating these updates was simple
and led to significant performance gains. The remainder of
this section presents three methods of reducing each of these
metrics in turn. In addition, various optimizations are inherited
from PREACH’s state space exploration technique. Namely,
load balancing of states offers modest speedups even in a
homogeneous network of machines. Batching of states into
messages containing hundreds or thousands is also of benefit.
The reader may consult [8] for details.

A. Saved Expansions

The description in the algorithms and implementations
presented so far have states paired with their tags, including
PTFAs, when enqueued to the WQ. When the WQ grows
large, state s may arrive tagged with PTFA b2 while the same

Algorithm 3 Worker Process
1 function WORKER(S, I, T,J , C, p, q, rootPid)
2 PS← COMPUTEPSTATES(S, I, T,J , C, p, q)

. Global variable queue that stores p-states
3 RoundCount ← 0
4 while true do
5 case RECEIVE() of . Blocking receive
6 doRound → ok
7 stop → break while loop
8 end case
9 RoundCount ← RoundCount + 1

10 for all s ∈ PS do
11 WQ← INITSTATEFORROUND(s, ∅,RoundCount)
12 end for
13 . Stern and Dill’s termination alg
14 while round not terminated do
15 while (s, thisPTFA)← RECEIVE() do . Nonblk. recv
16 T ← HT.GETTAGS(s)
17 if T.round 6= RoundCount then
18 INITSTATEFORROUND(s, thisPTFA,RoundCount)
19 else if ¬T.dead ∧ (thisPTFA * T.PTFA) then
20 T.PTFA← T.PTFA ∪ thisPTFA
21 WQ.INSERT((s, T))
22 HT.UPDATETAGS(s, T)
23 end if
24 end while
25 EXPANDANDSEND(J , C) . See Alg. 4
26 end while
27 send (nstates,MyMaybeFairCount) to rootPid
28 end while
29 end function
30
31 function INITSTATEFORROUND(s, thisPTFA,RoundCount)
32 T ← HT.GETTAGS(s)
33 if ENABLED(s) * T.PTFA then
34 T.dead ← true
35 thisPTFA← ∅
36 end if
37 T.round ← RoundCount
38 T.PTFA← thisPTFA
39 WQ.INSERT((s, T))
40 HT.UPDATETAGS(s, T)
41 end function

state is waiting for expansion in the WQ while paired with
PTFA b1, which matches the PTFA at the HT entry for s.
When b2 has at least one bit set that b1 does not, s is enqueued
for expansion in WQ paired with PTFA b1 ∪ b2. This renders
the earlier WQ entry of (s, b1) redundant and unnecessary.

To avoid this scenario, the HT is used to maintain PTFA
information, and WQ entries do not contain a PTFA. When a
state s is enqueued, a new HT tag bit InWQ is set; when s
is dequeued, InWQ is cleared and the current HT value for
PTFA is used when computing the PTFA for s’s successors. If
state s with PTFA b2 arrives when the HT entry has InWQ
set, then HT PTFA bHT is set to bHT∪b2 and the just-arrived
state s is discarded. This approach reduces the number of state
expansions at the cost of an additional bit in HT per state,
and one additional HT lookup.

B. Dynamic Kernel

The algorithm implementation above uses the reachable p-
states as the kernel, defined as follows.

Definition 1: Given a FTS, K ⊆ S is a kernel for A ⊆ S
if A is a subset of the reachable states from K in the digraph

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 19

Algorithm 4 Dequeues a WQ state and sends next states
with tags to their owners.

1 function EXPANDANDSEND(J , C)
2 if ISEMPTY(WQ) then
3 return done
4 end if
5 (X,Tags)← DEQUEUE(WQ)
6 NextStates ← COMPUTESUCCESSORS(X)
7 if Tags.dead then
8 for all s′ ∈ NextStates do
9 SENDSTATE((s′, ∅))

10 end for
11 return
12 end if
13 PTFA← Tags.PTFA
14 PTFA← PTFA ∪ (J − ENABLED(X))
15 for all s′ ∈ NextStates do
16 ActionTaken ← WHATACTIONTAKEN(X, s′)

. Successor PTFA is current state PTFA with the fair action taken
17 if ActionTaken ∈ NF then
18 NextPTFA← PTFA
19 else
20 NextPTFA← PTFA ∪ActionTaken
21 end if
22 SENDSTATE((s′,NextPTFA))
23 end for
24 return
25 end function

(S, T).
Note that the initial states I is a kernel for any subset of

the reachable states. In the code presented in Section IV, we
used the reachable p-states Kp as a kernel for MaybeFair to
initiate each phase because Kp is a kernel for every subset of
pending . Our experiments showed that for typical examples,
the number of states in MaybeFair drops rapidly with each
SD phase. The expansion of such deleted states can be avoided
by modifying K after each SD phase, using an extra HT tag
bit InK and additional disk space.

During the initial phase, only the p-states have InK set to
true, and these states are saved to disk in the kernel-queue.
When a state s is removed from MaybeFair during SD that
has InK set, this flag is cleared. When a process receives state
s′ tagged with mode delete pred (signaling that a predecessor
of s′ has just been removed from MaybeFair), then if s′ has its
InK flag cleared, it is set to true and s′ is added to the kernel-
queue. Finally, at the start of an AP phase the kernel-queue is
copied to the WQ to serve as the set of initial states, but any
state encountered that has its InK flag cleared is ignored and
removed from the kernel-queue.

While this approach does not necessarily maintain the small-
est possible kernel for MaybeFair , its simple implementation
and low overhead lead to large performance gains.

C. Deletion by Predecessor Counting

There are performance advantages when storing the number
of predecessors each state has in 〈MaybeFair〉. Under the
assumption of stuttering and ensuring the safety property
that every state s ∈ pending has |Js ∪ Cs| ≥ 1, any
state with 0 predecessors in 〈MaybeFair〉 will be deleted
from MaybeFair in the next SD phase. However, storing the

number of predecessors in HT allows detection of this case
in order to preemptively remove such states. We choose to
add 8 bits to the HT tags to store the predecessor count.
This additional bookkeeping complicates Algorithms 3 and
4 somewhat (details omitted). In particular, a state may be
expanded more than once during an SD. This occurs when
the first time a state is visited the condition on line 33 of
Algorithm 3 holds, but subsequently all of its predecessors
are deleted. However, this turns out to be a rare occurrence in
the benchmarks, and this strategy can reduce the number of
phases. Note that the impact of this optimization is omitted
from the Results section as it was inherent to our early
implementation versions.

VI. RESULTS

We ran PREACH on a variety of combinations of Murϕ
models with all optimizations of section V enabled, summa-
rized in Table I. For each, we chose a suitable response prop-
erty such as “requests for exclusive access to a cache line are
eventually granted”, or “processes waiting to enter the critical
section will eventually do so”. The Murϕ models used are the
German cache coherence protocol, the Peterson mutual exclu-
sion algorithm, the MCS lock mutual exclusion algorithm, a
snoopy protocol used as a benchmark in previous verification
work [16] and an Intel proprietary protocol. Let GermanX
denote the German model with X caches; petersonY is
Peterson’s algorithm with Y processes and mcslock5 is
the MCS Lock algorithm with 5 processes; snoop2 is the
snoopy protocol with 2 L1 caches and 2 clusters. Models saw,
gbn and swp are various sliding window communication
protocols, with the response property that the sender can
always eventually accept new data to transmit. All models and
the PREACH code is provided online [7]. Each Murϕ “rule”
(a.k.a. guarded command) is considered a separate action; we
attached suitable fairness assumptions specific to the model.
The network of machines used for experiments are as follows:
• UBC cluster: 40 PREACH processes on a homogeneous

cluster of 20 Intel Core i7-2600K at 3.40 GHz with 8 GB
of memory (non-intel_* models).

• Intel cluster: 16 PREACH processes on a heterogeneous
network of contemporary Intel R© Xeon R© machines, each
with at least 8 GB of memory (intel_* models).

Not included in the table, but worth noting, is an Intel
proprietary sliding window protocol model. With over 450
million states and tens of fairness (both strong and weak),
we were able to verify response in about 5 and a half hours
using 32 cores.

A few modifications were required when checking the
snoop protocol. This model was created to represent a
cache-coherence protocol in a realistic processor. The protocol
appears to have been designed with an emphasis on safety, and
liveness does not appear to have been primary concern. For
example, requests for cache lines are clearly not responsive
as they may be negatively acknowledged (Nackd) an arbitrary
number of times. To avoid this, we changed the protocol so
that Nacks of this type are simply ignored, and the request

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 20

model runtime states p-states pending-states q-states rounds exp/state no -ko no -se no opt.
German5_sf 189 15,836,445 3,699,486 4,858,596 5,103 1 3.48 0.98 2.42 2.86
German6_sf 4,253 316,542,087 74,465,244 95,266,520 18,225 1 3.33 1.01 3.30 3.52
peterson6_wf 820 13,817,679 2,947,800 12,111,713 45,209 14 12.91 1.65 1.30 1.95
peterson6_sf 423 13,817,679 2,947,800 12,111,713 45,209 5 9.03 1.36 1.73 2.12
peterson7_wf 26,957 380,268,668 79,029,594 340,549,743 775,138 17 14.19 1.65 1.66 2.16
peterson7_sf 14,613 380,268,668 79,029,594 340,549,743 775,138 6 10.11 1.27 2.26 -
mcslock5_wf 1415 59,318,541 27,785,789 51,474,427 2,780,517 3 5.09 1.17 1.10 1.25
snoop2_sf 160 2,648,763 670,689 1,313,100 1,335,663 3 12.71 1.07 4.57 5.00
saw20_sf 323 314,183 309,140 309,140 5,043 23 44.06 1.04 1.09 1.15
gbn3_2_sf 369 12,753,395 7,859,200 7,859,200 4894195 6 6.44 1.60 1.95 2.56
swp4_2_sf 503 18,595,425 11,715,440 11,715,440 6,879,985 6 6.58 1.59 1.63 2.22
intel_small_sf 285 476,778 268,078 268,078 164,057 4 6.36 - - -
intel_med_sf 1,015 2,696,059 1,944,360 1,944,360 635,672 4 8.59 - - -
intel_big_sf 13,872 51,791,350 29,899,694 29,899,694 19,855,989 8 11.92 - - -

TABLE I: Column “runtime” is given in seconds; “exp/state” is the average number of times each pending-state was expanded. Model peterson6_sf
is peterson6 with all actions strongly fair, as opposed to peterson6_wf where some rules were weakly fair and the rest as not fair (for example, the
rule that initiates the move from the noncritical section to requesting to enter the critical section needs no fairness assumption). These two models have the
same number of states of each type but perform a different number of expansions, and illustrate the benefit of only using more fairness than required for the
response property to hold. All other models require strong fairness.

persists. This turned out to also not be responsive, although
less obviously so – the counterexample trace included 72
transitions. Therefore, not all of the pending states were
deleted. Online Appendix [7] Figure 5 shows that about half of
the the pending-states remained in the MaybeFair set when
the algorithm terminated. Additional plots for the experiments
appear in the Appendix.

The rightmost three columns of Table I show the slowdown
when benchmarks are run without the kernel optimization,
without the saved expansions optimization and without either,
respectively. The kernel optimization is of most benefit when
the number of rounds is large3. In particular, it is of no benefit
for those benchmarks that only require a single round, as the
kernel states are only used during subsequent rounds. The
saved expansion optimization offers large performance gains
in many cases. Typically, only 5 to 10% of the total state
expansions are explicitly avoided by the when a just-received
state state is present in the WQ. However, avoiding these
redundant expansions can in turn save many expansions of
successor states which in turn saves expansions of states that
are two transitions away. This cascading effect decreases the
total number of expansions by a significant factor.

VII. RELATED WORK

Divine is a parallel and distributed LTL model checker that
is the closest tool to ours [17]. Divine constructs a product
Büchi automaton to check liveness properties; thus, Divine’s
space requirement grows as the product of the number of
states in the system model and the number in the system
automaton. Applying Divine to the examples from Section VI,
we observed that it ran out of memory for all examples
except for those with no or a small number of strong fairness
constraints. Divine provides a mode for models where all
transitions are weakly fair. Using this feature, Divine per-
formed well for the Peterson example for which weak fairness
constraints are sufficient to ensure responsiveness. However,

3One exception is saw_20_sf where a large proportion of the runtime is
spent coordinating threads between rounds.

many problems require strong fairness; for example cache
coherence protocols often include states where taking one
action disables another. We found that for an encoding of the
German protocol with 4 caches, the reachable state space of
Divine’s product automaton doubled with each additional fair
action included. For only 6 fair rules, Divine on a multicore
machine took 17 minutes to construct the system automata,
13 minutes to perform the model checking task and used over
16 GB of main memory. In our experiments, adding one more
fair rule exhausted the main memory of our 32 GB machine
and rendered the computation time infeasible.

Our algorithm has a worst-case time complexity that is at
least O(n3) where n is the number of reachable states – it is
straightforward to construct an example where the transition
relation has O(n2) edges, and for which Algorithm 1 removes
one state per iteration of the outer while-loop. In practice, we
observe that the transition relation is sparse and Algorithm 1
converges in far fewer then n rounds – the most extreme case
in Table I has 23 rounds. The worst-case time complexity of
Divine is better, O(n2|φ|) – Divine replaces a factor of the
system model size with the number of states for the checking
Büchi automaton. However, our experiments show that the
actual time and memory requirements for Divine’s algorithm
are fairly close to what one would expect from the worst-case
bounds, while our approach, in practice, scales much more
efficiently. We see this gap between worst-case and actual
performance as a promising area for further investigation.

Using a sequential algorithm for accepting cycle detection
such as Tarjan’s [18], SCCs may be found in O(|V | + |E|)
time. However, such DFS-based algorithms are unsuited to
parallelization unless P = NC [19]. Manna and Pnueli
presented sequential algorithm for model checking response
properties of fair transitions systems [5], but this is not easily
parallelizable and so scalability is limited. Recently, Holzmann
implemented some interesting liveness checking algorithms in
a multicore version of SPIN [20]; however this approach will
only find counterexamples of bounded length. Other work
related to ours includes that of the authors of the LTSMin

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 21

model checking tool, most notably their algorithms for parallel
SCC decomposition on multicore machines [21], [22].

VIII. CONCLUSIONS AND FUTURE WORK

We have extended the PREACH explicit-state, distributed
model-checking tool to support verification of response prop-
erties under both strong and weak fairness of actions. Our
approach uses multiple rounds of reachability computation to
implement a variation of the OWCTY algorithm. For a model
with n states, m fairness constraints, OWCTY could expand
states O(nm) times on average. This would be prohibitively
expensive. Our implementation shows that for practical ex-
amples, the number of rounds is small – typically less than
30, with a maximum of about 44. Thus, OWCTY appears to
provide a practical approach to checking response properties
for real-world problems. For these examples, liveness checking
is slower than safety checking, but not prohibitively so.

Implementing our algorithm on top of the PREACH dis-
tributed model checker allows it to exploit the aggregate
memory of large compute clusters. This enabled verification
of response properties for a sliding-window protocol with over
450 million states in about 5 1

2 hours.
We compared our approach with a tool that uses the standard

product-automaton formulation, with one automaton for the
system model, and the other for the LTL liveness property. As
predicted by the worst-case analysis, we observed that the size
of the property automaton grew exponentially with the number
of fairness constraints. The product-automaton approach was
significantly faster than PREACH for the problems that it could
complete. However, it ran out of memory for all but the
smallest examples.

This approach can be generalized in a number of directions.
One is to handle other simple liveness properties such as
reactivity, expressed in LTL as �♦p ∨ ♦�q, where p and q
are past formulas. We hope to combine these model checking
methods with the decompositional inference rules of Manna
and Pnueli [4], [5]. Such decompositions establish that a
response property is implied by a handful of safety properties
and “smaller” response properties, i.e. depending on a smaller
fraction of the state space. Adapting our algorithm to verify
multiple such response properties in the same model checking
run would leverage human insight to increase performance.

ACKNOWLEDGMENTS

The authors extend their gratitude to Jiřı́ Barnat for his help
in understanding and running Divine. They also appreciate
assistance from colleagues Jesse Bingham and Jim Grundy at
Intel for providing examples of architectural models during
the first author’s internship, and Flemming Andersen for his
vision and support for developing and demonstrating scalable
verification methods and tools.

REFERENCES

[1] M. Y. Vardi and P. Wolper, “An automata-theoretic approach to automatic
program verification,” in Proceedings of the 1st Annual Symposium on
Logic in Computer Science (LICS’86). IEEE Comp. Soc. Press, Jun.
1986, pp. 332–344.

[2] R. Gerth, D. Peled, M. Y. Vardi, R. Gerth, D. D. Eindhoven, D. Peled,
M. Y. Vardi, and P. Wolper, “Simple on-the-fly automatic verification
of linear temporal logic,” in In Protocol Specification Testing and
Verification. Chapman & Hall, 1995, pp. 3–18.

[3] Y. Kesten, A. Pnueli, L.-O. Raviv, and E. Shahar, “Model checking
with strong fairness,” Form. Methods Syst. Des., vol. 28, pp. 57–84,
January 2006. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1116046.1116050

[4] Z. Manna and A. Pnueli, “Completing the temporal picture,” Theor.
Comput. Sci., vol. 83, pp. 97–130, June 1991. [Online]. Available:
http://portal.acm.org/citation.cfm?id=111775.111780

[5] ——, “Temporal verification of reactive systems: Progress (draft),” http:
//theory.stanford.edu/∼zm/tvors3.html, 1996.

[6] J. Barnat, J. Havlı́ček, and P. Ročkai, “Distributed LTL Model Checking
with Hash Compaction,” Electr. Notes Theor. Comput. Sci., vol. 296,
pp. 79–93, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.entcs.
2013.07.006

[7] B. Bingham, “Preach-response,” https://bitbucket.org/binghamb/
preach-response, 2013.

[8] B. Bingham, J. Bingham, F. M. de Paula, J. Erickson, G. Singh,
and M. Reitblatt, “Industrial strength distributed explicit state model
checking,” in Parallel and Distributed Model Checking, 2010.

[9] J. Bingham, J. Erickson, B. Bingham, and F. M. de Paula, “Open-source
PREACH,” http://bitbucket.org/jderick/preach, 2013.

[10] U. Stern and D. L. Dill, “Parallelizing the murphi verifier,” Formal
Methods in System Design, vol. 18, no. 2, pp. 117–129, 2001.

[11] ——, “Improved probabilistic verification by hash compaction,” in
Correct Hardware Design and Verification Methods, IFIP WG 10.5
Advanced Research Working Conference, CHARME ’95, 1995, pp. 206–
224.

[12] P. Wolper and D. Leroy, “Reliable hashing without collision detection,”
in IN COMPUTER AIDED VERIFICATION. 5TH INTERNATIONAL
CONFERENCE. Springer-Verlag, 1993, pp. 59–70.

[13] P. C. Dillinger and P. Manolios, “Bloom filters in probabilistic verifica-
tion,” in Formal Methods in Computer-Aided Design. Springer, 2004,
pp. 367–381.

[14] Y. Kesten, A. Pnueli, and L. on Raviv, “Algorithmic verification of linear
temporal logic specifications,” in Proc. 25th Int. Colloq. Aut. Lang.
Prog., volume 1443 of Lect. Notes in Comp. Sci. Springer-Verlag,
1998, pp. 1–16.

[15] I. Černá and R. Pelánek, “Distributed explicit fair cycle detection,” in
Proc. SPIN workshop, ser. LNCS, vol. 2648. Springer, 2003, pp. 49–74.

[16] X. Chen, Y. Yang, M. Delisi, G. Gopalakrishnan, and C.-T. Chou,
“Hierarchical cache coherence protocol verification one level at a time
through assume guarantee,” in High Level Design Validation and Test
Workshop, 2007. HLVDT 2007. IEEE International, 2007, pp. 107–114.

[17] J. Barnat, L. Brim, V. Havel, J. Havlı́ček, J. Kriho, M. Lenčo, P. Ročkai,
V. Štill, and J. Weiser, “DiVinE 3.0 – An Explicit-State Model Checker
for Multithreaded C & C++ Programs,” in Computer Aided Verification
(CAV 2013), ser. LNCS, vol. 8044. Springer, 2013, pp. 863–868.

[18] R. E. Tarjan, “Depth-first search and linear graph algorithms,” Siam
Journal on Computing, vol. 1, pp. 146–160, 1972.

[19] J. Barnat, L. Brim, and P. Ročkai, “A Time-Optimal On-the-Fly Parallel
Algorithm for Model Checking of Weak LTL Properties,” in Formal
Methods and Software Engineering (ICFEM 2009), ser. LNCS, vol.
5885. Springer, 2009, pp. 407–425.

[20] G. J. Holzmann, “Parallelizing the spin model checker,” in Proceedings
of the 19th international conference on Model Checking Software, ser.
SPIN’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 155–171.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-31759-0 12

[21] A. W. Laarman, R. Langerak, J. C. van de Pol, M. Weber, and
A. Wijs, “Multi-core nested depth-first search,” in Proceedings of the
9th International Symposium on Automated Technology for Verification
and Analysis, ATVA 2011, Tapei, Taiwan, ser. Lecture Notes in Computer
Science, vol. 6996. London: Springer Verlag, July 2011, pp. 321–335.

[22] S. Evangelista, A. W. Laarman, L. Petrucci, and J. C. van de Pol,
“Improved multi-core nested depth-first search,” in Proceedings of the
10th International Symposium on Automated Technology for Verification
and Analysis, ATVA 2012, Thiruvananthapuram (Trivandrum), Kerala,
ser. Lecture Notes in Computer Science, vol. 7561. London: Springer
Verlag, October 2012, pp. 269–283.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 22

Towards Pareto-Optimal Parameter Synthesis for
Monotonic Cost Functions

B. Bittner, M. Bozzano, A. Cimatti, M. Gario, A. Griggio
Fondazione Bruno Kessler, Trento, Italy

Email: surname@fbk.eu

Abstract—Designers are often required to explore alternative
solutions, trading off along different dimensions (e.g., power
consumption, weight, cost, reliability, response time). Such ex-
ploration can be encoded as a problem of parameter synthesis,
i.e., finding a parameter valuation (representing a design solution)
such that the corresponding system satisfies a desired property.
In this paper, we tackle the problem of parameter synthesis
with multi-dimensional cost functions by finding solutions that
are in the Pareto front: in the space of best trade-offs possible.
We propose several algorithms, based on IC3, that interleave in
various ways the search for parameter valuations that satisfy the
property, and the optimization with respect to costs. The most
effective one relies on the reuse of inductive invariants and on the
extraction of unsatisfiable cores to accelerate convergence. Our
experimental evaluation shows the feasibility of the approach on
practical benchmarks from diagnosability synthesis and product-
line engineering, and demonstrates the importance of a tight
integration between model checking and cost optimization.

I. INTRODUCTION

Many application domains can be described in terms of
parameterized systems, where parameters are variables whose
value is invariant over time, but is only partially constrained.
Choosing an appropriate value of the parameters is a widely
spread engineering problem, a form of design space explo-
ration where the parameters can represent different design or
deployment decisions. Examples of domains that require the
analysis of various solutions include function allocation [1],
[2], automated configuration of communication media (e.g.,
time-triggered ethernet protocols [3], flexray [4], [5]), prod-
uct lines [6], dynamic memory allocation [7], schedulability
analysis [8], and sensor placement [9], [10]. In fact, finding
an appropriate valuation is rarely sufficient. Often designers
are interested in finding the most appropriate valuation with
respect to weight, latency, memory footprint, flexibility, relia-
bility. Even more interestingly, there are cases where several
of the above dimensions must be taken into account at the
same time, and it may be necessary to trade off according to
multiple cost functions.

In this paper we consider the problem of parameter syn-
thesis when multiple cost functions cannot be easily combined
into one. For example, it is possible that a configuration that is
best in terms of reliability (e.g., due to redundancy) may not
be optimal in terms of weight, cost, or response times. The
solution is to build the so-called Pareto front [11], that is the
set of parameter valuations that cannot be improved along one

dimension without increasing the cost along the others1.

We present several algorithms for the construction of the
Pareto front on the space of parameter valuations that satisfy
a parameterized model checking problem. We remark that we
focus on universal parameter valuations, that guarantee the
satisfaction of a property for all associated execution traces:
this means that it is not sufficient to analyze a single trace (e.g.,
constructed by a bounded model checker) to have a guarantee
that the parameter valuation is valid.

We tackle the problem under the assumption of mono-
tonicity, that naturally occurs in several domains of prac-
tical interest, such as sensor placement [10], product lines
engineering [6] and fault-tree analysis [12]. In particular, we
require that (i) the space of parameters is upward-closed with
respect to property satisfaction, and (ii) the cost functions
are monotonic. We propose several algorithms of increasing
strength. The first idea is to proceed by valuations-first, i.e. to
identify the set of all valuations that satisfy the property, and
then, within this set, represented as a formula in the parameter
variables, to identify the ones on the Pareto front. The upfront
computation of the set of valid parameter valuations, corre-
sponding to the first phase, can be tackled in various ways. One
way is to carry out a symbolic reachability in the parameterized
transition system, e.g., by means of a BDD-based model
checker [13]. The scalability of BDD-based techniques is
however rather limited. An alternative approach is to solve the
existential parameter valuation problem for the negation of the
property and then complement. This can be easily encoded on
top of a SAT-based engine, where the parameters are free. Once
the set of valuations is found, we can independently optimize
the complement set [14]. Unfortunately, this approach does not
allow us to exploit the cost function for pruning.

The second approach, referred to as one-cost slicing,
prioritizes the search according to one cost function. The
first step is to identify a target value, and to collect all the
valid parameter valuations. Then, the valuation with the best
value along the other cost functions is selected and further
optimized, so that one point in the Pareto front is found.
The process is iterated until the limit target value is reached.
The monotonicity assumption guarantees that the search can
be suitably initialized. Compared to the previous one, this

1More formally, the Pareto front of a set of parameter valuations is the
subset composed by those valuations associated with cost vectors that are not
strictly dominated by any other solution. One valuation γ strictly dominates
(or “is preferred to”) a valuation γ′ if each value of γ is not strictly greater
than the corresponding value of γ′, and at least one value is strictly less. That
is, γi ≤ γ′

i for each i, and γi < γ′
i for some i. This is written as γ ≺ γ′

to mean that γ strictly dominates γ′. Then the Pareto frontier is the set of
points from Γ that are not strictly dominated by any other point in Γ.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 23

approach needs not wait until all the valid parameter valuations
are found; however, it still relies on the computation of the
valuations for the selected slice.

The third approach, referred to as costs-first, is conceptu-
ally rather simple. It is based on a sampling of the space of
cost values, and for each of them, on solving the associated
(non-parameterized) ground model checking problem. This
approach, apparently quite naı̈ve, turns out to be extremely
efficient once appropriately cast in the setting of IC3 [15]. In-
tuitively, rather than solving the ground problem, we solve the
parameterized problem under assumptions. When IC3 success-
fully terminates, as a byproduct it produces a parameterized
inductive invariant, possibly containing the assumptions, that
is sufficiently strong to prove the property. From the validity
proof, we extract an unsatisfiable core that allows us to reduce
the candidate set of parameters. This step has a substantial
effect in speeding up the search, by accelerating it towards
(potentially) less expensive parameter configurations. Another
advantage is in the fact that the approach works directly in the
space of good parameters, and is thus providing an “any-time”
algorithm, that can return a subset of the Pareto front if run
only within a given resource bound.

We experimentally evaluated the approach, working on
benchmarks from various sources [10], [16]. The results show
a significant speed up with respect to methods based on
enumeration of violations, both in terms of one cost function,
and in the case of multiple cost functions. Incidentally, we
also report substantial scalability improvements in significant
practical cases, compared to a BDD-based approach previously
used for single-cost optimization [10].

Structure of the Paper: This paper is structured as
follows. In Section II we review some related work. In
Section III we define the spectrum of problems. In Section IV
we define the various solutions, and in Section V we discuss
the impact of IC3 specific techniques. In Section VI we
present two motivating domains. In Section VII we evaluate
experimentally the three approaches. In Section VIII we draw
some conclusions, and outline some directions for future work.

II. RELATED WORK

There are many works dealing with parameter synthesis
and parameter optimization. The literature can be classified
along various dimensions: discrete parameters versus contin-
uous parameters; combinational (e.g., SMT) problems versus
sequential (e.g., reachability) problems; number and quality
of parameter valuations found (one vs all valuations vs the
optimal ones).

a) MaxBMC: The work closest to ours is [17], where
the Pareto front is synthesized in the case of circuit initializa-
tion. An initialization sequence is intended to take the circuit,
starting from any configuration that it could assume at power-
up, to a configuration where all flops are initialized. The work
in [17] analyzes the trade-off between two dimensions, i.e., the
length of the initialization sequence, and the number of flops
initialized after the execution.

There is a key difference with our work: in [17] it is
sufficient to find a suitable trace to have a valid parameter
valuation (i.e., that satisfies the property), even though it

may not be optimal with respect to costs. In this sense,
the parameters are existential with respect to the traces of
the transition system being analyzed. Thus, the framework
of Bounded Model Checking can be directly used to find
candidate valuations. In our work, however, the parameters
are universal with respect to the traces: in order to prove
the validity of a candidate parameters valuation, a full model
checking problem needs to be solved. As a consequence, it
is not possible to leverage the “trace finding” mechanism of
BMC to generate valid candidate valuations. Other differences
are in the fact that in [17] the problem does not fall within the
hypothesis of monotonicity, and that our algorithms rely on an
extension of with IC3, whereas [17] is based on a complete
version of Bounded Model Checking.

b) Combinational Pareto front: Other works on the
construction of the Pareto front in a formal setting are [18], [7].
The key difference between these works and the one presented
here is in the fact that the problem is combinational (e.g., sat-
isfiability) in nature, while we deal with a sequential problem,
i.e., invariant checking for a parameterized transition system.
The work in [18] tackles the computation of the Pareto front
with respect to cost functions imposed on a combinatorial SMT
problem. The work in [7] tackles the problem of Pareto-optimal
solutions for the problem of dynamic memory allocation.

c) Real-values parameter synthesis: The work in [8]
deals with the synthesis of parameters over continuous ranges,
to identify the space of valuations that result in a schedulable
set of tasks. The method is based on complement, i.e., the set
of bad valuations is computed first, and then complemented.
The work in [14] relies on IC3 to solve the same problem
more generally and more efficiently. Other works [19], [20],
[21], [22], [23] synthesize parameters for real-time and hybrid
systems. The key difference with respect to the problem
tackled here is that no cost functions are considered, i.e., the
space of all valuations is considered.

d) Synthesis of Fault trees: The work in [13] proposes
several approaches to automatically generate Fault Trees for
parameterized transition systems. This can be seen as a se-
quential problem of discrete parameter synthesis under the
hypothesis of monotonicity. The key difference is that in [13]
costs are not taken into account - all parameter valuations,
each representing fault combinations in which a property is
falsified, are found. We also remark that the parameters are
existential, i.e., a valuation is deemed valid by the existence
of a trace.

e) Synthesis of Observability Requirements: Identifying
sufficient sets of sensor that guarantee the diagnosability of
properties of interest is tackled in [9] and in [10]. Optimiza-
tions are found with respect to a single cost function, so there
is no notion of Pareto front. The work in [9] proposes an
explicit-state exploration of the space of costs, to synthesize
a minimal configuration that is a global minimum. Domain
specific techniques for the analysis of the sensor placement
problem are also discussed.

III. PROBLEM DESCRIPTION

We consider transition systems of the form S = (X, I, T),
where X is the set of state variables, I(X) is the initial
condition, and T (X,X ′) is the transition relation.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 24

We generalize transition systems to parametric transition
system S = (U,X, I, T), where U is the set of parameters, X
is the set of state variables, I(U,X) is the initial condition, and
T (U,X,X ′) is the transition relation. Intuitively, a parameter
can be seen as a variable that does not change over time.

We assume that the parameters are Boolean, and valuations
are in Γ = B|U |. The order relation < over B induces a partial
order � over the parameter valuations Γ.

A valuation to the parameters, γ, provides us with a
transition system Sγ = (X, I(γ,X), T (γ,X,X ′)), in which
each parameter is replaced with the value assigned in γ.

We assume the usual symbolic representation: a state is
represented as an assignment to the X variables, while a
parameter valuation γ is an assignment to the U variables.
Sets of states are expressed as formulae in X; sets of pa-
rameter valuations are expressed as formulae in U , with each
satisfying assignment corresponding to a parameter valuation.
Boolean connectives have the usual set theoretical connotation
(e.g., complementation is represented by logical negation, and
intersection by conjunctions), while projection is represented
by existential quantification.

We write REACHABLES(U,X) for the set of reachable
states in S, where a state is a valuation to the variables X
and the parameters U . We notice that REACHABLES(X) ∧
γ = REACHABLESγ (X), i.e., the reachable state space of a
parameterized system S can be seen as an association between
an parameter valuation γ and the set of reachable states in the
corresponding (non-parameterized) transition system Sγ .

The techniques described in this paper apply both to
finite-state and to infinite-state systems. In the case of finite-
state systems, termination is guaranteed; in the infinite case,
convergence depends on the termination of the calls to the
underlying model checking engine.

Let a property ϕ(X) (ϕ for short) be a formula describing
a set of states. A transition system S satisfies ϕ (S |= ϕ) iff
REACHABLES(X) ⊆ ϕ(X). The set of parameter valuations
valid for ϕ for a parametric transition system S is defined as
VALIDPARSS,ϕ(U) = {γ ∈ Γ | Sγ |= ϕ}. A valid parameter
valuation γ guarantees that the property ϕ holds in Sγ .

We consider cost functions COST : Γ → N as
integer-valued functions over parameter valuations. A multi-
dimensional cost function is defined as a vector of cost
functions; for brevity we write COST : Γ → Nm. We call
Nm the space of costs. Notice that a cost function can be
symbolically represented as a term. Given two cost vectors
(v1, · · · , vm) and (w1, · · · , wm), we define the partial order
relation � as (v1, · · · , vm) � (w1, · · · , wm) iff ∀i. vi ≤ wi.

Given S, ϕ and COST, we say that an assignment γ ∈ Γ
is Pareto-Optimal iff:

1) Sγ |= ϕ, and
2) if there is γ′ s.t. Sγ′ |= ϕ and COST(γ′) � COST(γ)

then γ = γ′.

Pareto-optimality boils down to optimality with respect to a
single cost function when m = 1. The cost function can be
represented symbolically as a term COST(U); a set of assign-
ments is then simply identified by a formula COST(U) ./ v
where v is a natural number and ./ is a relation operator.

Fig. 1. Monotonicity with respect to Property and Cost function

In this paper, we make two assumptions of monotonicity.
The first one is monotonicity of the “property holds” relation,
and the second is monotonicity of the cost function.

We say that S |= ϕ is monotonic w.r.t. Γ iff

∀γ, If Sγ 6|= ϕ then ∀γ′. γ′ � γ ⇒ Sγ′ 6|= ϕ

Intuitively, if the property does not hold under a given parame-
ter valuation, then it does not hold for any of its predecessors.
Conversely, if the property holds under a given valuation, then
it also holds for all the successors.

We say that COST is monotonic w.r.t. Γ iff

∀γ, γ′. If γ � γ′ then COST(γ) � COST(γ′)

The Pareto-Frontier PF (COST, ϕ) ⊆ Γ is the set of
parameter assignments that are valid for ϕ and that are Pareto-
optimal with respect to COST.

The space explored in this paper is depicted in Figure 1.
Above the line are the valuations that are valid for ϕ; below
the line are the ones for which the property does not hold, i.e.,
the ones which are associated to at least one counterexample
trace. The vertical arrow on the left denotes a cost function
that is upwards monotonic along each path.

IV. SOLUTION DESCRIPTION

In the following we present several algorithms for the
computation of the Pareto frontier, for a given S, ϕ, and
COST. We assume that both the property satisfaction relation
(S |= ϕ) and COST are monotonic with respect to Γ. For the
sake of presentation, we assume also that there is at least one
parameter valuation γ s.t. Sγ |= ϕ.

The algorithms that we present define a spectrum based
on how much of the set of VALIDPARS we compute up-
front. In Section IV-A, we compute the whole set of good
valuations up-front, and then proceed to the computation of
the Pareto-Frontier. In Section IV-B, we “slice” the space
VALIDPARS by one dimension and compute one of the slices
at the time; once a slice has been computed, we minimize
w.r.t. to the other costs. By doing so, we are able to skip
slices (using the monotonicity assumption), so that we end up
computing a subset of VALIDPARS. Finally, in Section IV-C
we do not compute VALIDPARS directly, but navigate through

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 25

the valuations lattice driven by the cost functions and test on-
the-fly membership of points to VALIDPARS.

For the sake of presentation, we describe most algorithms
assuming that we have a two-dimensional cost function.

A. The valuations-first approach

function VALUATIONSFIRST(S,COST, ϕ)
V P := VALIDPARS(S, ϕ)
return PARETOFRONT(COST, V P)

end function

Fig. 2. Valuations First pseudo-code

function VALIDPARS(S, ϕ)
Bad := ⊥
S = (U,X, I, T)
while S 6|= ϕ do

γ′ := project counter-example on U
Bad := Bad ∨ γ′

I := I ∧ ¬Bad
end while
return ¬Bad

end function

Fig. 3. VALIDPARS computation

The first algorithm we present is an eager, two-stage
approach. Figure 2 provides a high-level description of the
algorithm.

The first stage constructs the set of parameter valuations
that are valid for the ϕ property. This gives a closed-form
representation of the solution space, regardless of cost con-
siderations, represented as a formula VALIDPARS. The second
phase carries out an analysis of the solution space taking the
costs into account, selecting the assignments that are Pareto-
optimal, thus building the Pareto front.

Each of the phases can be in turn refined. The computation
of VALIDPARS can be carried out directly, by performing a
reachability analysis on S, thus obtaining REACHABLE(U,X),
and then considering only the valuations for which the states
always satisfy the property. This idea has been explored
with a BDD-based implementation in [13], where it was
applied in the computation of Fault-Trees. In many cases,
however, the computation of the reachable states can be over-
killing. In Figure 3 an alternative approach is presented, based
on the algorithm proposed in [14], that constructs the set
VALIDPARS = {γi | S |= γi → ϕ} of valid parameter
valuations. The idea is to rely on a model-checking routine
to compute the set InvalidPars = {γi | S 6|= γi → ϕ}, i.e., a
representation of the “lower part” of the lattice in Figure 1. At
a very high level, this is done by enumerating counterexample
traces to the negation of ϕ. Each trace is associated with an
invalid parameter valuation, which is then accumulated in the
result, and removed from the initial states, thus preventing the
model checker from re-discovering it. Once InvalidPars is
computed, the space of valid parameter valuations is simply
obtained by complement. This algorithm can thus rely on
a model-checker as a black-box, therefore leveraging recent
advancements in SAT-based model-checking techniques (e.g.,
IC3).

The second phase carries out the optimization of the
combinatorial space defined by VALIDPARS with respect to
COST. This can be done, for example, by enumerating all the
elements in VALIDPARS and comparing the associated costs,
or by considering the symbolical characterization of the Pareto
front:

PARETOFRONT(U) = V P (U)∧@U ′.((U ′ ≺COST U)∧V P (U ′))

A simple way of computing PARETOFRONT(U) is given
by the possibility of encoding the cost functions into SAT
(e.g., using SMT over bit-vectors), and applying an iterative
approach that tightens the constraints on the cost along each
dimension.

There are two big disadvantages in the valuations-first
algorithm. First, in order to compute VALIDPARS, we need
to enumerate all the elements of InvalidPars. This means
that the first phase may be in some cases inherently expensive.
Second, the first phase proceeds by under-approximating the
complement of the valid space, regardless of the cost infor-
mation. This means that virtually no information on what is
a valid (let alone optimal) solution is found until convergence
in the accumulation has been reached, i.e., until the whole
InvalidPars set has been computed.

B. The one-cost slicing approach

function SLICING(S,COST, ϕ)
PF := ∅
γ = >;
c1 := COST1(γ)
S′ := FixCost(S,COST1 = c1)
V PCOST1 := VALIDPARS(S′, ϕ)
while V PCOST1 6= ∅ do

(γ, c2) = MINIMIZE (COST2, V PCOST1)
(γ, c1) := REDUCE COST1 (S, γ, ϕ, c2)
PF.add(γ, c1, c2)
c1 := c1 − 1
S′ := FIXCOST(S,COST1 = c1)
V PCOST1 := VALIDPARS(S′, ϕ)

end while
return PF

end function

function FIXCOST(S, CostExpr))
S = (U,X, I, T)
S′ := (U,X, I ∧ CostExpr, T) return S′

end function

Fig. 4. Slicing algorithm

The second algorithm (Figure 4) we propose interleaves
the analysis of the cost information with checks on the validity
of the parameters. This is done by slicing the space of valid
parameters along the different dimensions (i.e., cost functions).

We first initialize c1 to the highest possible value, and the
Pareto frontier to the empty set. We iterate as follows. First, we
compute all the candidate solutions on the parametric system
S′ in which we fixed the cost COST1 to the value c1. We
then search in the set of candidates (V PCOST1) for the best
valuation and cost for COST2. Once an optimal cost c2 has
been found, we fix it and try to find a smaller valuation w.r.t.
COST1, and add the solution to the Pareto front. This is done

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 26

by calling a function REDUCECOST1 which, given a solution
γ of cost (c1, c2), returns another solution γ′ of cost (c′1, c2)
with c′1 ≤ c1. For now, REDUCE is simply a function that tries
to improve a candidate solution γ. We shall describe its actual
implementation in the next Section.

In order to find the other points of the Pareto frontier, we
decrease c1 and test whether any solution (independently of
COST2) exists. If it does, we repeat the process, otherwise we
terminate.

Note that in the function MINIMIZE we operate on the set
of the solutions, while in REDUCE, we generate a candidate
γ′ � γ and test whether it is still a solution (i.e. Sγ′ |= ϕ).
Due to the monotonicity assumption, REDUCE cannot skip
solutions. However, REDUCE can drastically accelerate the
search by avoiding the enumeration of all costs in c1.

In the pseudo-code, the addition of solutions to the Pareto
front is slightly simplified. In practice, we cannot add a
solution γ1 immediately in the Pareto front, but we need to
wait for the next solution γ2 to be added (PF.add). If the
costs of γ1 and γ2 are incomparable, then γ1 is Pareto-optimal
and gets added to the frontier. If γ2 is smaller than γ1, then
γ1 is not optimal and is discarded. This pair-wise operation
guarantees that only Pareto optimal solutions are considered.

This approach only computes slices of VALIDPARS when
needed. Although in the worst-case we can end-up computing
it all by slices, when calling the REDUCE function, it is gen-
erally possible to accelerate the search and skip intermediate
slices.

C. The costs-first approach

function COSTSFIRST(S,COST, ϕ)
PF := ∅
γ := >;
c1 = COST1(γ); c2 = COST2(γ)
repeat

c2 = c2
for γi ∈ MAXSMALLERCANDIDATECOST2(c1, c2) do

if Sγi |= ϕ then
(γ, c2) := REDUCE COST2 (S, γ, ϕ, c1)

end if
end for
(γ, c1) := REDUCE COST1 (S, γ, ϕ, c2)
PF.add(γ, c1, c2)
c1 := c1 − 1

until No solution exists for FIXCOST(S,COST1 = c1)
return PF

end function

Fig. 5. CostsFirst pseudo-code

One of the key insights of the slicing algorithm is that
big parts of VALIDPARS might not be necessary in order
to compute the Pareto front. In the costs-first approach we
take this idea to the extreme: we do no compute VALIDPARS
anymore. Instead, we explore the lattice of valuations induced
by the cost functions. Every time we find a promising valuation
γ, we test whether it is actually a solution (i.e., Sγ |= ϕ). Due
to the monotonicity assumption, whenever we find a valuation
that is not a solution, we can prune all of its predecessors in
the lattice (since they cannot be solutions either).

An overview of the algorithm is provided in Figure 5. We
start by getting an upper-bound on both costs by considering
the cost of the top valuation. In the outer-loop we decrease
the value of COST1, similarly to the slicing approach. Within
the inner-loop, however, we proceed by enumerating the so-
lutions that have smaller value w.r.t. COST2. In particular,
MAXSMALLERCANDIDATE returns the maximal solution(s)
with the same cost c1 but with smaller c2.

The process terminates whenever no solution can be found
for a given value of COST1. Note how the structure of this
algorithm is similar to the one of the slicing approach. The
main difference is that we never need to compute VALIDPARS.

This algorithm allows us to find subsets of the Pareto front,
since it can be interrupted at any point and is guaranteed to
provide an under-approximation of the Pareto-Frontier. This
is in contrast with the approaches described in Section II for
parameter synthesis, that require termination of the procedure
in order to provide the solution space of the parameters.

V. IC3-BASED IMPLEMENTATION

We implemented the approaches described in the previous
section using IC3-based techniques.

In particular, there are two key ideas that we can leverage in
order to have an efficient algorithm using IC3. First, we notice
that Sγ |= ϕ holds iff S |= γ → ϕ. This observation makes it
possible to reason always on the same system, and moves the
choice of the valuations within the property. This leads us to
the second fundamental observation. If S |= γ → ϕ, we can
extract from the IC3 model-checker the inductive invariant ψ.
By definition of inductive invariant we know that ψ |= γ → ϕ;
moreover, it might be the case that we can reuse the same
invariant to check whether another valuation γ′ is a solution:
i.e., ψ |= γ′ → ϕ. We will use this idea when trying to reduce
the valuation, since this makes it possible to reason locally
on a (relatively small) formula, and does not require unrolling
or computing reachable states. The efficiency of the procedure
will then largely depend on how well the reduction step works.

Figure 6 presents the adaptation of the costs-first algorithm
when using the inductive invariant to perform the REDUCE
step. The same idea for the REDUCE can be applied in the
slicing algorithm.

We navigate the lattice by picking the maximal candidate(s)
of smaller cost w.r.t. COST2 (MAXSMALLERCANDIDATE).
This fact guarantees that the algorithm will terminate, since
we are always picking a solution of smaller dimension. We
then check that the property still holds for the new valuation
γi, by using IC3. If this is the case, we are provided with an
inductive invariant ψ, s.t., ψ |= γi → ϕ.

The operation of picking a cost-predecessor could be, in
principle, delegated to a pseudo-boolean constraint solver, or to
other reasoning engines that are able to deal with costs natively.
For our simple implementation, we use an SMT solver with
the theory of bit-vectors.

When considering the parameters as a set of elements, we
can try to minimize the set by implementing the REDUCE pro-
cedure using unsat-cores. Namely, we check the unsatisfiability
of ψ∧¬ϕ under the assumption of γi and use standard features

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 27

function COSTSFIRSTIC3(S,COST, ϕ)
PF := ∅
γ := >;
c1 = COST1(γ); c2 = COST2(γ)
repeat

c2 := c2
for γi ∈ MAXSMALLERCANDIDATECOST2(c1, c2) do

(res, ψ) := IC3(S, γi → ϕ)
if res == Safe then

ψ is an inductive invariant s.t. ψ |= γi → ϕ
(γi, c1, c2) := REDUCECOST2(ψ, γi, ϕ)

end if
end for
(γi, c1, c2) := REDUCECOST1(ψ, γi, ϕ)
PF.add(γ, c1, c2)
c1 := c1 − 1

until No solution exists for FixCost(S,COST1 = c1)
return PF

end function

Fig. 6. IC3-based CostsFirst pseudo-code

from modern SAT solvers to minimize the unsat-core that, in
turn, translates in picking a subset of the parameters that makes
the formula unsatisfiable. By doing so, we are able to “jump”
and quickly reduce the valuation γ. For integer parameters,
instead, we use a REDUCE procedure that performs a linear or
binary search, using the inductive invariant.

In general, we could use the identity function as REDUCE,
and this would still guarantee the correctness and termination
of the algorithm. However, this would end-up requiring an
explicit state search of the lattice. Having a smart REDUCE
procedure makes it possible to jump and terminate faster.

Since the inductive invariant does not depend on the costs,
it is possible to reuse the invariant from previous calls in an
incremental way. Intuitively, this provides us with stronger
invariants that are more likely to allow us to reduce the
parameters aggressively.

VI. MOTIVATING APPLICATION DOMAINS

We describe now two motivating application domains: sen-
sor placement for diagnosability and product line engineering.

Sensor Placement: The problem is of practical rele-
vance, and substantial interest has been devoted to it in the
setting of autonomous systems. Typical architectures integrate
components for Fault Detection and Identification (FDI) that
are used to detect, during operation, whether some (and which)
faults may have occurred [24], [10]. The information produced
by FDI is then used for Fault Isolation and Recovery, i.e., to
respond to the effects of faults, e.g., by reconfiguration.

Intuitively, the problem is to identify a suitable set of
sensors that will allow the FDI subsystem to have enough
information to carry out, within a given delay, its diagnosis
task. In this setting, a parameter represents whether a sensor
is present in the design, and a parameter valuation identifies
a subset of all available sensors. There is a trade off between
the observation power of the available sensors, and the delay
required to diagnose a certain condition of interest. Intuitively,
a reduction in the set of sensors may lead to an increase in the
delay.

The property ϕ that we want to show is diagnosability with
respect to a given delay d, i.e., the ability to detect an event
of interest within at most d steps. In the case of a given set of
sensors, this is reduced to the model checking problem on the
so-called twin plant, a construction based on the composition
of two replicas of the plant under observation [10]. The twin
plant encodes the existence of a critical pair, i.e., two indis-
tinguishable traces satisfying a pair of conditions of interest
(e.g., the occurrence of two faults of different type that must
be identified).

The problem is generalized by considering a parameter set
U , defined as {s1, . . . , sk, d}, where a valuation to the vector
(s1, . . . , sk) of k sensor parameters identifies a configuration
in the design space. The delay d is an integer valued parameter.
The space of assignments is then Bk × N

The diagnosability property ϕ is defined as the invariant
property:

¬((delayψ ≥ d) ∧ obseq)
where delayψ counts the steps since the occurrence of the
condition of interest ψ. This formula is satisfied in the twin-
plant iff there is no critical pair. In general, we assume that an
upper-bound on the delay for the model is known. In addition
to the theoretical bound that always exists for state transition
systems, in practice there usually is an application specific
time-frame after which the diagnosis is not useful anymore
(e.g., mission life-span, propagation time). Several interesting
COST functions are possible. For the sensor placement problem
we use one based on weights/delay pairs:

COSTweighted(s1, . . . , sk, d) = (
∑
i

wisi, d)

Product Lines: When designing a product, engineers
are often faced with a high degree of variability in terms
of possible features. Such variability is usually captured in
product line models (sometimes referred to as feature mod-
els). For instance, in [16] the authors model variability in a
controller design, and the authors of [6] consider software
product lines. Here we are specifically interested in the analysis
of dynamic systems as opposed to static contexts which are
usually addressed with constraint programming techniques.

The goal of product line engineering is usually to identify
which combinations of features satisfy a certain property. Here
however we specifically address the Pareto-optimal trade-off
problem. In various works there are different assumptions on
the monotonicity of features, that is whether by adding features
the possible behaviors increase monotonically or whether some
behaviors can be overridden. In our work we only assume the
monotonicity of the property of interest in terms of feature
additions.

VII. EXPERIMENTAL EVALUATION

A. Experimental Setup

We have implemented the algorithms described above on
top of the NUXMV model checker [25]. Although our frame-
work can in principle support any number of cost functions,
our current implementation only supports two of them. The
executables and benchmark instances used in the evaluation

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 28

are available at https://es-static.fbk.eu/people/griggio/papers/
fmcad14pareto.tar.bz2.

We evaluate our approach on a series of benchmarks
coming from the domains of sensor placement [10] and product
lines [16]. The sensor placement examples were obtained from
realistic case studies on a simpler problem, i.e. finding a good
set of sensors for a fixed delay. These simpler benchmarks were
challenging and in some case not solvable for our previous
techniques [10]. The properties for the product lines bench-
marks that were derived for our invariant checking framework
are artificial but tailored specifically for these examples. For
both cases we are unfortunately not aware of other publicly
available industrial benchmarks.

ORBITER, ROVERSMALL, and ROVERBIG are models of
an orbiter and of a planetary rover, both developed in the
OMCARE project (see [26], [27]). The models describe the
functional level, with various relevant subsystems including
failure modes. CASSINI models the propulsion system of the
Cassini spacecraft (see [13]). It is composed of two engines
fed by redundant propellant/gas circuit lines, which contain
several valves and pyro-valves. Leakage failures are attached
to all components. ELEVATOR models an elevator controller,
parameterized by the number of floors. The modeled properties
are cabin and door movement, request and reset operations at
each floor, and the controller logic. C432 is a boolean circuit
used as a benchmark in the DX Competition [28], whose
gates can permanently fail (inverted output). The observables
are the inputs and output values for the gates of the circuit.
X34 is a benchmark describing a simplified version of the
main propulsion system of a spacecraft [29]. All models also
contain faults based on which a sensor placement problem is
formulated. PRODUCT LINES are benchmark instances derived
from [16], describing a railway switch controller. The product-
line features correspond to possible communication strategies
used by the controller. We explore a design trade-off along two
dimensions. The first is the upper bound on message sequence
lengths. The second one is a cost associated to dropping a
particular feature, specified by a random cost function. Our
aim is to minimize both the message sequence bound and the
cost of removing features in order to guarantee it.

For each example, we generated multiple benchmarks by
varying both the number of parameters considered and the
(randomly-generated) costs of the individual parameters. Over-
all, our benchmark set consists of 81 instances. The number
of Pareto-optimal solutions varies between 0 and 5.

B. Results

one-cost
Family #Instances valuations-first slicing costs-first
c432 32 11 13 32
cassini 21 6 12 21
elevator 4 4 4 4
orbiter 4 4 4 4
roversmall 4 4 4 4
roverbig 4 4 4 4
x34 4 4 4 4
product lines 8 6 4 8
TOTAL 81 43 49 81

Fig. 7. Number of solved instances by each approach

 10

 20

 30

 40

 50

 60

 70

 80

 1 10 100 1000 10000

#
 o

f
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

Total time

valuations-first
one-cost slicing

costs-first

Fig. 8. Accumulated-time plot showing the number of solved instances (x-
axis) in a given total time (y-axis) for the various algorithms.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35 40

R
u
n
ti

m
e
 (

s)

Parameters

 Val-First: Cassini
 Val-First: c432
 Slicing: Cassini
 Slicing: c432

Cost-First: Cassini
Cost-First: c432

Fig. 9. Runtime for different number of parameters

We executed the experiments on a Linux cluster equipped
with 2.5Ghz Intel Xeon CPUs with 96Gb of RAM. We used
a time limit of 1 hour and a memory limit of 6Gb.

In Figure 7 we present the number of instances solved for
each problem family. For the C432, CASSINI and PRODUCT
LINES benchmarks, we can see how the costs-first approach
finds all the solutions within the timeout, whereas the other
two approaches fail on several instances. Figure 8 shows the
accumulated-time plots for the different algorithms, plotting
the number of solved instances (y-axis) in the given total
amount of time (x-axis) in logarithmic scale.

For the C432 and CASSINI benchmark, we show in Fig-
ure 9 the runtime as a function of the parameters. As expected,
on the same model, the number of parameters has a big impact
on the runtime. Indeed, for the valuations-first and the one-cost
slicing approaches this has an exponential tendency.

Finally, in order to evaluate the impact of the REDUCE
procedure in the costs-first algorithm, we performed an exper-
iment in which we ran costs-first without applying REDUCE.
From the scatter plot of Figure 10, we can see that REDUCE is
crucial for performance: without it, costs-first solves only 48
instances, and the runtimes increase by orders of magnitude.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 29

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

co
st

s-
fi
rs

t
w

it
h
o
u
t

re
d
u
ce

costs-first

Fig. 10. Impact of REDUCE in the costs-first algorithm.

VIII. CONCLUSIONS

In this paper we have proposed a new method for the syn-
thesis of optimal parameter valuations for multi-dimensional
monotonic cost functions, enabling the construction of the
Pareto front with respect to the cost function.

We analyzed three algorithms of increasing efficiency, that
interleave in various ways the search for parameter valuations
that satisfy the property and the optimization with respect to
costs, and we showed how to implement them on top of IC3,
exploiting its features for efficiency.

Our experimental evaluation shows the feasibility of the
approach on benchmarks from important practical domains,
and demonstrates the importance of a tight integration between
model checking and cost optimization.

In the future we will generalize the approach to deal with
real-valued parameters; in particular, we will investigate the
generalization of the notion of monotonicity. From a practical
point of view, it would be important to find an effective way
of automatically testing the monotonicity assumptions. We will
also generalize our implementation to support more than two
cost functions, and devise strategies to handle multiple cost
functions in an effective way. Further interesting directions are
the investigation of specialized techniques for specific patterns
of properties (e.g., response time), thus enabling the approach
to be applied beyond safety properties, and techniques for
relaxing the assumptions of monotonicity currently required.

REFERENCES

[1] P. Manolios, D. Vroon, and G. Subramanian, “Automating component-
based system assembly,” in ISSTA, 2007, pp. 61–72.

[2] C. Hang, P. Manolios, and V. Papavasileiou, “Synthesizing cyber-
physical architectural models with real-time constraints,” in CAV, 2011,
pp. 441–456.

[3] W. Steiner and B. Dutertre, “Layered diagnosis and clock-rate correction
for the ttethernet clock synchronization protocol,” in PRDC, 2011, pp.
244–253.

[4] S. Samii, P. Eles, Z. Peng, and A. Cervin, “Design optimization and
synthesis of flexray parameters for embedded control applications,” in
DELTA, 2011, pp. 66–71.

[5] R. Schneider, D. Goswami, S. Zafar, M. Lukasiewycz, and
S. Chakraborty, “Constraint-driven synthesis and tool-support for
flexray-based automotive control systems,” in CODES+ISSS, 2011, pp.
139–148.

[6] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay, “Symbolic
model checking of software product lines,” in ICSE, 2011, pp. 321–
330.

[7] S. Mamagkakis, D. Atienza, C. Poucet, F. Catthoor, D. Soudris, and
J. Mendias, “Automated exploration of pareto-optimal configurations in
parameterized dynamic memory allocation for embedded systems,” in
DATE, 2006, pp. 874–875.

[8] A. Cimatti, L. Palopoli, and Y. Ramadian, “Symbolic computation
of schedulability regions using parametric timed automata,” in RTSS.
IEEE Computer Society, 2008.

[9] A. Grastien, “Symbolic testing of diagnosability,” in Twentieth Interna-
tional Workshop on Principles of Diagnosis (DX-09), 2009.

[10] B. Bittner, M. Bozzano, A. Cimatti, and X. Olive, “Symbolic Synthesis
of Observability Requirements for Diagnosability,” in AAAI, 2012.

[11] V. Pareto, Manuale di economia politica, ser. Collezione saggi &
documenti. Edizioni Studio Tesi, 1994.

[12] W. Vesely, M. Stamatelatos, J. Dugan, J. Fragola, J. M. III, and J. Rails-
back, “Fault tree handbook with aerospace applications,” Technical
report, NASA, 2002.

[13] M. Bozzano, A. Cimatti, and F. Tapparo, “Symbolic fault tree analysis
for reactive systems,” in ATVA. Springer, 2007, pp. 162–176.

[14] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “Parameter synthesis
with ic3,” in FMCAD. IEEE, 2013, pp. 165–168.

[15] A. Bradley, “Sat-based model checking without unrolling,” in VMCAI,
2011, pp. 70–87.

[16] J. Greenyer, A. Sharifloo, M. Cordy, and P. Heymans, “Efficient
consistency checking of scenario-based product-line specifications,” in
Requirements Engineering Conference (RE), 2012, pp. 161–170.

[17] S. Reimer, M. Sauer, T. Schubert, and B. Becker, “Using maxbmc for
pareto-optimal circuit initialization,” in DATE, 2014, pp. 1–6.

[18] J. Legriel, C. L. Guernic, S. Cotton, and O. Maler, “Approximating the
pareto front of multi-criteria optimization problems,” in TACAS, 2010,
pp. 69–83.

[19] T. A. Henzinger and P.-H. Ho, “Hytech: The cornell hybrid technology
tool,” in Hybrid Systems, 1994, pp. 265–293.

[20] F. Wang, “Symbolic parametric safety analysis of linear hybrid systems
with bdd-like data-structures,” IEEE Trans. Soft. Eng., vol. 31, no. 1,
pp. 38–51, 2005.

[21] G.Frehse, S. Jha, and B. Krogh, “A counterexample-guided approach
to parameter synthesis for linear hybrid automata,” in HSCC, 2008, pp.
187–200.

[22] É. André, L. Fribourg, U. Kühne, and R. Soulat, “IMITATOR 2.5: A
tool for analyzing robustness in scheduling problems,” in FM, 2012,
pp. 33–36.

[23] É. André and U. Kühne, “Parametric analysis of hybrid systems using
HyMITATOR,” in iFM, 2012, pp. 16–19.

[24] M. Bozzano, A. Cimatti, M. Gario, and S. Tonetta, “Formal design of
fault detection and identification components using temporal epistemic
logic,” in TACAS. Springer, 2014, pp. 326–340.

[25] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti,
A. Micheli, S. Mover, M. Roveri, and S. Tonetta, “The NUXMV
symbolic model checker,” in CAV, ser. LNCS. Springer, 2014.

[26] M. Bozzano, A. Cimatti, A. Guiotto, A. Martelli, M. Roveri, A. Tchalt-
sev, and Y. Yushtein, “On-board autonomy via symbolic model-based
reasoning,” in Proceedings of the 10th ESA Workshop on Advanced
Space Technologies for Robotics and Automation, 2008.

[27] M. Bozzano, A. Cimatti, M. Roveri, and A. Tchaltsev, “A compre-
hensive approach to on-board autonomy verification and validation,” in
Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, 2011.

[28] A. Feldman, T. Kurtoglu, S. Narasimhan, S. Poll, D. Garcia, J. de Kleer,
L. Kuhn, and A. van Gemund, “Empirical evaluation of diagnostic al-
gorithm performance using a generic framework,” International Journal
of Prognostics and Health Management, Sep 2010.

[29] A. Cimatti, C. Pecheur, and R. Cavada, “Formal verification of diag-
nosability via symbolic model checking,” in Proceedings of the 18th
International Joint Conference on Artificial Intelligence, 2003.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 30

SAT-Based Methods for Circuit Synthesis
Roderick Bloem1, Uwe Egly2, Patrick Klampfl1, Robert Könighofer1, and Florian Lonsing2

1Institute for Applied Information Processing and Communications, Graz University of Technology, Austria
2Knowledge-Based Systems Group, Institute of Information Systems, Vienna University of Technology, Austria

Abstract—Reactive synthesis supports designers by automat-
ically constructing correct hardware from declarative specifi-
cations. Synthesis algorithms usually compute a strategy, and
then construct a circuit that implements it. In this work, we
study SAT- and QBF-based methods for the second step, i.e.,
computing circuits from strategies. This includes methods based
on QBF-certification, interpolation, and computational learning.
We present optimizations, efficient implementations, and experi-
mental results for synthesis from safety specifications, where we
outperform BDDs both regarding execution time and circuit size.

I. INTRODUCTION

Synthesis is an ambitious design approach: Instead of
checking whether an already constructed system satisfies its
specification, a correct implementation is derived automati-
cally from the specification [3]. Synthesis is also used in rapid
prototyping, automatic repair [9], and program sketching [14].

Existing work often focuses on finding strategies to satisfy
the specification, or only on deciding realizability. However,
computing circuits from strategies is computationally demand-
ing as well. System quality (e.g., circuit size and depth)
imposes additional challenges. Synthesized strategies usually
allow for much implementation freedom, which needs to be
exploited cleverly. Algorithms must also be symbolic (operate
on formulas rather than enumerating states) to achieve scal-
ability. These symbolic algorithms are usually implemented
with BDDs because they offer existential and universal quan-
tification. Recently, SAT-based synthesis algorithms have been
proposed [12], [4] as alternative to BDDs and their scalability
issues. However, these works do not address circuit extraction.

We thus present and compare several SAT- and QBF-
based circuit synthesis algorithms. The basic algorithms are
not new, but we present novel optimizations, combinations,
efficient implementations for safety synthesis problems, and
extensive experiments. This includes methods based on QBF-
certification, computational learning (including the first ap-
plication of incremental QBF solving in synthesis), and in-
terpolation. We achieve the best results by combining ideas
from interpolation [8] with learning [7], thereby outperforming
BDDs both regarding computation time and circuit size.

Related work. It is argued [7] that many circuit synthesis
methods are still outperformed by the simple BDD-based co-
factor approach [3]. The same work [7] also proposes learning-
based techniques, which are implemented with BDDs. This

This work was supported in part by the Austrian Science Fund (FWF)
through the national research network RiSE (S11406-N23, S11409-N23) and
the project QUAINT (I774-N23), as well as by the European Commission
through project STANCE (317753).

yields smaller circuits, but is slower. We show how learning
can be efficiently realized with SAT- and QBF-solvers, and
that this realization can outperform the cofactor approach
both regarding circuit size and computation time. SAT-based
learning is also used in [4]. However, this work only addresses
strategy computation and not circuit synthesis. Jiang et al. [8]
propose interpolation for circuit extraction, and show how
quantifier alternations can be avoided by temporarily treating
outputs as inputs. We combine this idea with learning to
compute interpolants, thereby achieving a speedup of several
orders of magnitude. QBF certification [13] can derive circuits
from a completeness proof of the strategy formula. We show
how this method can be applied efficiently for safety synthesis.

II. PRELIMINARIES

We assume familiarity with propositional logic, SAT- and
QBF-solving (cf. [1]) but repeat the most important concepts.

Basic Notation. A literal is a Boolean variable or its
negation. A clause (cube) is a disjunction (conjunction) of
literals, and a Conjunctive Normal Form (CNF) formula is
a conjunction of clauses. We denote variables vectors with
overlines, corresponding cubes in bold, and propositional
formulas with capital letters. E.g., x is a cube over the variable
vector x = (x1, . . . , xn), and F (x) is a formula over x. If the
variables are irrelevant, we simply write F instead of F (x).

Decision Procedures. A SAT-solver checks if a CNF is
satisfiable. We write (sat,x) := PSAT(F (x)) for a SAT-
solver call, where sat is assigned true iff the CNF F is
satisfiable, and x is a satisfying assignment given as cube
over x. Let x be a cube. We write y := PCORE(x, F) to
denote the extraction of an unsatisfiable core: Given that x∧F
is unsatisfiable, y will be a sub-cube of x such that y ∧ F
is still unsatisfiable. Let A(x, y) and B(x, z) be two CNFs
such that A ∧ B is unsatisfiable, and y and z are disjoint.
An interpolant is a formula I(x) such that A ⇒ I ⇒
¬B. Interpolants can be computed from the unsatisfiability
proof of A ∧ B [6]. We denote this computation by I :=
INT(A,B). A Quantified Boolean Formula (QBF) is a formula
Q1x .Q2y . . . F (x, y, . . .), where Qi ∈ {∀,∃} and F is a
CNF. The quantifiers have their expected semantics. A QBF-
solver checks if a QBF is satisfiable. We write (sat,a) :=
QSAT(∃a .Q1x .Q2y . . . F (a, x, y, . . .)) for QBF-solver calls.
The satisfying assignment a can only be extracted for variables
that are quantified existentially on the outermost level. Finally,
we write b := QCORE(a,∃a .Q1x .Q2y . . . F (a, x, y, . . .)) to
denote the extraction of an unsatisfiable core.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 31

Fig. 1. Implementation of a strategy. (FF = flip-flops).

Circuit Synthesis. A strategy is a formula S(x, i, o, x′) such
that ∀x, i .∃o, x′ . S, where x, i, o are state-, input-, and output-
bits, respectively, and x′ is the next-state copy of x. Intuitively,
for a given state x and input i, S defines allowed output-values
o and next states x′: o,x′ is allowed iff x∧ i∧o∧x′ satisfies
S. Let u = x∪i and v = o∪x′. An implementation of S(u, v)
is a function f : 2|u| → 2|v| such that ∀u . S(u, f(u)). This
function can be implemented in hardware as shown in Fig. 1.

Strategies for safety specifications are particularly simple:
given a winning region W (x) from which the specification
can be enforced, and a complete1 and deterministic2 transition
relation T (x, i, o, x′) defining the state transitions, the strategy
must pick values for o such that the next state is in W again,
i.e., S =

(¬W (x)
) ∨ (T (x, i, o, x′) ∧W (x′)

)
. We only need

to synthesize circuits for o, and define x′ using T .

III. CIRCUIT SYNTHESIS ALGORITHMS

A. QBF-Certification

An implementation can be computed as Skolem functions3

for the signals o and x′ in the QBF ∀x, i .∃o, x′ . S(x, i, o, x′).
QBFCert [13] computes such functions using DepQBF [10].

Optimizations for Safety Specifications. We need to find
Skolem functions for o in ∀x, i .∃o, x′ .(¬W)∨(T ∧W ′). Yet,
we achieve better results with QBFCert by computing Her-
brand functions4 in the unsatisfiable QBF ∃x, i .∀o .∃x′ .W ∧
T∧¬W ′. This works because T is deterministic and complete.
In our setting, W is in CNF, so the conjunctions in the latter
formulation are simpler to realize in CNF. Also, the clause
resolution proofs required for unsatisfiable QBFs are usually
less expensive than the cube resolution proofs for satisfiable
ones. Still, the intermediate files produced by QBFCert can
grow large (hundreds of GB). One reason is that a straightfor-
ward CNF encoding of ¬W ′ requires many auxiliary variables
and clauses. We could reduce the size of the files by up to a
factor of 30 by learning a CNF representation of ¬W ′ without
introducing auxiliary variables using the following algorithm:

1: procedure NEGLEARN(W ′), returns: ¬W ′
2: N ′ := true
3: while sat, with (sat,x) := PSAT(W ′ ∧N ′) do
4: N ′ := N ′ ∧ ¬PCORE(x,¬W ′)
5: return N ′

1I.e., ∀x, i, o . ∃x′ . T (x, i, o, x′). T can always be made complete: if some
input is not allowed by the original specification, T can allow for arbitrary
outputs; if some output is not allowed originally, T can visit an unsafe state.

2I.e., ∀x, i, o, x1
′, x2

′ .(T (x, i, o, x1
′)∧ T (x, i, o, x2

′))⇒ (x1
′ = x2

′).
3Skolem functions define existentially quantified variables as a function

over the universally quantified ones such that the QBF becomes true.
4Herbrand functions define universally quantified variables as a function

over the existentially quantified ones such that the QBF becomes false.

As long as N ′ is not yet ¬W ′, i.e., W ′∧N ′ is still satisfiable,
we refine N ′ with a clause that excludes the cube x witnessing
this insufficiency. By taking the unsatisfiable core, the clause
eliminates also other counterexamples. Since clauses are only
added, NEGLEARN is suitable for incremental SAT solving.

Using incremental SAT solving, we also simplify W by
removing literals and clauses as long as W does not change
semantically. This is applied to all following methods as well.

B. QBF-Based Learning
In [7], several learning-based circuit synthesis algorithms

are presented and implemented using BDDs. Here, we discuss
an efficient implementation of the CNF-learning algorithm
using a QBF-solver. Since QBF-solvers operate on CNFs, this
algorithm is particularly suitable. It can be defined as follows.

1: procedure SYLEARNQBF(S(x, i, o, x′))
2: u := x ∪ i, va := v := o ∪ x′
3: for v ∈ v do
4: va := va\{v}, ve := v\va, fv := true, R := v∧¬S
5: while sat, with (sat,u):=QSAT(∃u .∀va .∃ve . R) do
6: u2 := QCORE(u,∃u .∀oa .∃oe, x′ .¬v ∧ ¬S)
7: fv := fv ∧ ¬u2, R := R ∧ ¬u2

8: DUMPCIRCUIT(v, fv), S := S ∧ (v ↔ fv)

SYLEARNQBF builds up circuits in fv for one v ∈ v after
the other. Initially, fv = true, i.e., the circuit always outputs
true. While there exists an input u for which v must be false
(the QBF in line 5 is satisfiable), fv is refined with a clause
that maps u to false. By taking the core in line 6, other inputs
are also mapped to false as long as false is allowed by S.
The final solution fv is dumped, and S is refined with the
implementation of v before the next circuit is computed. The
final fv are in CNF, so the circuits have a depth of only two.
Even after optimizations and mapping to standard cells, the
depth usually remains low [7], which enables fast clock rates.

Once ¬S is available in CNF, the algorithm only adds
clauses to existing CNFs (i.e., to R and fv). Only for the
resubstitution in line 8, a CNF encoding of ¬fv is needed.

Optimizations for Safety Specifications. As in Sect. III-A,
¬S is defined as W ∧T ∧¬W ′. This requires a CNF encoding
of ¬W ′. While computing ¬W ′ with NEGLEARN is beneficial
for QBFCert, it does not pay off for SYLEARNQBF. Hence,
we build a CNF for ¬W ′ with one auxiliary variable per clause
of W ′. Recently, the QBF solver DepQBF was equipped with
incremental solving capabilities [11]. SYLEARNQBF is well
suited for incremental solving. We use two solver instances for
line 5 and 6 respectively. For each v ∈ v, a new incremental
session is started. During the inner loop, we only add clauses
to the former solver. The QBF of the latter even stays the same.
DepQBF supports unsatisfiable cores natively. The resulting
cores are small but not necessarily minimal, so we iterate over
the remaining literals to obtain even smaller cores because
(slightly) smaller cores typically mean (much) less iterations.

C. Interpolation
Jiang et al. [8] present two interpolation-based approaches

to synthesize circuits for one v ∈ v after the other. The first one

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 32

expands S over v. We consider this intractable in our setting.
The second approach circumvents the quantifier alternation
and expansion by temporarily treating output signals as inputs:

1: procedure SYINT(S(x, i, o, x′))
2: d := x ∪ i ∪ o ∪ x′, r := ∅
3: for v ∈ v do
4: d := d \ {v}, r := r ∪ {v}
5: r1, r2, r3, r4 := create4FreshCopies(r)
6: M1(d, r1, r2) := (S ∧ v)[r←r1] ∧ (¬S ∧ ¬v)[r←r2]
7: M0(d, r3, r4) := (S ∧ ¬v)[r←r3] ∧ (¬S ∧ v)[r←r4]
8: fv(d) := INT(M1(d, r1, r2),M0(d, r3, r4))
9: DUMPCIRCUIT(v, fv), S := S ∧ (v ↔ fv)

In each iteration, d contains all variables on which the imple-
mentation of the current v ∈ v can depend, and r contains the
rest. For v = (v1, . . . , vn), v1 can depend not only on u but
also on (v2, . . . , vn), v2 can depend on u and (v3, . . . , vn),
etc. Yet, when the circuits for all v ∈ v are built together,
the signals v effectively depend on u only. The formulas M1

and M0 characterize the d-vectors for which v must be set
to true and false respectively. The syntax [r← ri] means
that the variables r are renamed by fresh copies ri. Line 8
computes an interpolant between M1 and M0. The property
M1 ⇒ fv ⇒ ¬M0 of the interpolant ensures that (a) fv is
true whenever it must be true, and (b) whenever fv is true
then it does not have to be false. The renaming of the variables
r has the effect that fv can only depend on the shared signals d.

Optimizations for Safety Specifications. In order to avoid
double-negations of W in S by negating S, we compute

M1 := (T ∧W ′ ∧ v)[r←r1] ∧ (T ∧ ¬v ∧W ∧ ¬W ′)[r←r2]
M0 := (T ∧W ′ ∧ ¬v)[r←r3] ∧ (T ∧ v ∧W ∧ ¬W ′)[r←r4]

Note the difference to a plain substitution of S = T ∧ (¬W ∨
W ′) and ¬S = T ∧W ∧¬W ′ in SYINT: (¬W ∨W ′) reduces
to W ′ due to the conjunction with W from ¬S. This is
fortunate because disjunctions are expensive in CNF. Since
SYINT allows vi to depend on other vj with j > i, it is
sensitive to the variable order, both regarding execution time
and circuit size. We exploit this insight with the following
optimization. Once vi has been synthesized, we analyze on
which vj it actually depends. If vi does not depend on a
particular vj , then vj is allowed to depend on vi. This gives an
increased flexibility without introducing circular dependencies.
We simplify all computed interpolants with ABC5 [5].

D. SAT-Based Learning

Here, we use SYINT but with a special interpolation proce-
dure (called in line 8) that applies computational learning:

1: procedure INTLEARN(M1(d, r1, r2), M0(d, r3, r4))
2: f := true
3: while sat, with (sat,d) := PSAT(M0 ∧ f) do
4: f := f ∧ ¬PCORE(d,M1)
5: return f

5We use the command sequence strash; refactor -zl; rewrite
-zl; up to 3 times, followed by dfraig; rewrite -zl; dfraig;.

As long as there exists some d for which f is true but must be
false, i.e., M0∧f is satisfiable, we refine f with an additional
clause that excludes the cube d witnessing this insufficiency.
By taking the unsatisfiable core, other inputs are also mapped
to false as long as false is allowed.

Optimizations. We use two SAT solver instances, one for
line 3 and one for line 4. A new incremental session is started
upon each call of INTLEARN. Using activation variables to
set v-variables to true, false, or equal to their renamed copy,
we can even use one incremental session throughout the entire
SYINT procedure. However, this did not result in significant
improvements in our experiments. All optimizations discussed
in Sect. III-C can be applied. We also extended the variable
dependency optimization further: The CNF T often contains
many auxiliary variables that are defined uniquely by other
signals of x, i, o. If some of these auxiliary variables depend
only on d, then we allow f to depend on them as well by
including them into d. This can be beneficial because these
auxiliary variables often capture the important connections
between the variables x, i, o. When dumping the circuits,
we add additional gates that define the referenced auxiliary
variables as done by T . We also implemented a second
minimization pass that tries to remove every clause and literal
from every CNF f after SYINT is done. However, this only
results in minor circuit size improvements (around 20%).

IV. EXPERIMENTAL RESULTS

A. Implementation

We implemented the discussed methods and optimizations
in the SAT-based synthesis tool Demiurge6 [4]. Demiurge
synthesizes AIGER7 circuits from safety specifications and
complies with the SyntComp8 competition rules. The archive
of version 1.1.0 contains way more experiments than reported
here. E.g., for the SAT-based learning approach alone we
implemented 24 variants. Here, we only compare interesting
versions, summarized in the following table.

Name Engine Algorithm
BDD CuDD 2.4.2 Cofactor-Based [3]
QC QBFCert 1.0 QBF-Certification (Sect III-A)
QL DepQBF 3.02 SYLEARNQBF (Sect III-B)
SI MathSAT 5 SYINT (Sect III-C)
SL Lingeling ats SYINT+INTLEARN (Sect III-D)

SLN Lingeling ats SL without dependency opt.

BDD serves as baseline for our comparison. It was created by
students and won a competition held in a synthesis lecture.
It implements a cofactor-based approach [3], uses dynamic
variable reordering, and forced reorderings at certain points.
QC, QL, SI, and SL implement the methods from the previous
section with all optimizations. SLN is used to highlight the
benefits of the dependency optimization. All our methods
use ABC5 [5] to minimize the final circuits further. SI uses

6http://www.iaik.tugraz.at/content/research/design verification/demiurge/.
7http://fmv.jku.at/aiger/
8http://www.syntcomp.org/

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 33

MathSAT, which supports several interpolation schemes. We
use McMillan’s scheme (see [6]), but the performance is
similar with other schemes. We also implemented our own in-
terpolation engine by processing proofs produced by PicoSat.
However, the proof files grew prohibitively large.

The limitations of our implementation are that it can only
handle safety specifications in AIGER format, it can produce
circuit only in AIGER format, and it runs under Linux only.

B. Benchmarks
We use the same benchmarks as [4], but report here only

results for the interesting ones. The benchmarks ambaij
specify an arbiter for ARM’s AMBA AHB bus [3], where
i is the number of masters, and j ∈ {c,b,f} indicates the
method used to transform the original benchmark [3] into
our input format [4]. The benchmarks genbufij, again with
j ∈ {c,b,f}, define a generalized buffer [3] connecting i
senders to two receivers. The specifications addi and multi
denote i-bit combinational adders and multipliers.

C. Results and Discussion
Fig. 2 summarizes our results with cactus plots. The y-axis

gives the execution time or circuit size, and the x-axis gives
the number of benchmarks that can be solved within this time
or size limit. Concrete numbers and more plots can be found in
an extended version [2] of this paper and in the downloadable
archive. All experiments were performed on an Intel Xeon
E5430 CPU running a 64 bit Linux at 2.66 GHz. The memory
limit was set to 8 GB, the time-out to 10 000 seconds. All
circuits have been successfully model checked.

Method SL achieves the best results both regarding execu-
tion time and circuit size. The dependency optimization (SL
vs. SLN) is very beneficial for add and mult, but slower
for amba and genbuf. QC, QL, and SI do not perform so
well. Using incremental QBF solving in QL gives an average
speedup of factor 3.5. The speedup factor compared to using
the QBF preprocessor Bloqqer is even 21. Still, QL is not very
competitive. BDD is much better, but still outperformed by SL.
In particular, SL outperforms SI by many orders of magnitude.
Hence, our idea of implementing the interpolation procedure
with computational learning is very beneficial. Execution time
and circuit size are not in conflict but rather correlate. The time
for optimization with ABC is usually insignificant, but only
yields moderate size reductions (around 25 % for SL). Using
method SLN, Demiurge won a track of SyntComp 2014.
One reason was the small circuit size compared to other tools.

V. CONCLUSION

We compared several SAT- and QBF-based methods to
synthesize circuits from strategies, and presented optimizations
and efficient implementations for safety specifications. Our
SAT-based learning method combines the quantifier elimina-
tion approach by Jiang et al. [8] with computational learning
as proposed by Ehlers et al. [7], and outperforms BDDs both
regarding execution time and circuit size in our experiments.

Future research includes preprocessing for incremental QBF
solving, exploiting unreachable states, and parallelization.

(a) Execution time for amba and genbuf.

(b) Execution time for add and mult.

(c) Circuit size for all benchmarks.

Fig. 2. Cactus plots summarizing our performance evaluation.

REFERENCES

[1] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook
of Satisfiability. IOS Press, 2009.

[2] R. Bloem, U. Egly, P. Klampfl, R. Könighofer, and F. Lonsing. SAT-
based methods for circuit synthesis. CoRR, abs/1408.2333, 2014.

[3] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Specify, compile, run: Hardware from PSL. Electr.
Notes Theor. Comput. Sci., 190(4):3–16, 2007.

[4] R. Bloem, R. Könighofer, and M. Seidl. SAT-based synthesis methods
for safety specs. In VMCAI’14. Springer, 2014.

[5] R. K. Brayton and A. Mishchenko. ABC: An academic industrial-
strength verification tool. In CAV’10. Springer, 2010.

[6] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Inter-
polant strength. In VMCAI’10. Springer, 2010.

[7] R. Ehlers, R. Könighofer, and G. Hofferek. Symbolically synthesizing
small circuits. In FMCAD’12. IEEE, 2012.

[8] J.-H. R. Jiang, H.-P. Lin, and W.-L. Hung. Interpolating functions from
large boolean relations. In ICCAD’09. IEEE, 2009.

[9] B. Jobstmann, S. Staber, A. Griesmayer, and R. Bloem. Finding and
fixing faults. J. Comput. Syst. Sci., 78(2):441–460, 2012.

[10] F. Lonsing and A. Biere. DepQBF: A dependency-aware QBF solver.
JSAT, 7(2-3):71–76, 2010.

[11] F. Lonsing and U. Egly. Incremental QBF solving. In CP’14. Springer,
2014. To appear.

[12] A. Morgenstern, M. Gesell, and K. Schneider. Solving games using
incremental induction. In IFM’13. Springer, 2013.

[13] A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, and A. Biere. Resolution-
based certificate extraction for QBF. In SAT’12. Springer, 2012.

[14] A. Solar-Lezama. The sketching approach to program synthesis. In
APLAS’09. Springer, 2009.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 34

Synthesis of Synchronization using Uninterpreted
Functions

Roderick Bloem, Georg Hofferek, Bettina Könighofer,
Robert Könighofer, Simon Außerlechner, and Raphael Spörk

Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Austria.

Abstract—Correctness of a program with respect to concur-
rency is often hard to achieve, but easy to specify: the concur-
rent program should produce the same results as a sequential
reference version. We show how to automatically insert small
atomic sections into a program to ensure correctness with respect
to this implicit specification. Using techniques from bounded
software model checking, we transform the program into an SMT
formula that becomes unsatisfiable when we add correct atomic
sections. By using uninterpreted functions to abstract data-
related computational details, we make our approach applicable
to programs with very complex computations, e.g., cryptographic
algorithms. Our method starts with an empty set of atomic
sections, and, based on counterexamples obtained from the
SMT solver, refines the program by adding new atomic sections
until correctness is achieved. We compare two different such
refinement methods and provide experimental results, including
Linux kernel modules where we successfully fix race conditions.

I. INTRODUCTION

Concurrency-related bugs form a serious problem in soft-
ware development. First, concurrent programs are hard to get
right due to the large number of possible interleavings of
threads. Second, concurrency issues are difficult to detect and
to reproduce: faults may only appear in rare cases that are
never hit by tests but only in operation. Third, even if detected
and reproducible, concurrency errors are difficult to fix. There
is the danger of fixing only some but not all symptoms, or
even introducing new errors. At the same time, the desired
behavior of a concurrent program is typically easy to specify:
it should behave as if executed sequentially. This important
property is called serializability, meaning that any concurrent
execution must behave as if all threads were executed one
after the other (in some order). In this paper, we present
methods to synthesize efficient synchronization in form of
atomic sections to ensure serializability. Assertions can be used
as an additional (or alternative) specification. Thus, on a high
abstraction level, we address the same problem as [7, 24].

Adequate abstraction is a key factor in making synthesis of
synchronization tractable. Our intuition is that synchronization
usually should not depend on the semantics of data opera-
tions. Thus, we propose to use abstract data operations by
means of uninterpreted functions. This is done by replacing
all arithmetic operations as well as calls to functions with-
out side-effects by uninterpreted functions during program

This research was supported by the Austrian Science Fund (FWF) through
projects RiSE (S11406-N23) and QUAINT (I774-N23).

analysis. This speeds up the synthesis process significantly.
However, abstraction may induce spurious counterexamples,
which may lead to more and larger atomic sections than
actually necessary. One way to address this issue is to allow
the user to refine (some) uninterpreted function symbols with
fundamental properties like commutativity and associativity.
Such properties are important in the context of concurrent
programs because different interleavings often apply the same
operations in different order (e.g., (3+4)+5 vs. 4+(5+3)).

Building on abstraction by means of uninterpreted func-
tions, we present and compare two synthesis methods. They
repeatedly check for counterexamples (executions violating
the specification) and add atomic sections until no more
counterexamples exist. Counterexamples are computed by a
Satisfiability Modulo Theories (SMT) solver, using a Bounded
Model Checking (BMC) approach [21]. We unroll loops in the
program and guarantee correctness only up to the unrolling
depth. First, we present a novel method that we named
FixSwitches. It analyzes counterexamples with a heuristic to
guess the context switch that causes the problem, and forbids
this switch with an atomic section. It does not guarantee
minimality of the atomic sections, nevertheless it always pro-
duced a minimal solution in all our experiments. The second
method, named AtomConstr, is based on [24] and collects
constraints for the atomic sections based on the counterex-
amples: at least one context switch of every counterexample
must be forbidden. These constraints are then solved to obtain
a global minimum of atomic sections. We implemented our
synchronization synthesis approach in a prototype tool called
Atoss and present first experimental results. We also compared
our methods with several set minimization algorithms (e.g. the
QuickXplain algorithm [17]), trying to find a (locally) minimal
set of atomic sections that is sufficient to make the program
correct. It turns out that FixSwitches and the AtomConstr
algorithm scale best, so we do not present these experiments
in detail.
Related Work. A lot of work has been done to verify
concurrent programs [14, 10, 8]. Verification is an important
building block in our synthesis method: we use a BMC
approach [21] to search for counterexamples. Automatic syn-
thesis of synchronization was first considered in 1981 by
Clarke and Emerson [7]. In the last few years, this topic
was taken up again, e.g. in [23], [24], [5], [18], and [6].
Vechev et al. [24] abstract the program state using a finite
domain and compute counterexamples by explicitly searching

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 35

through the abstract transition system graph. Then, heuristics
decide whether to refine the abstraction or insert an atomic
section. The user has to provide a characterization of the
good states as specification. In contrast, our approach can take
the sequential behavior as implicit specification, it searches
for counterexamples symbolically, using an SMT solver, and
uses uninterpreted functions for abstraction. Counterexample-
guided synthesis is also considered in [5]. Counterexamples
are generalized to so-called partial-order traces that represent
all counterexamples that lead to the same error. Partial-order
traces are eliminated by lock insertion, but also by other
semantics-preserving program transformations like instruction
reordering. In contrast, we consider counterexamples with an
increasing number of context switches, thus we can skip the
generalization step. Kahlon [18] considers the problem of
fixing concurrency errors once they are detected. Given a set of
mutually atomic segments, the algorithm inserts locks around
the segments to fix the atomicity violation without introducing
new deadlocks. In contrast, our approach does not assume that
mutually atomic sections are already given.

Uninterpreted Functions are often used as an adequate
mean of abstraction in verification, e.g., in translation val-
idation [20], where a compiler is verified by checking its
input and output program for sequential correctness. Another
example is proving equivalence between a pipelined and a
non-pipelined version of the same processor [4, 3], where the
complex datapath elements such as the ALU are abstracted.
Abstraction by uninterpreted functions has also been used
for synthesizing controllers that avoid concurrency-related
problems in pipelined processors [15, 16]. The main difference
is that [15, 16] synthesizes controllers whose actions may
depend on the current inputs of the system. This amounts to
solving formulas of the form ∀inputs.∃control.∀outcomes.φ,
where φ is a correctness criterion. In this paper, we effectively
solve problems of the structure ∃control.∀inputs.φ, because
in software it is customary to have static synchronization
mechanisms that do not depend on the current inputs of a
program. This quantifier structure also makes the problem eas-
ier and allows us to deal with larger numbers of existentially
quantified variables, whereas the approach of [15, 16] scales
exponentially w.r.t. this number.
Contributions. In summary, the main contributions of this
work are as follows.

• We relieve the user from writing a specification by taking
the sequential behavior of the concurrent program as
implicit specification.

• To the best of our knowledge, we are the first to use
uninterpreted functions as abstraction for synthesis of
synchronization. We show that this allows us to handle
programs that cannot be handled with finite-domain ab-
stractions.

• We present and compare two methods to infer atomic
sections from counterexamples. One is novel and specif-
ically tailored towards our synthesis algorithm, the other
one is based on ideas from [24].

Outline. The rest of this paper is structured as follows. Sec-
tion II discusses preliminaries and establishes notation. Sec-
tion III presents an illustrating example. Section IV presents
the synchronization synthesis algorithms and introduces our
abstraction method based on uninterpreted functions. Experi-
mental results are shown in Section V. Section VI concludes
and discusses directions for future work.

II. PRELIMINARIES

Concurrent Programs. A concurrent program P is a set
of threads T = {t1, . . . tn}. Each thread ti is represented
as a control flow graph ti = (bi, ei, Vi, Ei), where Vi =
{si1, . . . , sim} is the set of nodes, bi ∈ Vi is a unique start
node, ei ∈ Vi is a unique end node, and Ei ⊆ Vi × Li × Vi
is a set of directed and labeled edges between the nodes. The
set of labels Li is comprised of Boolean expressions (B-expr),
defined below. If the control flow graph is cyclic, which means
that the program contains loops, we unroll them up to a
certain depth to make it acyclic. Each node sij is labeled
by a program statement. For simplicity, we assume that each
statement of the concurrent program corresponds to a different
node in the graph. Thus, different nodes can be labeled with
the same instruction. Edge labels express conditions. An edge
(s, l, s′) ∈ Ei means that s′ is the successor statement of s if
condition l holds. The node ei does not have a successor. We
denote with G the set of global variables shared between all
threads. Furthermore, each thread ti has a set of local variables
Li. To simplify the presentation, we assume that all program
variables range over the same domain D.

We will model concurrent programs as formulas in the
quantifier-free fragment of the Theory of Uninterpreted Func-
tions and Equality TU (QF_UF). To do so, we make the
following more formal definition of statements and conditions.
Let F be a set of (uninterpreted) functions f : D+ 7→ D, let
P be a set of (uninterpreted) predicates p : D+ 7→ B with
B = {true, false}, let v ∈ Li ∪ G be a variable, f ∈ F be an
uninterpreted function, let p ∈ P be an uninterpreted predicate,
and let = be the (interpreted) equality predicate. The set of
D-expressions and B-expressions is defined as follows.

D-expr ::= v | f(D-expr+)
B-expr ::= p(D-expr+) | D-expr = D-expr |

¬B-expr | B-expr ∨ B-expr

A statement is of the form v := r, where v ∈ Li ∪ G
and r ∈ D-expr. That is, all statements are assignments; we
assume that all function calls have been inlined and do not
allow recursion. An edge label l ∈ Li is a B-expression.
The semantics of statements and conditions on edges are
as expected. The labeled edges are such that all statement
nodes s ∈ Vi \ {ei} have exactly one successor for every
variable valuation (i.e., for a given scheduling, the program
is deterministic). We will write V =

⋃
i Vi for the set of all

graph nodes, V ′ =
⋃
i(Vi \ {ei}) for all but the end nodes,

and thread(sij) for the thread ti to which the statement sij
belongs.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 36

Listing 1 RSA decryption using the Chinese Remainder
Theorem (CRT)
Input: large primes p, q; ciphertext c; private exponent d;
Output: plaintext in mp

1: bool fin1=false, fin2=false;
2: int merged=0, mp=0, mq=0;
3: procedure THREAD1

4: mp=cd mod p;
5: fin1 = true;
6: if merged=0 && fin2

7: merged=1;
8: if merged=1
9: mp=crt(mp,mq);

10: procedure THREAD2

11: mq=cd mod q;
12: fin2 = true;
13: if merged=0 && fin1

14: merged=2;
15: if merged=2
16: mp=crt(mp,mq);

Concurrent Executions and Correctness. An execution of
program P is a sequence of statements s = s1, s2, . . . ∈ V ∗
respecting the program semantics. An atomic section set is a
set A ⊆ V ′. A program execution s = s1, s2, . . . respects
the atomic section set A if si ∈ A implies thread(si) =
thread(si+1) for all i. That is, if statement si is protected by an
atomic section, then no thread switch is allowed immediately
after the statement. An execution is sequential if it respects
the atomic section set A = V ′. In order to define a notion of
correctness for concurrent programs, we introduce a function
eval : V ∗ → D|G|, which — given an execution s = s1, s2, . . .
of P — returns the values of the global variables after the
execution. We say that an execution s is correct if there
exists a sequential execution s′ such that eval(s) = eval(s′).
A counterexample is an incorrect execution. We define a
procedure ce(A) which returns a counterexample that respects
an atomic section set A ⊆ V ′, or the constant None if no such
counterexample exists. An atomic section set A is sufficient if
ce(A) = None. An atomic section set A is a local minimum
if it is sufficient and all A′ ⊂ A are not sufficient. An atomic
section set A is a global minimum if it is sufficient and all
A′ with |A′| < |A| are not sufficient. Given an execution
s = s1, s2, . . . of P , we say that a thread switch after statement
si (with thread(si) 6= thread(si+1)) is mandatory if si 6∈ V ′,
i.e., si is an end node of some control flow graph. Otherwise,
the thread-switch is non-mandatory.

III. ILLUSTRATING EXAMPLE

We give an example to demonstrate our approach, in par-
ticular the benefits of abstraction with uninterpreted func-
tions. Consider the problem of decrypting an RSA-encrypted
message (cf. Listing 1). For efficiency, many cryptographic
libraries employ the Chinese Remainder Theorem (CRT) dur-
ing RSA decryption [19]. As usual, p and q are two large
prime numbers, c represents the ciphertext and d is the private
decryption exponent. In standard RSA, the message m is
obtained by computing m = cd mod p · q. To speed up the
decryption process, Thread 1 computes mp = cd mod p and
Thread 2 computes mq = cd mod q. After mp and mq are
found, one of these threads uses the function crt to compute
the final message (modulo p · q) and stores it in mp. The

Fig. 1. Overview of our synthesis approach.

concurrent program is correct if the final message mp equals
the message obtained by a sequential run of the two threads
(in either order).

Without any atomic sections, the following problem could
occur. If Thread 1 is interrupted between lines 6 and 7, and
Thread 2 executes lines 13–16 in the meantime, Thread 1 will
subsequently set merged to 1, and execute line 9. However,
the merge has already been performed by Thread 2, and doing
it a second time results in erroneous output. The problem could
be prevented by making lines 6–7 and lines 13–14 atomic
sections.

The RSA algorithm uses complex arithmetic functions
(modular reductions, exponentiations, etc.) on very large num-
bers. Modeling this program with linear integer arithmetic is
not possible, due to the complex operations involved. On top of
that, modeling it with bitvectors is also not feasible, due to the
large bitwidths involved. However, when using an abstraction
with uninterpreted functions, the resulting SMT formula is
rather simple. The line mp = cd mod p, for example, reduces
to one simple equality between a domain variable and an
uninterpreted function instance: mp = fmodexp(c, d, p). Using
abstraction with uninterpreted functions, our tool was able to
find the minimal set of atomic section in a few seconds (atomic
sections spanning lines 6–7 and lines 13–14). Without any
abstraction, it would not be possible to verify this program.

Note that the finite-domain abstraction approach presented
in [24] cannot deal with this example. One problem is that
finite-domain abstractions are not equality preserving. They
only track properties like the parity of variable values, or
whether certain values are in a particular interval. This is
usually too coarse to prove the equality of values (without
refining the abstraction until all bits of the relevant variables
are tracked). Note that this problem also occurs for simple
functions such as addition or multiplication.

IV. SYNTHESIS APPROACH

The working principle of our synthesis approach is outlined
in Figure 1. The main input is a concurrent program P without
any synchronization. First, the program is abstracted using
uninterpreted functions. This step is explained in Section IV-A.
Next a counterexample-guided synchronization refinement
loop is entered. There is a database of (candidates for) atomic
sections, which is initially empty. Considering these already
known atomic sections, we next encode the concurrent verifi-
cation problem into an SMT formula. Satisfying assignments
of this formula correspond to counterexamples, i.e., executions
of the concurrent program which violate the specification. The

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 37

SMT encoding is discussed in Section IV-B. In the verification
step, an SMT solver searches for a counterexample in form
of a satisfying assignment of the constructed formula. If a
counterexample is found, it is analyzed in order to infer
new atomic sections that prevent (at least) this particular
counterexample, and we loop back to checking whether the
program is correct now. Two different methods for analyzing
counterexamples and refining the atomic sections will be
presented in Section IV-C and Section IV-D, respectively. If
no more counterexamples exist, we have found a set of atomic
sections that are sufficient to prevent erroneous executions and
the algorithm terminates.

A. Abstraction using Uninterpreted Functions

A program statement updates a variable with a new value
that is the result of some computation. The computation can be
as simple as an increment, or an inlined addition, but it can also
be a call to a complex n-ary function. We observe that in many
cases, correctness of a program does not depend on the actual
semantics of the functions involved in the computations. For
example, if you replace all additions in a correct concurrent
program by multiplications, the resulting program still should
not depend on the scheduling. The only thing that is relevant
to correctness is functional consistency, i.e., given the same
inputs, a particular statement should always produce the same
result.

It might be obvious to use logics based on the theories of
linear integer arithmetic, linear real arithmetic, or bitvector
arithmetic, which include interpreted and axiomatized sym-
bols encoding addition, multiplication, etc. In fact, loop-free
programs can be modeled perfectly using bitvector logic [9].
However, by doing so we burden the SMT solver unnecessar-
ily, because it now has to look for solutions that satisfy all the
axioms of the interpreted symbols. In addition to that, more
complex operations might not easily (or even not at all) be
expressible in terms of the available interpreted functions.

Thus, we suggest to “forget” all the semantics of a state-
ment, and abstract it using uninterpreted functions only. E.g.
a statement a = b + c becomes a = fplus(b, c), where
fplus ∈ F is an uninterpreted symbol. In the example
presented in Section III, there are two uninterpreted functions
that we would need to introduce: fmodexp(·, ·, ·) and fcrt(·, ·).

However, even though the functions we use are uninter-
preted, there are two important properties that are of particular
interest in the setting of concurrency: commutativity and
associativity. The reason for that is that different interleavings
of threads will lead to a different order of operations. However,
knowing that some functions are commutative and associative,
it is still possible to prove that the final outcome is the same.
One possible way to achieve this is to add those concrete
instances of the commutativity and associativity axioms that
are actually relevant to a particular example: i.e., state for
every pair of variables a, b that fplus(a, b) = fplus(b, a), and
similar for associativity. A potentially more efficient way is
to add support for commutativity and associativity directly in
the congruence closure module of the underlying SMT solver.

Listing 2 C Code
1: int g;
2: procedure THREAD1
3: int x = g;
4: x = x + 1;
5: g = x;
6: x = x + 1;

7: procedure THREAD2
8: int y = g;
9: y = y + 2;

10: g = y;
11: y = y + 2;

Listing 3 SSA Constraints
2: procedure THREAD1
3: t1x1 = t1g1

4: t1x2 = t1x1 + 1
5: t1g2 = t1x2

6: t1x3 = t1x2 + 1

7: procedure THREAD2
8: t2y1 = t2g1

9: t2y2 = t2y1 + 2
10: t2g2 = t2y2

11: t2y3 = t2y2 + 2

The theory of how to do this has been outlined in [1]; we
are currently working on adding this feature to the Z3 SMT
solver [12].

B. SMT Encoding of the Concurrent Verification Problem

This section explains how we encode the concurrent ver-
ification problem into an SMT formula such that satisfying
assignments correspond to counterexamples. SMT encoding
of programs has been addressed before, e.g. in [14] and [11].
We use an encoding called TCBMC [21], with small modifica-
tions. The main idea is to limit the maximum number of thread
switches while allowing them to be anywhere in the code. This
has the advantage that we are able to analyze counterexamples
with an increasing number of thread switches. Most concur-
rency errors appear with only a few thread switches [13]. By
first eliminating these counterexamples, we forbid many other
execution paths representing the same bug. TCBMC consists
of four steps.

Step 1: Preprocessing. Complex program statements are
not always executed atomically. However, if there is at most
one occurrence of a global variable in a statement, context
switches during the execution of the complex statement obvi-
ously cannot introduce concurrency-related errors. In contrast
to this, context switches in statements that have more than
one occurrence of global variables can introduce concurrency
bugs. To model such context switches, we split statements with
more than one reference to a global variable. This is done like
in a compiler, where complex statements are broken down
into simple instructions. For example, consider the statement
g3 = g1 + g2;, where g1, g2, g3 are global variables. The
statement is translated into l1 = g1; l2 = g2; g3 = l1+l2;,
where l1, l2, l3 are fresh local variables.

Step 2: Applying CBMC Separately on Each Thread.
The next step is to unroll all loops, inline all function calls,
and transform the code into static single assignment form (SSA
form), where each variable is assigned only once. Hence, for
each assignment to a variable, a new copy of this variable is
created. Additionally, all variable names are prefixed with a
thread identifier. E.g., for a global variable g (cf. Listing 2),
copies “t1g1”, “t1g2”, etc. are created (cf. Listing 3). This

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 38

second step is performed for each thread in isolation, as
done in CBMC [9]. It yields a separate formula for each
thread, not taking into account that an execution of a thread
can be interrupted by another one, which may change global
variables. This is dealt with by Step 4, where additional
concurrency-related constraints are added. To illustrate Step
2, consider the simple program shown in Listing 2. After
applying CBMC separately on each thread, we get a formula
representing the two threads as illustrated in Listing 3.

Step 3: Generating Block Variables and Atomic Sections.
During an execution, sequentially executed lines of code from
one thread form a so-called context switch block. For each line
l of thread t, a so-called block variable blockt(l) is introduced.
The value of the block variable encodes to which context
switch block the line belongs. Lines with the same values
for their block variables belong to the same context switch
block, and the blocks are executed in increasing order. So,
by choosing values for the block variables, the SMT solver
establishes the scheduling of the threads. Potential values
of the block variables for our example from Listing 2 are
illustrated in Figure 2. The block variables have to satisfy the
following constraints:

1) The first block value of each thread should be positive,
i.e., ∀t ∈ T : blockt(1) ≥ 1.

2) For all threads, the block variable values must increase
monotonically w.r.t. line numbers within a thread, i.e.,
∀t ∈ T, l ∈ t : blockt(l) ≤ blockt(l + 1).

3) The values of the block variables are not allowed to
change by one (at least one thread should be running in
between), i.e., ∀t ∈ T, l ∈ t : blockt(l)+ 1 6= blockt(l+
1).

4) No block variable value must exceed a given bound n.
This is enforced by ∀t ∈ T : blockt(m) ≤ n, where m
is the last line number of the respective thread.

5) Each block variable value can only occur in one thread,
i.e., ∀t ∈ T, l ∈ t : ∀t′ ∈ T \ t, l′ ∈ t′ : blockt(l) 6=
blockt′(l′).

Note that these rules for the block variables differ from [21].
The authors in [21] only give a detailed description of how to
encode the block variables for two threads. For extending this
to the general case, they suggested to enforce a round robin
scheme among the threads, or to introduce new variables that
represent which thread runs in which context switch block.
We tried both methods, but found out that our definition of
the block variables is much more efficient.

To model an atomic section between two consecutive lines
of code, it is enough to require that the block variables for
these lines must be equal. For instance, to model an atomic
section in thread 1 between line 2 and 3, we add the constraint
block1(2) = block1(3). By adding the constraint t1a2,3 →
block1(2) = block1(3), where t1a2,3 is a boolean variable, we
can easily enable or disable atomic sections in our synthesis
algorithm by setting t1a2,3 to true or false.

Step 4: Generating Constraints for Concurrency. We
have to adjust the SSA statements of each thread, as con-
structed in Step 2, to capture context switches. A statement

Fig. 2. Context Switch Blocks and Copy Variables.

Listing 4 SSA Constraints
1: procedure THREAD1
2: if block(t1x1) = block(t1g1)
3: t1x1 = t1g1;
4: else
5: b = block(t1g1) - 1;
6: t1x1 = gcopy(b);
7: t1x2 = t1x1 + 1;
8: t1g2 = t1x2;
9: t1x3 = t1x2 + 1;

10: procedure THREAD2
11: if block(t2y1) = block(t2g1)
12: t2y1 = t2g1;
13: else
14: b = block(t2y1) - 1;
15: t2y1 = gcopy(b);
16: t2y2 = t2y1 + 2;
17: t2g2 = t2y2;
18: t2y3 = t2y2 + 2;

that reads a global variable has to distinguish if the global
variable was last assigned in its own context switch block or
in a previous one. In the former case, the local value of the
global variable is up to date and can be used. In the latter case,
another thread may have altered the global variable, and we
need to take the value as assigned by the other thread. Hence,
we create copies of the global variables for each block, storing
the values of the global variables at the end of the block. The
SSA statement can access the copies of the global variables
when needed. This is illustrated in Fig. 2. In this example we
have four context switch blocks, so we create four additional
copies gcopy(1) to gcopy(4) for each global variable. At the end
of each block, we store the value of the last assignment of the
global variable in the respective copy.

Let us continue our example. After applying Step 4 to our
SSA constraints from Listing 3 we get the final concurrency
constraints shown in Listing 4, where block(x) gives the
context switch block in which the variable x was assigned.
Note that we only have to change an SSA statement if it reads
a global variable. In this case, we have to check if the local
value is up to date, or if we must use the copy of the global
variable from the previous context switch block.

Modeling Assumptions and Assertions: We extended the
SMT encoding to also support assertions and assumptions,
which are Boolean conditions in the input program P . A
counterexample must satisfy all assumptions, but violate one
assertion or sequential correctness. Hence, modeling assump-
tions and assertions in the SMT encoding is straightfor-
ward: For computing counterexamples, we add the constraints∧
i assumptioni∧¬

(
seqSpec∧∧j assertj

)
. When searching

for valid runs, the negation (¬) is omitted. Assumptions can,
for example, be used to model wait statements.

C. Finding Atomic Sections with the FixSwitches Algorithm

We now turn to the first method to analyze counterexamples
in order to infer a small but sufficient set of atomic sections.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 39

Listing 5 FixSwitches Algorithm
1: procedure FIXSWITCHES
2: A := ∅
3: while ce(A) 6= None do
4: s := (s1, s2, . . . sm) := ce(A)
5: (k1, . . . , kn) := findSwitches(s)
6: for i = n . . . 1 do
7: if existsValidRun((s1, s2, . . . ski)) then
8: A := A ∪ {ski

}
9: break

10: return A

Listing 5 presents a method to compute atomic sections
based on a heuristic to analyze counterexamples. As outlined
in Fig. 1, it starts with an empty set of atomic sections
A. In a loop, a new counterexample s = s1, s2, . . . sm is
computed that respects the atomic sections A that have already
been found so far. If no such counterexample exists, then A
must be sufficient and the algorithm terminates. Otherwise,
the procedure findSwitches computes all non-mandatory
context switches of the counterexample s in form of a se-
quence of indices k such that thread(sk) 6= thread(sk+1) and
sk ∈ V ′. Next, the algorithm analyzes the context switches
of the counterexample in reverse order, i.e. starting with
the last non-mandatory context switch kn. The procedure
existsValidRun now checks whether it is possible to
extend the incomplete execution s1, s2, . . . skn

to a complete
one that is correct and does not have a context switch at
kn. If this is not the case, the program cannot be fixed
just by forbidding the context switch kn; a concurrency
problem must already exist in an earlier stage of the exe-
cution s. Thus, we continue to analyze the previous context
switch kn−1. Eventually, we must find an index i such that
existsValidRun(s1, . . . , ski

) returns true, because if there
are no more switches left in the prefix, then a sequential
execution is possible. If existsValidRun returns true, we
add an atomic section that forbids the context switch ki (thus
making the current counterexample infeasible), and look for a
new counterexample.

The procedure existsValidRun can be implemented
similar to ce, based on an SMT-solver call. In the SMT-
solver query of existsValidRun, we cannot only assert
the execution path of the prefix but also all variable values
(taken from the satisfying assignment of the SMT-call in ce)
in the different execution steps of the prefix. This renders
existsValidRun-calls typically much cheaper than ce-
calls in terms of computation time. The performance of the
entire algorithm increases if we consider counterexamples
with a small number of context switches first, and increase
the maximum number of (non-mandatory) context switches
incrementally. That is, only if no more counterexamples with
one context switch exists, we search for counterexamples with
two context switches, and so on.

Listing 6 illustrates how this algorithm works. According
to the implicit sequential execution, the global variable h

Listing 6 Fix Switches Example
1: int g; int h = 0;
2: procedure THREAD1
3: g = 0; s1−−−−−−−−−−−−−−−−−→

s2←−−−−−−−−−−−−−−−−−−−−−−−4: if g = 0 then
5: int tmp = h;
6: h = tmp + 1; s3−−−−−−−−−−−−−−−−→

7: procedure THREAD2

8: g = 1;
9: if g = 1 then

10: int tmp = h;
11: h = tmp + 1;

Listing 7 Fix Switches Example (continued)
1: int g; int h = 0;
2: procedure THREAD1
3: g = 0; block(3)=1 s1−−−−−−−−−−−−−−−−→

4: if g = 0 then
5: int tmp = h;
6: h = tmp + 1;

7: procedure THREAD2

8: g = 1; block(8)=2
9: if g = 1 then block(9)=2

10: int tmp = h;
11: h = tmp + 1;

should be 2 after executing Thread1 and Thread2 in parallel.
Suppose, we get the following counterexample: s = s1, s2, s3,
where s1 = {3, 8}, s2 = {9, 4}, and s3 = {6, 10}. The last
switch s3 is a mandatory context switch. So in order to get
rid of the counterexample, we can either forbid s1 or s2.
First we investigate, whether switch s2 is the bad switch.
Therefore, we fix the execution until s2. So first one line
of thread 1 has to be executed (block(3)=1) and then two
lines of thread 2 (block(8)=block(9)=2), see Listing 7. Now
the algorithm checks whether it is possible to extend this
incomplete execution to a complete correct one. Since this
is not the case, s2 is innocent, and the real problem lies in
s1. In the next step, the algorithm forbids s1 by inserting an
atomic section between line 3 and line 4.

D. Finding Atomic Sections with the AtomConstr Algorithm

The Atomicity Constraint Algorithm (AtomConstr), shown
in Listing 8, is inspired by [24]. While FixSwitches added
atomic sections to the set A in each iteration, AtomConstr
only adds candidates for atomic sections to a set of sets
A. Initially, A is empty. The algorithm searches in a loop
for counterexamples s = s1, s2, . . . sm that respect A and
computes all thread switches K = {k1, k2, . . . kn} of s.
The set K represents all possible ways to eliminate the

Listing 8 AtomConstr Algorithm
1: procedure ATOMICITYCONSTRAINT
2: A := ∅
3: while ce′(A) 6= None do
4: s := (s1, s2, . . . sm) := ce′(A)
5: K := {k1, . . . , kn} := findSwitches(s)
6: A := A ∪ {K}
7: return hittingSet(A)

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 40

TABLE I
EXPERIMENTAL RESULTS. The column #Lines gives the lines of code after
preprocessing with FoREnSiC. All other columns give total execution times

in seconds. We used a timeout (t.o.) of 5400 seconds. The numbers in
brackets give the number of iterations in the refinement loop of Fig. 1.

integer arithmetic uninterpreted func.
#L

in
es

A
to

m
C

on
st

r

Fi
xS

w
itc

he
s

A
to

m
C

on
st

r

Fi
xS

w
itc

he
s

RSA 23 – – 1.5(2) 1.26(4)

linEq 2t 1 38 0.7(2) 0.9(2) 0.6(2) 0.6(2)
linEq 2t 2 55 43(4) 42(4) 1.7(4) 1.8(4)
linEq 2t 3 70 550(6) 623(6) 3.2(6) 4.8(6)
linEq 2t 4 87 4882(8) 5320(8) 6.9(8) 8.7(8)
linEq 2t 6 121 t.o. t.o. 21(12) 17(12)
linEq 2t 8 155 t.o. t.o. 44(16) 42(16)
linEq 2t 10 189 t.o. t.o. 71(20) 86(20)
linEq 2t 12 223 t.o. t.o. 117(24) 129(24)
linEq 2t 14 257 t.o. t.o. 186(28) 169(28)

linEq 3t 1 52 25(3) 26(3) 2.3(3) 2.1(3)
linEq 3t 2 76 t.o. t.o. 8.2(6) 7.8(6)
linEq 3t 3 97 t.o. t.o. 18(9) 18(9)
linEq 3t 4 121 t.o. t.o. 42(12) 38(12)
linEq 3t 6 169 t.o. t.o. 113(18) 106(18)
linEq 3t 8 218 t.o. t.o. 247(24) 258(24)
linEq 3t 10 265 t.o. t.o. 398(30) 378(30)

linEq 4t 1 66 t.o. t.o. 7(4) 3.9(4)
linEq 4t 2 97 t.o. t.o. 28(8) 38(8)
linEq 4t 3 124 t.o. t.o. 89(12) 90(12)
linEq 4t 4 155 t.o. t.o. 150(16) 169(16)
linEq 4t 6 217 t.o. t.o. 485(24) 506(24)

VecPrime 2 157 173(836) 53(108) 2.9(16) 3.1(16)
VecPrime 3 221 471(942) 190(162) 11(24) 12(24)
VecPrime 4 290 2018(1018) 519(2016) 66(32) 69(32)
VecPrime 5 359 t.o. 1356(2070) 627(40) 514(40)

IIO 60 1.1(9) 1.3(9) 0.9(9) 1.1(9)
CVE 150 11(21) 13(21) 4.1(12) 5.8(12)
TG3 133 17(74) 21(74) 9.8(74) 13(74)

counterexample s: At least one of the switches from K must
be forbidden by an atomic section to make s unfeasible. In
the next step, we add K to A. The set A consists of sets of
atomic sections candidates and from each set, at least one of
the atomic section must be active to forbid the corresponding
counterexample. So A represents a CNF formula.

A hitting set forA is a set A that shares at least one common
element with every set in A. If no more counterexample exists,
the minimal hitting set of A represents a global minimum
of atomic sections. One efficient way to compute a minimal
hitting set is described in [22].

V. EXPERIMENTAL RESULTS

We have evaluated our approach experimentally, using a
prototype implementation for concurrent C programs, called
Atoss. It uses the front-end of the FoREnSiC [2] tool, which
in turn uses gcc to parse the input C files. We have added a
new back-end to FoREnSiC to create the SMT queries that
we submit to the Z3 solver. The models returned by Z3 are
the counterexamples that Atoss analyzes to create a refined

SMT query, until Z3 returns UNSAT and we have found a
solution. In addition to the illustrative example presented in
Section III, we used two parameterized benchmarks called
linEq and VecPrime, which can also be solved with
integer arithmetic. This enables us to rate the effects of our
abstraction with uninterpreted functions. To show that our
approach is also applicable to real-world problems, we also ran
Atoss on three bugs in Linux kernel modules. Our prototype
implementation, all benchmarks, as well as scripts to run
them are available for evaluation at http://www.iaik.tugraz.at/
content/research/design verification/atoss/.

Our experimental results are summarized in Table I.
We show execution times to synthesize synchronization for
each of the benchmarks, using our two different algorithms
(FixSwitches and AtomConstr), comparing abstraction with
uninterpreted functions and normal integer arithmetic.

The RSA example has already been explained in Sec-
tion III. This benchmark can only be solved by abstraction
with uninterpreted functions, as the complex arithmetic func-
tions involved are beyond the capabilities of state-of-the-art
QF_LIA solvers. FixSwitches finds the atomic sections one
would naturally expect (lines 6–7 and 13–14; see Section III).
Interestingly, AtomConstr computes a different solution of
the same size: it suggests to make the lines 5–6 and 12–13
atomic. This is also correct because if each thread decides on
the merge right after being finished, only the second thread to
finish can enter the if to do the merge.

The linEq benchmark is based on the idea of checking
whether a given n-tuple satisfies a given linear equation with
n variables. Multiplications of the equation’s coefficients with
the elements of the n-tuple is distributed over multiple threads.
This example is scalable w.r.t. two different parameters: the
number of threads, and the size of n. The naming convention in
Table I is as follows: “linEq 3t 4” has 3 threads and n = 4.
We can see from Table I that using uninterpreted functions
for abstraction significantly speeds up the synthesis process,
and even enables synthesis for many benchmarks that would
timeout otherwise. Concerning scalability, it should be noted
that each of these benchmarks contains n times the number
of threads potential race conditions. In real-world examples,
we usually expect a much lower number of potential concur-
rency issues. These benchmarks were specifically designed to
challenge the scalability of our approach.

The idea of VecPrime benchmark is that there is a
vector of numbers, and we want to count the contained prime
numbers. One thread starts counting from the “left” side of
the vector, the other one starts from the “right” side. Every
number that has been taken into account is set to 0. This way
it is ensured that no element is counted twice.1

We also applied our tool to three real world examples.
The first one (linux_iio) is based on a bug2 found in
the industrial I/O subsystem (IIO) of the linux kernel. IIO

1We assume that the check isPrime(0) is significantly faster than other
calls to isPrime. Thus, it hardly matters for efficiency that both threads go
through the entire vector, for simplicity.

2http://git.io/JjCEXg

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 41

polls hardware-devices for triggers, to notify consumers of
events, e.g. that new data is available. A global variable counts
the number of running threads. The race condition occurs, if
several trigger-consumer modify this variable simultaneously.

The second example, the CVE-2014-0196 benchmark is
based on a bug3 in a Linux kernel module, which has only been
discovered very recently. Slightly simplified, a race condition
could lead to an erroneous value in a variable that counts how
much space remains in a buffer, which can subsequently result
in a buffer overflow. This can lead to memory corruption, and
exploits have been published that allow crashing the system
or gaining root access. We have fed the relevant part of the
kernel module’s code (150 lines of code) to Atoss.

Finally, the last example (linux_tg3) is based on a bug4

found in the Broadcom Tigon3 (TG3) ethernet driver. In the
retrieval function for hardware statistics, the driver retrieves
the statistics from the device and stores it into a buffer. Since
the tg3 driver updates the hardware statistics in a non-atomic
way, the state of the statistics can get inconsistent.

For all three real-world examples, we did not have to add
any specification, but just relied on the implicit specification
given by serializability. Within just a few seconds, Atoss was
able to find a fix. For CVE and TG3, the computed fix matches
the “official” fix that has been made by the kernel community.
For IIO our tool found a slightly different fix.

When comparing FixSwitches with AtomConstr, there is
no clear winner. Each algorithm is faster for some examples. It
should be noted that both algorithms always found a globally
minimal set of atomic sections for all our benchmarks.

VI. CONCLUSION

We have presented a new approach to synthesis of syn-
chronization for concurrent programs. Using uninterpreted
functions, we are able to efficiently abstract details of the
program that are irrelevant for concurrency issues. We have
shown experimentally that this abstraction is more efficient
than just using integer arithmetic without any abstraction.
Also, we are able to handle benchmarks that would not have
been feasible at all, using integer arithmetic.

Moreover, we have demonstrated that this approach can
be applied to real-world concurrency issues, such as race
conditions in kernel modules. In particular, the applicability
of our approach is supported even further by a very low
entry barrier. We do not require designers to write a formal
specification. They can simply run our tool on their code as
it is, and still detect and fix concurrency issues.

Due to this encouraging results, we plan to do future
work on several improvements and optimizations. First, we
would like to add support for commutative and associative
(yet still uninterpreted) functions, to improve the abstrac-
tion/expressibility trade-off. This should lead to a performance
boost for benchmarks where the order of operations is not
relevant for the final result. Second, we note that in practical

3https://bugzilla.redhat.com/show bug.cgi?id=1094232
4http://git.io/7wWrKw

examples, concurrency bugs are usually limited to a few lines
of code only. Thus, we would like to be able to automatically
disregard program parts that do not contain any concurrency
bugs, by abstracting them with uninterpreted functions. This
should improve scalability so that we could deal more easily
with even larger real-world examples.

REFERENCES

[1] L. Bachmair, I. V. Ramakrishnan, A. Tiwari, and L. Vigneron. Con-
gruence closure modulo associativity and commutativity. In FroCoS’00,
LNCS 1794, 2000.

[2] R. Bloem, R. Drechsler, G. Fey, A. Finder, G. Hofferek, R. Könighofer,
J. Raik, U. Repinski, and A. Sülflow. FoREnSiC - an automatic
debugging environment for C programs. In HVC’12, LNCS 7857.
Springer, 2012.

[3] R. E. Bryant, S. M. German, and M. N. Velev. Processor verification
using efficient reductions of the logic of uninterpreted functions to
propositional logic. ACM Trans. Comput. Log., 2(1):93–134, 2001.

[4] J. R. Burch and D. L. Dill. Automatic verification of pipelined
microprocessor control. In CAV’94, LNCS 818. Springer, 1994.

[5] P. Cerný, T. A. Henzinger, A. Radhakrishna, L. Ryzhyk, and T. Tarrach.
Efficient synthesis for concurrency by semantics-preserving transforma-
tions. In CAV’13, LNCS 8044. Springer, 2013.

[6] S. Cherem, T. M. Chilimbi, and S. Gulwani. Inferring locks for atomic
sections. In PLDI’08. ACM, 2008.

[7] E. M. Clarke and E. A. Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Logic of
Programs. Springer, 1981.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[9] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In TACAS’04, LNCS 2988. Springer, 2004.

[10] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. VCC: A practical system for
verifying concurrent C. In TPHOLs’09, LNCS 5674. Springer, 2009.

[11] L. Cordeiro and B. Fischer. Verifying multi-threaded software using
SMT-based context-bounded model checking. In ICSE’11. ACM, 2011.

[12] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS’08, 2008.

[13] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test
them. In IPDPS’03. IEEE, 2003.

[14] M. K. Ganai and A. Gupta. Efficient modeling of concurrent systems
in BMC. In SPIN’08, LNCS 5156. Springer, 2008.

[15] G. Hofferek and R. Bloem. Controller synthesis for pipelined circuits
using uninterpreted functions. In MEMOCODE’11. IEEE, 2011.

[16] G. Hofferek, A. Gupta, B. Könighofer, J.-H. R. Jiang, and R. Bloem.
Synthesizing multiple boolean functions using interpolation on a single
proof. In FMCAD’13. IEEE, 2013.

[17] U. Junker. Quickxplain: Preferred explanations and relaxations for over-
constrained problems. In AAAI’04. AAAI Press / The MIT Press, 2004.

[18] V. Kahlon. Automatic lock insertion in concurrent programs. In
FMCAD’12. IEEE, 2012.

[19] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[20] A. Pnueli, O. Strichman, and M. Siegel. The code validation tool CVT:
Automatic verification of a compilation process. STTT, 2(2):192–201,
1998.

[21] I. Rabinovitz and O. Grumberg. Bounded model checking of concurrent
programs. In CAV’05, LNCS 3576. Springer, 2005.

[22] R. Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1),
1987.

[23] A. Solar-Lezama, C. G. Jones, and R. Bodı́k. Sketching concurrent data
structures. In PLDI’08. ACM, 2008.

[24] M. T. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of
synchronization. In POPL’10. ACM, 2010.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 42

Interpolation with Guided Refinement: revisiting

incrementality in SAT-based Unbounded Model

Checking

G. Cabodi, M. Palena, P. Pasini

Dipartimento di Automatica ed Informatica

Politecnico di Torino - Torino, Italy

Email: {gianpiero.cabodi, marco.palena, paolo.pasini}@polito.it

Abstract—This paper addresses model checking based on SAT
solvers and Craig interpolants. We tackle major scalability
problems of state-of-the-art interpolation-based approaches, and
we achieve two main results: (1) a novel model checking al-
gorithm; (2) a new and flexible way to handle an incremental
representation of (over-approximated) forward reachable states.
The new model checking algorithm (IGR: Interpolation with
Guided Refinement), partially takes inspiration from IC3 and
interpolation sequences. It bases its robustness and scalability on
incremental refinement of state sets, and guided unwinding/sim-
plification of transition relation unrollings. State sets, the central
data structure of our algorithm, are incrementally refined, and
they represent a valuable information to be shared among related
problems, either in concurrent or sequential (multiple-engine or
multiple property) execution schemes. We provide experimental
data, showing that IGR extends the capability of a state-of-the-art
model checker, with a specific focus on hard-to-prove properties.

I. INTRODUCTION

Craig interpolants (ITPs for short) [1], [2], introduced by

McMillan [3] in the Unbounded Model Checking (UMC)

field, have shown to be effective on difficult verification

instances. Though recently challenged by new techniques

(IC3, Incremental Construction of Inductive Clauses for In-

dubitable Correctness [4]), our experience within the field of

HWMCC competitions [5] and industrial co-operations shows

that interpolation-based approaches still play an important role

within a portfolio-based tool.

From a high-level Model-Checking perspective, Craig in-

terpolation is an operator able to compute over-approximated

images. The approach can be viewed as an iterative refine-

ment of proof-based abstractions, to narrow down a proof to

relevant facts. Over-approximations of the reachable states are

computed from refutation proofs of unsatisfied BMC-like runs,

in terms of AND/OR circuits, generated in linear time and

space, w.r.t. the proof.

Craig interpolants most interesting features are their com-

pleteness and the automated abstraction mechanism. Whereas

one of their major challenges is the inherent redundancy of

interpolant circuits, as well as the need for fast and scalable

techniques to compact them. Improvements over the base

method [3] were proposed in [6], [7], [8], [9], [10] and [11],

1This work was supported in part by SRC contract 2012-TJ-2328.

in order to push forward applicability and scalability of the

technique.

Interpolant compaction is a potential approach that we

have specifically addressed in [12]. We follow here a second

track of research: alternative ITP-based traversal schemes for

model checking algorithms, under the underlying purpose of

incrementally computing state sets and reducing the com-

plexity of their computation. We also follow the idea of

incrementality in order to support optimal data structures

for the verification of multiple properties, and for a tighter

integration with counterexample- and/or proof-based [13], [14]

abstraction/refinement approaches.

A. Contributions

The main contributions of this work are: (1) A novel model

checking algorithm based on interpolation and characterized

by: incremental computation of state sets, guided deployment

and simplification of transition relation unrollings; (2) Internal

optimizations to image computation, exploiting the incremen-

tal state representation; (3) A new and flexible way to compute

and refine state set representations.

B. Related works

Our work is related to many recent papers on SAT-based

Model Checking. Among others, let us mention that the idea

of guided search and refinement is clearly present in some

past BDD-based works (see for instance [15]), in IC3 [4], as

well as in interpolation sequences (ITPSEQ [16], [17]). More

recently, Vizel et al. [18] have proposed Dual Approximated

Reachability (DAR), an evolution of interpolation sequences

that considers mixing forward and backward reachability. Our

approach takes ideas from all above works, it is based on

interpolation, it computes just forward approximations of state

sets, which allows us to potentially reuse them for multiple

properties (or sub-properties) of the same model.

Our scheme of incremental refinement of state sets takes

equal inspiration from IC3 and ITPSEQ. Compared to IC3, we

represent state sets by circuits instead of clauses, and our state

sets relax inductiveness constraints. Compared to interpolation

sequences, though our refinement scheme is similar, we never

compute an interpolation sequence from a single SAT run (and

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 43

proof), but we activate sequences of standard interpolation

and/or approximate image calls.

Many other internal details, at the level of SAT and circuit-

based reasoning, take inspiration from the above, as well

as other existing works. Let us mention for instance clause

propagation by pushing, redundancy removal by subsumption,

that we brought from IC3 and re-implemented on circuit-based

(AIG) representations.

C. Outline

Section II introduces background notions and notation about

BMC and UMC, SAT-based Craig interpolant Model Check-

ing, IC3. Sections III, IV, V introduce our contributions.

Section III discusses incremental state sets in interpolation,

section IV introduces base concept on guiding cones through

state sets, section V presents the overall IGR algorithm. Sec-

tion VII discusses the experiments we performed. Section VIII

concludes with some summarizing remarks.

II. BACKGROUND

A. Model and Notation

We address systems modeled by labeled state transition

structures and represented implicitly by Boolean formulas.

From our standpoint, a system M is a triplet M = (S, S0, T),
where S is a finite set of states, S0 ⊆ S is the set of initial

states, and T ⊆ S × S is a total transition relation. The

system state space is encoded with an indexed set of Boolean

variables X = {x1, . . . , xn}, so that a state s ∈ S corresponds

to a valuation of the variables in X , and a set of states can

be represented with a Boolean formula over X . We use the

primed notation (X ′) for the next state of a variable (so a

transition relation is T (X, X ′)). Whenever more time frames

are involved, we use a superscript notation: e.g., in circuit

unrollings, we use X i for the X variables instantiated at the i-
th time frame. Support variables will be omitted for simplicity

when easily guessed from the context. A literal is a Boolean

variable or its negation. A clause is a disjunction of literals. A

CNF formula is a conjunction of clauses. Most modern SAT

solvers [19], [20] adopt clauses as their main representation

and manipulation formalism for Boolean functions. Given a

Boolean formula F, whenever we need to explicitly indicate

its before/after version, w.r.t. an evaluation (e.g., a refinement

step), we use a −1 superscript for the before version: F−1.

We will use overlined letters for arrays of functions: e.g.,

F = (F0,F1, ...).

B. Bounded and Unbounded Model Checking

Given a sequential system M and an invariant property

p, SAT-based BMC [21] is an iterative process to check the

validity of p up to a given bound. To perform this task, the

transition relation T is unrolled k times

T k(X0..k) =
∧k−1

i=0 T (X i, X i+1)

in order to implicitly represent all state paths of length k. BMC

tools use SAT checks such as:

bmck(X0..k) = S0(X0) ∧ T k(X0..k) ∧∨k
i=0 ¬p(X i)

to look for counterexamples (of length ≤ k) that start from

the initial states S0 and falsify p. The same formula can be

rewritten, in a simpler form, by omitting support variables, as

follows:

bmck = S0 ∧ T k ∧∨k
i=0 ¬p

Though BMC tools are effective at finding bugs, their verifi-

cation method is not complete. Therefore, specific techniques

are required in order to support Unbounded Model Checking

(UMC). The ability to check reachability fix-points and/or

to find inductive invariants, is thus the main difference, and

additional complication, between BMC and UMC.

C. Craig Interpolants

Let A and B be two inconsistent Boolean formulas,

i.e., such that A ∧ B ≡ ⊥. An ITP I for (A, B) is a

formula such that: (1) A ⇒ I , (2) I ∧ B ≡ ⊥, and

(3) supp(I) ⊆ supp(A) ∩ supp(B).

INTERPOLANTMC (S0, T , ¬p)
k = 0
do

Conek = CONEUNROLL(¬p, T , k)
res = FINITERUN (S0, T , Conek)
k = k + 1

while (res = undecided)
return (res)

FINITERUN (S0, T , Cone)
if SAT(S0 ∧ T ∧ Cone) return (reachable)
R = S0

while (⊤)
Image = ITP(R ∧ T , Cone)
if (Image = undefined)

return (undecided)
if (Image ⇒ R) return (unreachable)
R = R ∨ Image

Fig. 1. Interpolant-based Verification.

An interpolant I = ITP(A, B) can be derived, as an

AND/OR circuit, from the refutation proof of A ∧ B.

McMillan [3] proposed an effective fully SAT-based Un-

bounded Model Checking algorithm, exploiting interpolants,

as sketched in Figure 1.

Routine FINITERUN operates a forward traversal, where

interpolation is used as an over-approximate image operator.

The degree of accuracy or abstraction of the operation is tied

to the bound K of the Cone0..k transition relation unrolling.

Whenever the product (S0∧T ∧Cone) is UNSAT, we say that

S0 and Cone are mutually adequate. The function may end

up with three possible results:

• reachable, if it proves ¬p reachable in k steps, hence the

property has been disproved;

• unreachable, if the approximate traversal using the

IMG
+
Adq image computation reaches a fix-point. In this

case the property is proved;

• undecided, if ¬p intersects the over-approximate state

sets. Then, k in increased for a new FINITERUN call.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 44

Routine INTERPOLANTMC, on top of FINITERUN, loops

through increasing k bound values. The previous algorithm

is sound and complete [3].

D. IC3

IC3 [4] is based on incrementally refining and extending

a sequence F1, ...,Fk of sets of reachable states (bounded

invariants) represented by sets of clauses, under the following

rules:

F0 = S0

Fi ⇒ Fi+1, for1 ≤ i ≤ k − 1
Fi ⊇ Fi+1 as sets of clauses, for1 ≤ i ≤ k − 1
Fi ∧ T ⇒ Fi+1, for 1 ≤ i ≤ k − 1
Fi ⇒ p.

The introduction of IC3 [4] suggested a different way

to compute information about reachable states, as (unlike

other ITP-based approaches) IC3 requires no unrolling of the

transition relation. One of the major contributions of IC3 is

an inductive reasoning, where induction is exploited under

stepwise assumptions-assertions. IC3 is incremental in that

it finds inductive subclauses of the negations of states. The

main limitation of IC3 is the potential clause-based state set

enumeration. Some interesting ideas of IC3, that partially

influenced our work, are:

• the incremental representation of state sets;

• the push operation, that possibly re-uses clauses from

inner state sets to outer ones;

• redundancy removal by subsumption.

III. INCREMENTAL STATE SETS IN ITP

In this section we describe our model of incremental state

sets. Instead of directly introducing the overall IGR algorithm

(see section V), we just propose here some modifications to

the standard interpolation algorithm of [3], that would allow

reusing and refining previously computed interpolants.

As already pointed out, incremental state sets are present in

ITPSEQ [16], [17] and DAR [18]. Compared to those works,

our approach, as described in the sequel, is much closer to

standard interpolation. More in detail:

• we just work on approximations of forward reachable

states, with no attempt to mix forward and backward state

sets (as in DAR);

• we keep the standard interpolation scheme, extended by

saving and reusing previously computed state sets;

• we always refine (i.e., strengthen) state sets, which does

not prevent us from possibly simplifying their represen-

tation by using ad–hoc redundancy removal.

We use for state sets a notation taken from IC3 and ITPSEQ.

F = F1, ...,Fk is a sequence of sets of reachable states

represented by circuits (AIGs) instead of sets of clauses. Let

RE
i represent the set of states reachable in exactly i steps, and

Ri = ∪j=0..iRE
j the sets of all states reachable in at most i

steps. Ri includes all previous state sets, whereas RE
i does

not necessarily.

Our implementation supports both versions:

RE
i ⇒ Fi

Ri ⇒ Fi

the choice being a user selected option1. On the one hand, the

fully inclusive (Ri) representation has nice properties, which

are at the base of the IC3 inductive reasoning. On the other

hand, state set strengthening is generally more powerful using

RE
i . In the sequel we will assume the first (non inclusive)

model. So our assumptions for the Fi sets are the following:

F0 = S0

Fi(X) ∧ T (X, X ′) ⇒ Fi+1(X ′), for1 ≤ i ≤ k − 1

In order to represent an incremental refinement of Fi sets,

we use notation F−1
i for denoting the version of Fi prior

to refinement. A refinement of F−1
i is thus the result of a

strengthening step, such that: Fi ⇒ F−1
i .

INCRITPMC (S0, T , ¬p)
k = 0

F = (S0)
do

Conek = CONEUNROLL(¬p, T , k)
res = INCREMENTALFINITERUN (F, T , Conek)
k = k + 1

while (res = undecided)
return (res)

INCRFINITERUN (F, T , Cone)
if SAT(F0 ∧ T ∧ Cone) return (reachable)
R = F0

i = 0
while (⊤)

if (Fi+1 = void) Fi+1 = ⊤
Image = IMGREF(Fi, T , Cone,Fi+1)
if (Image = undefined)

return (undecided)
Fi+1 = Image
if (Fi+1 ⇒ R) return (unreachable)
R = R ∨ Fi+1

i = i + 1

IMGREF (Fi, T , Cone, F−1
i+1)

C = SIMPLIFY (Cone,F−1
i+1)

Image = ITP(Fi ∧ T , C)
if (Image = undefined) return (Image)
return (Image∧ SIMPLIFY (F−1

i+1, Image)

Fig. 2. Interpolant-based Image with refinement.

Figure 2 shows a variant of the algorithm in Figure 1. We

explicitly use F to represent state sets. F is initialized to an

empty array, with the exception of F0 = S0. The standard

interpolation operator is replaced here by IMGREF. In this

new operator interpolation is preceded by cone simplification,

based on previously available state sets, and followed by a

refinement step. Refinement is a strenghtening step, done by

1TheRi option is internally handled by properly transforming the transition
relation.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 45

conjoining the previous set with a new term. This is done

by embedding a simplification step. SIMPLIFY is based on

the general notions of redundancy removal under external

or observability don’t cares. Strictly speaking, whenever two

functions are conjoined, either one could be pre-simplified

using the other one as care:

A ∧B = A ∧ SIMPLIFY(B, A) (1)

BDDs offered nice operators (cofactor, constrain, re-

strict [22]) for function simplification, that have no counter-

part in gate-based rapresentations. Though many redundancy

removal operators have been proposed, our experience shows

that most of them are too expensive (and poorly scalable). As

we need a fast operator, we limit ourselves to equivalences

involving state variables, exploited for simplifications based

on circuit merging.

We now prove that incrementality is guaranteeing the cor-

rectness of the Model Checking procedure. The proof is based

on Theorem 1, stating that IMGREF (including the refinement

step) is returning a correct over-approximated image.

Theorem 1 IMGREF is correct Fi ∧ T ⇒ IMGREF (Fi, T ,

Cone, F−1
i+1)

Proof. Let us start by the observation that both the previous

F−1
i+1 (assumed as ⊤ if not yet available) and Image in

IMGREF are implied by the exact image.

(a) Fi ∧ T ⇒ F−1
i+1

(b) Fi ∧ T ⇒ Image

(a) is true because Fi is a strengthening of its previous version

F−1
i (Fi ⇒ F−1

i), so its image implies the image of F−1
i .

(b) comes from Image being an interpolant. By conjoining

(a) and (b), we can derive:

(c) Fi ∧ T ⇒ F−1
i+1 ∧ Image

From the definition of the SIMPLIFY operator 1:

(d) Image ∧ SIMPLIFY(F−1
i+1, Image) ≡ Image ∧ F−1

i+1

The thesis comes from combining (c) and (d).

IV. GUIDED CONE

Let us identify a refinement step as a strengthening of a

state set F−1
i+1, such that the new version implies the previous

one: (Fi+1 → F−1
i+1). We describe here how incrementality can

exploit the fact that any subset of adequate backward cones

can be used for refinement, based on two observations: (A)

convergence of the approach is guaranteed by the fact that at

worst a full cone of bound equal to the diameter is eventually

used (see [3]), or the full enumeration of used cone subsets

could completely cover the space backward reachable from the

target (¬p) (see [4]); (B) performance issues require a good

balance between the opposite needs, to (1) keep small cones,

for easier BMC-like SAT checks, and (2) to avoid activating

too many refinement steps. We also need to avoid using cones

that do not help refining previously computed state sets.

Let us thus start from the observation that any (subset of

a) backward cone is acceptable by a refinement step (a call

to IMGREF), as the cone is not required by the proof of

Theorem 1. Of course, no refinement (Fi+1 = F−1
i+1) could

come from a wrongly chosen cone, leading to explosion in

the number of iterations. As an extreme option, any state

cube backward reachable from the target (or known not to

be forward reachable) could be used, as in IC3. Though cone

subsetting is an option in view of scalability, it is not a

primary focus of this work. Cone partitioning and/or subsetting

would obviously reduce the size and depth of BMC-like

checks, whose number whould increase. In this paper limit

ourselves to cone simplification and guided rewinding/unwind-

ing, see IV-B, exploiting previously computed F−1 whenever

available in order to:

• simplify Cone, using available F−1 sets (in other words,

restricting cones to go into the known state set rings);

• drive Conek computation to a proper k depth, i.e., the

minimum required in order to produce a strengthening.

A. Cone simplification

Whenever we are computing the image of Fi, exploiting

previously computed F−1
j (j > i), we can use all available

F−1
j as care sets for Cone simplification, based on the fact

that the image will be conjoined with F−1
i+1.

So, Conek in IMGREF can be replaced by

FSIMPLIFY(Conek, F, i + 1), under the constraint that:

FSIMPLIFY(Conek,F−1, j) ∧ F−1
j ≡ Conek ∧ F−1

j

A straightforward application of the previous formula is based

on the so called latch correspondences, i.e., couples of latches

that are known to be equivalent in F−1
j . For all of them, latches

can be merged in F−1
j . More formally, for each couple of

state variables (xp, xq) such that F−1
j ⇒ (xp ↔ xq), the

substitution xp → xq can be done in Conek. A similar opera-

tion can be done for all latch correspondences at intermediate

transition relation boundaries in Cone. So for any known F−1
l

(j < l < j + k), implied equivalences can be used to simplify

Cone.
A proof of correctness of the above steps is omitted for

conciseness.

B. Guiding cones through state sets

Whenever INCREMENTALFINITERUN hits Conek (a pos-

sibly false counterexample) at step i, standard interpolation

would expand the cone by incrementing k, possibly by more

than 1, and restart a new run from the initial state F0.

Different ideas are followed in ITPSEQ and DAR, where

refinements can be triggered based on BMC-like runs with

growing depth. IC3, instead, drives refinements based on a

prioritized selection of backward reachable cubes. In IGR,

we follow two directions, that share the common goal of

potentially expanding, by adding new frames, and refining,

by strengthening, F:
• resuming forward traversal (and state refinements) with a

smaller cone;

• restarting a new traversal at an intermediate step, such

that a strengthening of the current F is guaranteed.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 46

1) Cone Rewinding: We call refinement sequence an it-

erated tail of INCREMENTALFINITERUN, that optionally re-

sumes, after hitting Conek at iteration i, by iteratively using

cones with decreasing bounds. The operation is inspired by

interpolation sequences, with a specific reference to [17].

More formally, let us assume that:

Fi ∧ T ∧ Conek 6≡ ⊥
We could resume the forward iteration using Conek−1, as it

is guaranteed that:

Fi ∧ T ∧Conek−1 ≡ ⊥ (2)

based on the observation that Fi ∧ Conek ≡ ⊥ and that

Conek = T ∧ Conek−1. We could thus operate up to

k iterations, until Cone0, and generate or refine state sets

Fi+1..Fi+k. As an alternative, one could compute an interpola-

tion sequence, directly from a single BMC call on problem 2.

As observed in [17], we prefer an iterative computation of

interpolants starting from previously computed ones.

Any sub-setting of Conek, that guarantees unsatisfiability,

could be selected (instead of decrementing k). E.g., if the cone
is generated by a set of properties/targets, one could remove

the satisfied ones, and just keep the unsat subset.

2) Cone Unwinding: Given an abstract counterexample (a

cone hit) at iteration i, the cone rewinding strategy has the

effect of refining state sets from Fi+1 to Fi+k. Let us now

find a (minimal) unwinding of Conek that insures to refine

Fi and other ones at lower i values.
Starting from the observation that bmci+k 6≡ ⊥ (i.e., the

BMC problem of depth i + k is SAT) would confirm the ab-

stract counterexample as a concrete one, and that bmci+k = 0
would refute it, we can iteratively produce BMC problems of

increasing bound, starting from k, until we obtain UNSAT.

Let ν (0 < ν < i) be the minimum cone unwinding, from

Conek to Coneν+k, such that, with j = i− ν − 1:

Fj ∧ T ∧ Coneν+k ≡ ⊥ (3)

We can restart the next INCREMENTALFINITERUN from

Fj , using cone Coneν+k. From a more practical point of view,

we are unwinding Cone in a guided way through Fj state sets,

in order to fine the outermost one able to provide an UNSAT

BMC problem (against the unwinded Cone).
Alternative options, for the choices of j and ν, include going

to larger ν values, combined with j values such that j < i−ν,
and that Equation 3 is still UNSAT.

Overall, guided cone unwinding/rewinding allows us to

dynamically tune unrollings. In this respect, standard in-

terpolation is too rigid, as refinement is always done by

expanding cones and using them for newly restarted traversals.

ITPSEQ introduces incrementality, but with a fixed and rigid

scheme. Much more flexibility is present in DAR where local

and global strengthening techniques introduce the notion of

refinement just when and where needed. Although backward

refinement in DAR has similarities with our approach, it

is based on the idea of using over-approximated backward

reachable states when refining forward reachable ones. Our

approach, instead, is fully based on backward cones (i.e., T
unrollings), in order to represent the backward exact behavior.

V. IGR: INTERPOLATION WITH GUIDED REFINEMENT

We now describe the overall IGR model checking procedure

which combines the techniques mentioned in the previous

sections. Figure 3 shows the top level function IGRMC,

that iteratively chooses the bound k for an unwinded cone

and activates IGRFINITERUN. The latter is a variant of

INCRFINITERUN, that receives as additional parameters the

index i of the Fi state set where to start a forward traversal,

and the bound k, to be used for cone unwinding. The function

returns the index ihit of the state set where reachability hits

a cone. At each iteration, i and k are properly computed

by SEEKBESTUNSAT, starting from ihit and khit (related

to the previous abstract counterexample) Following the cone

unwinding strategy described in section IV-B, the cone bound

k is extended, and i is decremented, until an UNSAT BMC

check is obtained. As a side effect, function SEEKBESTUNSAT

also detects true failures whenever the unwinded cone hits

F0 (this check has been removed from IGRFINITERUN). The

overall task of IGRMC can thus be summarized as:

• Iteratively choose a starting Fi set and a cone Conek,

unwinded in a guided manner throughout the (abstract)

F sets. This is done by function SEEKBESTUNSAT;

• Start a new forward traversal (INCRFINITERUN), that

is expected to refine F and filter out the last (abstract)

counterexemple found within the Fihit
state set.

INCRFINITERUN, though heavily based on the skeleton

of FINITERUN and INCRFINITERUN (its variant supporting

incremental state sets), is more flexible in selecting the starting

point for a traversal and the backward cone:

• Traversals start at Fi, with i received as parameter (see

IGRMC), and reachable states are initialized as the union

of all F0..Fi state sets;

• The backward cone is not kept constant as in FINITERUN.

As in INCRFINITERUN, it is simplified exploiting F sets

at outer indexes. It is kept until an abstract counterexam-

ple is generated, or a maximum number of iterations is

reached. After that, Cone is rewinded by one time frame

at each iteration (see section IV-B).

Convergence is tested as in all interpolation-based ap-

proaches, based on set containment. The value of vari-

able ForceRewind is assigned as a set-up parameter that

heuristically controls activation of cone rewinding. Whenever

ForceRewind = 0, rewinding is always active, so the ap-

proach obtains a minimal refinement, and it mimics the effect

of interpolation sequences. High values of ForceRewind keep

the k value constant until a hit, a scheme much closer to

standard interpolation. We empirically observed that small

values are better at small sequential depths, as they can

produce more light-cost refinement steps.

Figures 4 and 5 report experimental data on a case study,

circuit INTEL015 from [5], that we selected among the ones

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 47

IGRMC (S0, T , ¬p)
ihit = khit = 0

F = (S0)
do

(res, i, k) = SEEKBESTUNSAT(¬p, T , ihit, khit)
if (res = reachable)

return (res)

(res, ihit, khit) = IGRFINITERUN (¬p, T , F, i, k)
while (res = undecided)
return (res)

IGRFINITERUN (¬p, T , F, i, k)
R =

⋃
l=0..i Fl

rewindEnabled = ⊥
while (⊤)

if (Fi+1 = {}) Fi+1 = ⊤
if (rewindEnabled ∧ k > 0) k = k-1

Conek = CONEUNROLL(¬p, T , k)

ConeF =FSIMPLIFY(Conek, F, i + 1)

Image = IMGREF(Fi ∧ T , ConeF ,Fi+1)
if (Image = undefined)

if (rewindEnabled) return (undecided, i, k)
rewindEnabled = ⊤

else
Fi+1 = Image
if (Fi+1 ⇒ R) return (unreachable, -, -)
R = R ∨ Fi+1

i = i + 1
if (i > ForceRewind) rewindEnabled = ⊤

SEEKBESTUNSAT(¬p, T , ihit, khit)
i = ihit

k = khit

while (i ≥ 0 ∧ SAT(Fi ∧ T ∧ CONEUNROLL(¬p, T , k)))
i = i− 1
k = k + 1

if (i < 0) return (reachable, -, -)
return (undecided, i, k)

Fig. 3. Interpolation with Guided Refinement.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80

B
M
C

b
o
u
n
d

(
i
+
k
)

Iterations

Std Itp
Igr A
Igr B

Fig. 4. BMC bound comparison in intel015, between standard interpolation
and IGR in two versions: Igr A (rewind always enabled), Igr B (rewind
disabled until hit).

where standard interpolation could be compared with IGR.

Figure 4 plots i + k, the sum of state set indexes (i) and

cone bounds (k). This is usually logged as an equivalent BMC

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

C
P
U

t
i
m
e

(
s
)

Iterations

Std Itp
Igr A
Igr B

Fig. 5. CPU time comparison in intel015, between standard interpolation, Igr
A and Igr B.

bound. ITERATIONS (on the X axis) indicate algorithm iter-

ations (with image computation). The standard interpolation

line clearly shows that BMC bounds grow linearly within

FINITERUN, and they restart from the newly adjusted cone

bound2 at new FINITERUN calls. The IGR A line plots a run of

IGR with cone rewinding always enabled: this means that the

iterative decrease of k compensates the increase of i, keeping
the BMC bound constant within IGRFINITERUN (except when

we reach k = 0). The IGR B line plots a run of IGR with cone

rewinding disabled until a BMC hit. In this case we observe

an initial increase of BMC bounds, followed by a phase with

constant BMC bound. Overall, IGR exploits its ability to avoid

restarting from low bounds and seeking for optimal restarts,

which can provide convergence at lower iteration indexes.

A comparison between IGR A and B shows that the latter

can converge in fewer iterations, due to its ability to increase

BMC bounds. However figure 5, that plots cumulative CPU

times, shows that IGR A can be faster.

Intuitively, guided and simplified cones in IGR can produce

cheaper BMC problems, as compared to standard interpo-

lation. IGR A benefits from triggering more, but possibly

simpler, refinement steps (SAT calls). Although this is a good

way to avoid highly expensive BMC problems, IGR B often

performs better in case of models with higher diameters (e.g.,

in the range of hundredths).

3) Other Implementation Issues: A few more points are

worth being noticed, as having an impact on performance:

• We implemented a light weight redundancy removal

procedure used for SIMPLIFY when applied to state sets,

inspired by clause subsumption. Whenever a set is a con-

junction of several terms, the procedure iteratively finds

redundant ones through an incremental SAT formulation;

• We implemented a SAT-based procedure able to partially

reuse and push forward components of Fi to Fi+1,

whenever Fi is a conjunction. This process, which is

similar to clause pushing in IC3, relies on an efficient

incremental SAT formulation.

2Following [7], we heuristically increment cone bounds by more that 1,
based on the depth of the previous FINITERUN run.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 48

VI. LAXY ABSTRACTION AND MULTIPLE PROPERTIES

Due to the fully incremental representation chosen for

reachable states, IGR can be tightly embedded in lazy ab-

straction, as well as multiple property verification loops.

Typical abstraction-refimenent loops [13], [14] are based

on the idea of looping through incremental model refine-

ments, and restarting a new model checking problem after

each new refinement step. Recent work [23] has explored

a tighter integration of a model checking algorithm (IC3)

within a lazy abstraction algorithm. As IGR is based on a

similar data structure (the Fi over-approximations of forward

reachable state sets), its integration within a lazy abstraction

loop is straightforward: Fi state sets can be inherited by all

refined models, as refinements can be considered as model

strengthening steps. Let M j and M j+1 be two abstract models

(after refinement steps j and j + 1). Let Rj
i and Rj+1

i be the

states reachable by them in i steps. As refinement strengthens

a model, Rj+1
i ⊆ Rj

i , so state set overapproximations for M j

also overapproximate states in M j+1.

A similar framework can be adopted in multiple property

verification, where Fi can be inherited and reused by all

properties under check on the same model. Reusability of

state sets is guaranteed here by sharing the same model over

different property checks.

Though we already implemented both the above mentioned

frameworks, their detailed description goes beyond the scope

of this paper.

VII. EXPERIMENTAL RESULTS

We implemented a prototype version of our methodology

on top of the PdTRAV tool [24], a state-of-the-art verification

framework. The experimental data in this section provide an

evaluation of the techniques proposed, as well as a comparison

with standard interpolation. Our experiments ran on a Quad-

core workstation, with 2.5 GHz CPU frequency and 16 GB of

main memory. We set time and memory limits to 1200 seconds

and 2 GB, respectively.

We performed an extensive experimentation on a se-

lected sub-set of publicly available benchmarks from the

HWMCC’12 and HWMCC’13[5] suites. We selected them

by excluding problems that PdTRAV could originally solve

in less than 1 minute, and those that we could not solve

with any technique (including the one presented here). It is

worth noticing that all of the selected benchmarks are from

industrial origin (IBM, Intel). In most cases, we operated a

pre-processing using the ABC tool for combinational and/or

sequential light weight optimizations, i.e., latch and signal

correspondence, rewriting and refactoring. For the intel bench-

marks, we also operated implicit invariant extraction and phase

abstraction.

Table I provides detailed data, showing (column Best ITP)

the best results we could obtain through standard interpolation,

without the techniques described in this paper. Column Best

IGR shows the best we could obtain with Igr, whereas column

BEST HWMCC shows best results attained during past HWM-

CCs. To this respect, it is worth noticing that time statistics

from competitions were measured on a different machine, with

a time limit of 900 seconds, by portfolio based (concurrent)

model checkers. In the Best ITP and IGR experiments we

used a single engine and we increased our time limit to 7200
seconds (2 hours), in an attempt to observe potentially difficult

problems.

Table I highlights IGR as a clear winner with respect to stan-

dard interpolation, in most challenging problems. Higher run-

nign times in some of the easier examples simply witness some

overhead for state set handling and cone winding/unwinding

phases. Overall, IGR proves more scalable. The comparison

with other engines is not as easy. To this respect it is worth

noticing that the best model checkers at HWMCCs highly

rely on aggressive transformational techniques, that seek to

pre-simplify problems under various equivalence-preserving

notions, before getting to Model Checking engines.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120

c
u
m
u
l
a
t
i
v
e

w
a
l
l

c
l
o
c
k

t
i
m
e

(
s
)

Benchmark Instances

All Engines
No IC3

No IC3 - No IGR

Fig. 6. Wall clock cumulative time comparison on hwmcc’12 instances solved
by PdTrav (concurrent multi-engine version), with all engines active, without
IC3, and without IC3 and IGR. Time limit 900 seconds per instance.

In order to gather more data, we did a second experimental

evaluation of IGR, extended to the full set of HWMCC’12

(single property track, including more and easier benchmarks

than HWMCC’13) benchmark instances. We repeated a com-

petition run with 900 seconds time limit, using our multi-

engine portfolio in three different setups: with the full set of

engines, excluding IC3 and excluding both IC3 and IGR.

The results are plotted in figure 6, which clearly confirms

IC3 as the most powerful engine. But it also shows a good

impact of IGR, as a relevant contribution to the portfolio. The

run with the full set of engines solved 116 problems, of which

47 were covered by IC3, and 10 by IGR. When disabling

IC3, the overall result decreased to 81, with IGR solving 18
problems. Data also show that IGR is still not oriented to fast

runs (within minutes). As seen in table I, a 2 hours timeout

better shows the gain of IGR over ITP.

VIII. CONCLUSIONS

We addressed the problem of optimizing interpolants for

SAT-based Unbounded Model Checking. Our main contri-

bution is to provide a new approach, that improves over

standard interpolation, by exploiting the ideas of incremental

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 49

Model Best IGR Best ITP Best HWMCC
Name #PI #FF #AIG Time Time Time # of Solver

6s8 86 396 3016 835.40 - 147.82 4
6s34 77 1565 11098 2002.76 - 87.18 9
6s35 77 1571 11504 525.54 - - 0
6s38 343 1931 10847 392.22 - 606.89 2
6s102 72 1108 7700 488.47 726.62 10.58 8
6s144 480 3337 45470 291.48 160.62 155.98 6
6s148 480 3337 45470 2011.54 1713.52 - 0
6s189 479 2436 39830 214.46 282.66 110.48 3
6s194 532 2131 13617 423.45 852.17 54.38 7
6s366r 86 1998 20560 612.28 - - 0
6s428rb093 410 3790 29084 746.75 - 273.34 2

intel010 1111 280 10156 200.91 265.70 96.37 3
intel011 1024 273 9362 190.73 899.89 440.09 4
intel015 1024 273 9362 130.30 - 272.22 3

6s160(*) 149 559 8716 97700.21 - - 0

TABLE I
RESULTS ON SELECTED HWMCC BENCHMARKS. COMPARING OUR BASIC VS. OPTIMIZED INTERPOLATION VERSIONS. (*) 6S160 WAS SOLVED WITHOUT

TIME LIMIT, USING LAZY ABSTRACTION (STANDARD INTERPOLATION WENT OUT OF MEMORY). THE # of Solver COLUMN REPORTS HOW MANY MODEL

CHECKERS SOLVED THE PROBLEM, OUT OF 21 (17) IN HWMCC’12 (HWMCC’13).

refinement and guidance through state sets. We experimentally

observed that the proposed optimizations have improved both

performance and scalability of our existing UMC approaches.

Albeit we need to put some extra effort in a better engineering

and overall integration of the proposed techniques, as well as

more experimental work, we deem that current experimental

data clearly witness the improvements attained.

REFERENCES

[1] W. Craig, “Three Uses of the Herbrand-Gentzen Theorem in Relating
Model Theory and Proof Theory,” The Journal of Symbolic Logic,
vol. 22, no. 3, pp. 269–285, 1957.

[2] R. C. Lyndon, “An Interpolation Theorem in the Predicate Calculus,”
Pacific Journal of Mathematics, pp. 155–164, 1959.

[3] K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in
Proc. Computer Aided Verification, ser. LNCS, vol. 2725. Boulder,
CO, USA: Springer, 2003, pp. 1–13.

[4] A. R. Bradley, “Sat-based model checking without unrolling,” in VMCAI,
Austin, Texas, Jan. 2011, pp. 70–87.

[5] A. Biere and T. Jussila, “The Model Checking Competition Web Page,
http://fmv.jku.at/hwmcc.”

[6] K. L. McMillan and R. Jhala, “Interpolation and SAT-Based Model
Checking,” in Proc. Computer Aided Verification, ser. LNCS, vol. 3725.
Edinburgh, Scotland, UK: Springer, 2005, pp. 39–51.

[7] J. Marques-Silva, “Improvements to the implementation of Interpolant–
Based Model Checking,” in Proc. Correct Hardware Design and Ver-

ification Methods, ser. LNCS, vol. 3725. Edinburgh, Scotland, UK:
Springer, 2005, pp. 367–370.

[8] V. D’Silva, M. Purandare, and D. Kroening, “Approximation Refine-
ment for Interpolation-Based Model Checking,” in Verification, Model

Checking and Abstract Interpretation, ser. Lecture Notes in Computer
Science, vol. 4905. Springer, 2008, pp. 68–82.

[9] G. Cabodi, M. Murciano, S. Nocco, and S. Quer, “Boosting Interpolation
with Dynamic Localized Abstraction and Redundancy Removal,” ACM

Transactions on Design Automation of Electronic Systems, vol. 13, no. 1,
pp. 309–340, Jan. 2008.

[10] G. Cabodi, P. Camurati, and M. Murciano, “Automated Abstraction by
Incremental Refinement in Interpolant-based Model Checking,” in Proc.

Int’l Conf. on Computer-Aided Design. San Jose, California: ACM
Press, Nov. 2008, pp. 129–136.

[11] B. Li and F. Somenzi, “Efficient Abstraction Refinement in
Interpolation-Based Unbounded Model Checking,” in Tools and Algo-
rithms for the Construction and Analysis of Systems, vol. 3920, 2006,
pp. 227–241.

[12] G. Cabodi, C. Loiacono, and D. Vendraminetto, “Optimization tech-
niques for Craig Interpolant compaction in Unbounded Model Check-
ing,” in Proc. Design Automation & Test in Europe Conf. Grenoble,
France: IEEE Computer Society, Mar. 2013, pp. 1417–1422.

[13] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in CAV, 2000, pp.
154–169.

[14] A. Gupta, M. Ganai, Z. Yang, and P. Ashar, “Iterative Abstraction using
SAT-based BMC with Proof Analysis,” in Proc. Int’l Conf. on Computer-
Aided Design, San Jose, California, Nov. 2003, pp. 416–423.

[15] G. Cabodi, S. Nocco, and S. Quer, “Mixing Forward and Backward
Traversals in Guided-Prioritized BDD-Based Verification,” in Proc.
Computer Aided Verification, ser. LNCS, E. Brinksma and K. G. Larsen,
Eds., vol. 2102. Copenhagen, Denmark: Springer-Verlag, Jul. 2002, pp.
471–484.

[16] Y. Vizel and O. Grumberg, “Interpolation-Sequence based Model Check-
ing,” in Proc. Formal Methods in Computer-Aided Design, ser. LNCS,
vol. 2517. Austin, Texas, USA: Springer, Nov. 2009, pp. 1–8.

[17] G. Cabodi, S. Nocco, and S. Quer, “Interpolation Sequences Revisited,”
in Proc. Design Automation & Test in Europe Conf. Grenoble, France:
IEEE Computer Society, Mar. 2011, pp. 316–322.

[18] Y. Vizel, O. Grumberg, and S. Shoham, “Intertwined Forward-Backward
Reachability Analysis Using Interpolants,” in Tools and Algorithms for
the Construction and Analysis of Systems, ser. LNCS, vol. 7795. Rome,
Italy: Springer, Mar. 2013, pp. 308–323.

[19] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an Efficient SAT Solver,” in Proc. 38th Design Automation
Conf. Las Vegas, Nevada: IEEE Computer Society, Jun. 2001.

[20] N. Eén and N. Sörensson, “The Minisat SAT Solver, http://minisat.se,”
Apr. 2009.

[21] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic
Model Checking using SAT procedures instead of BDDs,” in Proc. 36th

Design Automation Conf. New Orleans, Louisiana: IEEE Computer
Society, Jun. 1999, pp. 317–320.

[22] O. Coudert, C. Berthet, and J. C. Madre, “Verification of Sequential
Machines Based on Symbolic Execution,” in Lecture Notes in Computer

Science 407, Berlin, Germany, 1989, pp. 365–373.
[23] Y. Vizel and S. S. O. Grumberg, “Lazy Abstraction and SAT-Based

Reachability in Hardware Model Checking,” in Proc. Formal Methods

in Computer-Aided Design. Cambridge, UK: IEEE, Oct. 2012, pp.
173–181.

[24] G. Cabodi, S. Nocco, and S. Quer, “Benchmarking a model checker for
algorithmic improvements and tuning for performance,” Formal Methods

in System Design, vol. 39, no. 2, pp. 205–227, 2011.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 50

Efficient Verification of Periodic Programs using
Sequential Consistency and Snapshots

Sagar Chaki
Software Engineering Institute

Email: chaki@sei.cmu.edu

Arie Gurfinkel
Software Engineering Institute

Email: arie@cmu.edu

Nishant Sinha
IBM Research

Email: nishant.sinha@in.ibm.com

Abstract—We verify safety properties of periodic programs,
consisting of periodically activated threads scheduled preemp-
tively based on their priorities. We develop an approach based on
generating, and solving, a provably correct verification condition
(VC). The VC is generated by adapting Lamport’s sequential
consistency to the semantics of periodic programs. Our approach
is able to handle periodic programs that synchronize via two
commonly used types of locks – priority ceiling protocol (PCP)
locks, and CPU locks. To improve the scalability of our approach,
we develop a strategy called snapshotting, which leads to VCs
containing fewer redundant sub-formulas, and are therefore
more easily solved by current SMT engines. We develop two
types of snapshotting – SS-ALL snapshots all shared variables
aggressively, while SS-MOD snapshots only modified variables.
We have implemented our approach in a tool. Experiments on a
benchmark of robot controllers indicate that SS-MOD is the best
overall strategy, and even outperforms significantly the state-of-
the art periodic program verifier prior to this work.

I. INTRODUCTION

Periodic programs (PPs) are used frequently to control
safety-critical systems. Thus, verifying safety (i.e., reachabil-
ity) properties of PPs is an important problem [1]. They are
inherently concurrent, and model checking them is difficult to
scale. In recent years, a number of projects [2], [3], [4], [5],
[6] have explored symbolic bounded model checking of multi-
threaded programs (MTPs), i.e., concurrent programs with
shared memory communication. Specifically, given a MTP P
and a safety property φ, the approach is to verify P |= φ using
two steps: (i) VCGEN: generate a verification condition (VC),
a formula V C(P, φ) that is satisfiable iff P 6|= φ; (ii) SAT:
check if V C(P, φ) is satisfiable using an SMT solver. We
call this approach “memory consistency based BMC” (BMC-
MC), since the construction of V C(P, φ) is based on a specific
memory consistency model.

A PP consists of a finite set of tasks, each executing
in its own thread. However, a PP differs from a MTP in
several verification-relevant ways. First, each task consists of
an infinite sequence of jobs, activated periodically. A task’s
thread remains inactive between the completion of a job
and the activation of the next one. Second, each task has
a priority, that is inherited by its thread. Among all active
threads, the one with the highest priority is scheduled – thus,
scheduling is deterministic. Scheduling is also preemptive,
a newly activated thread with higher priority preempts the
currently executing one. Third, each task has a worst-case-
execution-time (or, WCET) i.e., the maximum time between

𝐽1

𝐽2 𝐽3

0 2

𝜏1

𝜏2

(𝑎)
1 3 4 5 6 7 8

0 2
(𝑏)

1 3 4 5 6 7 8

0 2
(𝑐)

1 3 4 5 6 7 8

0 2
(𝑑)

1 3 4 5 6 7 8

Fig. 1. (a) Example periodic program; (b) legal execution; (c,d) illegal
executions; x-axis denotes time; y-axis denotes priority of executing job.

the arrival and completion of any job of the task, assuming it
is not preempted. Finally, each task has an arrival time, i.e.,
the activation time of its first job.

Note that, even though scheduling of a PP is deterministic,
its overall behavior is non-deterministic, for two reasons. First,
WCET is only an upper-bound on execution time. Whether a
job J is preempted or not by another job J ′, depends on the ac-
tual execution time of J , which is non-deterministic. Second,
we abstract away individual statement execution times, and
only require that the job’s WCET is not exceeded. Therefore,
statements execute for a non-deterministic amount of time, and
the exact preemption location in the control flow of J at which
it is preempted by J ′ is non-deterministic.

We focus on “time-bounded verification” of PPs, i.e., veri-
fying a safety property of a PP assuming it executes for time
T . The time-bound fixes the number of jobs for each task,
and makes the verification amenable to BMC-MC. Assuming
a bound on the execution time is a useful restriction since it
occurs naturally in safety-critical systems. For example, once a
crash is perceived, an air bag must deploy within a time bound.
Figure 1(a) shows a time-bounded PP P with two tasks – τ1
and τ2 – with priorities 1 and 2, periods 8 and 4, WCETs 2
and 1, and arrival times 0 and 1, respectively, and a time bound
T = 8. Figure 1(b) shows a legal execution of P . In this paper,
we develop a BMC-MC approach for time-bounded verification
of PPs. We address two challenges – correctness and efficiency
– and perform an empirical evaluation, as discussed next.

Correctness of VCs. In current BMC-MC approaches, the
construction of V C(P, φ) is based on Lamport’s notion of
sequential consistency [7], which we call SC-MT. However,
SC-MT is imprecise for PPs, and cannot be used for VC
generation. This imprecision arises from the combination of
priority-based scheduling, WCETs, and arrival times. Consider

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 51

the PP P shown in Figure 1(a). Note that if J2 preempts J1,
then J2 must complete before J1 can resume. Recall that SC-
MT assumes a non-deterministic scheduler, i.e., any active non-
blocked thread is allowed to execute. Thus the execution in
Figure 1(c) is impossible for the P , while it is allowed by
SC-MT. Similarly, due the arrival and WCETs of τ1 and τ2, it
is impossible for J3 to preempt J1. Therefore, the execution
in Figure 1(d) is illegal for P , while it is allowed by SC-MT.

Our first contribution is a new method to construct
V C(P, φ) based on a PP-specific notion of sequential con-
sistency. A satisfying assignment to V C(P, φ) induces an
event order corresponding to a legal execution of P . Previous
works [3], [5], [6] on memory-consistency based VC gener-
ation for MTPs leverage the concept of Lamport clocks [8],
which are symbolic integer-valued timestamps associated with
each program event (i.e., an access to a shared variable). These
timestamps order program events in a sequentially consistent
logical timeline. However, they are not sufficient to capture
all legal executions of PPs. To solve this problem, we propose
hierarchical timestamps, which not only capture the program
order and the write-read ordering as before, but also take into
account the priority-based preemption semantics of PPs.

Like MTPs, PPs protect access to shared variables via
locking. However, unlike MTPs, locks in PPs are implemented
by altering thread priorities. Our second contribution to deal
with two variants of such locks – Priority Ceiling Protocol
(PCP) locks [9], and CPU locks (another variant, the Priority
Inheritance lock [9], is beyond the scope of this paper). When
a thread acquires such a lock, its priority is raised, which
disables scheduling of other threads from which the shared
resource must be protected. When a thread releases a lock,
its priority is reduced correspondingly. To encode such locks,
we introduce priority-test-and-set (PTAS) operations, which
atomically test and update the set of acquired locks. We
formalize the semantics of PTAS operations, and show how to
implement PCP and CPU locks using them. We also update
V C(P, φ) to handle PTAS operations in a provably correct
manner. Further details are presented in Section IV.

Efficiency of Encoding. As observed in the BMC-MC liter-
ature [3], [4], [5], [10], verification conditions, if constructed
naively, are intractable for even state-of-the-art SMT solvers.
An effective strategy for generating tractable VCs is to reduce
the set of writes to a shared variable g that could be “observed”
by a read of g, where a read r observes a write w if w is the
most recent write to g prior to r. For PPs, we note that the
observable write sets for reads in successive jobs contain many
common write events from previous job instances, which leads
to a severely redundant encoding. Our third contribution is
an efficient encoding scheme for PPs which reduces the size
of observation sets via the idea of snapshots.

A snapshot ss of g, at a location l inside a task τ , reads
the current value of g in τ and then writes the same value
back atomically. Thus, by introducing a new atomic read/write
pair for g at l, ss prevents the reads in τ following l from
directly observing the writes to g prior to l. Snapshotting is
useful if multiple reads following l may observe the same (or

largely similar) set of prior writes: multiple write events prior
to l are effectively merged into a single write event at l. This
reduces the large (quadratic) number of write-read data flows
into a small (linear) number of flows, improving efficiency of
the encoding. To be beneficial, snapshots must be performed
for selective shared variables and locations. We explore two
snapshotting strategies: (i) SS-ALL: all shared variables are
snapshotted at the end of every job; (ii) SS-MOD: only shared
variables that could be modified by a job are snapshotted at
its end. Further details are presented in Section V.

Empirical Evaluation. Our final contribution is an im-
plementation of our approach in a tool called LLREK, and
empirical evaluation on a benchmark comprising of PPs that
implement controllers for LEGO Mindstorms robots. Our
results indicate that both SS-MOD and SS-ALL outperform SS-
NONE, with SS-MOD being the best overall strategy. In some
cases, SS-MOD is five times faster than SS-NONE. In other
cases, SS-MOD completes verification successfully while SS-
ALL and SS-NONE run out of memory. This work is part of
an ongoing project on developing efficient software model
checkers for periodic programs. We also compared LLREK
with REKH [11], the most advanced PP verifier developed
by the project prior to LLREK. On our benchmark, LLREK
outperforms REKH significantly (in some cases by a factor of
seven), and also solves many instances for which REKH runs
out of memory. Further details are presented in Section VI.

Related Work. There is a large body of work in verification
of logical properties of both sequential and concurrent soft-
ware (see [12] for a survey). However, these techniques ab-
stract away time completely, by assuming a non-deterministic
scheduler model. In contrast, we focus on periodic programs
where scheduling is non-deterministic, and influenced by both
thread priorities and timing.

A number of projects [13], [14] verify timed properties of
systems using discrete-time [15] or real-time [16] semantics by
abstracting away data- and control-flow completely. Instead,
we focus on the verification of real implementations of peri-
odic programs, and do not abstract data- and control-flow.

Verification of multi-threaded programs via BMC-MC [3],
[4], [5], [6] has also been studied by several researchers.
However, previous methods focus on constructing VCs for
MTPs. These methods are incorrect for PPs, as argued earlier.
The purpose of snapshotting is orthogonal to that of inter-
ference abstraction (IA) [5], commonly used in BMC-MC. IA
assigns symbolic values to existing reads to decouple them
from writes, while snapshotting introduces new symbolic reads
to merge data flows arising from multiple writes on a shared
variable into a single read/write unit. Merging allows the reads
in the following program fragment to observe a single data
source as opposed to a large number, thus improving the
efficiency of the symbolic encoding significantly.

Florian et al. [1] extend the explicit-state model checker
SPIN to verify periodic programs written in PROMELA. Our
focus is on the verification of periodic programs at the source
code level using BMC-MC, which is a symbolic approach.

Time-bounded verification of PPs via sequentialization was

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 52

proposed by Chaki et al. [17], and later extended to be
compositional [11]. However, sequentialization-based methods
for MTPs [18], [19], [20] typically rely on modeling context
switches (preemptions) for thread interleavings instead of ex-
ploiting memory consistency of read/writes. Sequentialization
has also been applied iteratively to verify PPs with priority
inheritance locks [21]. It is possible to extend the approach in
this paper in a similar manner, but this requires a non-trivial
modification to the encoding. Kidd et al. [22] have applied se-
quentialization to verify PPs, by using function calls to model
preemptions. Our encoding relies on memory consistency, and
does not model preemptions explicitly. Finally, applying naive
concurrency (i.e., MTP) verification to PPs result in virtually
100% of false positives, as explored in prior work [17], [11].

The rest of the paper is organized as follows. In Section II,
we present basic concepts and notation. In Section III we
present our basic construction of V C(P, φ). In Section IV,
we show how to augment V C(P, φ) to encode PCP and CPU
locks. In Section V we present snapshotting, and its two
variants. In Section VI we present our empirical evaluation,
and in Section VII, we conclude.

II. PRELIMINARIES

We assume an universe bounded by time T . A task τ is
a 5-tuple (J, π, P, C,A) where: (i) π is its priority; (ii) P is
its period; (iii) J is a sequence of T

P jobs; (iv) C > 0 is its
WCET; and (v) A ≥ 0 is its arrival time. A periodic program
P is a finite sequence of tasks. Consider a PP P = 〈τ1, . . . , τn〉
such that τi = (Ji, πi, Pi, Ci, Ai). We write Ji,j to mean the
the j-th job of the i-th task, i.e., Ji = 〈Ji,1, . . . , Ji,|Ji|〉. We
assume that tasks have: (i) distinct and mutually disjoint jobs,
i.e., (i, j) 6= (i′, j′) =⇒ Ji,j 6= Ji′,j′ ; and (ii) distinct
priorities i 6= i′ =⇒ πi 6= πi′ . Let RT i be the response
time of τi, i.e., the time required by any job of τi to complete,
assuming maximal preemption by other tasks. Note that RT i

is statically computable via Rate-Monotonic Analysis [23]. We
assume that the first job of τi always completes before time
Pi, i.e., Ai + RT i ≤ Pi. It can be shown that RT i ≥ Ci,
which implies that RT i > 0 and Pi > 0.

Job Orderings. Let J be the set of all jobs. We define
two relations @ (finishes-before) and ↑ (may preempt) over
J to characterize the order between jobs. Each job Ji,j has a
priority π(Ji,j) = πi, arrival time A(Ji,j) = Ai+(j−1)×Pi,
and departure time D(Ji,j) = A(Ji,j) +RTi. Then:

J1 @ J2 ⇐⇒ (π(J1) ≤ π(J2) ∧D(J1) ≤ A(J2)) ∨
(π(J1) > π(J2) ∧A(J1) ≤ A(J2)) (1)

J1 ↑ J2 ⇐⇒ π(J1) < π(J2) ∧A(J1) < A(J2) < D(J1)(2)

Note that J1 @ J2 means that J1 always completes before
J2 starts, and J1 ↑ J2 means that it is possible for J1 to
be preempted by J2. Since RT i ≤ Pi, earlier jobs of a task
always finish before later jobs of the same task, i.e., ∀i ∈
[1, n] � ∀1 ≤ j < j′ ≤ |Ji| � Ji,j @ Ji,j′ . Also A(J) < D(J).

States and Events of PPs. We assume a denumerable set G
of D-valued shared variables; D contains a distinguished value
⊥. Function I : G 7→ D maps shared variables to their initial

values. Let Z be the set of integers. An action α is a 4-tuple
(J, pc, η, g) and an event ε is a pair (α, v) such that J ∈ J ,
pc ∈ Z, η ∈ {r, w}, g ∈ G and v ∈ D. Let J(α) = J(ε) = J ,
π(α) = π(ε) = π(J), η(α) = η(ε) = η, g(α) = g(ε) = g, and
v(ε) = v. Events ((J, pc, r, g), v) and ((J, pc, w, g), v) denote,
respectively, that value v is read from and written to variable
g by job J at location pc.

Action (J, .) and event ((J, .),⊥) denote start of job J . For
α = (J, .), and ε = ((J, .),⊥), J(α) = J(ε) = J , π(α) =
π(ε) = π(J), η(α) = η(ε) = .. Similarly, action (J, /) and
event ((J, /),⊥) denote termination of job J . For α = (J, /),
and ε = ((J, /),⊥), J(α) = J(ε) = J , π(α) = π(ε) = π(J),
η(α) = η(ε) = /.

Note that we use different fonts for J to denote different
things. In general, J (or Jx) denotes a specific job, J (or Jx)
denotes a set of jobs, while J(·) is a function that maps actions
and events to their corresponding jobs.

Job Alphabet and Program Order. Each job J has an
alphabet of read actions Σr(J) ⊆ {J} × Z × {r} × G,
and write actions Σw(J) ⊆ {J} × Z × {w} × G. Let
Σ(J) = Σr(J) ∪ Σw(J) ∪ {(J, .), (J, /)}. Let PO(J) be a
partial order over Σ(J), representing control flow. We write
α

J→ α′ to mean (α, α′) ∈ PO(J). Thus, ∀α ∈ Σr(J) ∪
Σw(J) � (J, .) J→ α

J→ (J, /). Let J be a linearization of Σ(J)
consistent with PO(J), and ι(α) be the index of α in J. In
particular, ι(J, .) = 1, and ι(J, /) = |Σ(J)|.

Timed Event Sequences. The valid executions of periodic
programs are characterized by timed event sequences (TES).
Formally, a TES is a sequence 〈(ε1, t1), . . . , (εk, tk)〉 where εi
is an event, and ti is a real-valued timestamp. For TESs e1

and e2, e1 ⊕ e2 is the set of TESs obtained via their arbitrary
interleaving, and e1 � e2 is their concatenation. Operations ⊕
and � extend naturally to sets of TESs. Let PriorWr(e, i) be
the indices of events in e prior to εi that write to g(εi), i.e.,
PriorWr(e, i) = {j ∈ [1, i) | η(εj) = w ∧ g(εj) = g(εi)}.
Then, LastWr(e, i) is last value written to g(εi) prior to εi,
or I(g(εi)) if no such write exists, i.e., if PriorWr(e, i) = ∅
then LastWr(e, i) = I(g(εi)) else LastWr(e, i) = v(εm)
where m = max(PriorWr(e, i)).

Job Semantics. The semantics of J , denoted [[J]], is a
set of TESs. Formally, 〈(ε1, t1), . . . , (εk, tk)〉 ∈ [[J]] if: (i)
∀i ∈ [1, k] � J(εi) = J ; (ii) A(J) ≤ t1 < t2 < · · · <
tk ≤ D(J); and (iii) if ∀i ∈ [1, k] � εi = (αi, vi),
then the sequence of actions 〈α1, . . . , αk〉 respects the pro-
gram order PO(J), i.e., α1 = (J, .), αk = (J, /), and
∀i ∈ [1, k) � αi J→ αi+1. For example, suppose the body
of job J2 from our running example is described by the
control-flow-graph shown in Figure 2(c). Then [[J2]] contains
all TESs of the form 〈(((J2, .),⊥), t1), (((J2, 1, r, g), v1),
t2), (((J2, pc, w, g), v2), t3), (((J2, /),⊥), t4)〉 such that: (i)
1 ≤ t1 < t2 < t3 < t4 ≤ 2; (ii) (v1 < 0 ∧ pc = 3 ∧ v2 =
v1 + 7) ∨ (v1 ≥ 0 ∧ pc = 2 ∧ v2 = v1 × 5).

Task Semantics. The semantics of τi, denoted [[τi]], is the
set of TESs:

⊙|Ji|
j=1[[Ji,j]]. Thus, each execution of τi is a

concatenation of an execution from each of its jobs. The

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 53

𝛼1𝛼2

𝛼3
𝛼4

𝛼5
𝛼6

0 2

𝜏1

𝜏2

(𝑎)
1 3 4 5 6 7 8

𝐽1

𝐽2 𝐽3

0 2
(𝑏)

1 3 4 5 6 7 8

𝑥2 𝑥1

𝑥3
𝑥4

𝑥5
𝑥6

𝑡 = 𝑔

𝑔 = 𝑡 ∗ 5

𝑖𝑓 (𝑡 < 0)

𝑔 = 𝑡 + 7

𝑌𝑒𝑠 𝑁𝑜

𝑟𝑒𝑡𝑢𝑟𝑛

𝑝𝑐 = 1

𝑝𝑐 = 2 𝑝𝑐 = 3

(𝑐)

Fig. 2. (a) Periodic program; (b) Execution; (c) Control-Flow Graph.

semantics of P , denoted [[P]], is also a set of TESs. Formally,
e = 〈(ε1, t1), . . . , (εk, tk)〉 ∈ [[P]] if:

(a) e ∈
n⊕
i=1

[[τi]] (b) ∀i ∈ [1, k) � ti < ti+1 (3)

∀1 ≤ i < j ≤ k � ¬(J(εj) @ J(εi)) (4)
∀1 ≤ i ≤ j ≤ h ≤ k � J(εi) = J(εh) =⇒ π(εi) ≤ π(εj) (5)
∀i ∈ [1, k] � η(εi) = r =⇒ v(εi) = LastWr(e, i) (6)

Informally, (3) states that e is an interleaving of executions of
tasks in P with non-decreasing timestamps; (4) enforces job
ordering; (5) enforces priority based preemptive scheduling;
and (6) states that the last written value is always read.

III. VC GENERATION FOR PERIODIC PROGRAMS

Hierarchical Clock. The concept of a hierarchical Lamport
clock is fundamental to our VCGen algorithm. To understand
this idea, consider the PP shown in Figure 2(a). It is the same
as in Figure 1(a), except that we have added actions, with
program ordering, to the jobs. Specifically Σ(J1) = {α1, α2},
Σ(J2) = {α3, α4}, and Σ(J3) = {α5, α6}, with program
order α1

J1→ α2, α3
J2→ α4, and α5

J3→ α6. Now consider
a legal execution of the PP shown in Figure 2(b), where
∀i ∈ [1, 6] � xi = ((αi, vi), ti). Let R(e, i), be the number
of jobs ending before xi. Let ./∈ {<,>}. Then, we observe
for each (xi, xj):

1) If R(e, i) ./ R(e, j), then ti ./ tj . Example pairs are
(x4, x2) and (x2, x5).

2) If R(e, i) = R(e, j) ∧ π(αi) ./ π(αj), then ti ./ tj . An
example is (x1, x3).

3) If R(e, i) = R(e, j) ∧ π(αi) = π(αj) (note this implies
J(αi) = J(αj)), but ι(αi) ./ ι(αj), then ti ./ tj .
Example pairs are (x3, x4) and (x5, x6).

The above observations imply that, for the TES in
Figure 2(b), the ordering of xi’s by their timestamps
ti’s equals their lexicographic ordering by the tuple
(R(e, i), π(αi), ι(αi)). Thus, (R(e, i), π(αi), ι(αi)) is a logical
representation of the timestamp ti of event (αi, vi). Our key
insight is that this holds for arbitrary PPs and their legal
executions. In the rest of this section, we formalize this insight,
use it to construct the VC for an arbitrary PP, and prove its
correctness.

VCGen for Jobs. We assume that for any job J , there
exists a bit-vector logic formula VC (J) over the set of
predicates En(J) = {En(α) | α ∈ Σ(J)}, and terms V (J) =
{V (α) | α ∈ Σr(J) ∪ Σw(J)} such that the following holds.

Fact 1 (Job Verification Condition). For any {α1, . . . , αk} ⊆
Σ(J), and sequence 〈v1, . . . , vk〉 ∈ Dk, the formula VC (J)∧∧k
i=1(En(αi) ∧ V (αi) = vi) is satisfiable iff ∀A(J) ≤ t1 <
· · · < tk ≤ D(J) � 〈((α1, v1), t1), . . . , ((αk, vk), tk)〉 ∈ [[J]].

Thus, every satisfying assignment of VC (J) ∧∧k
i=1(En(αi) ∧ V (αi) = vi) corresponds to a legal

execution of J . If J is a C function – without unbounded
loops, recursion and dynamic memory – VC (J) can be
constructed polynomially [24]. The VC of P is also a
bit-vector formula, and consists of three sub-VCs: (i) VC seq

captures the thread local behavior of each task; (ii) VC clk

orders events into a total order along a logical timeline;
and (iii) VC obs relates the read and write events on shared
variables so that they are sequentially consistent. Formally,

V C(P) = VC seq ∧VC clk ∧VC obs , where (7)

VC seq =
∧
J∈J

VC (J) (8)

and VC clk and VC obs are presented below. In the following,
Σr denotes

⋃
J∈J Σr(J), Σw denotes

⋃
J∈J Σw(J), and Σ

denotes
⋃
J∈J Σ(J). All terms have bit-vector type.

The Clock VC: VC clk . For each α ∈ Σ, let term R(α)
denote the round of α. Following our intuition, we write κ(α)
to mean (R(α), π(α), ι(α)), i.e., the symbolic timestamp of
α. During VC construction, we can now use the predicate
κ(·) to order events in a periodic program, akin to the
way happens-before predicate is used for non-periodic, multi-
threaded programs [7].

For each job J , we introduce two terms: SR(J) and ER(J),
to represent, respectively, the earliest (i.e., start) and latest (i.e.,
end) round of J’s execution, in which any action in Σ(J) may
occur. Then, VC clk is a conjunction of the following:

(a)
∧
J∈J

∧
α∈Σ(J)(SR(J) ≤ R(α) ≤ ER(J))

(b)
∧
J1@J2

ER(J1) < SR(J2)
(9)∧

J1↑J2

∧
α∈Σ(J1)

R(α) ≤ SR(J2) ∨R(α) > ER(J2) (10)

Informally, (9)(a) asserts that actions respect starting and
ending rounds; (9)(b) asserts that if J1 finishes before J2 starts
then the ending round of J1 must be less than the starting
round of J2; (10) asserts that if J1 could be preempted by
J2, then it cannot execute while J2 is active.

The Observation VC: VC obs . For a read action αr ∈ Σr,
let W(αr) be the set of write actions that αr may observe,
i.e., the set of writes to variable g(αr) belonging to jobs that
do not start after J(αr) ends. Formally:

W(αr) = {αw ∈ Σw | g(αw) = g(αr) ∧ ¬(J(αr) @ J(αw))}
(11)

For each αr ∈ Σr, we introduce three additional variables
R̃(αr), π̃(αr), and ι̃(αr). In essence, (R̃(αr), π̃(αr), ι̃(αr))

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 54

denotes the symbolic clock of the write action observed by
αr, and is denoted by κ̃(αr). Let α ≺ α′ denote α happens
before α′, i.e., α ≺ α′ = En(α)∧κ(α) < κ(α′). Then VC obs

is a conjunction of the following for each read action αr ∈ Σr:

En(αr)⇒
 ∧
αw∈W(αr)

αw ≺ αr ⇒ κ(αw) ≤ κ̃(αr)

 (12)

En(αr)⇒
VC 1

obs ∨
∨

αw∈W(αr)

VC 2
obs(αw)

 , where (13)

VC 1
obs =

 ∧
α∈W(αr)

α 6≺ αr
 ∧ (I(g(αr)) = V (αr)) (14)

VC 2
obs(α) = α ≺ αr ∧ κ(α) = κ̃(αr) ∧V (α) = V (αr) (15)

Note that (12) asserts that write action observed by αr must
have executed prior to αr and no later than any write action to
the same shared variable; (13)–(15) asserts that αr reads the
value written by the write action its observes. Thus, VC obs is
essentially an encoding of (6).

Correctness. The correctness of V C(P) is expressed by
Theorem 1, which states essentially that every satisfying
assignment of V C(P) ∧ ∧ki=1(En(αi) ∧ V (αi) = vi) cor-
responds to a legal execution of P . For brevity, we defer the
proof to the extended version [25] of the paper.

Theorem 1. For any set of actions {α1, . . . , αk} ⊆ Σ, and
sequence of values 〈v1, . . . , vk〉 ∈ Dk, the formula V C(P) ∧∧k
i=1(En(αi) ∧ V (αi) = vi) is satisfiable iff ∃t1, . . . , tk �
〈((α1, v1), t1), . . . , ((αk, vk), tk)〉 ∈ [[P]].

Constructing V C(P, φ). To check a property φ for P , let
us assume that P is augmented with an action α(φ) such
that P |= φ iff no TES in [[P]] contains the event (α(φ), v)
for some value v. Then, from Theorem 1, P |= φ ⇐⇒
V C(P) ∧ En(α(φ)) is unsatisfiable. Thus, V C(P, φ) =
V C(P) ∧ En(α(φ)).

IV. HANDLING LOCKS

In this section, we extend VC generation to handle acquiring
and releasing of locks. We consider PPs with two kinds of
locks – priority ceiling protocol (PCP) locks and CPU locks.
Each PCP lock l is associated with a priority level π(l).
Acquiring l disables scheduling any task whose priority is less
than π(l). Thus, a job is executed iff it is active and its priority
is higher than all other active jobs, as well as those of all
PCP locks held. A CPU lock disables scheduling altogether.
In the rest, we only deal with PCP locks since a CPU lock is
equivalent to a PCP lock l such that π(l) is greater than the
largest task priority.

To formalize PCP locks, we introduce atomic priority-test-
and-set (PTAS) actions. Let L be the set of all PCP locks. For
L ⊆ L, let π(L) = {π(l) | l ∈ L}. Formally, a PTAS action
is a 5-tuple (J, pc, πt, Lr, La) such that J ∈ J , pc ∈ Z,
πt is a priority value, Lr ⊆ L, and La ⊆ L. A PTAS
event ε is a pair (α,Lh) such that α is a PTAS action, and

Lh ⊆ L. Informally, Lh denotes the set of locks held after ε
occurs. PTAS actions restrict the set of legal executions of a
PP. Specifically, whenever, a PTAS action (J, pc, πt, Lr, La)
appears on an execution, the following holds: (i) test: all
currently held PCP locks have priority less than πt; and (ii)
set: locks in Lr are released, locks in La are acquired.

Modeling Locks. Let Σp(J) be the set of PTAS actions in
Σ(J). Formally, Σp(J) = {sched(J)} ∪ ⋃l∈L(lock(J, l) ∪
unlock(J, l)), where: sched(J) = (J, 0, π(J), ∅, ∅),
lock(J, l) ⊆ {(J, pc,max(π(L)) + 1, ∅, {l}) | pc ∈ Z}, and
unlock(J, l) ⊆ {(J, pc,max(π(L)) + 1, {l}, ∅) | pc ∈ Z}.
Action sched(J) denotes the scheduling of J for the first time.
Actions in lock(J, l) and unlock(J, l) are used, respectively,
to acquire and release lock l. Program order PO(J) satisfies:

∀α ∈ Σ(J) \ {sched(J), (J, .)} � (J, .) J→ sched(J) J→ α
(16)

Note that this means on any execution of J , sched(J)
appears before every other action in Σ(J), except for
(J, .). Every TES e ∈ [[P]] also satisfies the following
condition. Let there be k PTAS events in e, and ε̃i =
((J i, pci, πit, L

i
r, L

i
a), Lih) be the i-th PTAS event in e. Then:

L1
h = L1

a

∧
∀i ∈ (1, k] � Lih = Li−1

h \ Lir ∪ Lia(17)

∀i ∈ (1, k] �max(π(Li−1
h)) < πit (18)

Note that (16)–(18) imply that J is scheduled only if the
priority of J is higher than all PCP locks held. The CPU
lock has priority max({π(J) | J ∈ J }) + 1.

Updated Construction of V C(P). Let Σp =
⋃
J∈J Σp(J).

When constructing VC seq , we treat each α ∈ Σp as a
NOP. The construction of VC clk uses the augmented Σ(J)
containing the additional PTAS actions. The construction of
VC obs is updated as follows. For each α ∈ Σp, we add the
following terms: R(α), R̃(α), π̃(α), ι̃(α), and V (α). Their
meaning is the same as for other events, except that V (α)
now represents the set of PCP locks held after α occurs. Also,
we define W(α), i.e., the set of actions that α may observe,
to contain all other PTAS actions belonging to jobs that do
not start after J(α) finishes. Formally:

W(α) = {α′ ∈ Σp | α′ 6= α ∧ ¬(J(α) @ J(α′))} (19)

Then VC obs contains the following additional constraints for
each α = (J, pc, πt, Lr, La) ∈ Σp:

En(α) =⇒
 ∧
α′∈W(α)

α′ ≺ α =⇒ κ(α′) ≤ κ̃(α)

 (20)

En(α) =⇒
VC 3

obs ∨
∨

α′∈W(α)

VC 4
obs(α′)

 , where (21)

VC 3
obs =

 ∧
α′∈W(α)

α′ 6≺ α
 ∧ (V (α) = π(La)) (22)

VC 4
obs(α′) =

 α′ ≺ α ∧ κ(α′) = κ̃(α)∧
max(π(V (α′))) < πt∧

V (α) = V (α′) \ Lr ∪ La

 (23)

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 55

0 2

𝜏1

1 3 4 5 6 7 8 9 11 10 12 13 14 15

𝐽1

𝑟1
𝑤2

𝑤1
𝒔𝟏

𝐽2

𝑟2
𝑤4

𝑤3
𝒔𝟐

𝐽3

𝑟3
𝑤6

𝑤5
𝒔𝟑

𝐽4

𝑟4
𝑤8

𝑤7
𝒔𝟒

𝐽5

𝑟5
𝑤10

𝑤9
𝒔𝟓

Fig. 3. Example periodic program to illustrate snapshotting.

Note that (20)–(23) assert that the PTAS action observed by α
must be the last PTAS action that executed prior to α; (21)–
(23) further asserts the semantics of PTAS actions is respected.
Thus, (20)–(23) encode (18). We claim that Theorem 1 is valid
even for the new V C(P). The proof of this claim is in the
extended version [25] of the paper.

V. SNAPSHOTTING SHARED VARIABLES

In this section, we present snapshotting of shared vari-
ables. To understand what snapshotting is, and why it is
important, consider the PP in Figure 3. It consists of 1
task τ1 with 5 jobs J1, . . . , J5. Consider initially only the
read and write actions r1, . . . , r5, w1, . . . , w10, and for each
read, the set of writes it may observe. Then, we have:
W(r1) = {w1, w2},W(r2) = {w1, . . . , w4}, . . . ,W(r5) =
{w1, . . . , w10}. In general, W(ri) = {w1, . . . , w2×i}. Recall
– from (12)–(15) – that VC obs encodes, for each ri, the
most recent write in W(ri) prior to ri. However, since
W(ri−1) ⊆ W(ri), the problem for ri−1 (and indeed for all
j < i) is re-encoded (and resolved by the SMT solver) as part
of the problem for ri.

Snapshotting eliminates much of this redundant encoding
and solving. Semantically, a snapshot of shared variable g in
job J appears after every write to g in the program order of J ,
and atomically reads the value of g and writes the same value
back to g. In Figure 3, these actions are shown as s1, . . . , s5

1.
A snapshot dominates every other write to g in its job, and
therefore eliminates them from being observed by future reads.
At the same time, it may observe these writes, and snapshots
in other jobs. With the snapshots added to Figure 3, we now
have: W(s1) = W(r1) = {w1, w2},W(s2) = W(r2) =
{s1, w3, w4}, . . . ,W(s5) = W(r5) = {s4, w9, w10}. Note
how the problem for ri is solved only once (for si), and
then the solution for si is reused for all j > i. Empirically,
snapshotting leads to significantly improved (see Section VI)
verification time.

Formalism. We define a function Snaps : J 7→ 2G.
Informally, Snaps(J) is the set of shared variables snapshotted
by job J . The alphabet Σ(J) of J is augmented with snapshot
actions: Σs(J) = {(J, s, g) | g ∈ Snaps(J)}. Let Σs(J) =
〈α1
s, . . . , α

k
s 〉. The program order PO(J) is augmented with:

∀α ∈ Σ(J)\(Σs(J)∪{(J, /)})�α J→ α1
s . . .

J→ . . . αks
J→ (J, /)

(24)
Thus, every execution in [[J]] snapshots all variables in

Snaps(J), and snapshot events appear after all other events,

1For simplicity, we view a snapshot as either a read or a write, based on
the context.

except for (J, /). Both reads and snapshots observe the last
written values. Formally (6) is replaced by:

∀i ∈ [1, k] � η(εi) ∈ {r, s} =⇒ v(εi) = LastWr(e, i) (25)

Updated Construction of V C(P). Let Σs be the set of
snapshot actions, i.e., Σs =

⋃
J∈J Σs(J). When constructing

VC seq , we treat each α ∈ Σs as a NOP. The construction
of VC clk uses the augmented Σ(J) containing the additional
snapshot actions. The construction of VC obs is updated as
follows. For every action αr ∈ Σr∪Σs, we defineW(αr), i.e.,
the set of actions that αr may observe, as follows. For every
job J , and shared variable g, let Ψ@(J, g) be the maximal set
of g-snapshotting jobs less than J according to the @ order,
i.e.,
Ψ@(J, g) = {J ′ ∈ J | g ∈ Snaps(J ′) ∧ J ′ @ J ∧
∀J ′′ ∈ J � g ∈ Snaps(J ′′) ∧ J ′′ @ J =⇒ ¬(J ′ @ J ′′)} (26)

Let Ψ↑(J, g) be the set of jobs that can preempt J and also
snapshot g, and Ψ↓(J) be the set of jobs that can be preempted
by J , and J itself, i.e.,

Ψ↑(J, g) = {J ′ ∈ J | g ∈ Snaps(J ′) ∧ J ↑ J ′} (27)
Ψ↓(J) = {J ′ ∈ J | J ′ = J ∨ J ′ ↑ J} (28)

Let αr = (J, η, g). Then W(αr) consists of: (i) snapshots
by jobs in Ψ@(J, g) and Ψ↑(J, g); and (ii) writes by jobs in
Ψ↓(J). Formally:

W(αr) = {(J ′, s, g) | J ′ ∈ Ψ@(J, g) ∪Ψ↑(J, g)}⋃
{(J ′, w, g) | J ′ ∈ Ψ↓(J)} (29)

Finally, VC obs contains the constraints defined in (12)–(15)
for each αr ∈ Σr ∪ Σs. Note that this means that a read or
snapshot action αr observes the last write or snapshot action
to g(αr) that executed prior to αr. We claim that Theorem 1
also holds for the new V C(P). The proof of this claim is in
the extended version [25] of the paper.

We have implemented two variants of snapshotting – SS-
ALL and SS-MOD – which differ in the set of variables
snapshotted. For SS-ALL, all shared variables are snapshotted
at the end of each job, i.e., Snaps(J) = G. For SS-MOD,
only shared variables that are written by a job are snapshotted
by it, i.e., Snaps(J) = {g | (J,w, g) ∈ Σ(J)}. We denote by
SS-NONE the strategy of no snapshotting, presented in earlier
sections. Next, we evaluate snapshotting empirically.

VI. EMPIRICAL VALIDATION

We implemented our approach in a tool called LLREK, on
top of UFO [26] and LLVM [27]. The input to LLREK is a PP P
written in C, with jobs implemented via C functions, and peri-
ods, priorities etc. specified via macros. The safety property φ
is expressed as an assertion in the job code. LLREK constructs
the verification condition V C(P, φ), as described earlier, and
solves it using STP [28]. All experiments were performed on
a machine running at 2.9GHz with a memory limit of 2GB
and a time limit of 60 minutes. Our tools and benchmark are
available at andrew.cmu.edu/∼schaki/misc/llrek.tgz.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 56

Name Time (in seconds) SAT Vars (in 1000s) SAT Clauses (in 1000s) AVGOBS(P) |W (P)|
NONE ALL MOD REKH NONE ALL MOD REKH NONE ALL MOD REKH NONE ALL MOD NONE ALL MOD

nxt.bug1:H1 33 9 7 18 612 234 223 698 3252 1029 985 2642 25.6 2.9 2.9 298 455 416
nxt.bug2:H1 32 10 7 31 642 250 235 710 3394 1091 1030 2684 26.5 3.1 3.2 310 492 429
nxt.ok1:H1 19 7 8 17 612 234 223 698 3252 1030 986 2642 25.6 2.9 2.9 298 455 416
nxt.ok2:H1 20 7 6 29 611 234 223 699 3246 1029 985 2645 25.4 3.0 2.9 298 454 415
nxt.ok3:H1 30 8 6 31 642 250 235 709 3394 1091 1030 2675 26.5 3.1 3.2 310 492 429

aso.bug1:H1 29 9 9 34 636 274 249 737 3346 1198 1090 2796 26.0 3.6 3.6 304 512 427
aso.bug2:H1 28 10 9 32 646 277 251 734 3399 1211 1100 2780 26.4 3.7 3.7 308 516 431
aso.bug3:H1 29 13 11 80 690 305 270 958 3608 1324 1171 3660 25.5 3.6 3.5 355 615 504
aso.bug4:H1 32 17 9 66 649 306 265 891 3412 1357 1168 3396 26.5 4.6 4.4 309 543 434
aso.ok1:H1 32 11 10 32 658 286 261 726 3458 1255 1148 2746 27.1 4.1 4.2 311 519 434
aso.ok2:H1 38 29 17 67 651 307 265 893 3421 1360 1170 3406 26.5 4.6 4.4 311 545 436
nxt.bug1:H4 * 119 74 * * 1096 1046 * * 4897 4681 10696 99.5 3.0 3.0 1192 1835 1676
nxt.bug2:H4 * 172 92 * * 1177 1105 * * 5214 4916 10877 102.9 3.1 3.2 1240 1989 1731
nxt.ok1:H4 * 89 49 * * 1096 1046 * * 4898 4682 10696 99.5 3.0 3.0 1192 1835 1676
nxt.ok2:H4 * 125 49 * * 1096 1046 * * 4897 4682 10708 99.3 3.0 3.0 1192 1834 1675
nxt.ok3:H4 * 358 133 * * 1177 1105 * * 5213 4916 10830 102.9 3.1 3.2 1240 1989 1731

aso.bug1:H4 * 128 92 * * 1301 1177 * * 5773 5231 11394 99.9 3.6 3.6 1216 2072 1723
aso.bug2:H4 * 147 74 * * 1316 1189 * * 5840 5283 11316 101.6 3.7 3.7 1232 2088 1739
aso.bug3:H4 * 209 136 * * 1452 1280 * * 6408 5647 * 98.3 3.6 3.5 1420 2490 2034
aso.bug4:H4 * 329 152 * * 1465 1261 * * 6579 5645 * 100.4 4.6 4.4 1236 2199 1751
aso.ok1:H4 * 270 210 * * 1359 1237 * * 6061 5523 11151 103.2 4.1 4.2 1244 2100 1751
aso.ok2:H4 * * 1312 * * 1469 1264 * * 6597 5659 * 100.1 4.6 4.4 1244 2207 1759
ctm.bug2 36 29 21 105 656 429 336 719 3253 1822 1448 2801 17.9 4.1 4.5 512 1052 683
ctm.bug3 * 124 59 258 * 705 554 1098 * 3066 2439 4389 26.6 4.1 4.5 768 1588 1033
ctm.ok1 23 37 21 122 668 434 341 730 3309 1839 1466 2845 18.6 4.1 4.6 512 1052 684
ctm.ok2 28 26 17 111 657 431 338 724 3261 1829 1455 2823 18.1 4.1 4.5 512 1052 683
ctm.ok3 * 116 53 275 * 714 567 1124 * 3106 2497 4485 27.9 4.1 4.5 780 1600 1057
ctm.ok4 * 320 143 395 * 959 760 1410 * 4184 3356 5713 36.4 4.2 4.7 1040 2140 1400

TABLE I
EXPERIMENTAL RESULTS; * = MEMORYOUT OR TIMEOUT; VARS = # OF SAT VARIABLES; CLAUSES = # OF SAT CLAUSES; BEST NUMBERS ARE IN BOLD.

Benchmark. Our benchmark consist of a set of PPs
for controlling two LEGO Mindstorms robots – a two-
wheel self-balancing robot (http://lejos-osek.sourceforge.net/
nxtway gs.htm), and a metal-stamping robot (http://www.cs.
cmu.edu/∼soonhok/blog/building-a-lego-turing-machine). The
self-balancing robot controllers come in two variants. Some
– named nxt.* in our tables – have three periodic tasks:
a Balancer, with period of 4ms, that keeps the robot
upright and monitors the bluetooth link for user commands,
an Obstacle, with a period of 48ms, that monitors a sonar
sensor for obstacles, and a 96ms Background task that prints
debug information on an LCD screen. Others – named aso.*
– have the functionality for monitoring bluetooth refactored
out into the Background task.

The Turing Machine examples are named ctm.* and
have four periodic tasks – Controller, TapeMover,
Reader, and Writer in order of ascending priority. The
Controller task has 500ms period and 440ms WCET. The
other three tasks each have 250ms period and 10ms WCET
respectively. The Controller task looks up a transition
table, determines next operations to execute, and gives com-
mands to the other tasks. The TapeMover task moves the
tape to the left (or right). The Reader task moves the read
head back and forth by rotating the read motor and reads the
current bit of the tape. The Writer task rotates the write
lever to flip a bit. In each case, we have safety properties
(whose violations lead to potential collisions between the robot
and an obstacle, or between different arms of the robot etc.)
encoded as assertions, and both buggy and safe versions –
named *.bug* and *.ok* – of the controller w.r.t. these
assertions.

Evaluation of Snapshotting. Our first set of experiments

were aimed at evaluating the three snapshotting strategies –
SS-NONE, SS-ALL, SS-MOD. Our results are show in Table I.
The first column shows the experiment name. For the nxt.*
and aso.* example, Hk indicates that the time-bound T was
set to equal k hyper-periods (i.e., T = k× 96) of the PP. The
next three columns show the verification time Time, and the
number of variables Vars and clauses Clauses of the final
SAT formula solved by STP after simplifying and bit-blasting
the SMT formula – for each snapshotting strategy.

These results indicate that SS-MOD is the best overall
strategy. In all but one instance, it is the fastest. Sometimes it
is more than twice as fast as the next best strategy SS-ALL.
The worst choice is SS-NONE which runs out of memory in
many instances, while both SS-ALL and SS-MOD complete
successfully. These trends are mirrored when we consider
Vars and Clauses , suggesting that snapshotting effectively
eliminates a lot of redundancy in the SMT formulas generated
by SS-NONE, with SS-MOD producing the most compact SAT
formula overall. Next, we present a more direct quantitative
evaluation of the effectiveness of snapshotting.

Observation Set Redundancy. Let W (P) be the set of output
(write or snapshot) actions in a PP P . For each w ∈ W (P),
let Obs(w) be the set of input (read or snapshot) actions
that may observe w. Thus, Obs(w) = {α | w ∈ W(α)}. Let
AVGOBS(P) be the mean of the set {|Obs(w)| | w ∈W (P)}.
A smaller value of AVGOBS(P) indicates lower redundancy
in the observation sets of P . Here, redundancy means that a
single output action may be observed by multiple input actions.
Table I shows the values of AVGOBS(P) and |W (P)| for
each P in our benchmark and for each snapshotting strategy.
As expected, AVGOBS(P) is much smaller for SS-MOD and
SS-ALL compared to SS-NONE (sometimes by a factor of

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 57

over 30), indicating that snapshotting reduces redundancy in
observation sets significantly. Both SS-MOD and SS-ALL have
similar values of AVGOBS(P). However, |W (P)| is smaller
for SS-MOD since it snapshots more selectively. This leads to
better overall performance of SS-MOD compared to SS-ALL.

Comparison with REKH. We also compare LLREK with
REKH [11]. REKH constructs a sequential (but non-
deterministic) C program that is semantically equivalent to
P , and verifies it using CBMC [29] 4.5. Internally, CBMC
constructs a verification condition and solves it using a SAT
solver. Thus, REKH and LLREK are similar – both generate
and solve verification conditions. However, they construct VCs
differently: LLREK generates it directly based on sequential
consistency and snapshotting, while REKH generates a C
program using rounds and prophecy variables (following Lal
and Reps [30]), from which the VC is constructed by CBMC.
The results for REKH are also presented in Table I. They
indicate that SS-ALL and SS-MOD perform better than REKH,
sometimes by a factor of over seven, and often complete
verification when REKH runs out of memory. Thus, LLREK
is a clear and significant improvement over REKH.

VII. CONCLUSION

We addressed the problem of verifying safety properties
of PPs. Our solution is based on the BMC-MC paradigm and
consists of two steps: (i) generate a provably correct VC; (ii)
solve the VC using a SMT engine. We generate the VC by
adapting Lamport’s sequential consistency to the semantics
of PPs. Moreover, we handle PPs that synchronize via two
commonly used types of locks – PCP locks, and CPU locks. To
improve scalability, we develop a strategy called snapshotting,
aimed at generating VCs with fewer redundant sub-formulas.
We develop two snapshotting strategies – SS-ALL snapshots
all shared variables, while SS-MOD only snapshots modified
variables. We have implemented our approach in a tool called
LLREK. Experiments indicate that snapshotting improves ef-
fectiveness of verification significantly. In particular, SS-MOD
is the best strategy, and it even outperforms the state-of-art
verifier for PPs. An important direction for future work is to
handle additional synchronization primitives, such as priority-
inheritance locks [9], and to relax the restriction of a time
bound.

ACKNOWLEDGMENT

Copyright 2014 Carnegie Mellon University and FMCAD, Inc. 2

REFERENCES

[1] M. Florian, E. Gamble, and G. Holzmann, “Logic Model Checking
of Time-Periodic Real-Time Systems,” in Proc. of Infotect@Aerospace,
2012.

2This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center. NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN AS-IS BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. This material has been approved for public
release and unlimited distribution. DM-0000981

[2] I. Rabinovitz and O. Grumberg, “Bounded Model Checking of Concur-
rent Programs,” in Proc. of CAV, 2005.

[3] S. Burckhardt, R. Alur, and M. M. K. Martin, “CheckFence: checking
consistency of concurrent data types on relaxed memory models,” in
Proc. of PLDI, 2007.

[4] C. Wang, S. Kundu, M. K. Ganai, and A. Gupta, “Symbolic Predictive
Analysis for Concurrent Programs,” in Proc. of FM, 2009.

[5] N. Sinha and C. Wang, “Staged concurrent program analysis,” in Proc.
of FSE, 2010.

[6] J. Alglave, D. Kroening, and M. Tautschnig, “Partial Orders for Efficient
Bounded Model Checking of Concurrent Software,” in Proc. of CAV,
2013.

[7] L. Lamport, “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers
(TC), vol. 28, no. 9, 1979.

[8] ——, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Communications of the ACM (CACM), vol. 21, no. 7, 1978.

[9] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,” IEEE Trans. on Comp.,
vol. 39, no. 9, 1990.

[10] N. Sinha and C. Wang, “On interference abstractions,” in Proc. of POPL,
2011.

[11] S. Chaki, A. Gurfinkel, S. Kong, and O. Strichman, “Compositional
Sequentialization of Periodic Programs,” in Proc. of VMCAI, 2013.

[12] V. D’Silva, D. Kroening, and G. Weissenbacher, “A Survey of Auto-
mated Techniques for Formal Software Verification,” IEEE Trans. on
Comp. Aided Des., vol. 27, no. 7, 2008.

[13] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nutshell,” STTT,
vol. 1, no. 1-2, 1997.

[14] V. A. Braberman and M. Felder, “Verification of Real-Time Designs:
Combining Scheduling Theory with Automatic Formal Verification,” in
Proc. of FSE, 1999.

[15] F. Laroussinie, N. Markey, and P. Schnoebelen, “Efficient timed model
checking for discrete-time systems,” Theoretical Computer Science
(TCS), vol. 353, no. 1-3, 2006.

[16] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theo. Comp.
Sc., vol. 126, no. 2, 1994.

[17] S. Chaki, A. Gurfinkel, and O. Strichman, “Time-Bounded Analysis of
Real-Time Systems,” in Proc. of FMCAD, 2011.

[18] S. L. Torre, P. Madhusudan, and G. Parlato, “Reducing Context-Bounded
Concurrent Reachability to Sequential Reachability,” in Proc. of CAV,
2009.

[19] N. Ghafari, A. J. Hu, and Z. Rakamaric, “Context-Bounded Translations
for Concurrent Software: An Empirical Evaluation,” in Proc. of SPIN,
2010.

[20] M. Emmi, S. Qadeer, and Z. Rakamaric, “Delay-Bounded Scheduling,”
in Proc. of POPL, 2011.

[21] S. Chaki, A. Gurfinkel, and O. Strichman, “Verifying Periodic Programs
with Priority Inheritance Locks,” in Proc. of FMCAD, 2013.

[22] N. Kidd, S. Jagannathan, and J. Vitek, “One Stack to Run Them All
- Reducing Concurrent Analysis to Sequential Analysis under Priority
Scheduling,” in Proc. of SPIN, 2010.

[23] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” Journal of the ACM (JACM),
vol. 20, no. 1, 1973.

[24] A. Gurfinkel, S. Chaki, and S. Sapra, “Efficient Predicate Abstraction
of Program Summaries,” in Proc. of NFM, 2011.

[25] S. Chaki, A. Gurfinkel, and N. Sinha, “Efficient Verification of Pe-
riodic Programs using Sequential Consistency and Snapshots,” Ex-
tended version of paper published in the proceedings of FMCAD’14,
andrew.cmu.edu/∼schaki/publications/FMCAD-2014-Extended.pdf.

[26] A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik, “Ufo: A Frame-
work for Abstraction- and Interpolation-Based Software Verification,” in
Proc. of CAV, 2012.

[27] C. Lattner and V. S. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proc. of CGO, 2004.

[28] V. Ganesh and D. L. Dill, “A Decision Procedure for Bit-Vectors and
Arrays,” in Proc. of CAV, 2007.

[29] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C
Programs,” in Proc. of TACAS, 2004.

[30] A. Lal and T. W. Reps, “Reducing Concurrent Analysis Under a Context
Bound to Sequential Analysis,” in Proc. of CAV, 2008.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 58

Under-approximate Flowpipes for Non-linear
Continuous Systems

Xin Chen
RWTH Aachen University, Germany

xin.chen@cs.rwth-aachen.de

Sriram Sankaranarayanan
University of Colorado, Boulder, CO

srirams@colorado.edu

Erika Ábrahám
RWTH Aachen University, Germany

abraham@cs.rwth-aachen.de

Abstract—We propose an approach for computing under- as
well as over-approximations for the reachable sets of continuous
systems which are defined by non-linear Ordinary Differential
Equations (ODEs). Given a compact and connected initial set
of states, described by a system of polynomial inequalities, we
compute under-approximations of the set of states reachable
over time. Our approach is based on a simple yet elegant
technique to obtain an accurate Taylor model over-approximation
for a backward flowmap based on well-known techniques to
over-approximate the forward map. Next, we show that this
over-approximation can be used to yield both over- and under-
approximations for the forward reachable sets. Based on the re-
sult, we are able to conclude “may” as well as “must” reachability
to prove properties or conclude the existence of counterexamples.
A prototype of the approach is implemented and its performance
is evaluated over a reasonable number of benchmarks.

I. INTRODUCTION

In this paper, we present an approach for computing under-
approximations of the reachable sets of continuous systems
described by ODEs. Continuous systems arise in a variety
of domains including biological systems, control systems
and aggregate mean field models of parameterized systems.
Computing over-approximations of the reachable set of discrete,
continuous and hybrid systems is a fundamental primitive for
verifying safety properties. There has been much progress
towards reachable set over-approximations for linear as well
as non-linear continuous or hybrid systems through the use
of invariant computation [1], [2], [3], conservative abstraction
on dynamics [4], [5], [6], flowpipe construction [7], [8], [9],
[10], [11], level sets [12], [13], [14], and advanced interval
arithmetic techniques [15], [16], [17], [18], [19]. However, less
attention has been given to the problem of finding reachable
set under-approximations.

Whereas over-approximations represent states that “may” be
reachable, under-approximations characterize states that “must”
be reachable. As a result, under-approximations can be used
to show that the system must reach a given target (or unsafe)
set. The presence of under- as well as over-approximations can
help us prove “reach-while-avoid” properties that are common
in many control systems: the system must reach a specified
target set of states, while avoiding a set of unsafe states.
Under-approximations also help us judge the quality of related
over-approximations by comparing the states that “may” be
reachable with the states that “must” be reachable. Besides,
under-approximation techniques are also crucial in finding

counterexamples for continuous and hybrid systems, and could
be extended to carry out Counterexample-Guided Abstraction
Refinement (CEGAR) for these systems [20].

Our approach in this paper is based on the use of Tay-
lor Model-based techniques that have been used for over-
approximations [16], [19]. Starting from a given ODE ~̇x = f(~x)
and an initial set X0 defined by polynomial inequalities, we
seek to derive an under-approximation Ωt of the reachable
set Xt at time t > 0. The basic idea for deriving an under-
approximation starts by first deriving an over-approximate
backward flowmap Φ that maps a state ~xt ∈ Ωt potentially
reachable at time t to a set of possible initial states Φ(~xt). This
can be seen (roughly) as an over-approximate pre-condition
of the state ~xt. Next, we prove that a topologically connected
set Ωt which does not intersect the boundary of Xt is an
under-approximation of it, if Φ(~x) ⊆ X0 for some ~x ∈ Ωt.
The condition of topological connctedness is an important
technicality that must be checked for a set Ωt before it
can be identified as an under-approximation. Our approach
integrates interval arithmetic approaches using higher order
Taylor models [16], [19] with techniques from computational
topology for proving connectedness [21]. The contributions of
this paper are summarized as follows:

1) We show how Taylor model arithmetic can be used to over-
approximate a backward flowmap (in addition to the forward
flowmap). A key feature of our approach is that we mostly
reuse the calculations for the forward map to also derive the
backward map, using the structure of the Lagrange remainder
in the Taylor series expansion.

2) We use the Taylor model backward flowmap to construct
under-approximations. In doing so, it becomes necessary to
prove that a set implicitly defined by polynomial inequalities
is connected. We prove the property of star-connectedness
through repeated satisfiability checks.

3) Finally, we have implemented our approach based on the
computational library of FLOW* [22]. We provide experimental
evaluation on a set of interesting and challenging benchmarks.

A. Related Work

As mentioned earlier, a significant volume of work has been
devoted to the problem of finding over-approximations of the
reachable states of continuous systems. Surprisingly, very little
work has been focused on under-approximations. The main
reason is the hardness of the task.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 59

Several techniques of under-approximating reachable sets
are introduced in [23], [24] for the systems defined by linear
ODEs. However, they can not be easily extended to handle
non-linear systems which are most often found in applications.

The idea of using over-approximations of backward
flowmaps to compute reachable set under-approximations has
been discussed elsewhere [25], [26]. Nevertheless, very few
existing methods or tools can handle the job efficiently. We
propose a more applicable method based on TM representations
and does not require splitting the state space too often.

Under-approximation techniques have also received attention
from the interval analysis community. The technique of
modal (Kaucher) intervals provides a framework for under-
approximations using intervals [27]. This was used to pro-
vide under-approximations of reachable sets for programs
by Goubault et al. [28]. The recent work of Goubault et
al. uses modal intervals with affine forms to provide under-
approximations for the reachable sets of continuous sys-
tems [29]. In contrast, our approach relies on Taylor model
based over-approximations, but of the backward flowmap rather
than the forward map. Therefore, we are able to provide a
higher-order technique for generating under-approximations in
contrast to the first order approach of Goubault et al. using
affine forms. Given the very recent nature of Goubault et
al.’s contribution, we are unable to provide an experimental
comparison of our techniques. However, a detailed comparison
is planned as part of our extended version, in the future.

The work of Bai Xue and Zhikun She is yet another important
contribution to the problem of under-approximating reachable
sets of continuous systems, that inspired our approach in
this paper [30]. Their approach is similar to ours in the use
of backward flowmaps to compute under-approximations. A
key difference, however is that Xue and She use an over-
approximation of the boundary of the reachable set to find
under-approximations. In our experience, the boundary of these
sets if often complex and requires a fine subdivision of the
state-space. Our approach, in comparison, avoids gridding the
boundary. Instead, we are left with the problem of proving
topological connectedness of a set, which is also hard in
practice. Furthermore, the modification of Taylor models to
compute backward flowmap over-approximations is a unique
contribution of this paper.

Recently, Gao et al. presented a relaxed notion of δ-
satisfiability to build constraint solvers for non-linear real
arithmetic [31]. δ-satisfiability argues that a formula is unsatis-
fiable, or a δ-perturbation of it is satisfiable. By adjusting δ, the
approach handles complex formulae involving real functions
such as the flowmaps of ODEs. It has been implemented in
the constraint solver dReal [32], and the tool dReach focusing
on the analysis of non-linear systems [33]. Our approach has
many fundamental differences: dReach attempts to answer a
single reachability query using constraint solving, whereas our
approach builds representations for reachable set segments that
can be used to answer more complex queries. Our approach
finds guaranteed over- and under-approximations, but does not
reason about perturbations. Finally, the approach presented

here can be a primitive inside a tool such as dReach, providing
a more powerful approach to reachability analysis.

II. PRELIMINARIES

Let R denote the set of real values. A set of variables
x1, . . . , xn, is collectively written as a vector ~x. For a vector
~x, we use xi to denote its i-th component. Let I denote the
set of all intervals I = [a, b] ⊆ R with a, b ∈ R and a ≤ b.
Multi-dimensional intervals are Cartesian products of intervals,
and we continue to call them intervals in the paper. Given a
variable or function x(t) of time, we use ẋ to denote the time
derivative of x. Given a set S, we use Int(S) to denote the
smallest interval enclosure of S.

Definition 1 (Continuous system). An n-dimensional continu-
ous system S is defined by an ODE ~̇x = f(~x), wherein ~x is a
n× 1 vector of state variables and the function f denotes the
vector field which associates each state ~c ∈ Rn a derivative
vector f(~c) ∈ Rn.

Executions of a continuous system S correspond to the
time trajectories of the ODE. We assume that the function
f defining the ODE is (locally) Lipschitz continuous in
Rn. This guarantees that for each ~x0 ∈ Rn, there exists a
unique solution ~x(t) defined over some interval of existence
(−T (~x0), T (~x0)), with initial condition ~x(0) = ~x0 ∈ Rn [34].
Here (−T (~x0), T (~x0)) is the interval of existence and depends,
in general, on the initial condition ~x0. We denote the value ~x(t)
for any time t ∈ (−T (~x0), T (~x0)) by ϕf (~x0, t). We assume
that for the models considered in this paper, the solutions exist
for T (~x0) > T , where T is a time horizon of interest. The
function ϕf (~x0, t) is also called the flowmap which is forward
if t ≥ 0, and backward otherwise. In the rest of the paper, we
assume that the dynamics f(~x) are given by a multivariate
polynomial over ~x.

The reachable set of a continuous system defined by
~̇x = f(~x) from an initial set X0 ⊆ Rn is the set of
flows {ϕf (~x0, t) | ~x0 ∈ X0}. For simplicity, we denote it by
ϕf (X0, t) if ϕf (~x0, t) exists for all ~x0 ∈ X0 in the time
interval of interest. Given a time interval ∆ ∈ I, the image of
the map ϕf (X0, t) with t ∈ ∆, is called a flowpipe.

Since we assume Lipschitz continuous ODEs, the map from
~x0 ∈ X0 to ϕf (~x0, t) is bijective. Ideally, we wish to compute
the map ϕf by solving the given ODE analytically. However,
this cannot be done exactly, since most of the ODEs do not have
closed form solutions. A typical approach is to approximate a
solution by a Taylor polynomial which can be computed based
on the higher-order Lie derivatives of the vector field. We will
address it in Sect. IV.

Definition 2 (Lie derivative). Given an ODE ~̇x = f(~x) with n
variables, the Lie derivative of a differentiable function g(~x, t)
w.r.t. f is defined by

Lf (g) =
n∑
i=1

(
∂g

∂xi
· fi
)

+
∂g

∂t

wherein fi denotes the i-th component of f . If g is k times
differentiable, the higher-order Lie derivatives of it are defined

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 60

recursively by

Lm+1
f (g) = Lf (Lmf (g)) for m = 1, 2, . . . , k − 1

In the rest of the section, we give a brief introduction
of Taylor models (TMs). TMs were introduced by Berz
and Makino to provide a framework for constructing high-
order over-approximations of continuous functions as well as
common operations over them. They are described in detail
elsewhere [35]. A Taylor model (TM) is denoted by a pair (p, I)
such that p is a polynomial over a closed and bounded domain
and I is an interval which represents a remainder. Given a
function f(~x) over D, we say that it is over-approximated
by the TM (p(~x), I) if f(~x) ∈ p(~x) + I for all ~x ∈ D.
Intuitively, the TM maps any ~x ∈ D to an interval which
contains f(~x). In the paper, we always use TM to mean a TM
over-approximation.

TMs are closed under arithmetic operations of addition,
scaling, multiplication and integration. The arithmetic over
TMs can be viewed as a higher-order interval arithmetic [36].
Given two intervals [a1, b1], [a2, b2] ∈ I, their sum and product
are defined by [a1, b1] + [a2, b2] = [a1 + a2, b1 + b2] and
[a1, b1] · [a2, b2] = [min{a1 ·a2, a1 ·b2, b1 ·a2, b1 ·b2},max{a1 ·
a2, a1 · b2, b1 · a2, b1 · b2} respectively. Then for two functions
f, g over the same domain, if their TMs are given by (p1, I1),
(p2, I2) respectively, a TM for f + g can be computed by
directly adding the polynomial and remainder part respectively,
i.e., (p1 + p2, I1 + I2), while an order k TM for their product
f · g can be computed by

(p1 · p2 − rk , I1 ·B(P2) + I2 ·B(P1) + I1·I2 +B(rk))

wherein B(p) denotes an interval enclosure of the range of
p, and the truncated part rk consists of the terms in p1 · p2

of degrees > k. By TM arithmetic, we may compute an over-
approximation for a complex function based on the TMs of
its components.

TMs can be applied to provide over-approximations for
flowpipes. They serve a dual purpose: they are used to
conservatively approximate the flowmap ϕf (~x0, t) by a TM
(p, I) for some ~x0 ∈ X0 and t ∈ ∆ ∈ I, such that

∀~x0 ∈ X0, ∀t ∈ ∆, ϕf (~x0, t) ∈ p(~x0, t) + I

They also serve as implicit definition of the flowpipe that
over-approximates the image of ϕf over the set ~x0 ∈ X0 and
t ∈ ∆. That is, a flowpipe ϕf (X0, t) for some X0 ⊆ Rn and
t ∈ ∆ ∈ I can be over-approximated by a TM (p(~x0, t), I)
with ~x0 ∈ X0 and t ∈ ∆. Such a TM is also called a TM
flowpipe, its computation is presented in Sect. IV.

III. UNDER-APPROXIMATION TECHNIQUE AT A GLANCE

In this section, we present a brief sketch of our over-
and under-approximate flowpipe computation technique. This
section will serve to motivate the description of our approach
through the rest of this paper.

Given a Lipschitz continuous ODE ~̇x = f(~x) and a compact
and connected initial set X0. We want to compute an under-
approximation for the flowpipe Xt : ϕf (X0, t) with t ∈ ∆ for

ϕf (X0, t)

Ωt

Fig. 1. Illustration of the main idea. The red region denotes the boundary over-
approximation Ft, which is computed as a system of polynomial inequalities
and could be disconnected.

some small time interval ∆. To do so, we seek to compute a
set Ft which strictly contains ∂Xt, i.e., the boundary of Xt.
Since Xt is still compact and connected (see [34]), we may
conclude that a connected set Ωt which does not intersect ∂Xt

is an under-approximation of Xt if Ωt contains some state in
Xt. To ensure these properties, we could (i) prove that Ωt does
not intersect Ft, and (ii) find a state in Ωt∩Xt. An illustration
is presented in Figure 1.

It will be shown that a backward flowmap over-
approximation plays a key role in achieving both (i) and (ii).
In Sect. IV, we show how such an over-approximation can be
effectively derived as a TM (pb, Ib). The computation of Ft
based on (pb, Ib) is described in Sect. V, where we also give
a method to verify a reachable state by using (pb, Ib).

IV. TMS FOR FORWARD AND BACKWARD FLOWMAPS

In the section, we introduce a modified TM flowpipe
construction approach which is an extention of our previous
work [19]. A key feature of it is the derivation of a TM that
approximates the backward flowmap by reusing the calculations
for the forward map.

A. Modified TM flowpipe construction

Given an n-dimensional continuous system defined by ~̇x =
f(~x), and a time step δ, the reachable set for a bounded time
horizon [0, T] and an initial set X0 ⊆ Rn is over-approximated
by a finite sequence of TMs F1, . . . ,FN , wherein N =

⌈
T
δ

⌉
.

For all 1 ≤ i ≤ N , Fi over-approximates the image ϕf (X0, t)
with t ∈ [(i− 1)δ, iδ]. The TMs are computed iteratively, such
that the segment Fi is used to compute the initial set for the
subsequent TM. In the i-th iteration, we assume that the local
initial set is given by a TM Xl. The i-th TM flowpipe Fi is
computed by the following two steps.

Step 1: Compute a Taylor polynomial pf for the forward
flow ϕf(Xl, t) up to order k in t. The polynomial pf can
be derived as the following Taylor polynomial of ϕf (Xl, t),

pf (~xl, t) = ~xl + Lf (~xl) · t+ · · ·+ Lkf (~xl) · t
k

k!
(1)

wherein ~xl ∈ Xl and we simply denote Ljf (~x)|~x=~xl
by Ljf (~xl)

for 1 ≤ j ≤ k. Unlike our previous work, the degrees of ~xl in
pf are not limited.

Step 2: Evaluate a safe remainder interval If for pf over
t ∈ [0, δ]. The purpose is to find an interval If such that

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 61

the TM (pf (~xl, t), If) is an over-approximation of ϕf (~xl, t)
over ~xl ∈ Xl and t ∈ [0, δ]. As we have the assumption that
f is at least locally Lipschitz continuous, then an interval If
is sufficient (or safe) if the Picard operator

Pf (g)(~xl, t) = ~xl +
∫ t

0

f(g(~xl, s)) ds (2)

is contractive over (pf , If) (see [16], [19]). To find such an
interval, we may start with an estimation Ie which could be
incorrect, and then conservatively check the contractiveness of
the Picard operation by means of TM arithmetic. If it can not be
verified, we enlarge the interval Ie until we obtain a contractive
interval. The resulting interval Ie may be further refined by
repeatedly performing the Picard operation on (pf , Ie). We
then set If = Ie. Unlike previous work, we only truncate
the polynomial terms whose degrees of t are larger than k.
Afterwards, if i > 1, the TM Fi can be derived by substituting
Xl in the place of ~xl in (pf , If) by TM arithmetic, otherwise
it is the first iteration and we simply rename ~xl by ~x0.

B. Compute over-approximations for backward flowmaps

The flowpipe construction presented thus far only produces
a TM that over-approximates the forward flowmap from
X0 to Xt : ϕf (X0, t) for t ∈ [0, T], and the under-
approximation approach requires over-approximations for the
backward flowmaps.

Even though the backward flowmap is conceptually obtained
by negating the time variable, a TM over-approximation for the
backward flowmap is not easy to obtain. A simple way to do
that is performing a backward flowpipe computation from an
over-approximation of Xt which is obtained by a forward one.
However, it is not only time consuming but also inaccurate,
since the overestimation generated in the forward computation
is also considered in estimating the remainder intervals for the
backward flowmaps by the Picard operation. Thus, we need a
method to obtain backward over-approximations without using
flowpipe construction.

We introduce a novel method to generate accurate backward
over-approximations by reusing the calculation of the forward
modified TM flowpipe construction. Let us fix a time t ≥ 0
and consider the initial set Xl for the i-th step of the forward
flowpipe construction. Let us denote Yl(t) = ϕf (Xl, t), as
the image of the forward flowmap for any t ∈ [0, δ]. We
assume that ϕf is over-approximated by a TM (pf (~xl, t), If),
wherein ~xl ∈ Xl. Our goal is to construct a TM (pb, Ib) that
over-approximates the flowmap from Yl back to Xl.
Constructing pb It is easy to see that while ϕf (~x0, t) for
~x0 ∈ X0, t ≥ 0 represents the forward map, the backward
map is represented by ϕ(~y0,−t) where ~y0 ∈ ϕf (X0, t), t ≥ 0.
Therefore, its Taylor expansion is related to that of ϕ(~x0, t)
when t ≥ 0. Using this observation, the polynomial pb is
derived from pf by syntactically replacing ~xl, the variables
denoting the starting state, by ~yl, the variables denoting the
ending state. Likewise, we replace the time variable t by −t.
The renaming of ~xl is not technically necessary, we do it to
distinguish the domains of the TMs for forward and backward

X0 X1 · · · XN

Φ1 Φ2 ΦN

Ψ1 Ψ2 ΨN

Fig. 2. Flowmap automaton

flowmaps. The challenge remains to construct the remainder
interval Ib. In doing so, we wish to avoid computing Picard
operation by TM arithmetic which could potentially introduce
a large overestimation.

The Lagrange remainder term of pf at some ~xl ∈ Xl and
t ∈ [0, δ] is

ε(~xl, t) =
1

(k + 1)!
Lk+1
f (ϕf (~xl, ξ)) · tk+1 (3)

wherein ξ is between 0 and t. Then an interval enclosure
E(Xl, [0, δ]) of all ε(~xl, t) over ~xl ∈ Xl and t ∈ [0, δ] can be
evaluated as

1
(k+1)!

Lk+1
f (Int({ϕf (~xl, ξ)|~xl ∈ Xl, ξ ∈ [0, δ]}))·([0, δ])k+1

Similarly, since the remainder term for pb at some ~yl ∈ Yl(t)
and t ∈ [0, δ] can be expressed by ε(~yl,−t) such that ξ is be-
tween 0 and −t. An interval enclosure of those remainders over
~yl ∈ Yl(t) and t ∈ [0, δ] could be obtained as E(Yl(δ), [−δ, 0]).
By Lemma 3, we have that E(Yl(δ), [−δ, 0]) = (−1)k+1 ·
E(Xl, [0, δ]). In other words, Ib can be computed as an interval
enclosure of (−1)k+1 · E(Xl, [0, δ]).

Lemma 3. For an order k ≥ 0 and a time interval [0, δ], we
have that

E(Yl(δ), [−δ, 0]) = (−1)k+1 · E(Xl, [0, δ])

Although the interval Int({ϕf (~xl, ξ) | ~xl ∈ Xl, ξ ∈ [0, δ]})
is hard to compute, we may obtain an interval enclosure I~x
for it from an interval evaluation of Fi, and hence

Iε =
1

(k + 1)!
Lk+1
f (I~x) · ([0, δ])k+1 (4)

is an interval enclosure of E(Xl, [0, δ]). At last, we have the
safe remainder interval Ib = (−1)k+1 · Iε.

Notice that Ib is sufficiently large for any point in
(pf (~xl, t), If) with ~xl ∈ Xl, t ∈ [0, δ], i.e., Fi. In other words,
for any point ~yl ∈ (pf (~xl, t), If), (pb(~yl, t), Ib) defines an over-
approximation for the backward map ϕf ((pf (~xl, t), If),−t).
The reason is that Iε is computed based on the over-
approximation Fi.

The TMs of the forward and backward flowmaps computed
in all time steps can be organized as an automaton shown
in Fig.2. For 1 ≤ i ≤ N , the state Xi denotes the exact
reachable set ϕf (X0, iδ). The forward edge Φi(~xl, t) denotes
the forward TM (pf (~xl, t), If) in the i-th time step, while
the backward edge Ψi(~yl, t) is the backward TM (pb(~yl, t), Ib)
there. When we take t = δ, they are over-approximations
of the maps between the states. Then for any τ ∈ [0, T], an
order k TM for the backward map from ϕf (X0, τ) to X0

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 62

can be obtained by composing the TMs along the path from
Xi to X0 such that τ ∈ [(i − 1)δ, iδ]. It can be done by
Algorithm 1. In the TM computation, we take the TM flowpipe
Fi with t = τ − (i − 1)δ as the range of ~yl. To achieve a
good accuracy, some preconditioning techniques proposed for
intervals [37] and TMs [38] can be applied. Additionally, we
may also consider the case that τ ranges in a time interval by
taking an additional variable t.

Algorithm 1 Composing TMs for backward flows
Π← Ψi(~yl, τ − (i− 1)δ); # by TM arithmetic
for all j = i− 1 to 1 do

Π← Ψj(Π, δ); # by TM arithmetic
end for
return Π;

V. UNDER-APPROXIMATION GENERATION

In the section, we show how flowpipe under-approximations
can be generated based on the TMs of backward flowmaps.

A. Main theorem

Given an n-dimensional continuous system defined by
~̇x = f(~x). If the initial set is defined by X0 = {~x ∈
Rn | ∧mi=1(pi(~x) ≤ 0)} which is compact and connected, then
the reachable set at time t ≥ 0 can be characterized by

ϕf (X0, t) = {~x ∈ Rn |
m∧
i=1

(pi(ϕf (~x,−t)) ≤ 0)} (5)

which is also compact and connected (see [34]). Intuitively, a
state ~x is in ϕf (X0, t) iff the backward flow maps it to a state
in X0 at time −t. We present an example in Fig. 3 to show
such evolution of a constraint. Given a time point t = τ , if
(pb(~x), Ib) is a TM for the backward flowmap from ϕf (X0, τ)
to X0, then we may compute an order k TM (φi(~x), [`i, vi])
for pi(ϕf (~x,−τ)) from evaluating pi((pb(~x), Ib)) by TM
arithmetic for all 1 ≤ i ≤ m. Such a TM of the backward
flowmap as well as a TM F of ϕf (X0, τ) can be obtained
using the forward as well as backward flowmap computation
presented in Sect. IV by taking a TM of X0. Then the
constrained flowpipe Fo = {~x ∈ F | ∧mi=1(φi(~x) + `i ≤ 0)}
defines a refined over-approximation of the reachable set
ϕf (X0, τ) since F is derived based on a TM of X0, while
an under-approximation of ϕf (X0, τ) can be computed as a
connected subset Ω of Fu = {~x ∈ IF |

∧m
i=1(φi(~x)+ui ≤ 0)}

wherein IF is an interval enclosure of F and ui = vi + ε for
some ε > 0, if Ω∩ϕf (X0, τ) 6= ∅. The purpose to raise those
upper bounds is to ensure that Fu has no intersection with
the boundary of ϕf (X0, τ) which is strictly over-approximated
by Fτ = Fo\Fu. The detail is explained in the proof of
Theorem 4.

Theorem 4. The constrained flowpipe Fo is an over-
approximation of ϕf (X0, τ). For any connected subset Ω of
Fu, if ϕf (X0, τ) ∩ Ω 6= ∅, then Ω is an under-approximation
of ϕf (X0, τ).

X0

ϕf (X0, t)

p(~x) ≤ 0

p(ϕf (~x,−t)) ≤ 0

Fig. 3. Evolution of a constraint p(~x) ≤ 0

Proof. We first prove the over-approximation. Since the TM
(φi(~x), [`i, ui]) is an over-approximation of pi(ϕf (~x,−τ)) for
1 ≤ i ≤ m, more precisely, we have that

φi(~x) + `i ≤ pi(ϕf (~x,−τ)) < φi(~x) + ui (6)

for all ~x ∈ ϕf (X0, τ). Then for any ~x ∈ ϕf (X0, τ), the
implication pi(ϕf (~x,−τ)) ≤ 0→ φi(~x) + `i ≤ 0 holds, and
hence ϕf (X0, τ) ⊆ {~x ∈ Rn | ∧mi=1(φi(~x) + `i ≤ 0)}. Since
ϕf (X0, τ) ⊆ F , we conclude that ϕf (X0, τ) ⊆ Fo.

We turn to the under-approximation. The boundary of
ϕf (X0, τ) is given by

∂ϕf (X0, τ)=

(
m⋃
i=1

{~x ∈ Rn | pi(ϕf (~x,−τ))=0}
)
∩ϕf (X0, τ)

Then the set S = {~x ∈ Rn |φi(~x)+ui ≤ 0} does not intersect
∂ϕf (X0, τ). The reason is that for any ~x ∈ S, if ~x ∈ ϕf (X0, τ)
there is pi(ϕf (~x,−τ)) < 0 for all 1 ≤ i ≤ m by the inequality
(6), otherwise pi(ϕf (~x,−τ)) > 0 for all 1 ≤ i ≤ m. It is also
the case for all subsets of S. Therefore, any connected subset
of S(t) either is entirely contained in ϕf (X0, τ) or has no
intersection with ϕf (X0, τ). Since Fu ⊆ S, we conclude that
Ω ⊂ ϕf (X0, τ) for any connected set Ω ⊆ Fu if ϕf (X0, τ)∩
Ω 6= ∅.

By taking t as an additional variable over a small time
interval ∆, Theorem 4 can be extended to produce under- as
well as over-approximation for the reachable set over ∆.

B. Methodologies to find an under-approximation

From Theorem 4, we need three steps to compute an under-
approximation of the TM F for the reachable set ϕf (X0, τ).
The first step is to obtain a subset Ω of Fu. It can be done
by taking Ω as Fu or a subset of it. Then in the second
step, we need to prove that Ω is connected, and ensure that the
intersection Ω∩ϕf (X0, τ) is nonempty in the third step. There
are various ways to achieve this, we present some methods
based on interval arithmetic. Again, the following methods can
be extended to handle the reachable set over a time interval
by taking an additional variable t.

Taking Ω = Fu. To limit the underestimation, we mainly
consider the case that Ω = Fu. Then it requires to verify
that Fu is a connected set. Since it is defined by a system
of polynomial inequalities, to verify its connectedness is at
least as hard as solving the same problem on a basic closed
semialgebraic set, and it is intractable in general (see [39]).
Fortunately, we could use the sufficient condition given in [21]
on which the connectedness may possibly be proved efficiently.
The idea is to find a star point in Fu.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 63

X0

ϕf (X0, τ)

~c0

~c

pf (~c0)
X0

ϕf (X0, τ)

~c
pb(~c) + Ib

Fig. 4. (L) Compute a candidate star point ~c, and (R) verify ~c is reachable

Given a set S, a point s∗ ∈ S is a star point if for any
s ∈ S the line segment connecting s∗, s is contained in S.
Furthermore, if S has a star point then it is connected. To
find a star point in Fu, we may first compute a candidate
point ~c ∈ Fu. Assume that the forward flowmap from X0 to
ϕf (X0, τ) is over-approximated by (pf (~x), If). The point ~c
can be computed as pf (~c0) wherein ~c0 is an approximation of
the geometric center of X0. Fig. 4(right) shows the idea. When
the TM order is sufficiently high, the inclusion ~c ∈ Fu can
be ensured. To verify that ~c is a star point in Fu, as stated by
Theorem 5 and Corollary 6, we may prove the unsatisfiability
of the constraints

φi(~x) + ui = 0 ∧
n∑
j=1

(
∂φi
∂xj
· (xj − cj)

)
≤ 0

over ~x ∈ IF for all 1 ≤ i ≤ m. This may be efficiently done
by using Interval Constraint Propagation (ICP) [40].

Theorem 5 ([21]). Given a set S = {~x ∈ D ⊂ Rn |ψ(x) ≤ 0}
wherein D is a convex set and ψ has continuous derivatives
in D. For any ~c ∈ S, if the constraint

ψ(~x) = 0 ∧
n∑
i=1

(
∂ψ

∂xi
· (xi − ci)

)
≤ 0

is unsatisfiable for ~x ∈ D, then ~c is a star point in S.

Corollary 6. Given a set S = {~x ∈ D ⊂ Rn | ∧mi=1(ψi(x) ≤
0)} wherein D is a convex set and ψ1, . . . , ψm have continuous
derivatives in D. If ~c is a star point in Si = {~x ∈ D |ψi(x) ≤
0} for all 1 ≤ i ≤ m, then it is also a star point in S.

Fig. 5. Sets Fo, Fu

In the last step, we should
prove that the intersection Fu ∩
ϕf (X0, τ) is nonempty. To do
so, we assume that the backward
flowmap from X0 to ϕf (X0, τ)
is over-approximated by the TM
(pb(~x), Ib) based on the method in
Sect. IV-B. Then, as we pointed
out, Ib is safe for all states in
(pf , If). Hence we may check
whether the interval pb(~c) + Ib is
included by X0. If so, then ~c is in ϕf (X0, τ), and Fu is an
under-approximation of ϕf (X0, τ). The idea is illustrated in
Fig. 4 (Left). It will be shown in Sect. VI that the three steps
succeed in most of our experiments. A simple example is given
as below.

Example 7. We consider the Moore-Greitzer model of a jet
engine described in [41]. It is the continuous system defined

by the following ODE.{
ẋ = −y − 1.5 · x2 − 0.5 · x3 − 0.5
ẏ = 3 · x− y

The initial set is given by the simplex

X0 = {(x, y) ∈ R2 | −x ≤ −0.9∧−y ≤ −0.9∧x+y−2 ≤ 0}
We try to compute the under-approximation Fu as well as the
over-approximation Fo at t = 0.04 based on the TMs of the
forward and backward flowmaps. Those TMs are computed
on the interval enclosure IX0 = {(x, y) |x ∈ [0.9, 1.1], y ∈
[0.9, 1.1]} of X0. An interval enclosure of the TM flowpipe F
at time 0.04 is

IF =
{

(x, y)
∣∣∣ x ∈ [0.78063344, 0.95902894],
y ∈ [0.96380802, 1.1772562]

}
By transferring the constraints defining X0 to the time 0.04,
we obtain the polynomials φ1, φ2, φ3 and constant bounds
`1, `2, `3, u1, u2, u3 in the definition of Fu, Fo:
φ1 =−4.0810848e-2 · y − 9.9877519e-1 · x− 3.3480961e-5 · y2

−2.4637920e-3 · x · y − 6.0550400e-2 · x2 − 3.6608001e-7 · y3
−3.7006081e-5 · x · y2 − 1.4139012e-3 · x2 · y − 2.3644942e-2 · x3

−1.1520000e-7 · x · y3 − 7.8739201e-6 · x2 · y2
−2.4417472e-4 · x3 · y − 3.2465277e-3 · x4

φ2 =−1.0383459 · y + 1.2238309e-1 · x+ 1.0022399e-6 · y2
+9.8899199e-5 · x · y + 3.6712367e-3 · x2 + 7.6799999e-9 · y3
+1.0828799e-6 · x · y2 + 5.4915839e-5 · x2 · y + 1.3629942e-3 · x3

+1.7280000e-7 · x2 · y2 + 7.2460800e-6 · x3 · y + 1.2865439e-4 · x4

φ3 = 1.0791566 · y + 8.7639208e-1 · x+ 3.2478719e-5 · y2
+2.3648927e-3 · x · y + 5.6879162e-2 · x2 + 3.5840000e-7 · y3
+3.5923200e-5 · x · y2 + 1.3589852e-3 · x2 · y
+2.2281947e-2 · x3 + 1.1519999e-7 · x · y3 + 7.7011199e-6 · x2 · y2
+2.3692863e-4 · x3 · y + 3.1178732e-3 · x4

`1 = 0.88000760, `2 = 0.90121569, `3 = −1.9812255
u1 = 0.88000946, u2 = 0.90121597, u3 = −1.9812233

We choose the point ~c0 = (0.95, 0.95) ∈ X0 and its
image under the forward flowmap approximation pf is
~c = (0.82910752, 1.0171865) which can be easily verified
by iSAT [42] as a star point in Fu. Therefore Fu is connected.
To ensure that the intersection of Fu and the reachable set
at t = 0.04 is nonempty, we compute the interval image of ~c
under the TM of the backward flowmap and it is contained in
X0. Hence, Fu is an under-approximation of the reachable
set at t = 0.04. To visualize the sets Fu and Fo, we plot the
grids with a specified size that intersect Fo in cyan, and the
grids that are covered by Fu in red. They are shown in Fig. 5.
Besides, we also give the simulations 1 in blue.

To further investigate the performance of our method, we
consider to under- as well as over-approximate a flowpipe over
a time step. We set the step-size δ = 0.02 and compute the
TMs of forward and backward flowmaps for the time horizon
[0, 3]. In Fig. 6(a) and 6(b) respectively, we plot the set Fo in
cyan, the set Fu in red and the unconstrained TM flowpipe F
in yellow for t ranges in a time step. Additionally, we also plot
the similar approximation sets in Fig. 6(c) and 6(d) for the
ellipsoidal initial set {(x, y) ∈ R2 | (x−1)2+(y−1)2 ≤ 0.01}.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 64

(a) t ∈ [0.98, 1] from the simplex (b) t ∈ [2.98, 3] from the simplex

(c) t ∈ [0.98, 1] from the ellipsoid (d) t ∈ [2.98, 3] from the ellipsoid

Fig. 6. Reachable set under- and over-approximations for the jet engine model.
Numerical simulations are given in blue.

Other methods. The under-approximate set Ω may also be
defined as a geometric object, such as a set of connected boxes
or polytopes. To do so, we may follow the methods presented
in [43] and [44]. The main idea is to first randomly generate a
set of points in Fu, and then successively bloat each point to
a set which is made as large as possible but still contained in
Fu. Then Ω is the union of those sets which are connected to
the others. To verify that Ω intersects the exact reachable set
ϕf (X0, τ), we may just compute the images of those random
points under the backward TM map, if at least one of them is
in X0, then Ω is an under-approximation of ϕf (X0, τ).

VI. EXPERIMENTS

We implemented our approach based on the TM library of
FLOW* [22]. The experiments are described as follows.
System models. We select 9 non-linear continuous systems
whose dimensions range from 2 to 7. In order to evaluate
our method on tough examples, some chaotic systems are
also included. They are Lorenz system, Rössler attractor and
Shimizu-Morioka system [45].
Initial sets. We want to handle the initial sets defined
by polynomial constraints. Such a set is usually not TM
definable but the TM forward and backward flowmaps can
be computed on a TM of it. In our experiments, we con-
sider two initial sets for each system: a simplex defined by
S0 = {~x ∈ Rn | (∧ni=1(−xi + ai − r ≤ 0)) ∧ (

∑n
i=1 xi −∑n

i=1 ai) ≤ 0}, and an ellipsoid defined by E0 = {~x ∈
Rn | ∑n

i=1(xi − ai)2 ≤ r2}. The constants ~a and r for the
systems are listed as follows: jet engine: ~a = (1, 1), r = 0.1;
Brusselator: ~a = (0.95, 0.05), r = 0.05; Rössler attractor:
~a = (0,−8.4, 0), r = 0.1; Lorentz system: ~a = (15, 15, 36),
r = 0.01; Shimizu-Morioka system: ~a = (15, 15, 36), r = 0.01;
Lotka-Volterra system [46]: ~a = (0.5, 0.5, 0.5, 0.5), r = 0.1;
coupled Van-der-Pol system: ~a = (1, 1, 1, 1), r = 0.1; Watt

1A numerical simulation is only an approximation whose error bound is
not guaranteed. However, it usually can be made very accurate.

TABLE I
EVALUATION OF THE APPROXIMATIONS FOR ~x(T) WITH INITIAL SETS AS

simplices. VAR: # VARIABLES, δ: STEP-SIZES, k: TM ORDERS, TIME: TOTAL
RUNNING TIME.

systems var T δ k time (s) γmin
1 jet engine 2 4 0.02 4 56 ∼0.8
2 jet engine 2 5 0.02 4 71 ∼0.75
3 Brusselator 2 3 0.02 4 55 ∼0.7
4 Brusselator 2 4 0.02 4 89 ∼0.55
5 Rössler 3 1.5 0.01 5 165 ∼0.5
6 Rössler 3 1.6 0.01 5 178 Fail
7 Lorenz 3 0.5 0.01 5 35 ∼0.65
8 Lorenz 3 0.6 0.01 5 45 ∼0.35
9 Shimizu-Morioka 3 1 0.01 5 58 ∼0.7
10 Shimizu-Morioka 3 1.2 0.01 5 69 ∼0.3
11 Lotka-Volterra 4 1 0.01 4 297 ∼0.4
12 coupled Van-der-Pol 4 4 0.01 4 118 ∼0.45
13 steam governor 5 2.5 0.01 5 16 ∼0.35
14 biological system 7 0.2 0.002 3 632 ∼0.25

steam governor [47]: ~a = (0, 0, 0, 0, 0), r = 0.1; biological
system [48]: ~a = (0.1025, . . . , 0.1025), r = 0.0025. Notice
that these initial sets are at least in the same scale as those
typically used in evaluating verified integration methods. Also,
we evaluate the accuracy of an approximation at the end of
the time horizon.
Results. Since the exact accuracy evaluation is very
hard, we intuitively only measure the widths w.r.t. a set
of directions. Given an over-approximation So, an under-
approximation Su and a set of vectors V , we conservatively
compute the widths of So, Su w.r.t. each ~v ∈ V : γo(~v) ≥
|max{~vT ·~x | ~x∈So}+ max{−~vT ·~x | ~x∈So}| and γu(~v) ≤
|max{~vT ·~x | ~x∈Su}+ max{−~vT ·~x | ~x∈Su}|. Then we com-
pute the minimum width ratio γmin = min{γu(~v)/γo(~v) |~v ∈
V } which gives an intuitive evaluation on the accuracy, i.e.,
the larger the value the better the approximation. In Table I
and II, we present the experimental results on our benchmarks.
The over- and under-approximations are the sets Fo and Fu
respectively at time T . The vectors are selected along the
dimensions (axis-aligned). It can be seen that our method found
a valid under-approximation in most cases, and even could
handle chaotic behaviors in reasonably long time horizons.

On one hand, our prototype produces interesting results on
most of the benchmark examples. Since interval (as well as
TM) based integration methods are very sensitive to the size
of the initial set and the length of the time horizon, our under-
approximation method underperforms on hard case studies,
such as the test #6. However, there is still a lot of room for
engineering improvements to our prototype implementations.
Acknowledgments. This work was supported by the DFG
project HyPro, and in part, by the US National Science
Foundation (NSF) under award # CNS-0953941. All opinions
expressed are those of the authors and not necessarily of DFG
or NSF.

REFERENCES

[1] S. Sankaranarayanan, H. Sipma, and Z. Manna, “Constructing invariants
for hybrid systems,” in Proc. HSCC’04, ser. LNCS, vol. 2993. Springer,
2004, pp. 539–554.

[2] S. Gulwani and A. Tiwari, “Constraint-based approach for analysis of
hybrid systems,” in Proc. CAV’08, ser. LNCS, vol. 5123. Springer,
2008, pp. 190–203.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 65

TABLE II
EVALUATION OF THE UNDER-APPROXIMATIONS FOR ~x(T) WITH INITIAL

SETS AS ellipsoids. LEGENDS: SEE TABLE I.

systems var T δ k time (s) γmin
1 jet engine 2 4 0.02 4 45 ∼0.8
2 jet engine 2 5 0.02 5 185 ∼0.7
3 Brusselator 2 3 0.02 4 43 ∼0.65
4 Brusselator 2 4 0.01 4 138 ∼0.5
5 Rössler 3 1.5 0.01 5 153 ∼0.4
6 Rössler 3 1.6 0.01 5 167 Fail
7 Lorenz 3 0.5 0.01 5 31 ∼0.5
8 Lorenz 3 0.6 0.01 5 44 ∼0.2
9 Shimizu-Morioka 3 1 0.01 5 55 ∼0.5

10 Shimizu-Morioka 3 1.2 0.01 5 67 ∼0.1
11 Lotka-Volterra 4 1 0.01 4 261 ∼0.25
12 coupled Van-der-Pol 4 4 0.01 4 105 ∼0.3
13 steam governor 5 2.5 0.01 5 16 ∼0.2
14 biological system 7 0.2 0.002 3 581 ∼0.15

[3] A. Platzer and E. Clarke, “Computing differential invariants of hybrid
systems as fixedpoints,” FMSD, vol. 35, no. 1, pp. 98–120, 2009.

[4] T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi, “Beyond
HYTECH: Hybrid systems analysis using interval numerical methods,”
in Proc. HSCC’00, ser. LNCS, vol. 1790. Springer, 2000, pp. 130–144.

[5] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past
HyTech,” in HSCC, ser. LNCS, vol. 2289. Springer, 2005, pp. 258–273.

[6] T. Dang, O. Maler, and R. Testylier, “Accurate hybridization of nonlinear
systems,” in Proc. HSCC ’10. ACM, 2010, pp. 11–20.

[7] A. Chutinan and B. Krogh, “Computing polyhedral approximations to
flow pipes for dynamic systems,” in Proc. CDC’98. IEEE, 1998.

[8] E. Asarin, T. Dang, and O. Maler, “The d/dt tool for verification of
hybrid systems,” in CAV, ser. LNCS, vol. 2404. springer, 2002, pp.
365–370.

[9] A. Girard, “Reachability of uncertain linear systems using zonotopes,”
in Proc. HSCC’05, ser. LNCS, vol. 3414. Springer, 2005, pp. 291–305.

[10] C. Le Guernic and A. Girard, “Reachability analysis of hybrid systems
using support functions,” in Proc. CAV’09, ser. LNCS, vol. 5643.
Springer, 2009, pp. 540–554.

[11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in Proc. CAV’11, ser. LNCS, vol. 6806.
Springer, 2011, pp. 379–395.

[12] I. M. Mitchell and C. Tomlin, “Level set methods for computation in
hybrid systems,” in Proc. HSCC’00, ser. LNCS, vol. 1790. Springer,
2000, pp. 310–323.

[13] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces. Springer, 2002.

[14] I. M. Mitchell and J. A. Templeton, “A toolbox of hamilton-jacobi solvers
for analysis of nondeterministic continuous and hybrid systems,” in Proc.
HSCC’05, ser. LNCS, vol. 3414. Springer, 2005, pp. 480–494.

[15] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss, “Validated solutions
of initial value problems for ordinary differential equations,” Applied
Mathematics and Computation, vol. 105, no. 1, pp. 21–68, 1999.

[16] M. Berz and K. Makino, “Verified integration of ODEs and flows using
differential algebraic methods on high-order Taylor models,” Reliable
Computing, vol. 4, pp. 361–369, 1998.

[17] N. Ramdani and N. S. Nedialkov, “Computing reachable sets for uncertain
nonlinear hybrid systems using interval constraint-propagation techniques,”
Nonlinear Analysis: Hybrid Systems, vol. 5, no. 2, pp. 149–162, 2011.

[18] P. Prabhakar and M. Viswanathan, “A dynamic algorithm for approximate
flow computations,” in Proc. HSCC’11. ACM, 2011, pp. 133–142.

[19] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Taylor model flowpipe
construction for non-linear hybrid systems,” in Proc. RTSS’12. IEEE,
2012, pp. 183–192.

[20] P. Prabhakar, P. S. Duggirala, S. Mitra, and M. Viswanathan, “Hybrid
automata-based cegar for rectangular hybrid systems,” in Proc. VMCAI’13,
ser. LNCS, vol. 7737. Springer, 2013, pp. 48–67.

[21] N. Delanoue, L. Jaulin, and B. Cottenceau, “Using interval arithmetic to
prove that a set is path-connected,” Theoretical Computer Science, vol.
351, no. 1, pp. 119 – 128, 2006.

[22] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in Proc. of CAV’13, ser. LNCS, vol. 8044.
Springer, 2013, pp. 258–263.

[23] A. Girard, C. Le Guernic, and O. Maler, “Efficient computation of
reachable sets of linear time-invariant systems with inputs,” in Proc.
HSCC’06, ser. LNCS, vol. 3927. Springer, 2006, pp. 257–271.

[24] C. Le Guernic, “Reachability analysis of hybrid systems with linear
continuous dynamics,” Ph.D. dissertation, Université Joseph Fourier,
2009.

[25] G. Frehse, B. H. Krogh, and R. A. Rutenbar, “Verifying analog
oscillator circuits using forward/backward abstraction refinement,” in
Proc. DATE’06, 2006, pp. 257–262.

[26] I. M. Mitchell, “Comparing forward and backward reachability as tools
for safety analysis,” in HSCC, ser. LNCS, vol. 4416. Springer, 2007,
pp. 428–443.

[27] E. Gardeñes, M. Sainz, L. Jorba, R. Calm, R. Estela, H. Mielgo, and
A. Trepat, “Modal intervals,” Reliable Computing, vol. 7, no. 2, pp.
77–111, 2001.

[28] E. Goubault and S. Putot, “Under-approximations of computations in
real numbers based on generalized affine arithmetic,” in Proc. SAS’07,
ser. LNCS, vol. 4634. Springer, 2007, pp. 137–152.

[29] E. Goubault, O. Mullier, and S. P. amd M. Kieffer, “Inner approximated
reachability analysis,” 2014, to Appear (April 2014).

[30] B. Xue, “Computing rigor quadratic lyapunov functions and under-
approximate reachable sets for ordinary differential equations,” Ph.D.
dissertation, Beihang University, 2013.

[31] S. Gao, J. Avigad, and E. Clarke, “δ-complete decision procedures for
satisfiability over the reals,” in IJCAR, ser. LNCS, vol. 7365, 2012, pp.
286–300.

[32] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT solver for nonlinear
theories over the reals,” in CADE, ser. LNCS, vol. 7898. Springer,
2013, pp. 208–214.

[33] S. Gao, S. Kong, and E. Clarke, “Satisfiability modulo ODEs,” in FMCAD,
Oct 2013, pp. 105–112.

[34] J. D. Meiss, Differential Dynamical Systems. SIAM publishers, 2007.
[35] K. Makino and M. Berz, “Taylor models and other validated functional

inclusion methods,” J. Pure and Applied Mathematics, vol. 4, no. 4, pp.
379–456, 2003.

[36] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis. SIAM, 2009.

[37] R. J. Lohner, “Computation of guaranteed enclosures for the solutions
of ordinary initial and boundary value problems,” in Computational
ordinary differential equations, 1992, pp. 425–435.

[38] K. Makino and M. Berz, “Suppression of the wrapping effect by
taylor model-based verified integrators: Long-term stabilization by
preconditioning,” International Journal of Differential Equations and
Applications, vol. 10, no. 4, pp. 353 – 384, 2005.

[39] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic
Geometry. Springer, 2006.

[40] F. Benhamou and L. Granvilliers, “Continuous and interval constraints,”
in Handbook of Constraint Programming. Elsevier, 2006, pp. 571–590.

[41] E. M. Aylward, P. A. Parrilo, and J.-J. E. Slotine, “Stability and
robustness analysis of nonlinear systems via contraction metrics and SOS
programming,” Automatica, vol. 44, no. 8, pp. 2163 – 2170, 2008.

[42] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient
solving of large non-linear arithmetic constraint systems with complex
Boolean structure,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 1, pp. 209–236, 2007.

[43] S. Sankaranarayanan, A. Chakarov, and S. Gulwani, “Static analysis for
probabilistic programs: Inferring whole program properties from finitely
many paths,” in Proc. PLDI’13, vol. 48. ACM, 2013, pp. 447–458.

[44] A. Kanade, R. Alur, F. Ivancic, S. Ramesh, S. Sankaranarayanan,
and K. C. Shashidhar, “Generating and analyzing symbolic traces of
simulink/stateflow models,” in Proc. CAV’09, ser. LNCS, vol. 5643.
Springer, 2009, pp. 430–445.

[45] A. L. Shil’nikov, “On bifurcations of the Lorenz attractor in the Shimizu-
Morioka model,” Phys. D, vol. 62, no. 1-4, pp. 338–346, 1993.

[46] J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K. Noel, and J. C.
Sprott, “Chaos in low-dimensional Lotka-Volterra models of competition,”
Nonlinearity, vol. 19, no. 10, pp. 2391–2404, 2006.

[47] J. Sotomayor, L. F. Mello, and D. de Carvalho Braga, “Bifurcation
analysis of the Watt governor system,” Comput. Appl. Math., vol. 26,
no. 1, 2007.

[48] E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach, Systems
Biology in Practice: Concepts, Implementation and Application. Wiley-
Blackwell, 2005.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 66

Disproving termination with overapproximation
Byron Cook∗†, Carsten Fuhs†, Kaustubh Nimkar† and Peter O’Hearn†

∗Microsoft Research
†University College London

Abstract—When disproving termination using known tech-
niques (e.g. recurrence sets), abstractions that overapproximate
the program’s transition relation are unsound. In this paper we
introduce live abstractions, a natural class of abstractions that can
be combined with the recent concept of closed recurrence sets
to soundly disprove termination. To demonstrate the practical
usefulness of this new approach we show how programs with
nonlinear, nondeterministic, and heap-based commands can be
shown nonterminating using linear overapproximations.

1. INTRODUCTION

A program is terminating iff its transition relation (when
restricted to reachable states) is well-founded. Because every
subrelation of a well-founded relation is itself well-founded,
if we prove an abstraction that overapproximates the program
to be terminating, then we have proved the concrete program
terminating. The reverse, unfortunately, is not true: the exis-
tence of a nonterminating overapproximating abstraction does
not imply that the original concrete program is nonterminat-
ing. Thus, when proving nontermination, we currently cannot
make use of the many techniques from program analysis that
overapproximate programs.

In this paper we revisit a recently introduced concept
called a closed recurrence set [8]. The existence of a closed
recurrence set for a program implies that the program does not
terminate. Curiously, the existence of a closed recurrence set
for an overapproximating abstraction (meeting certain restric-
tions, which we formalize as live abstractions) also implies
nontermination of the original concrete program. Thus, when
combined with our technique, we can now use overapproxi-
mating abstractions when attempting to prove nontermination.

To demonstrate the usefulness of our approach we describe
an experimental evaluation where nonlinear, nondeterministic,
and heap-based programs are proved to be nonterminating
using off-the-shelf overapproximating linear abstractions.

Limitations. As discussed in detail in the paper: not all over-
approximating abstractions are compatible with our approach.
We address this problem by describing the conditions on ab-
stractions that make the abstraction sound for our approach, as
the notion of live abstractions. Many of the known abstractions
indeed meet these conditions. Additionally, closed recurrence
sets are not complete, i.e. in some cases a closed recurrence set
will not exist for nonterminating programs. In these situations
our approach can still help in combination with previous
techniques to disprove termination (e.g. underapproximation)
in cases where existing techniques alone could not.

In our automation, counterexamples to termination are
expressed as simple while loops, a.k.a. lasso paths, which

are used extensively in the termination and nontermination
proving literature. Unfortunately, not all counterexamples to
termination can be expressed as lassos (see e.g. [8, Section 4]
for a program where only aperiodic nonterminating runs exist).
Furthermore, as done in TNT [18], when disproving termi-
nation of real programs with complex control-flow graphs,
we must first search for candidate lassos before applying our
approach. Like TNT, our tool also exhaustively searches pro-
gram’s control flow graph for candidate lassos. Alternatively,
candidate lassos can be obtained from a termination prover
when it fails to prove termination. Thus our technique can be
efficiently combined with a termination prover.

Related work. Termination proving tools are now well-
known, e.g. [5], [6], [11], [12], [14], [15], [22], etc. The
difference here is that we are disproving, rather than proving
termination. While in some trivial cases termination provers
can easily disprove termination (e.g. when variables are not
modified in an infinite loop), in practice this is not the focus
for these tools. Failure to find a termination proof does not
imply a proof of nontermination. Thus dedicated techniques
for nontermination proving are essential.

Since termination is not a safety property, its falsification
cannot always be witnessed by a finite trace; thus testing
cannot reliably be used to identify termination bugs.

In recent work, Chen et al. [8] introduce the notion of closed
recurrence sets, upon which we build in this paper. Chen et al.
combine closed recurrence sets with counterexample-guided
underapproximation to harness safety provers for proving non-
termination. The method hinges on the availability of suitable
safety provers for the regarded class of programs, which
currently makes an application of their method to nonlinear or
heap-based programs difficult. We go beyond this limitation.

Closed recurrence sets were inspired by TNT [18], which
uses a characterization of nontermination by (open) recurrence
sets. Note that closed recurrence sets are stronger than recur-
rence sets: a recurrence set exists iff a program is nonterminat-
ing, whereas closed recurrence sets only imply nontermination;
that is why they are useful for approximation. We show that
additional techniques can be used to mitigate the relative
strength of the condition. In contrast to us, TNT is restricted
to programs using linear arithmetic. Our approach supports
unbounded nondeterminism in the program’s transition rela-
tion, whereas TNT is restricted to deterministic commands.
As discussed later, this is due to a happy interaction between
the definition of closed recurrence sets and Farkas’ lemma.

Larraz et al. [23] prove non-termination via Max-SMT
solving. The method explores all strongly connected subgraphs

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 67

of a program’s CFG and thus can find witnesses for non-
termination that need not be lasso paths. However this ap-
proach is limited to linear arithmetic as well.

Termination analysis tools for constraint-logic programs
(e.g. [30]) can in cases be used to prove nontermination of
imperative programs (e.g. JULIA [31] can show nontermination
for Java bytecode programs if the abstraction to constraint-
logic programs is exact, but provides no witness like a recur-
rence set to the user). The main difficulty here is in the applica-
tion of the tools to imperative programs, as overapproximating
abstractions are typically used for converting languages such
as Java and C to constraint-logic programs. These abstractions
are in general unsound for directly proving nontermination.
Our work may in fact have application in this domain.

APROVE [15] uses SMT solving to prove nontermination of
Java programs [7]. First nontermination of a loop regardless of
its context is proved, then reachability of the loop with suitable
values. The drawback of their technique is that they require
either that (after program slicing to the variables that influence
the loop control flow) the values of the program variables are
always the same at the loop header or that the loop conditions
themselves must be loop invariants.

The tool INVEL [34] analyzes nontermination of Java pro-
grams using a combination of theorem proving and invariant
generation. Like Brockschmidt et al. [7], we were unable
to obtain a working version of INVEL. Note that in the
empirical evaluation by Brockschmidt et al. [7], the APROVE
tool (which we have compared against) subsumed INVEL
on INVEL’s data set. Finally, INVEL is only applicable to
deterministic integer programs, whereas our approach allows
nondeterminism and heap-based data structures as well.

Gulwani et al. [17] can prove nontermination in some cases
by proving the exit points of the program unreachable, but
use a restriction to linear arithmetic. Their technique is fairly
imprecise in the presence of nondeterminism in the input.

Atig et al. [2] reduce nontermination of multithreaded
programs to nontermination reasoning for sequential programs.
Our work complements Atig et al., as we improve the under-
lying sequential tools that future multithreaded tools can use.

Previous works (e.g. [10], [19], [32]) describe techniques for
proving properties expressed in branching-time temporal logic
of infinite-state programs. Nontermination can be encoded
in these logics (e.g. in CTL, nontermination is EG pc 6=
END). Our work complements these previous works. Here
we facilitate the use of overapproximation.

Finally, several automatic tools exist for proving non-
termination of term rewrite systems (e.g. [13], [16], [29]).
However, in nontermination analysis for term rewriting the
entire state space is considered as legitimate initial states for
a (possibly infinite) evaluation sequence, whereas our setting
also factors in reachability from the initial states.

2. ILLUSTRATING EXAMPLE

Before formally introducing our approach, we first describe
the idea informally using an example. Imagine that we want
to show nontermination of the toy program in Fig. 1(a). Here

assume(j ≥ 1 and k ≥ 1);
while i ≥ 0 do

i := j × k;
j := j + 1;
k := k + 1;
skip; // location `

done

assume(j ≥ 1 and k ≥ 1);
while i ≥ 0 do

i := nondet();
j := j + 1;
k := k + 1;
assume(i ≥ 1);

done

(a) (b)
Fig. 1. Nonlinear program (a), and its linear abstraction (b). The command
assume [27] only allows executions to continue when the condition holds,
nondet represents nondeterministic choice.

we are using an assume statement [27], which does not allow
executions to pass unless the condition is valid.1

We are looking to find initial values for i, j and k from which
an infinite run is possible. Indeed, such a run is possible: from
the state (i = 1, j = 1, k = 1) the program can perform a
sequence of loop iterations via the states (i = 1, j = 2, k = 2),
(i = 4, j = 3, k = 3), (i = 9, j = 4, k = 4), . . . leading to an
infinite run. This set of states G = {(i = 1, j = 1, k = 1), (i =
1, j = 2, k = 2)}, (i = 4, j = 3, k = 3), (i = 9, j = 4, k =
4), . . .} meets a criterion that defines a recurrence set [18]:
during the execution of the while loop the program can get
into the set of states G, and when in G it is possible to stay in G
during an iteration of the loop. Finding a valid recurrence set
such as this is a complete method of proving nontermination.

Now the question is, how can we automatically find such a
proof of nontermination? The difficulty here is the nonlinear
assignment i := j × k: most automatic formal verification tech-
niques struggle to support nonlinear arithmetic in a scalable
fashion. An arbitrary overapproximation of this program will
not help in this context. The problem is that if we prove
nontermination of the overapproximation we still have not
proved nontermination of the original concrete program. The
reason is that—due to the nature of overapproximation—a
nonterminating execution in the overapproximation need not
correspond to any execution in the concrete program.

To avoid this problem we can use an overapproximating
abstraction of our program such that the abstraction satis-
fies certain conditions. We call such an abstraction a live
abstraction. See Section 3. Such an abstraction is shown
in Fig. 1(b). This abstraction uses nondeterministic choice
(i.e. nondet) to abstract away the nonlinear command and
also uses a linear location invariant at location ` from the
original program (i ≥ 1). Note that in Fig. 1(b) we do not
alter the loop condition from the original program but only
overapproximate the transitions that can take place inside the
loop. This abstraction is a live abstraction and is thus a safe
abstraction for our approach. Later in Section 3 we give the
necessary conditions for an abstraction to be a live abstraction.
Most of the abstractions used in the termination literature
satisfy the properties of a live abstraction.

Our approach is based on the following insight: if we can

1For termination, we can encode assume(e) ≡ if ¬e then exit(); fi

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 68

assume(j ≥ 1 and k ≥ 1);
while i ≥ 0 and m ≥ 0 do

i := j × k;
j := j + 1;
k := k + 1;
m := nondet();

done

assume(j ≥ 1 and k ≥ 1);
while i ≥ 0 and m ≥ 0 do

i := j × k;
j := j + 1;
k := k + 1;
m := nondet();
assume(m ≥ 0);

done

(a) (b)

assume(j ≥ 1 and k ≥ 1);
while i ≥ 0 and m ≥ 0 do

i := nondet();
j := j + 1;
k := k + 1;
m := nondet();
assume(m ≥ 0);
assume(i ≥ 1);

done

(c)
Fig. 2. Nonlinear program (a), its underapproximation (b), and the resulting
linear abstraction (c).

prove existence of a set of states G at the loop head in the live
abstraction meeting the following conditions then we know
that both the abstraction and the original concrete program are
nonterminating: a) G is nonempty and at least one state in G is
reachable, b) every state in G has at least one transition, and c)
all transitions from G in the abstraction only lead to G. If these
conditions hold then G is a closed recurrence set. This now
allows us to use tools on the overapproximating abstraction
rather than the original program to establish nontermination.
Here such a set could be given by G = {s | s |= i ≥ 1}.

Combining over- and underapproximation. Sometimes
closed recurrence sets are alone not enough: we may still
require the use of underapproximation. However, even then,
our approach facilitates the mixture of over- and underapprox-
imation to make more powerful nontermination proving tools.

Consider the program in Fig. 2(a). Here it is difficult to
find a useful linear overapproximation directly because of
the nondeterministic assignment to the variable m. However
if an underapproximation of a program is nonterminating,
then the original program itself is nonterminating as well.
Here we can use known techniques to automatically find an
underapproximation that rules out the unwanted transitions.
Consider the program in Fig. 2(b), an underapproximation of
the program in Fig. 2(a) restricting the choice for nondeter-
ministic assignment to the variable m. Using our approach we
can now easily find a useful linear overapproximation that is
a live abstraction for this program. The program in Fig. 2(c)
is a linear overapproximation of the underapproximation in
Fig. 2(b). Here, we can find a closed recurrence set G = {s |
s |= i ≥ 1∧m ≥ 0} for the program in Fig. 2(c), which proves

nontermination of the program in Fig. 2(b), which in turn
proves nontermination of the program in Fig. 2(a). Note that
it is unsound to first overapproximate and then underapproxi-
mate: as in this example we must first underapproximate and
then overapproximate. Also note that for overapproximations
we only consider live abstractions.

3. CLOSED RECURRENCE SETS AND OVERAPPROXIMATION

In this section we discuss closed recurrence sets and their
relationship to overapproximation.

Transition Systems. A transition system (S,R, I, F) is de-
fined by a set of states S, a transition relation R ⊆ S × S,
a set of initial states I ⊆ S and a set of final states F ⊆ S.
For a state s with R(s, s′), we say that s′ is a post-state of s
and that s is a pre-state of s′. We also call s′ a successor of s
under R. Execution of a transition system can only halt in a
final state, so every state s /∈ F must have a successor under
R, and any final state f ∈ F has no successors under R.

Example. Consider the example in Fig. 1(a). We can de-
scribe the loop and its initial condition as a transition system
(S,R, I, F) where any state s is basically a tuple (i, j, k) of
values of variables and S = Z3, R = {(s, s′) | s, s′ � i ≥ 0 ∧
i′ = j×k∧ j′ = j+1∧k′ = k+1}, I = {s | s � j ≥ 1∧k ≥ 1},
F = {s | s � i < 0}.
A. Closed recurrence sets.

A transition system (S,R, I, F) is nonterminating iff there
exists an infinite transition sequence s0

R−→ s1
R−→ s2

R−→ . . .
with s0 ∈ I . Gupta et al. [18] characterize nontermination of a
relation R by the existence of a recurrence set, viz. a nonempty
set of states G such that for each s ∈ G there exists a transition
to some s′ ∈ G. Here we extend the notion of a recurrence
set to transition systems. A transition system (S,R, I, F) has
a recurrence set (or open recurrence set) of states G(s) iff

∃s.G(s) ∧ I(s), (1)
∀s∃s′.G(s)→ R(s, s′) ∧ G(s′). (2)

A transition system (S,R, I, F) is nonterminating iff it has a
recurrence set of states.

Quantifier alternation as in Condition (2) can be a headache
for automation. To avoid this problem Gupta et al. [18] restrict
the transition relation to deterministic programs only. In this
case we can represent the post-state s′ using a unique expres-
sion in terms of the pre-state s. Thus the existential quantifier
can be eliminated by instantiating it with this expression.

Example. For the loop from Fig. 1(a), we can have a
recurrence set G = {(i = 1, j = 1, k = 1), (i = 1, j = 2, k =
2), (i = 4, j = 3, k = 3), (i = 9, j = 4, k = 4), . . . }.

Definition (Closed Recurrence Set [8])
A set G is a closed recurrence set for a transition system
(S,R, I, F) iff the following three conditions hold:

∃s.G(s) ∧ I(s) (3)
∀s∃s′.G(s)→ R(s, s′) (4)

∀s∀s′.G(s) ∧R(s, s′)→ G(s′) (5)

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 69

In contrast to standard (open) recurrence sets, we now
require a purely universal property: for each s ∈ G and for
each of its successors s′, also s′ must be in the recurrence
set (Condition (5)). So instead of requiring that we can stay
in the recurrence set, we now demand that we must stay in
the recurrence set. This has several advantages. First, without
quantifier alternation, Farkas’ lemma can now be applied
directly. This now helps us to incorporate nondeterministic
transition systems too. Secondly, the interaction with overap-
proximation is improved. The downside is that the condition
can be too strong.

There is an additional problem: what if a state s in our
recurrence set G has no successor s′ at all? This would bring
our alleged infinite transition sequence to a sudden halt, yet
our universal formula would trivially hold. To deal with this
issue, we must impose that each s ∈ G has some successor
s′ (Condition (4)). But this existential statement need not
mention that s′ must be in G again—our previous universal
statement already takes care of this. In this way, we have
gained something: the existential quantifier in Condition (4)
refers only to the (known) transition relation R and, as we
shall see in the Section 5 on automation, the condition can
be easily automated in spite of quantifier alternation when we
search for a closed recurrence set G.

Example. For the loop from Fig. 1(b), we can have a closed
recurrence set G = {s | s � i ≥ 1}. G satisfies all the
conditions of a closed recurrence set.

Theorem (Closed Recurrence Sets are Recurrence Sets
[8]) Let G be a closed recurrence set for (S,R, I, F). Then G
is also a standard (open) recurrence set for (S,R, I, F).

If our transition system is deterministic, every recurrence set
is also a closed recurrence set. In particular, closed recurrence
sets characterize nontermination in the setting of Gupta et al.
[18], which assumes deterministic programs.

Corollary (Recurrence Sets are Closed Recurrence Sets
for Deterministic Transition Systems)
Let G be a recurrence set for (S,R, I, F) such that for every
state s there exists at most one state s′ with R(s, s′). Then G
is also a closed recurrence set for (S,R, I, F).

B. Live abstractions

We now describe generic conditions on abstractions that are
sufficient to establish soundness for nontermination proving
using our approach, in the form of live abstractions.

Live Abstractions. We assume that an abstraction of T =
(S,R, I, F) is a system Tα = (Sα, Rα, Iα, Fα), with a
concretion (or meaning) function [[·]] : Sα → P(S).

Definition (Live Abstraction)
An abstraction Tα = (Sα, Rα, Iα, Fα) is live iff

∀s∀s′∀a.R(s, s′) ∧ s ∈ [[a]]→ ∃a′.Rα(a, a′) ∧ s′ ∈ [[a′]]
(Simulation)

∀f∀g. f ∈ F ∧ f ∈ [[g]]→ g ∈ Fα
(Upward Termination)

The Simulation (or, ‘up simulation’) condition is a standard
one for overapproximation: it says that any steps you can take
in the concrete transition system can be overapproximated
in the abstract transition system. The Upward Termination
condition says that for every final state in the concrete tran-
sition system, any corresponding abstract state is also a final
state in the abstract transition system. Together Simulation and
Upward Termination imply that for every terminating run in
the concrete transition system, also any corresponding run in
the abstract transition system is terminating.

The connection of these conditions to disproving termina-
tion then is: if there is an initial state a0 from which all compu-
tations in the abstract program are nonterminating and there is
an initial state s0 in the concrete program such that s0 ∈ [[a0]],
then all computations in the concrete program starting from s0
are nonterminating (i.e., for live abstractions, closed recurrence
carries over from the abstract to the concrete).

Theorem (Soundness)
Consider a live abstraction (Sα, Rα, Iα, Fα) for a transition
system (S,R, I, F). Suppose Gα is a closed recurrence set for
(Sα, Rα, Iα, Fα) and for some a0 we have Gα(a0)∧Iα(a0)∧
∃s0.(s0 ∈ [[a0]] ∧ I(s0)). Then there also exists a closed
recurrence set G = {s | ∃a.Gα(a)∧s ∈ [[a]]} for (S,R, I, F).

Proof. We need to prove Conditions (3), (4), and (5) for G.
For Condition (3) for G: We have for some a0, Gα(a0) ∧

Iα(a0) ∧ ∃s0.(s0 ∈ [[a0]] ∧ I(s0)). Thus for such s0 we have
I(s0) and the definition of G implies G(s0). Thus we have
Condition (3) for G.

For Condition (4) for G: Let s such that G(s). We now prove
that s /∈ F by contradiction. Suppose s ∈ F . The definition of
G implies ∃a.s ∈ [[a]] ∧ Gα(a). Condition (4) for Gα implies
∃a′.Rα(a, a′). However Upward Termination implies a ∈ Fα,
which implies ¬∃a′Rα(a, a′). Thus we have a contradiction.
Thus we must have s /∈ F . This gives Condition (4) for G.

For Condition (5) for G: Let s, s′ such that G(s)∧R(s, s′).
The definition of G implies ∃a.s ∈ [[a]]∧Gα(a). Moreover, the
Simulation condition gives ∃a′.Rα(a, a′)∧s′ ∈ [[a′]]. Condition
(5) for Gα implies Gα(a′). The definition of G gives G(s′) and
thus we have Condition (5) for G.

Note that similar to what many abstractions do, a live
abstraction can overapproximate the concrete initial states. For
a live abstraction to be useful for proving nontermination using
closed recurrence sets, we only need a0 ∈ Sα and s0 ∈ S that
satisfy the conditions of the soundness theorem.

Example. Recall Fig. 1(a) and its abstraction in Fig. 1(b).
We can represent the abstraction as a transition system:

Iα = {a | a � j ≥ 1 ∧ k ≥ 1} Fα = {a | a � i < 0}
Sα = Z3 Rα = {(a, a′) | (a, a′) � i ≥ 0 ∧ i′ ≥ 1

∧ j′ = j + 1 ∧ k′ = k + 1}
The abstraction contains i′ ≥ 1 in the transition relation of
the loop instead of the nonlinear update i′ = j × k. Here
the abstraction has not changed the state space, the set of
initial states and the set of final states, but it has weakened

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 70

the transition relation of the loop. Note that this abstraction
fulfills all criteria for a live abstraction.

Example. Consider again the examples from Fig. 1(a) and
(b). Here we have the closed recurrence set Gα = {s | s � i ≥
1} for the loop in our abstraction in Fig. 1(b). This implies
existence of a closed recurrence set G for the loop in the
concrete program in Fig. 1(a) and hence its nontermination.

Example. To see why we need the Upward Termination
condition for the abstraction, consider the following transition
system (S,R, I, F) and its abstraction (Sα, Rα, Iα, Fα):

S = {s0, s1, s2, s3} I = {s0} F = {s1}
R = {(s0, s1), (s2, s3), (s3, s0)}

Sα = {{s0}, {s1, s2}, {s3}} Iα = {{s0}} Fα = ∅
Rα = {({s0}, {s1, s2}), ({s1, s2}, {s3}), ({s3}, {s0})}

Here an abstract state is a subset of the set of all concrete
states, where we have “merged” the states s1 and s2 to a single
state. The abstraction satisfies the Simulation condition but not
Upward Termination because s1 is a final state in the concrete
transition system, but the corresponding abstract state {s1, s2}
is not a final state in the abstract transition system. The
abstraction has a closed recurrence set {{s0}, {s1, s2}, {s3}},
but the concrete transition system has no recurrence set.

4. CLASSES OF LIVE ABSTRACTIONS FOR AUTOMATION

As mentioned earlier, in our automation we focus on pro-
gram fragments of a special shape: lassos.

Definition (Lasso) A lasso is a program fragment that
contains a sequence of commands called a stem followed by
a simple loop with guarded updates. The guard of a simple
loop is a conjunction of atomic conditions. Formally a lasso
L is a transition system (S,Rloop, Iloop, Floop) where S is the
set of states in the domain, Rloop is the transition relation of
the loop, and Iloop is the set of initial states for the loop. Iloop
represents the strongest postcondition after execution of the
stem. Floop is a set of final states for the loop such that for
every final state there is no transition inside the loop.

Abstracting nonlinear commands. We describe the abstrac-
tion that our tool uses to abstract nonlinear commands present
in the lassos. In our abstraction nonlinear assignment com-
mands are abstracted, but loop guards are kept unchanged.

Towards the purpose of abstracting assignments we first
compute a linear location invariant at the end of the loop (using
APRON’s [20] octagon abstract domain [26] in our implemen-
tation). We then replace the nonlinear update command with a
nondeterministic choice and add an assume statement with the
invariant at the end of the loop. Instead of octagons, here also
dedicated disjunctive analyses for nonlinearity (e.g. the tech-
nique by Alonso et al. [1]) can be used to increase precision
of the overapproximation. However, as our experiments show,
here we can already get quite far using standard octagons.

Consider the nonlinear lasso in Fig. 1(a) and its linear
abstraction in Fig. 3 that our tool computes. Here, i − 1 ≥

assume(j ≥ 1 and k ≥ 1);
while i ≥ 0 do

i := nondet();
j := j + 1;
k := k + 1;
assume(i − 1 ≥ 0 and i + j − 3 ≥ 0 and

i − j + 1 ≥ 0 and i + k − 3 ≥ 0); // location `
done

Fig. 3. Linear overapproximation of the program in Fig. 1(a) computed by
our tool using APRON [20]

assume(...);
assume(...);
while i × j ≥ 0 do

i := ...
j := ...
......

done

assume(...);
assume(...);
v := i × j;
while v ≥ 0 do

i := ...
j := ...
......
v := i × j;

done
(a) (b)

Fig. 4. Lasso (a) with nonlinear guards and equivalent lasso (b) with auxiliary
variable with linear guards

0∧ i + j− 3 ≥ 0∧ i− j + 1 ≥ 0∧ i + k− 3 ≥ 0 is the invariant
computed at location ` of the original lasso from Fig. 1(a) by
the APRON library using the octagon abstract domain.

Mapping nonlinear assignments to nondeterministic assign-
ments is clearly an overapproximation. This abstraction of as-
signments satisfies the Simulation condition of live abstraction
because it adds extra abstract transitions only when a concrete
transition (the assignment) is already possible. Since we do not
alter loop guards, Upward Termination holds as well because
all the final states of the original lasso are final states in the
abstract lasso too. Clearly this abstraction satisfies the condi-
tions of a live abstraction. Formally for a concrete lasso with a
transition system (S,Rloop, Iloop, Floop) our tool computes an
abstract lasso with a transition system (Sα, Rαloop, I

α
loop, F

α
loop)

where Sα = S,Rloop ⊆ Rαloop, I
α
loop = Iloop, F

α
loop = Floop

and the concretion function is essentially the identity, i.e.,
∀a ∈ Sα. [[a]] = {a}.

Dealing with nonlinear guards. We use a simple trick to get
rid of nonlinearity out of guards. Consider Fig. 4. We remove
nonlinearity present in the guards by adding an auxiliary
variable v. The rest of the analysis proceeds as before.

This approach yields nonlinear commands in the stem of
our lassos. The stem commands enter our constraints only
existentially (as we will see in Section 5). Thus constraint
solvers can deal with such constraints efficiently.

Abstracting heap-based commands. Magill et al. [25] pro-
pose an overapproximating abstraction from programs operat-
ing on the heap to purely arithmetic programs. The abstraction
is obtained by instrumenting a memory safety proof for the
program. Since in general memory safety only holds under
certain preconditions, the user can specify the shape of the

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 71

while p 6= null do
p := p→next;

done

while k ≥ 1 do
assume(k > 1);
l := nondet();
assume(l ≥ 1 and k = l + 1);
m := nondet();
assume(m = l + 1);
n := nondet();
assume(n = l + 1);
k := n;

done
(a) (b)

Fig. 5. Heap-based program (a) with precondition that p points to a nonempty
cyclic list and linear overapproximation (b) computed by THOR [25]

heap data structures by user-defined predicates in separation
logic [28]. We can use Magill’s tool THOR [25] to abstract
heap-based C programs into linear arithmetic programs oper-
ating over the integers. This is exemplified in Fig. 5. In the
arithmetic program the variable k tracks the length of the list
segment from p to null, and the other variables are temporaries
used in the update of k.

Magill’s PhD thesis [24, Def. 29] describes the notion of
stuttering simulation and proves (in his Thm. 18) that the
abstraction satisfies the properties of stuttering simulation. In
stuttering simulation for a transition in the concrete system,
the corresponding transition in the abstract system may contain
a sequence of steps and vice versa. An abstraction satisfying
stuttering simulation obeys standard simulation condition and
additionally for stuttering simulation to hold, the Upward
Termination condition is needed. Thus Magill’s abstraction
satisfies the properties of a live abstraction and thus is safe
for our approach of nontermination proving.

We could also abstract linked-list programs via the results
connecting lists and counter automata [4]. These results are in
fact stronger, a bisimulation rather than a simulation, for lists.

Combining over- and underapproximation. As previously
mentioned, closed recurrence sets must in some cases be
used in conjunction with underapproximation. Here we can
use existing techniques for underapproximation in combina-
tion with our own. Note that closed recurrence sets form a
complete method when combined with underapproximation,
in the sense that every nonterminating program also has an
underapproximation with a closed recurrence set.

Underapproximation. We call a transition system
(S,R′, I ′, F ′) an underapproximation of a transition system
(S,R, I, F) iff R′ ⊆ R, I ′ ⊆ I , F ⊆ F ′.
Theorem (Open Recurrence Sets Always Contain Closed
Recurrence Sets [8]) There exists a recurrence set G
for (S,R, I, F) iff there exist an underapproximation
(S,R′, I ′, F ′) of (S,R, I, F) and G′ ⊆ G such that G′ is a
closed recurrence set for (S,R′, I ′, F ′).

5. FINDING CLOSED RECURRENCE SETS

In the previous section we showed how it is possible to
prove nontermination of a program by proving the existence of

a closed recurrence set for an abstraction of the program. Here
we address the problem of how to find a closed recurrence
set for the abstracted program, i.e., a program over linear
integer arithmetic. We will search for a closed recurrence set
G described by a conjunction of linear inequalities Qx ≤ q.

We adapt the Farkas-based approach used in TNT to find
closed recurrence sets rather than recurrence sets. In our
application the restriction to deterministic relations from TNT
can be lifted. This is particularly important when working with
abstractions of programs, which can introduce nondeterminism
even when the concrete program is deterministic. It is also
essential for treating the heap, because of the nondeterminism
inherent in malloc.

In this section it will be convenient to phrase our dis-
cussion in terms of lassos expressed in linear arithmetic, as
such lassos are convenient for automation. In the domain
of linear arithmetic, a state s is just a vector x that rep-
resents the valuation of program variables. A lasso L in
linear arithmetic can be expressed as a transition system
(S,Rloop(x,x′), Iloop(x), Floop(x)). In terms of programs,
Iloop(x) represents the strongest postcondition of a path
leading to the loop body, with precondition ‘true’ from which
the program starts, and Rloop(x,x′) is the transition relation
corresponding to the composition of a sequence of (possibly
nondeterministic) assignment statements in the loop body,
guarded by a condition. Floop(x) represents the set of final
states such that no loop transition can take place from any final
state. As we are working in linear arithmetic, we can represent
the transition relation of the loop by systems of inequalities

Rloop(x,x′) , Gx ≤ g ∧ Ux + U ′x′ ≤ u
where Gx ≤ g describes the guards and Ux + U ′x′ ≤ u the
updates. Here G, U and U ′ are matrices, g and u are vectors.
We make the following assumption:

∀x∃x′.Gx ≤ g → Ux + U ′x′ ≤ u. (6)

The assumption says that whenever the guards of a lasso can
be satisfied we are guaranteed to have a next state given by
the updates. This holds in a lasso with a satisfiable transition
system when every row in U ′ contains a non-zero coefficient,
which corresponds to an update of the variables.

We are in search of a predicate G expressed as a system of
inequalities using coefficients, i.e. G ≡ Qx ≤ q, where Q is a
matrix and q a vector of existentially quantified variables. The
number of rows in Q and q then corresponds to the number
of inequalities which we use.

We wish to employ a constraint solver (e.g. Z3 [21])
to find the coefficients Q and q. A difficulty in doing so
is that these conditions contain mixtures of existential and
universal quantifiers: Q and q are existentially quantified at
the top-level, and both (4) and (5) use universals. Many
constraint solvers struggle to solve problems such as these.
The standard approach (e.g. in invariant generation [9], rank
function synthesis [5] and recurrence set synthesis [18]) is
to apply Farkas’ lemma to convert the problem into a purely
existential one that is easier for existing solvers.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 72

In the remainder of this section we describe a Farkas-
based reduction to automate the search for closed re-
currence sets. To find a closed recurrence set for
(S,Rloop(x,x′), Iloop(x), Floop(x)) we must find Q and q
such that the following conditions are satisfied (here we have
substituted Qx ≤ q for G in Conditions (3), (4), and (5)):

∃x.Qx ≤ q ∧ Iloop(x) (7)
∀x∃x′.Qx ≤ q → Rloop(x,x′) (8)

∀x∀x′.Qx ≤ q ∧Rloop(x,x′)→ Qx′ ≤ q (9)

In order to apply Farkas’ lemma we must eliminate the ∀∃
alternation in Condition (8).2 Assumption (6) lets us remove
the existential quantifier in (8),3 which now becomes:

∀x.Qx ≤ q → Gx ≤ g (10)

Next, although it is not essential, because of (10) we can
drop Gx ≤ g from Rloop(x,x′) in (9), thus giving us a
simpler constraint to solve:

∀x∀x′.Qx ≤ q ∧ Ux + U ′x′ ≤ u→ Qx′ ≤ q (11)

Conditions (7), (10), and (11) are sufficient constraints for
finding a closed recurrence set. Furthermore, (10) and (11) are
now in a form which facilitates applications of Farkas’ lemma
to eliminate the universal quantifiers, and we obtain:

∃Λ1 ≥ 0.Λ1Q = G ∧ Λ1q ≤ g (12)

and

∃Λ2 ≥ 0.Λ2

(
Q
U

)
= 0∧Λ2

(
0
U ′

)
= Q∧Λ2

(
q
u

)
≤ q
(13)

The constraints that we finally generate are (7), (12), and
(13). These conditions are readily solved by off-the-shelf
constraint solving tools. A satisfying assignment for these
constraints gives us values of coefficients in Q and q, thus
giving us the closed recurrence set.

Note that if the constraints are unsatisfiable, like Gupta et
al. [18] we can use Q and q with increasingly many rows (and
hence inequalities) in Qx ≤ q. In this way, we can increase
the precision of our method further.

6. IMPLEMENTATION AND EXPERIMENTS

In order to assess the practicality of our approach we have
developed a prototype implementation called ANANT. Given a
program’s CFG, ANANT exhaustively searches for candidate
lassos.4 For every lasso the tool applies our method, using
Z3 as the constraint solver for the constraints from Section 5
together with abstractions for heap and nonlinear commands

2When Gupta et al. [18] search for recurrence sets, they also need to
eliminate the ∀∃ alternation in their constraints for automation. They do so
by instantiating the existential variable explicitly with the value of the update.
The price for this is that the update must be deterministic. We do not have
this restriction.

3The statements (6) ∧ (8) and (6) ∧ (10) are equivalent.
4ANANT uses the same syntax for transition systems as the termination

prover T2 [6]. For heap-based programs in C syntax, the lasso extraction is
currently conducted manually.

described in Section 3. If a lasso under consideration contains
a loop variable with a nondeterministic update that also
appears in the loop guard, before applying the abstraction the
tool first applies an underapproximation strategy. To obtain
the desired underapproximation the tool adds an assume-
statement at the end of the loop body that enforces the loop
guard (as done for variable m in Fig. 2(b)).

We make ANANT available for download along with its
source code at the following URL:

http://www0.cs.ucl.ac.uk/staff/K.Nimkar/live-abstraction

We compared ANANT experimentally to several other tools.
As a benchmark set (also available at the above URL), we have
gathered 33 example programs containing nonlinear, nondeter-
ministic and heap-based commands from various sources.

Since nontermination usually indicates a bug, some of
our benchmarks implement functions computing factorial,
logarithm, etc., with typical programming mistakes that lead
to nontermination. The set also includes the nonterminating
examples from Berdine et al. [3], in particular the bug in a
Windows device driver discussed in this paper. While Berdine
et al. report that their analysis uncovers this bug by absence of
a successful termination proof, we can now go a step further
and actually prove nontermination of such heap programs.

We compared ANANT to the following tools:
• APROVE [15], using the Java bytecode frontend with the

nontermination analysis by Brockschmidt et al. [7].
• JULIA [33], implementing a reduction to constraint logic

programming described by Payet and Spoto [31].
Like Brockschmidt et al. [7], we were unable to obtain
a working version of the tool INVEL [34]. Note that the
other nontermination provers (e.g. TNT [18], T2 [8] and
CPPINV [23]) are not applicable, as they do not support
programs with nonlinear or heap-based commands.

Fig. 6 shows the results of our experiments with ANANT,
APROVE, and JULIA. We ran ANANT and APROVE on an
Intel i7-2640M CPU clocked at 2.8 GHz under Linux. For
JULIA, an unknown cloud-based configuration was used. All
tools were run with 600 s timeout. As Fig. 6 shows, ANANT
succeeded on 29 of 33 benchmarks, whereas APROVE and
JULIA succeeded on only 2 and 4 benchmarks, respectively.
This difference is not surprising since overapproximation was
thus far not applicable to disproving termination for nonlinear
and heap-based programs. In contrast, as our experiments
show, we can now disprove termination in many such cases.

It is worth highlighting that e.g. on benchmark 9, ANANT
took over 4 min to disprove termination, vs. JULIA’s <7 s. This
difference may partly be due to different machine configura-
tions. However, note that a combined prover for termination
and nontermination (like APROVE or JULIA) can discard
parts of the program proved terminating and only analyze
the rest for nontermination. This can lead to a more focused
search for a nontermination proof than ANANT’s approach
of enumerating arbitrary lassos (whose termination might be
easy to prove). Thus, ideally, our contributions for disproving
termination should be combined with a termination prover.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 73

ANANT APROVE JULIA
Benchmark Res Runtime Res Runtime Res Runtime
1 X 0.50 s × timeout × 7.01 s
2 X 0.55 s × timeout × 7.80 s
2a X 0.82 s × timeout × 12.01 s
3 X 0.56 s × timeout × 7.74 s
4 X 125.66 s × timeout × 12.85 s
5 X 0.45 s × 18.59 s × 7.24 s
6 X 0.48 s × 235.79 s X 7.70 s
7 X 0.59 s × 23.51 s X 11.83 s
8 X 0.26 s × 3.15 s X 5.08 s
9 X 243.00 s × 5.10 s X 6.72 s
10 X 246.83 s × 27.42 s × 11.29 s
11 X 0.63 s × timeout × 8.69 s
12 × 2.35 s × timeout × 10.67 s
13 × 1.40 s × 108.61 s × 8.54 s
14 X 121.69 s × 147.54 s × 7.33 s
15 X 131.80 s × timeout × 8.45 s
16 X 57.41 s × 18.81 s × 7.07 s
17 X 0.54 s × 24.18 s × 7.06 s
18 × 0.66 s × 28.03 s × 6.92 s
19 X 0.44 s × timeout × 7.27 s
20 × 0.74 s × timeout × 6.95 s
factorial X 0.38 s × timeout × 7.57 s
log X 0.46 s × 3.17 s × 8.59 s
log by mul X 0.63 s × timeout × 7.68 s
lasso ex1 X 0.45 s × timeout × 7.03 s
lasso ex2 X 1.21 s × 72.25 s × 8.79 s
lasso ex3 X 0.48 s × timeout × 7.28 s
nCr combi X 0.70 s × 10.45 s × 17.26 s
power X 0.43 s × timeout × 7.03 s
Create X 3.47 s X 1.75 s × 4.94 s
Insert X 177.69 s × 16.86 s × 7.77 s
Traverse X 1.23 s X 2.12 s × 50.28 s
WindowsBug X 21.69 s × 14.46 s × 50.92 s

Fig. 6. Results (“Res”) and runtimes of ANANT, APROVE, and JULIA on
29 benchmarks with nonlinear arithmetic and 4 heap-based benchmarks from
Berdine et al. [3]. Here X denotes that the tool proved nontermination, ×
means that the tool returned without a definite answer, and timeout means
that the run was terminated externally after 600 s.

7. CONCLUSION

Overapproximation is the workhorse of program analysis.
Unfortunately, overapproximation can invalidate conventional
techniques for disproving termination. In this paper we have
introduced the notion of a live abstraction to show how over-
approximation can help, not hinder nontermination proving.
The idea is to prove the existence of a closed recurrence
set rather than simply a recurrence set. This modification
in strategy allows us to use off-the-shelf overapproximating
abstractions, leading to a new set of methods for disproving
termination of real programs.

Acknowledgments. We thank the anonymous reviewers for
helpful suggestions and Fabian Emmes and Fausto Spoto for
help with the experiments.

REFERENCES

[1] Diego Esteban Alonso, Puri Arenas, and Samir Genaim. Handling
non-linear operations in the value analysis of COSTA. In Proc.
BYTECODE ’11.

[2] Mohamed Faouzi Atig, Ahmed Bouajjani, Michael Emmi, and Akash
Lal. Detecting fair non-termination in multithreaded programs. In Proc.
CAV ’12.

[3] Josh Berdine, Byron Cook, Dino Distefano, and Peter O’Hearn. Au-
tomatic termination proofs for programs with shape-shifting heaps. In
Proc. CAV ’06.

[4] Ahmed Bouajjani, Marius Bozga, Peter Habermehl, Radu Iosif, Pierre
Moro, and Thomas Vojnar. Programs with lists are counter automata.
In Proc. CAV ’06.

[5] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking
with reachability. In Proc. CAV ’05.

[6] Marc Brockschmidt, Byron Cook, and Carsten Fuhs. Better termination
proving through cooperation. In Proc. CAV ’13.

[7] Marc Brockschmidt, Thomas Ströder, Carsten Otto, and Jürgen
Giesl. Automated detection of non-termination and NullPointer-
Exceptions for Java Bytecode. In Proc. FoVeOOS ’11.

[8] Hong-Yi Chen, Byron Cook, Carsten Fuhs, Kaustubh Nimkar, and Peter
O’Hearn. Proving nontermination via safety. In Proc. TACAS ’14.

[9] Michael A. Colón, Sriram Sankaranarayanan, and Henny B. Sipma.
Linear invariant generation using non-linear constraint solving. In Proc.
CAV ’03.

[10] Byron Cook and Eric Koskinen. Reasoning about nondeterminism in
programs. In Proc. PLDI ’13.

[11] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination
proofs for systems code. In Proc. PLDI ’06.

[12] Nachum Dershowitz, Naomi Lindenstrauss, Yehoshua Sagiv, and
Alexander Serebrenik. A general framework for automatic termination
analysis of logic programs. AAECC, 12(1-2), 2001.

[13] Fabian Emmes, Tim Enger, and Jürgen Giesl. Proving non-looping non-
termination automatically. In Proc. IJCAR ’12.

[14] Samir Genaim, Michael Codish, John P. Gallagher, and Vitaly Lagoon.
Combining norms to prove termination. In Proc. VMCAI ’02.

[15] Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn,
Carsten Fuhs, Carsten Otto, Martin Plücker, Peter Schneider-Kamp,
Thomas Ströder, Stephanie Swiderski, and René Thiemann. Proving ter-
mination of programs automatically with AProVE. In Proc. IJCAR ’14.

[16] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. Proving and
disproving termination of higher-order functions. In Proc. FroCoS ’05.

[17] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan.
Program analysis as constraint solving. In Proc. PLDI ’08.

[18] Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey
Rybalchenko, and Ru-Gang Xu. Proving non-termination. In Proc.
POPL ’08.

[19] Arie Gurfinkel, Ou Wei, and Marsha Chechik. Yasm: A software model-
checker for verification and refutation. In Proc. CAV ’06.

[20] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical
abstract domains for static analysis. In Proc. CAV ’09.

[21] Dejan Jovanovic and Leonardo de Moura. Solving non-linear arithmetic.
In Proc. IJCAR ’12.

[22] Daniel Kroening, Natasha Sharygina, Aliaksei Tsitovich, and
Christoph M. Wintersteiger. Termination analysis with compositional
transition invariants. In Proc. CAV ’10.

[23] Daniel Larraz, Kaustubh Nimkar, Albert Oliveras, Enric Rodrı́guez-
Carbonell, and Albert Rubio. Proving non-termination using Max-SMT.
In Proc. CAV ’14.

[24] Stephen Magill. Instrumentation Analysis: An Automated Method for
Producing Numeric Abstractions of Heap-Manipulating Programs. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2010.

[25] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay.
Automatic numeric abstractions for heap-manipulating programs. In
Proc. POPL ’10.

[26] Antoine Miné. The octagon abstract domain. Higher-Order and
Symbolic Computation, 19(1), 2006.

[27] Greg Nelson. A generalization of Dijkstra’s calculus. TOPLAS, 11(4),
1989.

[28] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In Proc. CSL ’01.

[29] Étienne Payet. Loop detection in term rewriting using the eliminating
unfoldings. Theor. Comput. Sci., 403(2-3), 2008.

[30] Étienne Payet and Frédéric Mesnard. A non-termination criterion for
binary constraint logic programs. TPLP, 9(2), 2009.

[31] Étienne Payet and Fausto Spoto. Experiments with non-termination
analysis for Java Bytecode. In Proc. BYTECODE ’09.

[32] Fu Song and Tayssir Touili. Pushdown model checking for malware
detection. In Proc. TACAS ’12.

[33] Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer
for Java bytecode based on path-length. TOPLAS, 32(3), 2010.

[34] Helga Velroyen and Philipp Rümmer. Non-termination checking for
imperative programs. In Proc. TAP ’08.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 74

Faster Temporal Reasoning for Infinite-State
Programs

Byron Cook Microsoft Research & University College London
Heidy Khlaaf University College London

Nir Piterman University of Leicester

Abstract—In this paper, we describe a new symbolic model
checking procedure for CTL verification of infinite-state pro-
grams. Our procedure exploits the natural decomposition of the
state space given by the control-flow graph in combination with
the nesting of temporal operators to optimize reasoning per-
formed during symbolic model checking. An experimental eval-
uation against competing tools demonstrates that our approach
not only gains orders-of-magnitude performance improvement,
but also allows for scalability of temporal reasoning for larger
programs.

I. INTRODUCTION

Branching-time temporal logics like CTL allow us to reason
about safety, termination, and nontermination via the system’s
interaction with inputs and nondeterminism in a way that
linear-time temporal logics like LTL do not. This style of
reasoning can be useful in applications ranging from plan-
ning, games, security analysis, disproving, and environment
synthesis [19], [29]. CTL-based tools also have been used as
the basis for higher-performance LTL tools [13].

In this paper we propose a new symbolic CTL model
checker for infinite-state programs. We adapt the well-known
bottom-up strategy for finite-state CTL model checking [9]
to infinite-state programs using precondition synthesis as
the enabling technology. We leverage recent techniques for
proving safety, termination, and nontermination of programs
to synthesize preconditions asserting the satisfaction of CTL
sub-formulae of an input property. The key insight to our
approach is the exploitation of the natural decomposition of
the state space given by the control flow graph. That is,
using a counterexample-guided precondition synthesis strat-
egy, we compute program-location-specific preconditions. Our
model checker drastically improves performance by reducing
the amount of redundant and irrelevant reasoning performed
through information sharing extracted from reachability anal-
ysis. That is, several preconditions for each program location
can be computed simultaneously.

Take for example the fact that the set of states respecting a
property such as EF y < z before a program command is very
often the same or nearly the same as the set of states respecting
EF y < z after the command. In comparison to existing tools
(e.g. [10], [4]) we reduce the amount of reasoning performed
as part of the procedure. We can infer whether a command is
likely to affect the truth of EF y < z. So, sequential locality
implies that the precondition of a location is easily computed
if the preconditions of its successors are known.

This approach gives way to compositional reasoning. For
instance, given a program and a desired property, we can, in
parallel, synthesize preconditions, desired environments, and
plans of individual procedures of a program with the goal of
composing the found preconditions into a proof of the whole
program. The advantage to this approach is that the program
verification tools never have to examine the program as a
whole, but instead find a modular proof using compositional
reasoning. Recent success in this style of reasoning can be
found in areas such as proving correctness of non-blocking
algorithms [20], and the analysis of biological models [11].

We also suggest a new method of treating existential path
quantification in the infinite-state setting. Existential formulas
are handled by considering their universal dual, allowing
counterexamples of said duals to serve as a witness asserting
the satisfaction of the existential CTL formula.

An experimental evaluation using examples from the bench-
mark suites of the competing tools (which are drawn from
industrial benchmarks) demonstrates orders-of-magnitude per-
formance improvements in many cases. This evaluation is
discussed at the conclusion of the paper.
Related work. Model checking has been extensively studied in
the context of finite-state systems (e.g. [3], [5], [7], [8], [25])
as well as for various types of systems with limitations on
their infiniteness (e.g. pushdown systems [17], parameterized
systems [16], timed systems [2], etc.). In recent years new
tools have been developed for proving temporal properties of
integer programs, e.g. [12], [32], [33], [34], [22], [10], [4].
These tools go beyond, e.g. SMV, which is restricted to finite-
state programs [6].

In this work we are aiming to prove CTL properties with
nested combinations of existential and universal path quanti-
fiers of integer programs. Song & Touili [32] perform a coarse
one-time abstraction that takes programs and produces push-
down automata, however the abstraction produced is imprecise
and leads to significant information loss. Gurfinkel et al. [22]
do not reliably support mixtures of nested universal/existential
path quantifiers, etc. The two tools closest in their feature set
to our setting are from Cook & Koskinen [10] and Beyene
et al. [4]. Cook & Koskinen implement the Kesten and
Pnueli [24] deductive proof system using an incremental re-
duction to program analysis tools. Beyene et al. [4] implement
the same idea as Cook & Koskinen using a reduction to Horn-
clause reasoning. Neither Cook & Koskinen nor Beyene et al.
make use of the locality in programs as we do. Effectively,

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 75

these tools carryout unnecessary computation in their analysis.
In addition, our new approach to the treatment of existential

path quantification based on dualization contrasts to that
of Cook & Koskinen, which attempts to find a non-trivial
restriction on the state-space such that AF can be used to
reason about EF, or AG can be used to reason about EG. Our
approach also contrasts to the tool of Beyene et al. [4], as
their tool requires existential quantification over predicates to
be supported by the underlying constraint solver, whereas our
technique can make use of off-the-shelf verification tools.
Limitations. We do not support programs with heap, nor
do we support recursion or concurrency. The heap-based
programs we consider during our experimental evaluation
have been abstracted using the over-approximation from the
technique of Magill et al. [26]. Note that this abstraction
can lead to unsoundness when we use the existential subset
of CTL. Our comparison to existing tools remains fair, as
each of the previous tools uses the same abstraction. Effective
techniques for proving temporal properties of programs with
heap remains an open research question.

As our technique heavily relies on calculating pre-images,
it is important that fragments of the underlying program logic
are closed under pre-impages, e.g. integer linear arithmetic, a
fragment of integer arithmetic. Our procedure is not complete
as we use a series of incomplete subroutines.

II. PRELIMINARIES

Programs. As is standard [27], we treat programs as control-
flow graphs, where edges are annotated by the updates they
perform to variables. A program is a triple P = (L, E,Vars),
where L is a set of locations, E is a set of edges/transitions,
and Vars is a set of variables. Each edge τ = (`, ρ, `′) in
E, where `, `′ ∈ L and ρ is a condition, specifies possible
transitions in the program. A valuation associates with the
variables in Vars values in Vals. A trace or a path of a
program is either a finite or an infinite sequence of edges
allowed by the program. The condition ρ is an assertion in
terms of Vars and Vars′, a primed copy of Vars, where
constants range over Vals. Intuitively, Vars refers to the values
of variables before the update and Vars′ refers to the values
of variables after the update. The set of locations includes
the first location `0 that has no incoming transitions from
other program locations. That is, for every τ = (`, ρ, `′) ∈ E
we have `′ 6= `0. Transitions exiting `0 have their condi-
tions expressed in terms of Vars′. Locations with incoming
transitions from `0 are initial locations. This allows us to
encode more complex initial conditions. In figures we usually
omit `0 and add edges with no source to locations having
an incoming transition from `0. The program gives rise to a
transition system T = (S,R), where S is the set of program
states of the form S = (L − {`0}) × (Vars → Vals) and
R ⊆ S × S. That is, a program state is a pair (`, s) where
` 6= `0 and s is a valuation, i.e., a function from program
variables to values. The program can transition from (`, s1)
to (`′, s2) if there is a transition (`, ρ, `′) ∈ E such that
(s1, s2) |= ρ. Here the valuation (s1, s2) is a function from
Vars ∪ Vars′ to Vals such that for every v ∈ Vars we have

(s1, s2)(v) = s1(v) and (s1, s2)(v′) = s2(v). A state (`, s) is
initial if there is a transition (`0, ρ, `) such that (s−1, s) |= ρ,
where s−1 is some arbitrary state. Notice that in such a case
ρ is expressed in terms of Vars′ and hence the state s−1 does
not affect the evaluation of ρ. For example, Figure 1 includes
the representation of the program while x ≤ 0 do if * then x
:= x + 1; fi; done; y := 1; with initial condition x = ∗∧y = 0
and where ∗ indicates a non-deterministic value.

A finite set of program locations C ⊆ L is called a cut-
point set if `0, `n ∈ C, where n ∈ N and every cycle in the
program’s graph contains at least one cut-point.
CTL. We are interested in verifying state-based temporal
properties in computational tree logic (CTL) [9]. A CTL
formula is of the form

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | AGϕ | AFϕ | A[ϕWϕ]
| EFϕ | EGϕ | E[ϕUϕ]

where α is an atomic proposition (e.g. x < y).
To give intuition behind the semantics of CTL, here P, s |=

AFϕ asserts that in program P and in all possible executions
starting from s the property ϕ will eventually hold in some
future state reachable from s, whereas P, s |= EFϕ asserts that
there is a state in which ϕ holds and that it can be reached
from s. The formula AGϕ asserts that ϕ must hold throughout
all possible executions, while EGϕ asserts that there exists an
execution such that ϕ would be true throughout. Aϕ1Wϕ2

asserts that for all executions, ϕ1 has to hold until ϕ2 holds,
signifying that ϕ2 does not necessarily have to hold as long
as ϕ1 holds. Contrarily, Eϕ1Uϕ2 asserts that there exists an
execution in which ϕ1 has to hold at least until at some
position ϕ2 holds. AU and EW are represented as syntactic
sugar as usual.

For a program P and a CTL property ϕ, we say that ϕ
holds in P , denoted by P |= ϕ if for every initial state s we
have P, s |= ϕ.
Ranking functions. For a state space S, a ranking func-
tion f is a total map from S to a well-ordered set with
ordering relation ≺. A relation R ⊆ S × S is well-founded
if and only if there exists a ranking function f such that
∀(s, s′) ∈ R. f(s′) ≺ f(s). We denote a finite set of ranking
functions (or measures) as M. Note that the existence of
a non-empty set of ranking functions for a relation R is
equivalent to containment of R+ within a finite union of well-
founded relations [30]. That is, a set of ranking functions
{f1, . . . , fn} denotes the disjunctively well-founded relation
{(s, s′) | f1(s′) ≺ f1(s) ∨ . . . ∨ fn(s′) ≺ fn(s)}.
Counterexamples. In our setting new ranking functions can
be automatically synthesized by examining counterexamples
produced by an underlying safety prover (discussed in more
detail in Section IV). Due to the recursive nature of our
procedure it is only necessary to handle counterexamples to
formulas of nesting depth 1. For example, Aϕ, where ϕ is a
path formula that includes no nesting of additional operators,
or α1∨α2, where α1 and α2 are assertions. A counterexample
for an atomic proposition α is a state in which α does not
hold. A counterexample for a conjunction ϕ1 ∧ ϕ2 is a state

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 76

where either ϕ1 or ϕ2 does not hold. A counter example for
disjunction ϕ1 ∨ ϕ2 is a state where both sub-formulas do
not hold. A counterexample to an AGϕ property is a path
to a place where ϕ does not hold. A counterexample to an
AFϕ property is a “lasso”: a stem path to a particular program
location, then a (not necessarily simple) cycle which returns
to the same program location, and the property ϕ does not
hold along the stem and the cycle. Finally, a counterexample
to A[ϕ1Wϕ2] is a path to a place where there is a sub-
counterexample to ϕ1 as well as one to ϕ2. A counterexample
to E[ϕ1Uϕ2] can be of the same form as that of A[ϕ1Wϕ2], as
well as one where ϕ1 holds while ϕ2 does not hold anywhere
along the path.
Calculating pre-images. Let π = (`0, ρ0, `

′
0), (`1, ρ1, `

′
1),

. . . , (`n, ρn−1, `
′
n) be a path. We compute a pre-image for

every possible suffix of π. That is, we denote pren+1 = S and
prei = pre((`i, ρi, `′i), . . . , (`n, ρn, `

′
n)) as the set of states

such that prei = {s | ∃s′ ∈ prei+1 s.t. ((`i, s), (`′i, s
′)) |=

ρi}. Generaly speaking, given an assertion α (in terms of Vars)
representing prei+1, and an assertion ρi (in terms of Vars
and Vars’) we must compute an assertion representing prei.
Let α′ denote ∃ Vars. Vars = Vars′ ∧ α. We thus consider
∃ Vars′(Vars = Vars′ ∧ ∃ Vars. (Vars = Vars′ ∧ (α′ ∧ ρi))).
We use Fourier-Motzkin for quantifier elimination.

III. INTUITION AND EXAMPLE

We first informally explain our technique and demonstrate
it with an example.
Intuition. The idea of the procedure is to find for each sub-
formula ϕ a precondition ℘〈ϕ〉 that ensures its satisfaction.
To utilize sequential locality of a counterexample’s control-
flow graph further on, a precondition ℘〈ϕ〉 is thus partitioned
to ℘〈`i, ϕ〉 for every location `i in the program. Thus, ℘〈ϕ〉
takes the form

∧
`i

(pc = `i ⇒ ℘〈`i, ϕ〉). Here pc = `i is used
to assert that the state is at location `i in the program’s control-
flow graph. We find preconditions by iteratively recursing over
the structure of the given CTL formula. That is, we start by
finding the precondition of the innermost sub-formula followed
by search for the preconditions of the outer sub-formulas
dependent on it. We note that the precondition of an atomic
proposition is the proposition itself, hence from this point on,
we shall treat the precondition of an atomic proposition and
the atomic proposition itself synonymously.

Consider a universal CTL formula. Initially, we approximate
its precondition as true. We then search for counterexamples
from every possible reachable program location. Failures to
the proof attempt will result in the strengthening of the pre-
condition through adding the negation of the pre-image of the
discovered counterexample. We use the control-flow graph of
a counterexample to simultaneously synthesize preconditions
of multiple locations. That is, a counterexample that consists
of multiple program locations can be utilized to update the
precondition of each contained program location. This is done
by iterating along the counterexample path, and for each suffix
computing a pre-image from a program location onwards.

Each counterexample found further strengthens a precon-
dition, we thus eliminate said counterexample and search for

`1 `2

ρ1 : x′ = ∗
y′ = 0

ρ2 : x ≤ 0
x′ = x + 1

ρ3 : x ≤ 0

ρ4 : x > 0

ρ5 : y′ = 1

Fig. 1: The control-flow graph of an example program for which we wish
to prove the CTL property AGEF y = 1.

`1 `2

ERR

ρ1 : x′ = ∗
y′ = 0

ρ2 : x ≤ 0 ∧
y 6= 1

x′ = x + 1
ρ3 : x ≤ 0 ∧

y 6= 1 ρ6 : y = 1

ρ4 : x > 0 ∧
y 6= 1

ρ5 : y 6= 1
y′ = 1

ρ7 : y = 1

Fig. 2: The transformation of the program from Figure 1 for the property
EF y = 1 using its dual AG y 6= 1.

other proof failures for the given CTL property. Eventually,
the precondition will imply the correctness of the sub-formula
when no further counterexamples are returned.

Existential sub-formulas are handled by considering their
universal dual. We thus seek a set of counterexamples gen-
erated from the property’s universal dual to serve as an exis-
tential witness. Hence we begin with an initial precondition
approximation false. More directly, pre-images of counterex-
amples to the negation of the sub-formula serve as a witnesses
to the satisfaction of our existential formula. Counterexamples
are similarly treated in the existential case, we iteratively cal-
culate their pre-images followed by their elimination until no
more counterexamples are generated. As before, we utilize a
counterexample’s control flow graph to simultaneously update
preconditions of multiple locations.
Example. Consider the program in Figure 1 and the property
ϕ ≡ AGEF y = 1, which states that for all states, it is
always possible that eventually y = 1. The approach followed
by nearly all tools supporting CTL would be to find, in this
instance, a set of states ℘ such that AG℘ holds, and such that
℘ |= EF y = 1 holds. In this paper we suggest a strategy
based on precondition synthesis.

Consider the sub-formula ψ ≡ EF y = 1. For the
proposition y = 1, for every program location `i we have
℘〈`i, y = 1〉 , y = 1. We now attempt to prove that
℘ 6|= AG y 6= 1 given that AG is EF’s universal dual. We
start with ℘〈ψ〉 , false as only failures to proving AG y 6= 1
can necessitate that there exists a witness such that EF y = 1.
Failures to the proof attempt will result in refinements to
℘ through the iterative calculation of the pre-image of each
discovered counterexample. Recall that we are interested in
counterexamples starting from all program locations:

℘〈ψ〉 , (pc = `1 ⇒ ℘〈`1, ψ〉) ∧ (pc = `2 ⇒ ℘〈`2, ϕ〉).

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 77

`1 `2

ERR

ρ1 : x′ = 0
y′ = 0

ρ2 : x ≤ 0 ∧
y = 0

x′ = x + 1
ρ3 : x ≤ 0 ∧

y = 0 ρ6 : y 6= 0

ρ4 : x > 0 ρ5 : x > 0
y′ = 1

ρ7 : x ≤ 0

Fig. 3: The transformation of the program from Figure 1 for the sub-property
AGEF y = 1 to be utilized in the verification algorithm. The nested property
EF y = 1 is substituted with its precondition resulting in a transformation for
AG ((pc = `1 ⇒ y = 0) ∨ (pc = `2 ⇒ x > 0)) instead.

We begin with `1. To check AG y 6= 1 we use a source-
to-source transformation that reduces checking of universal
CTL properties to safety [10]. The transformation returns the
program in Figure 2 (new conditions outlined), on which
we use a safety prover to check reachability of ERR. We
get counterexample CEX1: 〈`0, ρ1, `1〉, 〈`1, ρ3, `1〉, 〈`1, ρ2, `1〉,
〈`1, ρ4, `2〉, 〈`2, ρ5, `2〉, 〈`2, ρ7,ERR〉.

We then calculate the pre-image of CEX1 for multiple
locations along the counterexample. We do so by iterating
along the counterexample path, and for every reachable lo-
cation ` ∈ L in CEX1, we compute a pre-image utilizing
the suffix of CEX1 from ` onwards. Thus we can avoid
redundant reasoning by utilizing sequential locality based upon
the program’s control-flow graph to compute a refinement for
`2 from a counterexample generated for `1. In this case, we
compute ℘ , (pc = `1 ⇒ y = 0) ∧ (pc = `2 ⇒ x > 0)

One existential witness may not be sufficient to find all
states that satisfy ψ in the respective locations, we thus rule
out CEX1 by adding ¬℘〈`i, ψ〉 to each transition from `i to the
error state. We re-run our safety checker and find that we do
not generate anymore counterexamples, thus completing our
precondition synthesis for EF y = 1.

Note that the technique used by Cook & Koskinen [10] im-
poses that they spend time computing both ℘〈`1, ψ〉, ℘〈`2, ψ〉
separately while the technique used by Beyene et al. [4] solves
a constraint based on an entire path when it’s only necessary
to reason about a single state.

We now modify ϕ by using ℘〈ψ〉 and get ϕ′ = AG ((pc =
`1 ⇒ y = 0) ∧ (pc = `2 ⇒ x > 0)). The constructed
transformation reducing the property ϕ′ to safety can be seen
in Figure 3. Note that in this particular transformation, the
outlined instrumented conditions correspond to each of the
location preconditions generated for EF y = 1. As ϕ′ is
universal, we begin with the initial precondition ℘〈ϕ〉 , true.
Failures to the proof attempt will result in strengthening
the precondition by adding negated pre-images of discovered
counterexamples. In this case no counterexamples are returned
and we get ℘〈ϕ〉 , true. This proves that AGEF y = 1 holds.

IV. PROCEDURE

In this section we describe the details of our CTL model
checking procedure. Figure 4 depicts VERIFY, which wraps

1 let VERIFY (ϕ, P) : bool =
2
3 (L, E,Vars) = P
4 ℘ = TEMPORALWP(ϕ, P)
5 return ∀(`0, ρ, `) ∈ E ∀s . (s, s) |= ρ⇒ s |= ℘〈`, ϕ〉

Fig. 4: Procedure VERIFY, which wraps TEMPORALWP and then checks
all initial states.

1 let rec TEMPORALWP(ψ, P) : map =
2 ℘ = INITIALIZEMAP (ψ,P)
3 M = ∅
4 κ = []
5 (L, E,Vars) = P
6 if ψ = α is atomic then
7 foreach {` | (`, t, `′) ∈ E}
8 ℘〈`, ψ〉 = pre(t, α) ; ℘〈`,¬ψ〉 = ¬pre(t, α)
9 done

10 else
11 match (ψ) with
12 | ψ′

1∧ψ′
2 | ψ′

1 ∨ ψ′
2 | ψ′

1 Uψ′
2 | ψ′

1 Wψ′
2 →

13 ℘ = ℘ ∪ TEMPORALWP(ψ′
1, P)∪ TEMPORALWP(ψ′

2, P)
14 | AFψ′

1 | AGψ′
1 | ¬ψ′

1 →
15 ℘ = ℘ ∪ TEMPORALWP(ψ′

1, P)
16 C = FINDCUTPOINTS(P)
17 foreach ` ∈ C do
18 P ′ = TRANSFORM(〈`, ψ〉,M, P,℘)
19 CEX, M = REFINE(P ′, ψ, ℘,M)
20 while CEX 6= ∅ do
21 ℘,P ′ = PROPAGATE(CEX, P ′, κ, ψ, `, ℘)
22 κ = CEX :: κ
23 CEX,M = REFINE(P ′, ψ, ℘,M)
24 done
25 done
26 ℘

Fig. 5: Procedure TEMPORALWP getting a temporal property and a program
and returning the map from program locations and sub-formulas to assertions.

the main procedure TEMPORALWP in Figure 5. Other sub-
routines used in TEMPORALWP are in Figures 6–10.

We exploit the natural decomposition of the state
space given by the control flow graph. That is, using a
counterexample-guided precondition synthesis strategy, we
compute program-location-specific preconditions. In our ap-
proach the table ℘ is the key data structure which maps
pairs of program locations and sub-formulae to assertions
which represent the current candidate precondition that would
guarantee the sub-formulae at a respective location. That is,
℘〈`, ϕ〉 should be a sufficient and most general precondition to
prove that ϕ holds at location `. If such is not the case, a coun-
terexample is produced and the procedure attempts to refine ℘

1 let INITIALIZEMAP (ψ,P) : map =
2
3 ℘ = ∅
4 (L, E,Vars) = P
5 if ψ = Eψ′ then
6 foreach ` ∈ L do
7 ℘〈`, ψ〉 = false;
8 ℘〈`,¬ψ〉 = true
9 done

10 else
11 foreach ` ∈ L do
12 ℘〈`, ψ〉 = true;
13 ℘〈`,¬ψ〉 = false
14 done
15 return ℘

Fig. 6: Initializing the map from program locations and sub-formulas to
assertions.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 78

1 let REFINE(P, ψ, ℘,M) : map =
2
3 CEX = REACHABLE(P,ERR)
4 while P can reach ERR do
5 if CEX contains stem and lasso then
6 if ∃ witness f showing CEX′ w.f. then
7 M = M ∪ {f}
8 else
9 return CEX, M

10 else
11 return CEX, M
12 CEX = REACHABLE((TRANSFORM(〈`, ψ〉,M, P, ℘),`0,ERR)
13 done

Fig. 7: Procedure REFINE getting a program, a temporal property, the map
from locations and temporal properties to assertions, and a set of ranking
functions and returning a counter example reaching location ERR and a
(possibly) larger set of ranking functions.

1 let PROPAGATE(CEX,P, κ, ψ,n,℘): map =
2 α = true
3 (L, E,Vars) = P
4 foreach (`, ρn, `′) ∈ CEX reachable from n do
5 if CEX in κ ∧ ` = n then
6 α = STRENGTHEN(pre(`,CEX),CEX)
7 else
8 α = pre(`,CEX)
9 if ψ = Eψ′ then

10 ℘〈`, ψ〉 = ℘〈`, ψ〉 ∨ α
11 ℘〈`,¬ψ〉 = ℘〈`,¬ψ〉 ∧ ¬α
12 else
13 ℘〈`, ψ〉 = ℘〈`, ψ〉 ∧ ¬α
14 ℘〈`,¬ψ〉 = ℘〈`,¬ψ〉 ∨ α
15 if `′ = ERR then
16 ρ ∈ E = ρ ∧ ¬℘〈`, ψ〉
17 done
18 ℘, P

Fig. 8: Procedure PROPAGATE getting a counter example, the program, a
list of previous counter examples, the location to which the counter example is
applicable, and the map of previously discovered preconditions and returning
an updated map and updated program. The map of preconditions is updated
by adding the weakest preconditions of the current counter example. The
program is updated by eliminating handled counter example from reaching
the ERR location again.

given the counterexample path. Each precondition synthesized
substitutes its temporal sub-property in the original formula,
and we then continue with the next most outer formula. After
a short description of TEMPORALWP and a brief description
of each of its subroutines, we give an in depth explanation of
TEMPORALWP.
TEMPORALWP: performs both a recursive and a refinement-
based computation to construct ℘. It starts by initializing the
map of preconditions using procedure INITIALIZEMAP (Fig-
ure 6) and then calling itself recursively for each sub-
formula (lines 7–9 and 11–15). TRANSFORM and REFINE
are part of the model checking procedure for the current
sub-formula while PROPAGATE (Figure 8) updates the map
by synthesizing the pre-images given a counterexample. We
then reduce the amount of redundant and irrelevant reason-
ing performed through information sharing extracted from

1 let STRENGTHEN(α,CEX) : AP =
2
3 W = {v | v gets updated in CEX}
4 QE(∃W.α)

Fig. 9: If divergence is suspected due to infinitely many counterexamples,
the sub-procedure strengthens the candidate precondition towards the limit.

1 let TRANSFORM(〈k, ϕ〉,M, P, ℘) : Program =
2
3 (L, E,Vars) = P
4 match(ϕ) with
5 | ψ∧ψ′ →
6 α1 = ℘〈k,¬ψ〉 ; α2 = ℘〈k,¬ψ′〉
7 E = E ∪ (k, α1 ∨ α2, ERR)
8 | ψ∨ψ′ →
9 α1 = ℘〈k,¬ψ〉 ; α2 = ℘〈k,¬ψ′〉

10 E = E ∪ (k, α1 ∧ α2, ERR)
11 | A[ψWψ′]→
12 foreach (`, ρ, `′) ∈ E reachable from k do
13 α1 = ℘〈`, ψ〉 ; α2 = ℘〈`, ψ′〉
14 ρ = ρ ∧ α1 ∧ ¬α2

15 E = E ∪ (`, ¬α1 ∧ ¬α2, ERR)
16 | E[ψUψ′]→
17 P = TRANSFORM(〈k,A[¬ψ′ W(¬ψ ∧ ¬ψ′)]〉,M, P, ℘)
18 | AFψ →
19 foreach (′`, ρ, k) ∈ E do
20 ρ = ρ ∧dup=false
21 foreach (`, ρ, `′) ∈ E reachable from k do
22 α = ℘〈`, ψ〉
23 ρ = (ρ ∧ ¬α) ∨ (ρ ∧ ¬dup∧¬α
24 ∧ dup=true ∧ (′s = `× Vars→ Vals))
25 c = dup ∧ ¬α ∧ ¬(∃f ∈M. f(s) ≺ f(′s))
26 E = E ∪(`, c, ERR)
27 | EGψ →
28 P = TRANSFORM(〈k,AF¬ψ〉,M, P, ℘)
29 | AGψ →
30 foreach (`, ρ, `′) ∈ E reachable from k do
31 α = ℘〈`, ψ〉
32 ρ = ρ ∧ α
33 E = E ∪(`, ¬α, ERR)
34 | EFψ →
35 P = TRANSFORM(〈k,AG¬ψ〉,M, P, ℘)
36
37 P

Fig. 10: Reduction of model checking of temporal properties to safety and
ranking function synthesis.

reachability information. That is, several preconditions for
each program location can be computed simultaneously. When
TEMPORALWP returns to VERIFY, it is only necessary to
check if the precondition of the outermost temporal sub-
property is satisfied by the initial states of the program.
TRANSFORM: implements the reduction of model checking to
safety checking and well-foundedness, inspired by the proce-
dure from [10]. The TRANSFORM transformation utilizes the
map ℘, which maps the preconditions synthesized previously
for sub-properties and their negations (lines 6,9,13,22, and
31). The program is then transformed according to the CTL
sub-property by modifying the program from a given program
location k ∈ L. The reduction is only applied from a location k
onwards (see loop invariants in lines 12, 21, and 30), that is, we
only wish to verify the sub-property starting from transitions
stemming from k. Whenever ϕ does not hold for a location `,
a new reachable transition to an error location ERR is added.

As mentioned, existential path quantifiers are handled by
considering their universal dual. For both existential and
universal properties, our mapping function is also updated with
the precondition for the negation of the property on line 8
in TEMPORALWP and lines 11 and 14 in PROPAGATE. This
allows us to conveniently access the negation of the property
when encoding existential properties as their universal duals.
REFINE: uses a safety prover (similar to IMPACT [28]) to
obtain counterexamples from the transformed system, if a

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 79

counterexample exists. A produced counterexample to a live-
ness property (such as AF) contains a lasso fragment, we then
attempt to find an accompanying set of ranking functions M
that will show that the counterexample is not valid. We thus
attempt to enlarge the set of ranking functions M using the
well known method of [14]. Otherwise, the absence of a set
of ranking function indicates the existence of a recurrent set.
Note that proving liveness is undecidable, thus techniques used
in [14] are incomplete.

A. TEMPORALWP: computing ℘

In order to synthesize a precondition for a temporal property
ψ, we first recursively accumulate the preconditions generated
when considering the sub-properties of ψ at lines 8, 13, and
15. The base case, an atomic proposition α, is computed
as is standard, e.g., in [15]. For the sake of clarity, we
omit the descriptions of both FINDCUTPOINTS and the use
of sequential locality in PROPAGATE till later, as we solely
wish to describe the fundamental procedure underlying our
precondition synthesis for each temporal sub-property. We will
then discuss how these sub-procedures provide the key to
making use of the program’s control-flow graph to construct
multiple preconditions.

Given the omission of FINDCUTPOINTS, let C be the set of
all locations in a program P , that is L. We wish to synthesize a
precondition for each ` ∈ L such that the precondition asserts
the satisfaction of ψ. Hence, we iterate over these locations
(line 17) and generate a transformed program corresponding
to each location using the subroutine TRANSFORM at line 18.

Recall that TRANSFORM allows us to reduce the checking
of temporal properties to a program analysis task from a given
program location. Each transformed program is then verified
through the subroutine REFINE (line 19). A counterexample-
guided precondition refinement loop then begins at line 20,
where we iteratively refine a precondition for ` ∈ L until
no more counterexamples are found. We now discuss the
refinement process for each type of quantifier separately below.
Universal precondition synthesis. For a universal CTL sub-
property ψ, a precondition ℘〈`, ψ〉 for a program location `
is initialized to true (Figure 6 line 12). If REFINE returns
a counterexample, we refine ℘〈`, ψ〉 by taking the negation
of pre-image of the returned counterexample at location `
in PROPAGATE on line 21. Given our temporary omission
of sequential locality in PROPAGATE, consider the loop in
Figure 9 on line 3 to only iterate over one element, that is
the current `. As we are handling a universal sub-property
its precondition is then strengthened to become ℘〈`, ψ〉 =
℘〈`, ψ〉 ∧ ¬pre(`,CEX) (line 13 in PROPAGATE).

We then rule out the aforementioned counterexample by
adding the assumption ¬pre(`,CEX) to each ingoing transi-
tion to the error location on the counterexample path, as shown
on lines 15 and 16 in PROPAGATE. We then continue to unfold
the loop in TEMPORALWP whenever a new counterexample
is discovered while iteratively refining ℘〈`, ϕ〉, resulting in:

℘〈`, ϕ〉 =
∧
n∈N ¬pre(CEXn)

Existential precondition synthesis. For an existential CTL

property, a precondition must entail an existential witness
satisfying the sub-property ψ at program location `. We thus
verify the universal dual of the existential property (as instru-
mented by our encoding) and seek a set of counterexamples
generated from the property’s universal dual to serve as an
existential witnesses.

A precondition ℘〈`, ϕ〉 for a program state is initially
false (line 7 in Figure 6). If a counterexample is returned,
℘〈`, ϕ〉 is refined through the disjunction of the pre-image
of the counterexample returned, that is ℘〈`, ψ〉 = ℘〈`, ψ〉 ∨
pre(`,CEX) (line 10 in Figure 8).

We rule out the aforementioned counterexample by adding
the assumption ¬pre(`,CEX), and continue to unfold the loop
with each newly discovered counterexample while iteratively
refining ℘〈`, ψ〉. Note that finding one witness is not sufficient
to satisfy an existential property, as ℘〈`, ψ〉 must characterize
all the states satisfying the sub-property ψ at a location. Thus,

℘〈`, ψ〉 =
∨
n∈N pre(CEXn)

Upon the return of our precondition method to its caller,
℘ will contain the precondition for the most outer temporal
property of the original CTL property ϕ.

In our procedure, divergence can occur due to the possibility
of generating infinitely many counterexamples. In practice this
is rare, but not unheard of. We thus implement the following
heuristic introduced by [10]:
• If we suspect we are looking at a sequence of repeated

counterexamples that will result in divergence, we call
the procedure STRENGTHEN (Figure 9, line 5 in PROP-
AGATE). The sub-procedure strengthens the candidate
precondition towards the limit.

• STRENGTHEN takes the calculated pre-image α, then
proceeds to quantify out all variables that are updated
proceeding the program location ` by applying quantifier
elimination (QE).

• This heuristic can lead to unsoundness, as STRENGTHEN
may over-approximate the set of states, causing ℘ to
be potentially unsound for temporal properties involving
existential path quantifiers. To check that the guessed
candidate precondition is in fact a real precondition, e.g.
that ℘⇒ EG ℘′, we can use the approach from Beyene
et al. [4] to double check the small lemma.

• If the check succeeds we continue, if the check fails we
raise an exception.

Reducing redundant and irrelevant reasoning. Given that
our approach synthesizes counterexample guided precondi-
tions over program locations, we utilize sequential locality to
simultaneously calculate preconditions for the set of locations
that are arranged and can be accessed from a CEX starting
from a given location `. Our propagation sub-procedure PROP-
AGATE (Figure 8) is called from TEMPORALWP at line 21. We
iterate along the counterexample path, and for every reachable
location ` ∈ L, we compute a pre-image utilizing a suffix of
CEX from ` onwards. In more informal terms, every program
location along the path can utilize the same counterexample to
show that the property does or does not hold. Practically, the
computation of a pre-image is performed by going backwards

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 80

over the counter example.
PROPAGATE alone does not eliminate redundant or ir-

relevant reasoning, as we would still iterate over locations
whose preconditions have already been computed for. We thus
calculate a cut-point set C such that C ⊆ L and every cycle in
the program’s graph contains at least one cut-point (line 16 in
TEMPORALWP). That is, we only wish to synthesize a precon-
dition over each program location ` ⊆ C. We choose to verify
the set of cut-points [18] instead of all program locations, as
cut-points provide locality across program locations given the
nature of cycles. We will thus be able to propagate a cut-
point precondition to all locations reachable from a cycle of
a generated counterexample. Other program analysis inspired
techniques may be used for the selection of initial locations to
be verified. A cycle independent analysis can be run for those
locations unreachable from program cut-points.

We now state the correctness of our procedure.
Proposition 4.1: If the algorithm in Figure 5 terminates, for

every sub-formula ψ of ϕ, every location ` ∈ L, and every
reachable state s we have: s |= ℘〈`, ψ〉 implies P, (`, s) |= ψ
and s |= ¬℘〈`, ψ〉 implies P, (`, s) |= ¬ψ.

Proof Sketch: We prove the proposition by induction on the
structure of the formula. It is clear for an atomic proposition
and for Boolean operators. Consider a universal path for-
mula. As the counter examples obtained from the underlying
program analysis tool are real counter examples, it follows
that their pre-images do not satisfy the formula. We then
get additional counter examples, which are all sound. The
termination of the loop searching for counter examples implies
that the disjunction of all pre-images is sound and complete.
Existential path formulas are dual.

Corollary 4.2: For every symbolic program P we have P |=
ϕ iff for every (`0, ρ, `) ∈ E we have ρ⇒ ℘〈`, ϕ〉.

V. EVALUATION

In this section we discuss the results of our experiments
with an implementation of the procedure from Figure 4.
Our implementation is built as an extension to the open
source project T2 [1], which uses a safety prover similar to
IMPACT [28] alongside previously published techniques for
discovering ranking functions, etc [31], [21] to prove both
liveness and safety properties. The source code for our tool
can be found at http://heidyk.com/T2source/.

We have compared our tool to that of Cook & Koskinen [10]
and Beyene et al. [4]. The benchmarks used are the same as
those used in [10] and [4]. These benchmarks were originally
created by Cook & Koskinen using the examples drawn from
the I/O subsystem of the Windows OS kernel, the back-
end infrastructure of the PostgreSQL database server, and the
SoftUpdates patch system [23]. The benchmarks can be found
at http://www.cims.nyu.edu/˜ejk/ctl/. For each
program and CTL property ϕ, we verify both ϕ and ¬ϕ. The
various tools were executed on an Intel x64-based 2.8 GHz
single-core processor.
Program commands. We now discuss the format in which we
interpret a program’s commands. A deterministic assignment
statement of the form v′ = exp where v′ ∈ Vars′ and

exp is an expression over program variables is translated to
the condition v′ = exp ∧ ∀x ∈ Vars\{v}. x = x′. A
nondeterministic assignment v′ = ∗ is translated to ∀x ∈
Vars\{v}. x = x′. A conditional statements exp is encoded
to exp ∧ ∀x ∈ Vars. x = x′.

In Figure 11 we display the comparison of our results. For
each program and its set of CTL properties, we display the
number of lines of code (LOC), and report the time it took to
verify a CTL property (Time column) in seconds. A X in the
“Result” column indicates that the tool was able to verify the
property. Likewise, an × indicates that the tool failed to prove
the property. A timeout or memory exception is indicated by
T/O. A timeout is triggered if verification of an experiment
exceeds 3000 seconds. The symbol “–” in the Time and Result
column indicates that the experiment was not run.

Overall, our tool demonstrates a significant increase in
performance and scalability. Contrary to existing tools, our
tool produces no timeouts and programs are often verified
in under a second or less. The aforementioned tools often
take minutes (the former more-so than the latter). Furthermore,
the previous tools produce T/Os in cases where the temporal
formula is complex, the size of the program is large, or both.
Although a few of our results are on par with Beyene et al.,
one can speculate from our evaluations that said tool is not
well equipped to handle larger programs. Contrarily, our tool
demonstrates the potential for scalability. On average, we show
orders-of-magnitude performance improvement over existing
tools, particularly when dealing with larger programs.

In a few cases our tool produces results that differ with one
of the previous tools, due to bugs in the previous tools. As
an example, in the S/W Updates case we are unable to repeat
the result of Cook & Koskinen on c > 5 ∧ AG(r ≤ 5) and
c > 5 ∧ EG(r ≤ 5). Our result agrees with that of Beyene
et al.. Finally, OS frag. 2 requires fairness, and it is unclear
how [10] and [4] verified said program, as all these tools lack
support for fairness. Cook & Koskinen acknowledge their bug.

VI. CONCLUDING REMARKS

In this paper we have described a procedure for CTL model
checking that takes advantage of the structure of control-flow
graphs available in programs. Our procedure works recursively
on the structure of the property and computes (location-based)
preconditions for the satisfaction of each sub-formula. The
idea is to use a decomposition based on program-location
(thus facilitating the use of program analysis techniques),
but to maintain the current state of the intermediate lemmas
in a way their results can be used to quickly facilitate the
computation of results for nearby program locations. As is
evident from the outcome of our experimental evaluation,
our method leads to dramatic performance improvement over
competing tools that support CTL verification for infinite-state
programs. Additionally, we wish to further experiment with the
scalability that our methodology can perhaps provide.

REFERENCES

[1] “T2 source code,” http://research.microsoft.com/t2.
[2] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.

Sci., 126(2), 1994.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 81

ϕ ¬ϕ
Fig. 4 Beyene [4] Cook [10] Fig. 4 Beyene [4] Cook [10]

Program LOC Property (ϕ) Tim
e

R
esult

Tim
e

R
esult

Tim
e

R
esult

Tim
e

R
esult

Tim
e

R
esult

Tim
e

R
esult

OS frag. 6 1050 AG(b = 1⇒ AF(u = 0)) 67.3 X T/O – T/O – 82.9 × T/O – T/O –
OS frag. 6 1050 EG(b = 1⇒ EF(u = 0)) 36.2 X T/O – T/O – 38.8 × T/O – – –
OS frag. 3 370 AG(a = 1⇒ AF(r = 1)) 5.9 X 43.4 X 38.9 X 6.2 × 40.4 × 18.0 ×
OS frag. 3 370 AG(a = 1⇒ EF(r = 1)) 6.8 X 35.45 X 90.0 X 3.4 × 36.57 × 107.3 ×
OS frag. 3 370 EF(a = 1 ∧ AG(r 6= 1)) 4.7 X T/O – T/O – 3.1 × T/O – T/O –
OS frag. 3 370 EF(a = 1 ∧ EG(r 6= 1)) 2.3 X 2.52 X 1680.7 X 6.0 × 2.52 × 1930.0 ×
OS frag. 4 370 AF(io = 1) ∨ AF(ret = 1) 18.5 X 270.6 X 34.3 X 13.9 × 58.06 × 18.8 ×
OS frag. 4 370 EG(io 6= 1) ∧ EG(ret 6= 1) 13.5 X T/O – 7.6 X 14.2 × T/O – 61.3 ×
OS frag. 4 370 EF(io = 1) ∧ EF(ret = 1) 14.7 X T/O – 1261.0 X 4.8 × T/O – T/O –
OS frag. 4 370 AG(io 6= 1) ∨ AG(ret 6= 1) 8.0 X 0.1 X – – 3.7 × 1.3 × – –
PgSQL arch 90 AG(AF(w = 1)) 2.0 X 0.7 X T/O – 1.3 × 1.4 × 38.1 ×
PgSQL arch 90 AG(EF(w = 1)) 2.0 X 0.7 X T/O – 0.0 × 0.2 × 42.7 ×
PgSQL arch 90 EF(AG(w 6= 1)) 2.0 X 0.1 X T/O – 2.4 × 0.7 × 30.2 ×
PgSQL arch 90 EF(EG(w 6= 1)) 0.1 X 0.1 X 35.2 X 0.1 × 0.5 × 45.3 ×
OS frag. 2 58 AG(s = 1⇒ AF(u = 1)) 0.8 × 1.4 X 2.1 X 0.2 X 0.7 × 1.8 ×
OS frag. 2 58 AG(s = 1⇒ EF(u = 1)) 2.0 × 1.3 X 3.7 X 0.2 × 0.4 × 1.5 ×
OS frag. 2 58 EF(s = 1 ∧ AG(u 6= 1)) 0.8 X 0.1 X 5.6 X 0.2 × 0.7 × 8.7 ×
OS frag. 2 58 EF(s = 1 ∧ EG(u 6= 1)) 1.0 X 0.1 X 1.2 X 1.2 × 1.8 × 6.5 ×
OS frag. 5 58 AG(AF(w ≥ 1)) 1.0 X 0.6 X 569.7 X 0.2 × 0.4 × 65.1 ×
OS frag. 5 58 AG(EF(w ≥ 1)) 1.0 X 0.7 X T/O – 0.0 × 0.1 × T/O –
OS frag. 5 58 EF(AG(w < 1)) 0.1 X 0.5 X 255.8 X 0.1 × 0.2 × 85.5 ×
OS frag. 5 58 EF(EG(w < 1)) 0.1 X 0.1 X 351.1 X 0.0 × 0.2 × 1471.7 ×
S/W Updates 36 c > 5⇒ AF(r > 5) 0.1 × 5.27 X 70.2 X 1.1 X 0.8 × 32.4 ×
S/W Updates 36 c > 5⇒ EF(r > 5) 0.1 X 0.2 × 18.5 X 0.8 × 0.1 × 1.3 ×
S/W Updates 36 c > 5 ∧ AG(r ≤ 5) 0.1 × 0.1 × 0.3 X 1.1 X 0.1 × 0.5 ×
S/W Updates 36 c > 5 ∧ EG(r ≤ 5) 0.4 × 0.1 × 4.5 X 0.7 X 0.1 × 0.4 ×
OS frag. 1 29 AG(a = 1⇒ AF(r = 1)) 1.0 X 0.3 X 4.6 X 1.4 × 0.7 × 9.1 ×
OS frag. 1 29 AG(a = 1⇒ EF(r = 1)) 0.1 X 0.3 X 9.5 X 0.1 × 0.3 × 1.5 ×
OS frag. 1 29 EF(a = 1 ∧ AG(r 6= 1)) 0.1 X 0.1 X 105.7 X 0.1 × 0.4 × 18.1 ×
OS frag. 1 29 EF(a = 1 ∧ EG(r 6= 1)) 0.1 X 0.1 X 3.5 X 0.7 × 0.3 × 12.5 ×

Fig. 11: The results of applying our CTL model checking procedure on benchmarks from [10], [4]. For each program we verify a set of properties (ϕ)
and their negations (¬ϕ) and compare our results with [10], [4]. A timeout (T/O) is triggered if verification of a benchmark exceeds 3000 seconds.

[3] O. Bernholtz, M. Y. Vardi, and P. Wolper, “An automata-theoretic
approach to branching-time model checking (extended abstract),” in
CAV’94. Springer, 1994.

[4] T. A. Beyene, C. Popeea, and A. Rybalchenko, “Solving existentially
quantified horn clauses,” in CAV’13. Springer, 2013.

[5] J. Burch, E. Clarke et al., “Symbolic model checking: 1020 states and
beyond,” Information and computation, 98(2), 1992.

[6] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2: An opensource
tool for symbolic model checking,” in CAV’02. Springer, 2002.

[7] E. Clarke, S. Jha, Y. Lu, and H. Veith, “Tree-like counterexamples in
model checking,” in LICS, 2002.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
TOPLAS, 1986.

[9] E. Clarke and E. Emerson, “Design and synthesis of synchronization
skeletons using branching time temporal logic,” in Proc. Workshop on
Logic of Programs, Springer, 1981.

[10] B. Cook and E. Koskinen, “Reasoning about nondeterminism in pro-
grams,” in PLDI’13. ACM, 2013.

[11] B. Cook, J. Fisher, E. Krepska, and N. Piterman, “Proving stabilization
of biological systems,” in VMCAI’11. Springer, 2011.

[12] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Y. Vardi,
“Proving that programs eventually do something good,” in POPL’07,
2007.

[13] B. Cook and E. Koskinen, “Making prophecies with decision predicates,”
in POPL’11. ACM, 2011.

[14] B. Cook, A. Podelski, and A. Rybalchenko, “Termination proofs for
systems code,” in PLDI’06. ACM, 2006.

[15] E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, 1(1), 1959.

[16] E. A. Emerson and K. S. Namjoshi, “Automatic verification of parame-
terized synchronous systems (extended abstract),” in CAV’96. Springer,
1996.

[17] J. Esparza, A. Kucera, and S. Schwoon, “Model checking ltl with regular
valuations for pushdown systems,” Information and Computation, 186,
2003.

[18] R. W. Floyd, “Assigning meaning to programs,” in Mathematical Aspects
of Computer Science, ser. Proc. of Symposia in Applied Mathematics.
American Mathematical Society, 1967.

[19] F. Giunchiglia and P. Traverso, “Planning as model checking,” in Recent
Advances in AI Planning, Springer, 2000.

[20] A. Gotsman, B. Cook, M. Parkinson, and V. Vafeiadis, “Proving that
non-blocking algorithms don’t block,” in POPL’09. ACM, 2009.

[21] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G.
Xu, “Proving non-termination,” SIGPLAN Not., 43, 2008.

[22] A. Gurfinkel, O. Wei, and M. Chechik, “Yasm: A software model-
checker for verification and refutation,” in CAV’06. Springer, 2006.

[23] C. M. Hayden, S. Magill, M. Hicks, N. Foster, and J. S. Foster,
“Specifying and verifying the correctness of dynamic software updates,”
in VSTTE’12, 2012.

[24] Y. Kesten and A. Pnueli, “A compositional approach to ctl* verification,”
Theor. Comput. Sci., 331(2-3), 2005.

[25] O. Kupferman, M. Vardi, and P. Wolper, “An automata-theoretic ap-
proach to branching-time model checking,” Journal of the ACM, 47(2),
2000.

[26] S. Magill, J. Berdine, E. M. Clarke, and B. Cook, “Arithmetic strength-
ening for shape analysis,” in SAS’07. Springer, 2007.

[27] Z. Manna and A. Pnueli, Temporal verification of reactive systems:
safety. Springer Verlag, 1995, vol. 2.

[28] K. McMillan, “Lazy abstraction with interpolants,” in CAV, 2006.
[29] H. Peng, Y. Mokhtari, and S. Tahar, “Environment synthesis for compo-

sitional model checking,” in Computer Design: VLSI in Computers and
Processors, 2002.

[30] A. Podelski and A. Rybalchenko, “Transition invariants,” in LICS’04.
IEEE, 2004.

[31] ——, “Transition invariants,” in LICS, 2004.
[32] F. Song and T. Touili, “Pushdown model checking for malware detec-

tion,” in TACAS’12. ACM, 2012.
[33] I. Walukiewicz, “Pushdown processes: Games and model checking,” in

CAV’96. Springer, 1996.
[34] ——, “Model checking ctl properties of pushdown systems,” in

FSTTCS’00. Springer, 2000.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 82

Template-based circuit understanding

Adrià Gascón∗, Pramod Subramanyan†, Bruno Dutertre∗, Ashish Tiwari∗ Dejan Jovanović∗, Sharad Malik†
∗SRI International

adria.gascon@sri.com, bruno@csl.sri.com, tiwari@csl.sri.com, dejan.jovanovic@sri.com

†Princeton University
psubrama@princeton.edu, sharad@princeton.edu

Abstract—When verifying or reverse-engineering digital cir-
cuits, one often wants to identify and understand small compo-
nents in a larger system. A possible approach is to show that
the sub-circuit under investigation is functionally equivalent to a
reference implementation. In many cases, this task is difficult as
one may not have full information about the mapping between
input and output of the two circuits, or because the equivalence
depends on settings of control inputs.

We propose a template-based approach that automates this
process. It extracts a functional description for a low-level
combinational circuit by showing it to be equivalent to a reference
implementation, while synthesizing an appropriate mapping of in-
put and output signals and setting of control signals. The method
relies on solving an exists/forall problem using an SMT solver,
and on a pruning technique based on signature computation.

I. INTRODUCTION

Digital circuits are designed and implemented in a top-
down fashion, typically using computer-aided design (CAD)
tools that provide several levels of abstraction. Hence, a variety
of components must be understood separately to derive the
high-level functionality of the whole system. However, after
the original high-level description is mapped to a low-level
digital circuit—i.e., a flattened netlist—most of the modularity
that made the original description understandable is lost. For
this reason, an unavoidable task in reverse-engineering of
industrial size digital circuits is to extract subcircuits of the
original design to verify them independently. This task is
referred as the functional block identification step in [1]. Tech-
niques that tackle this problem include structural, functional,
and mixed approaches such as

1) FSM extraction [2]
2) Functional aggregation and matching [3]
3) Word identification and propagation [4]
4) Identification of repeated structures [5]

After identification of a component C by these methods,
an important step is understanding C’s functionality. Ideally,
we would like a systematic way of obtaining a reasonable
approximation of the high-level description of C in some
Hardware Description Language (HDL). A possible approach
is to try matching the function computed by C against a
library of predefined components. However, this option is
typically too strict in practice. A source of difficulty is that
the mapping between the inputs of C and the component
to be matched is usually unknown. Permutation-Independent

The research presented in this paper has been partially supported by the
National Science Foundation under grant CCF-1423296.

Equivalence Checking (PIEC) addresses this problem [6], [7],
[8]. It has been applied in the context of technique 2) above.
Once the wires in a flattened netlist have been grouped into
unordered words, and a combinational subcircuit C operating
on those words has been extracted, C is checked for equiva-
lence with known library components modulo a permutation
of such words that is determined by the matching algorithm.

Even with an equivalence checking algorithm that syn-
thesizes a suitable input/output permutation, another practical
difficulty may be that suitable library components are not avail-
able. Because of optimization steps applied in the flattening
process, and the specifics of the design, C does not necessarily
have a standard functionality. For example, our benchmark
includes a subcircuit automatically obtained from a real design
by unfolding an FSM found using a technique in the first
category above. The circuit has 170 wires and 120 components
from a circuit synthesis library, and it has 30 inputs out of
which six are control signals. The circuit implements a 22-
bit up counter modulo (220 + 221) with synchronous reset
and hold. This design can be described in fewer than ten
lines of VHDL, but it is not reasonable to assume that we
have a predefined reference circuit that exactly matches its
functionality, even modulo a permutation of inputs and outputs.
This motivates the need for more flexible functional matching
algorithms that enables reverse engineering without prior low-
level knowledge of the circuit under investigation.

Ideally, we would like to synthesize a suitable permutation
of the inputs and the corresponding VHDL code for C.
Unfortunately that is not possible in practice. Instead, we
solve a more constrained version of this synthesis problem:
the combinational circuit C is checked for equivalence against
a template spanning a finite, but possibly huge, family of
high-level circuit descriptions. More specifically, our goal is
to describe the functionality of a combinational circuit C
using word-level operations such as concatenation, extraction,
shifting, and rotation, as well as arithmetic functions on words
such as addition, subtraction, multiplication, modulo, and the
usual arithmetic comparison functions for signed and unsigned
integers.

Our solution is inspired by recent progress in the area of
program synthesis. Synthesizing a program from an abstract
specification is not achievable in practice, but template-based
synthesis is much more practical [9]. In this approach, the
designer provides a template that captures the shape of the
intended solution(s) together with the specification. A syn-
thesis algorithm fills in the details. This general idea has

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 83

been successfully applied to several domains. For example,
imperative programs can be obtained from a given sketch,
as long as their intended behavior is also provided [10];
efficient bitvector manipulations can be synthesized from naı̈ve
implementations [11]; agent behavior in distributed algorithms
can be synthesized from a description of a global goal [12];
circuits can be repaired given a specification of their intended
behavior [13]; deobfuscated code can be obtained using similar
ideas [14]. Although all these applications rely on template-
based synthesis, different synthesis algorithms are used in
different domains.

In our setting, the functional specification is the circuit C
itself, and our goal is to generate a high-level description of
its functionality by instantiating a user-provided template that
operates at the word level. The template is a convenient way
of integrating user knowledge to reduce the search space. Our
approach automatically synthesizes both an input/output per-
mutation and a set of Boolean conditions on some inputs, under
which the circuit C is equivalent to a high-level description.
We call this problem Permutation-Independent Conditional
Equivalence Checking (PICEC).

Our approach to solving PICEC relies on (i) a set of
syntactic transformations similar to the ones used in [15], (ii)
an efficient implementation of validity checking for Boolean
formulas over the theory of bitvectors with two levels of
quantification, i.e., ∃∀ QF BV formulas, and (iii) the use of
distinguishing signatures to handle the search for suitable input
and output permutations.

We evaluated our techniques on a set of reverse-engineering
benchmarks that were generated by synthesizing a variety of
circuits described in high-level (behavioral) Verilog using the
Synopsys Design Compiler (DC). All our benchmarks and
circuits, both as high-level Verilog and as flattened netlist,
are available at [16]. Our results indicate that our functional
matching approach can be very effective in practice for any
task that requires getting a precise understanding of the high-
level functionality of a digital system.

In Section II, we introduce some notation and precisely
state the Permutation Independent Conditional Equivalence
Checking problem. In Section III, we briefly present our
approach for solving the synthesis problem, including the
preprocessing techniques. In Section IV, we review previous
work on the use of output and input distinguishing signatures
for solving PIEC and show how we used it in our context. In
Sections V and VI, we present our experimental results and
future lines of research.

II. TEMPLATE-BASED CIRCUIT UNDERSTANDING

As mentioned in the previous section, our goal is to
extract a high-level understanding of the behavior of a given
combinational circuit C. More specifically, we would like
to raise the level of abstraction of the description of the
functionality of C from bits and standard logical gates to a
variety of word-level manipulation operations and arithmetic
functions. Motivated by this goal, we first formulate a generic
Permutation Independent Conditional Equivalence Checking
(PICEC, pronounced “pieces”) problem, then present a refined
PICEC problem. Finally, we show how it can be solved using
an exists-forall solver.

Let I and O be disjoint sets of variables ranging over
some domain D. Intuitively, I and O correspond to the inputs
and outputs of our circuit C. In all our experiments, D is the
Boolean domain, but the PICEC problem can be defined for
arbitrary domains. Given a set V of variable ranging over D,
by Wordsk(V) we denote the set of words over V of length k.
We simply refer to Words(V) when k is clear from the context
or irrelevant.

Since our goal is to raise the level of abstraction of the
description of the functionality of C from bits to words, a key
challenge is finding the right words from the sets I and O.
To do so, our procedure must consider all possible functions
that produce a word of a certain size from I and O, so-called
extraction functions. An extraction function is a function that
maps a set V of variables to a word in Wordsk(V), for some
positive constant k.

We are now ready to define our problem precisely. As
commented in Section I, our goal is to provide a flexible
procedure for checking whether a circuit exhibits a certain
behavior, that is, checking whether a circuit may compute a
certain function under conditions to be determined and for
some selection of its inputs and outputs that is also to be
determined. The Generic PICEC Problem captures this idea.
The goal of the following definition is to provide the reader
with a high-level intuition of the goal of our formalization.
As comented above, this general definition is then refined to
the formulation of the problem being addressed in this work,
which is presented in Definition 3 below.

Definition 1 (Generic PICEC): Given a quantifier-free
formula C(I,O) (over free variables I and O), and a function
φ : Words(D)×Words(D) 7→ Words(D), the PICEC problem
seeks to find
(a) a partition IC ∪ ID of I into control variables IC and data
variables ID,
(b) a satisfiable formula ψ(IC) with free variables in IC ,
(c) extraction functions ex1, ex2 on ID, and
(d) an extraction function ex3 on O,
such that the sentence

∀I,O : C(I,O)⇒
(ψ(IC)⇒ (ex3(O) = φ(ex1(ID), ex2(ID))))

is valid in the theory of the underlying domain Words(D).

Intuitively, a solution of the generic PICEC problem shows
that, under the condition ψ(IC), the circuit C behaves like the
function φ on some suitably identified input and output words.
Solving the generic PICEC problem amounts to synthesizing
the parts (a)–(d) in Definition 1.

Example 1: Consider a circuit C(I,O) with set of binary
inputs I = {i1, i2, i3, i4, c} and a single output o. Assume that
C implements the following function

f(i1, i2, i3, i4, c) =
{
i1i2 > i3i4, if c = 0
i1i1 ≥ i3i4, otherwise.

and consider the function φ(w1, w2) = (w1 ≥ w2). An
interesting solution of this PICES instance consists of: (a)
the partition I = {c} ∪ {i1, i2, i3, i4}, (b) the Boolean for-
mula ψ({c}) = c, (c) extraction functions ex1(I \ {c}) =

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 84

i1i1, ex2(I \ {c}) = i3i4, and (d) the extraction function
ex3({o}) = o.

We have defined φ as a binary function to keep the
presentation simple, but the definition generalizes to functions
of any arity. Furthermore, in practice, we do not have just
one function φ that we are “searching for” in a circuit C, but
a whole set φ1, . . . , φm of functions. In this case, we want
to share the partition synthesized in Part (a) across all the
m functions, but synthesize different Parts (b)–(d) for the m
different functions. This extension corresponds to the Generic
m-PICEC problem defined as follows:

Definition 2 (Generic m-PICEC): Given a quantifier-free
formula C(I,O) (over free variables I and O), and given
m functions φ1, . . . , φm each with signature Words(D) ×
Words(D) 7→ Words(D), the generic m-PICEC problem seeks
to find
(a) a partition IC ∪ ID of I into control variables IC and data
variables ID,
(b) m satisfiable formulas ψi(IC) with free variables in IC ,
(c) 2m extraction functions exi,1, exi,2 on ID, and
(d) m extraction functions exi,3 on O,
(where i ∈ {1, . . . ,m} in Items (b)–(d)) such that the sentence

∀I,O : C(I,O)⇒(∧
i

ψi(IC)⇒ (exi,3(O) = φi(exi,1(ID), exi,2(ID)))
)

is valid in the theory of the underlying domain D.

Note that a solution to the m-PICEC problem does not
necessarily specify a total mapping between inputs and outputs
values of C, but only a mapping under the condition

∨
i ψi(IC),

and hence the first C in PICEC. This flexibility is very helpful
in a reverse-engineering process to incrementally understand
the high-level functionality of the circuit.

The generic m-PICEC problem raises two issues. First,
its synthesis search space (that is, the state space of the
synthesis parameters in Parts (a)–(d) above) is huge. More
importantly, it does not provide a way of integrating user-
provided knowledge to reduce the synthesis search space. In
particular, the user might have some knowledge about which
variables form unordered words. The user may also wish to
put constraints on the different extraction functions used for
different choices of i (saying that some of them have to be the
same extraction function). This is typically the case in practice,
for example, when trying to understand an ALU-like circuit.

The user’s knowledge of the circuit is captured in a
template. A template T for a circuit C(I,O) is an 8-tuple

〈OT , {S1, . . . , Sn, IC}, p, {φ1, . . . , φm},
arg1 , arg2 , perm1 , perm2 〉

where OT ⊆ O is a subset of output variables, I = (IC ∪⋃n
i=1(Si)) is a partition of the input variables, p ≥ 1 is a

natural number, the φi’s are binary functions over words as
before, and arg1 , arg2 : m 7→ n and perm1 , perm2 : m 7→ p
are mappings. Here by m we denote the set {1, . . . ,m}.

Intuitively, OT represents the subset of outputs of T
explained in the template, the partition of I captures knowledge
on how input words and control inputs are grouped. The
problem is to correctly order the wires within those words

by synthesizing p input permutations σ1, . . . , σp. The φi’s are
functions that the circuit is expected to implement under some
conditions on the inputs in IC . The template specifies that the
input to φi are the two sets of Sarg1 (i) and Sarg2 (i) and that
these sets of wires must be ordered according to permutations
σperm1 (i) and σperm2 (i), respectively.

We are now ready to define the m-PICEC problem.

Definition 3 (m-PICEC problem): Given a quantifier-free
formula C(I,O) (over free variables I and O), and given a
template T as defined above, the m-PICEC problem seeks to
find
(a) p+ 1 permutations θ, σ1, . . . , σp and
(b) m satisfiable formulas ψi(IC) with free variables in IC ,
such that the sentence

∀I,O : C(I,O)⇒
∧
i

(ψi(IC)⇒ Eqi) (1)

is valid in the theory of the underlying domain D, where Eqi
stands for

(θ(OT) = φi(σperm1 (i)(Sarg1 (i)), σperm2 (i)(Sarg2 (i))))

Since encoding the “satisfiable” condition in Part (b) is
tricky, we assume that the formula ψi(IC) denotes an as-
signment to the variables in IC . Then, it immediately follows
that the m-PICEC problem reduces to checking validity of the
following exists-forall synthesis constraint:

∃ψ1, . . . , ψm, σ1, . . . , σp, θ : ∀I,O : Φ (2)

where Φ is the matrix (quantifier-free part) of Formula (1).

Example 2: In practice, we specify the templates using an
extension of the Yices language [17], as illustrated in Figure 1.
In this example, we wish to determine whether a circuit C
behaves as an adder under some condition and as a comparator
under another condition. The corresponding formal template is
given by

OT := outputs

{S1 := inputsA, S2 := inputsB, IC := control}
p := 2
{φ1 := bv-add, φ2 := bv-slt-int}

with arg1 , arg2 , perm1 , and perm2 defined by arg1 (i) =
1, arg2 (i) = 2, perm1 (i) = 1, perm2 (i) = 2 for i = 1, 2.
The function bv-slt-int is a signed less-than operator that
returns 1 or 0. Let ≺ denote the less-than relation on signed
integers encoded in two’s complement representation. The syn-
thesis constraint is satisfiable if there exist two permutations
p and q, and bitvector constants v1 and v2, such that, for
all possible values of inputsA and inputsB, (1) whenever
control = v1, then C outputs p(inputsA) + q(inputsB)
and (2) whenever control = v2, then C outputs 1 if
p(inputsA) ≺ q(inputsB) and 0 otherwise.

Since we are dealing either with combinational circuits or
unfolding of sequential circuits, the relation C(I,O) can be
represented as a Boolean formula. Then Formula 2 belongs
to the logic of fixed-sized bit vectors with two levels of
quantification ∃ and ∀. In the following section, we describe
our solver, whose implementation is based on the Yices [18]
SMT-solver. Our solver applies some general preprocessing

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 85

(and
(=>

(value v1 control)
(=

outputs
(bv-add

(permute p inputsA)
(permute q inputsB)

)))

(=>
(value v2 control)

(= outputs
(ite

(bv-slt
(permute p inputsA)
(permute q inputsB)

)
(mk-bv 32 1)
(mk-bv 32 0)

)))))

Fig. 1. Example of a user-defined template

techniques also used in [15]. In particular equality resolution
is very effective in our setting due to the restricted form of
our templates.

III. SOLVING THE ∃∀ PROBLEM

The synthesis problem reduces to solving Boolean formulas
over the theory of bit-vectors with two levels of quantification,
commonly called the ∃∀ QF BV fragment. Formulas in this
fragment have the general form

(∃~x) (E(~x) ∧ (∀~y)A(~x, ~y))

Such formulas can be reduced to quantified Boolean formulas
and delegated to a general QBF solver (e.g., [19]). Instead, we
opt for reasoning at the higher level of bit-vectors and relying
on a counterexample-refinement loop, similar to the approach
used in 2QBF solvers (e.g., [20], [21]).

This loop is sketched in Figure 2. Given an ∃∀ formula,
as above, the procedure is a game between two (quantifier-
free) bit-vector solvers. The first solver generates candidate
solutions for the existential variables ~x 7→ ~a by solving
E. If there are no solutions to E, then the ∃∀ formula is
unsatisfiable. Otherwise, the second solver checks whether the
candidate solution ~a is correct, by trying to refute A modulo
the assignment ~x 7→ ~a. If the latter formula can not be
refuted, then ~a is a solution to the ∃∀ problem. Otherwise,
the second solver produces a refutation counterexample ~b. This
counterexample ~b eliminates ~a from the set of candidates for
the existential variables. But ~b can eliminate more candidates
than ~a: all good candidates must satisfy A[~y/~b]. This new
assertion (on the variables ~x) is then added to the first solver’s
context and the loop proceeds. It is easy to see that this
procedure terminates as the variables ~x have a finite domain. It
is worth noting that the more general procedure for deciding
quantified bit-vectors and uninterpreted functions in the Z3
SMT solver [15] reduces to our procedure when used on the
∃∀ QF BV fragment.

A. Formula Simplification

The ∃∀ procedure is complete but may be very slow to
terminate. High-level preprocessing and simplifications of the
∃∀ formula are essential to make it practical.

loop
〈satx, ~x 7→ ~a〉 ← SMT-SOLVE(E)
if not satx then

return unsat
〈saty, ~y 7→ ~b〉 ← SMT-SOLVE(¬A[~x/~a])
if not saty then

return 〈sat, ~x 7→ ~a〉
E ← E ∧A[~y/~b]

Fig. 2. Main loop for solving (∃~x) (E(~x) ∧ (∀~y) A(~x, ~y)).

For reducing the scope of quantifier we distribute quan-
tifiers over compatible Boolean operators (this is known as
miniscoping):

(∃~x)A ∨B ⇔ (∃~x)A ∨ (∃~x)B
(∀~x)A ∧B ⇔ (∀~x)A ∧ (∀~x)B

The first simplification decomposes an ∃∀ problem into
smaller subproblems, while the second simplification reduces
candidate checking to several smaller checks.

It is common for our ∃∀ problems to contain subformulas
of the following form:

(∃~x)(E(~x) ∧ (∀~y)(
∧
i∈S

(yi = xji)⇒ B(~y)))

where S is a subset of indexes in 1..|~y| and ji ∈ 1..|~x|,
for every i ∈ S. A naı̈ve application of our procedure does
not work well on such problems. To illustrate a worst case
scenario, let us assume that B is unsatisfiable. In such a case,
each iteration of our procedure will pick a fresh candidate
assignment ~x 7→ ~a, then refute the universal subformula
with a counterexample ~y 7→ ~b. Since we must have that
bi = aji , for every i ∈ S, and B evaluates to false under ~b,
the counterexample instantiation yields the weakest possible
explanation

∨
i∈S(xji 6= aji), which (essentially) eliminates

only the current candidate for ~x.1

To preserve the connections that equalities introduce over
quantifiers, we perform equality resolution. We detect equal-
ities of the form (yi = ti) in the antecedents of universal
subformulas, then solve out the variables yi. In our previous
examples, this simplifies the problem to the equivalent formula

(∃~x)(E(~x) ∧ (∀~y)B′)

where B′ is the result of solving out the variables yi from B.
On this simplified formula, the procedure now has a chance to
eliminate more than one candidate at each iteration.

In addition to these formula simplifications, we reduce the
solver’s search space by relying on distinguished signatures, a
technique originally proposed for solving PIEC.

IV. DISTINGUISHING SIGNATURES

Functional equivalence checking of circuits is a central
problem in logic synthesis and verification. Roughly speak-
ing, it consists of determining whether two given circuits
C1(I1, O1), C2(I2, O2) implement the same function. Without
loss of generality, we can assume that n = |I1| = |I2| and
m = |O1| = |O2|.

1It may eliminate more than one candidate if S is a strict subset of 1..|~y|.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 86

In our setting, C1 and C2 are combinational circuits rep-
resented as multi-output Boolean functions f = (f1, . . . , fm)
and g = (g1, . . . , gm), respectively. The combinational equiv-
alence checking problem consists in deciding whether the sen-
tence ∀1 ≤ i ≤ m : ∀x1, . . . , xn : fθ(i)(xσ(1), . . . , xσ(n)) =
gi(x1, . . . , xn) is valid, where σ and θ are input and output
correspondence between C1 and C2; σ is the input permtation
and θ is the output permutation.

In the PIEC problem, the mappings σ and θ are not known
and we must synthesize them. We can then formulate the
problem as checking validity of the formula

∃θ, σ :∀1 ≤ i ≤ m,x1, . . . , xn : (3)

fθ(i)(xσ(1), . . . , xσ(n)) = gi(x1, . . . , xn)

This problem has been widely studied [22], [23], [8]. To reduce
the size of the search space for θ, a common approach is to
assign an abstract signature to every output of C1 and C2, with
two key properties. First, functions with different signatures
cannot be equivalent. Second, the signature of a function fi
(or gi) is invariant under any permutation of the input variables
x1, . . . , xn. If gi and f j have different signatures, we can
reduce the search to output permutations that satisfy θ(i) 6= j.
This method extends to the input signals: one can also assign
signatures to every input xi to eliminate a priori some invalid
input permutations σ.

More concretely, let Bn be the set of all single-output
Boolean functions with n input variables, and let D be an or-
dered set. An input signature is a function sin : {x1, . . . , xn}×
(Bn)m → D, such that the equality

sin(xi, f
1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) =

sin(xσ(i), f
θ(1)(xσ(1), . . . , xσ(n)), . . . , f

θ(m)(xσ(1), . . . , xσ(n)))

holds for every input permutation σ and output permutation θ.
Similarly, an output signature sout is a function sout : Bn →
D such that sout(f(x, . . . , xn)) = sout(f(xσ(1), . . . , xσ(n)))
holds for any input permutation σ.

Consider Formula (3) above and assume that, for
some inputs xi and xj , we have sin(xi, f1, . . . , fn) 6=
sin(xj , g1, . . . , gn). Then, since equal signatures are a neces-
sary condition for i to be mapped to j by the input permutation
σ, it follows that σ(i) 6= j. The case of output permutations
and an output signature sout is analogous. We can collect
all disequality constraints derived from input signatures in
a formula Cin(σ) and all disequalities derived from output
signatures in Cout(θ). Then, Formula 3 is equivalent to

∃θ,σ : Cin(σ) ∧ Cout(θ)∧ (4)
∀1 ≤ i ≤ m,x1, . . . , xn :

fθ(i)(xσ(1), . . . , xσ(n)) = gi(x1, . . . , xn)

We apply a similar idea to our synthesis constraint (For-
mula (2)) from Section II.

A variety of signatures have been presented in the lit-
erature, many of them derived from a Reduced Ordered
Binary Decision Binary Diagrams (ROBDDs) representation
of Boolean functions. For a detailed presentation of a variety
of signatures, their applications, and limitations, the reader is
referred to [24], [25]. In this paper we focus on two signatures
that do not rely on ROBDDs and are thus more scalable.

A. The in dep and out dep Signatures

Given a Boolean formula f(x1, . . . , xn) and a variable xi,
we say that f essentially depends on xi, denoted by f �
xi, if there exists an Boolean tuple (α1, . . . , αn) such that
f(α1, . . . , αi, . . . , αn) 6= f(α1, . . . , ᾱi, . . . , αn). Consider a
circuit defined by m functions f1, . . . , fm; we define the input
dependence set of x and the output dependence set of fi as
follows:

in dep set(x, f1, . . . , fn) = {f j : f j � x}
out dep set(fi) = {x : fi � x}

Then, we define the two following signatures:

(a) in dep(x, f1, . . . , fn) = |in dep set(x, f1, . . . , fn)|
(b) out dep(f) = |out dep set(f)|

We must adapt these signatures to take templates into
account. We want to produce a formula C(θ)∧C(σ1)∧ . . .∧
C(σn) that, as in the case of Formula 4, can be added to our
synthesis constraint while preserving validity.

Recall that we defined a template as a tuple

〈OT = {o1, . . . , ol}, {S1, . . . , Sn, C}, p, {φ1, . . . , φm},
arg1 , arg2 , perm1 , perm2 〉.

The inputs and outputs of functions φ1, . . . , φm are all
bit vectors. We can then interpret each φi as a multi-output
Boolean function, and we denote by φki the k-th bit of
φi’s output. We define our template-version of in dep and
out dep, which we denote by in depT and out depT , for
every input xi and output ok as follows

(c) in depT (xi, T) =

|⋃mj=1 in dep set(xi, φj(Sarg1 (j), Sarg2 (j)))|
(d) out depT (ok) =

|⋃mj=1 out dep set(φkj ((Sarg1 (j), Sarg2 (j))))|
To see how to take advantage of this definition of signa-

tures, consider a combinational circuit C and its representation
as single-output Boolean functions f1

C , . . . , f
m
C with input

variables x1, . . . , xn. Consider a template T for C. The key
observation is that fixing the value of variables in C cannot
cause in dep(x, f1

C , . . . , f
n
C) or out dep(f iC) to increase. Let j

be any index in {1, . . . ,m}, and let x and y be input variables
in Sarg1 (j). Then we have that

(in dep(xk1 , f
1
C , . . . , f

n
C) > in depT (xk2 , T))⇒

σperm1 (j)(x) 6= y

An analogous implication holds for x, y ∈ Sarg2 (j). Similarly,
for the output permutation θ, if f iC corresponds to a variable
in oi ∈ OT then, for any k ∈ {1, . . . , l}, we have

(out dep(f iC) > out depT (ok))⇒ θ(oi) 6= ok

The definition of essential dependence at the beginning
of this section directly gives us a procedure to precompute
input and output signatures of C and T by means of a
quadratic number of calls to an SMT solver. Other signatures
based on model counting are known to be very effective but
they require circuits to be represented using ROBDDs. Our
signature computation scales better than these BDD-based

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 87

approaches but we did not put emphasis on efficient signature
computation in our investigations. Other symbolic approaches
might be more effective.

In summary, we have an effective approach to produce a
conjunction of constraints Cout(θ) ∧Cin(σ1) ∧ . . . ∧Cin(σn)
that eliminates irrelevant permutations, and such that the
formula

∃ψ1, . . . , ψm, σ1, . . . , σn, θ :
∀I,O : Cout(θ) ∧ Cin(σ1) ∧ . . . ∧ Cin(σn) ∧ Φ

is equivalent to our synthesis constraint from section II.

In our implementation, we encode a permutation σ us-
ing a quadratic number of Boolean variables σi,j such that
σ(i) = j ⇔ σi,j . With this encoding, the formulas Cout(θ)
and Cin(σ) are simply conjunctions of literals.

Let us remark that, since the values of the signatures can
be computed independently in the template and the circuit,
we do not report on computation time needed for signature
computation in our examples. Nevertheless, using a naive
implementation based on calling an SMT solver, we can
compute the signatures for all our examples in the order of
minutes.

V. EXPERIMENTAL EVALUATION

We have evaluated our techniques on a set of reverse
engineering benchmarks. These are flattened Verilog netlists
that contain components such as ALUs, multipliers, shifters
and counters. The benchmars were derived from various
sources including the ISCAS’85 benchmarks, an ALU from an
academic processor implementation, and synthetic examples.
The flattened netlists were generated by synthesizing high-
level (behavioral) Verilog using the Synopsys Design Compiler
(DC). All the circuits, both in high-level Verilog and flattened
netlists form are available at [16].

Our benchmarks exemplify the situation where a reverse
engineer tries to understand the high-level functionality of
a flattened design with limited information about the op-
eration that it may perform and no detailed knowledge of
its input/output buses. In less restrictive cases, the reverse
engineer is given the grouping of the inputs into unordered
words, and in some cases no information at all is known.
The output of Synopsys DC is an optimized flattened Verilog
netlist and our goal is to identify and extract the high-level
modules contained within this flat netlist using template-based
matching. Our toolchain reads these flattened Verilog netlists
and the templates against which they are to be matched. It
then encodes the matching problem as satisfiability queries to
be solved by a backend solver. Currently, we can generate
queries for the SMT solvers Yices and Z3, and QBF instances
in the Q-Dimacs format.

Our template library contains modules such as adders, sub-
tracters, shifters, multipliers, and counters of varying bitwidths.
Each netlist was matched against a subset of these templates.
We ensured that each netlist was matched against an approxi-
mately equal number of satisfying (matching) and unsatisfying
(not matching) instances. The total number of instances is 40,
of which an equal number are satisfiable and unsatisfiable.
We believe these instances are a challenging yet realistic

set of benchmarks relevant to the reverse engineering/logic
deobfuscation problem. We have made the QBF, Yices and
SMT2 instances generated by these matching problems avail-
able at [16]. The solver binaries used in our experiments are
also available at this location.

We evaluated the performance of the following solvers:
Yices [18] and Z3 [26], the QBF solvers RAReQS [27],
DepQBF [28] and sKizzo [29], and a variant of the algorithm
in Figure 2 (and also Algorithm 1 in [21]) that is somewhat
similar to the algorithm presented in [13] that operates on a
Boolean circuit representation. We refer as Cir-CEGAR to this
variant in the rest of this paper. Since the encoding of our
instances is written using the Yices language, we converted our
instances to (1) the QDIMACS format used by the QBF solvers
using the Yices standard bitblasting procedure, (2) SMTLIB-
2 format using a simple syntactic transformation (basically a
renaming of bitvector operations), and (3) QDIMACS format
with a distinguished special literal equivalent to the validity
of the whole formula, as required by Cir-CEGAR. Transfor-
mations (1) and (3) were performed after the simplification
steps presented in Section III. To assess the effectiveness of
Cir-CEGAR, we also produced benchmarks from the original
formula, without applying the preprocessing steps. Empirical
results are presented at the end of this section.

We modified Yices to incorporate the ∃∀ solver algo-
rithm from Section III. We refer to this modified version as
Yices EF in the results. Cir-CEGAR was implemented using
Minisat v2.2 as the underlying SAT solver. When testing
the QBF solvers, we first simplified the QBF-instances using
Bloqqer [30]. The solvers we used include Z3 v4.3.2, for Linux
x64 nightly build downloaded on 2014-05-14, RAReQS v1.1,
DepQBF v3.0 and sKizzo v0.8.2. We executed the solvers on
a cluster with Intel Xeon E31230 and E5645 processors with
a one-hour timeout.

The QBF solvers did not work well on our benchmarks.
RAReQS solved only three instances, while DepQBF and
sKizzo did not solve any. Therefore, we omit results from these
three solvers in the rest of this section.

A. Results

Fig. 3. Comparison of solver performance: Yices, Z3, Cir-CEGAR

Figure 3 shows the number of instances solved by a solver
(y-axis) given a particular time limit (x-axis). The encoding of

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 88

permutations has a significant impact on solver performance.
Our default encoding is explained in the previous section. A
permutation σ is defined by a quadratic number of Boolean
variables σi,j and constraints such that σ(i) = j ⇔ σi,j . This
positive encoding is denoted by the suffix ‘+’ in the plot. We
also experimented with a negative encoding (denoted by the
suffix ’-’ in the graph). In the negative encoding, the polarity
of the Boolean variables is reversed, that is, we have σ(i) =
j ⇔ σ̄i,j for each i and j in σ’s domain.

The choice of encoding is significant as it interacts with the
decision heuristics employed by the SMT solvers. By default,
Yices uses negative branching with phase caching [31]. With
this heuristic, each time Yices makes a decision on the value
of a Boolean variable σi,j , it gives preference to the value
false. This leads to poor performance on benchmarks that
use the positive encoding, as setting σi,j to false triggers
no unit propagations. After noticing this issue, we changed
Yices’s branching heuristic to use “positive-branching” (i.e.,
prefer true over false). This is denoted by the suffix PB in the
graph. With this setting, Yices solves 37 instances within the
time limit. It performs worse with the negative encoding (and
the default branching heuristics), solving only 29 instances. In
its default configuration, Z3 has better results with the negative
encoding. It solves 33 instances with this encoding but only
27 instances with the positive encoding. Cir-CEGAR is not as
sensitive to the encoding as Yices and Z3.

Figure 4 shows the benefit of signatures. On the x-axis of
each graph we show the time to solve the instance without
signatures, while the y-axis is the time to solve the instance
with signatures. Most points on these graphs are below the
diagonal, showing that adding signatures is a gain in most
cases. Many instances cannot be solved within our 3600 s
timeout without signatures, but can be solved when signatures
are added. The few outliers are instances in which the solver
“gets lucky” even without signatures, which happens mostly
on satisfiable instances.

Fig. 5. Improvement in solver performance due to preprocessing. Results are
for Cir-CEGAR.

Figure 5 shows the impact of formula simplification pre-
sented in Section III on Cir-CEGAR. The x-axis shows the
number of seconds taken by the solver when preprocessing is
not performed on the QBF instances while the y-axis shows
the time taken by the solver when preprocessing is performed.

As before, instances which failed to finish are represented
with a value of 3600 seconds. We see that a number of such
instances are present on the vertical line with x = 3600s.
These are instances solved with preprocessing but not when
preprocessing was omitted. The behavior is quite interesting.
Either preprocessing has little effect on solver performance
(the points close to the diagonal) or it has a huge effect (the
points where x > 103 and y < 102).

VI. CONCLUSION AND FURTHER WORK

We have presented the Permutation Independent Condi-
tional Equivalence Checking problem (PICEC) as a method
for synthesizing high-level functional descriptions of combi-
national circuits. PICEC extends permutation independence
equivalence checking by considering control signals and condi-
tional matching. We solve the problem using a template-based
approach. A template can be seen as describing a (usually very
large) family of possible high-level descriptions. Our procedure
automatically instantiates the template to match the circuit
under investigation. Templates encode partial knowledge about
the circuit provided by the user.

PICEC can be reduced to solving formulas in the logic of
fixed-sized bit vectors with two levels of quantification ∃ and
∀— that is, ∃∀QF BV . We have implemented a solver for this
class of problems using the Yices SMT solver. We have shown
that distinguishing signatures are effective to prune the solver
search space and lead to significant performance improvement.

We have evaluated this approach on a set of realistic
reverse-engineering benchmarks, using different solvers and
permutation encodings. Our benchmarks are available to the
community in four formats: Yices language, SMT2, QDI-
MACS, and the QDIMACS format with a special top literal
used in in Cir-CEGAR.

An interesting line of further research is in exploring
more complex signatures, and efficient algorithms to compute
their values. We also plan to investigate whether our pruning
approach based on signatures can be included as part of
the interaction between the two solvers in the algorithm of
Section III.

REFERENCES

[1] W. Li, Z. Wasson, and S. A. Seshia, “Reverse engineering circuits using
behavioral pattern mining,” in HOST. IEEE, 2012, pp. 83–88.

[2] Y. Shi, C. W. Ting, B.-H. Gwee, and Y. Ren, “A highly efficient method
for extracting FSMs from flattened gate-level netlist,” in ISCAS. IEEE,
2010, pp. 2610–2613.

[3] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea,
and S. Malik, “Reverse engineering digital circuits using functional
analysis,” in DATE, E. Macii, Ed. EDA Consortium San Jose, CA,
USA / ACM DL, 2013, pp. 1277–1280.

[4] W. Li, A. Gascón, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. A. Seshia, “Wordrev: Finding word-level structures
in a sea of bit-level gates,” in HOST. IEEE, 2013, pp. 67–74.

[5] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering,” IEEE Design &
Test of Computers, vol. 16, no. 3, pp. 72–80, 1999.

[6] J. Mohnke, P. Molitor, and S. Malik, “Establishing latch correspondence
for sequential circuits using distinguishing signatures,” Integration,
vol. 27, no. 1, pp. 33–46, 1999.

[7] Y.-T. Lai, S. Sastry, and M. Pedram, “Boolean Matching Using Binary
Decision Diagrams with Applications to Logic Synthesis and Verifica-
tion,” in ICCD. IEEE Computer Society, 1992, pp. 452–458.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 89

Fig. 4. Improvement in solver performance with signatures.

[8] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang,
“Spectral Transforms for Large Boolean Functions with Applications
to Technology Mapping,” Formal Methods in System Design, vol. 10,
no. 2/3, pp. 137–148, 1997.

[9] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
“Syntax-guided synthesis,” in FMCAD. IEEE, 2013, pp. 1–17.

[10] A. Solar-Lezama, “Program sketching,” STTT, vol. 15, no. 5-6, pp. 475–
495, 2013.

[11] M. W. Hall and D. A. Padua, Eds., Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. ACM,
2011.

[12] A. Gascón and A. Tiwari, “A synthesized Algorithm for Interactive
Consistency,” in NASA Formal Methods, ser. Lecture Notes in Computer
Science, J. M. Badger and K. Y. Rozier, Eds., vol. 8430. Springer,
2014, pp. 270–284.

[13] M. Fujita, S. Jo, S. Ono, and T. Matsumoto, “Partial synthesis through
sampling with and without specification,” in ICCAD, J. Henkel, Ed.
IEEE/ACM, 2013, pp. 787–794.

[14] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in ICSE (1), J. Kramer, J. Bishop,
P. T. Devanbu, and S. Uchitel, Eds. ACM, 2010, pp. 215–224.

[15] C. M. Wintersteiger, Y. Hamadi, and L. M. de Moura, “Efficiently
solving quantified bit-vector formulas,” Formal Methods in System
Design, vol. 42, no. 1, pp. 3–23, 2013.

[16] “Online repository of benchmarks and experimental results,”
https://bitbucket.org/spramod/fmcad14-experiments, 2014.

[17] B. Dutertre, “Yices 2 Manual,” Computer Science Laboratory, SRI
International, Tech. Rep., 2014, available at http://yices.csl.sri.com.

[18] ——, “Yices 2.2,” in Computer-Aided Verification (CAV’2014), ser.
Lecture Notes in Computer Science, A. Biere and R. Bloem, Eds., vol.
8559. Springer, July 2014, pp. 737–744.

[19] A. Biere, “Resolve and expand,” in Theory and Applications of Satisfi-
ability Testing. Springer, 2005, pp. 59–70.

[20] D. P. Ranjan, D. Tang, and S. Malik, “A Comparative Study of 2QBF
Algorithms,” in SAT, 2004.

[21] M. Janota and J. P. M. Silva, “Abstraction-Based Algorithm for 2QBF,”
in SAT, ser. Lecture Notes in Computer Science, K. A. Sakallah and
L. Simon, Eds., vol. 6695. Springer, 2011, pp. 230–244.

[22] Proceedings 1991 IEEE International Conference on Computer Design:
VLSI in Computer & Processors, ICCD ’92, Cambridge, MA, USA,
October 11-14, 1992. IEEE Computer Society, 1992.

[23] J. Mohnke and S. Malik, “Permutation and phase independent boolean
comparison,” Integration, vol. 16, no. 2, pp. 109–129, 1993.

[24] J. Mohnke, P. Molitor, and S. Malik, “Application of BDDs in Boolean
matching techniques for formal logic combinational verification,” STTT,
vol. 3, no. 2, pp. 207–216, 2001.

[25] ——, “Limits of using signatures for Permutation Independent Boolean
Comparison,” Formal Methods in System Design, vol. 21, no. 2, pp.
167–191, 2002.

[26] L. M. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
TACAS, ser. Lecture Notes in Computer Science, C. R. Ramakrishnan
and J. Rehof, Eds., vol. 4963. Springer, 2008, pp. 337–340.

[27] M. Janota, W. Klieber, J. Marques-Silva, and E. M. Clarke, “Solving
QBF with Counterexample Guided Refinement,” in SAT, ser. Lecture
Notes in Computer Science, A. Cimatti and R. Sebastiani, Eds., vol.
7317. Springer, 2012, pp. 114–128.

[28] F. Lonsing and A. Biere, “DepQBF: A Dependency-aware QBF Solver,”
JSAT, vol. 7, no. 2-3, pp. 71–76, 2010.

[29] M. Benedetti, “sKizzo: A Suite to Evaluate and Certify QBFs,” in
CADE, ser. Lecture Notes in Computer Science, R. Nieuwenhuis, Ed.,
vol. 3632. Springer, 2005, pp. 369–376.

[30] A. Biere, F. Lonsing, and M. Seidl, “Blocked Clause Elimination for
QBF,” in CADE, ser. Lecture Notes in Computer Science, N. Bjørner
and V. Sofronie-Stokkermans, Eds., vol. 6803. Springer, 2011, pp.
101–115.

[31] K. Pipatsrisawat and A. Darwiche, “A lightweight component caching
scheme for satisfiability solvers,” in Theory and Applications of Satis-
fiability Testing–SAT 2007. Springer, 2007, pp. 294–299.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 90

Simulation and Formal Verification of x86
Machine-Code Programs that make System Calls

Shilpi Goel Warren A. Hunt, Jr. Matt Kaufmann Soumava Ghosh
Department of Computer Science
The University of Texas at Austin

Abstract—We present an approach to modeling and verifying
machine-code programs that exhibit non-determinism. Specifi-
cally, we add support for system calls to our formal, executable
model of the user-level x86 instruction-set architecture (ISA).
The resulting model, implemented in the ACL2 theorem-proving
system, allows both formal analysis and efficient simulation of
x86 machine-code programs; the logical mode characterizes an
external environment to support reasoning about programs that
interact with an operating system, and the execution mode directly
queries the underlying operating system to support simulation.
The execution mode of our x86 model is validated against both its
logical mode and the real machine, providing test-based assurance
that our model faithfully represents the semantics of an actual
x86 processor. Our framework is the first that enables mechanical
proofs of functional correctness of user-level x86 machine-code
programs that make system calls. We demonstrate the capabilities
of our model with the mechanical verification of a machine-
code program, produced by the GCC compiler, that computes
the number of characters, lines, and words in an input stream.
Such reasoning is facilitated by our libraries of ACL2 lemmas
that allow automated proofs of a program’s memory-related
properties.

I. INTRODUCTION

To enable the formal verification of x86 machine-code
programs, we are developing a tool suite based on our formal,
executable model of the x86 instruction-set architecture (ISA).
The x86 ISA has been modeled in the ACL2 programming
language; we have formalized the semantics of most user-
level instructions with an interpreter that can execute x86
machine-code programs. We have extended our x86 model
with a formalization of an x86 system call instruction, namely,
syscall. The execution of system calls is not provided
directly by the x86 ISA; it is provided by a contemporary
operating system, like Linux, FreeBSD, Windows, or MacOS,
to a user process. Our extension to the x86 ISA model includes
the semantics of various system calls, thereby allowing us to
prove properties of user-level x86 machine-code programs that
rely on an operating system for system call service.

As is the case for all other instructions specified, our
extended model enables not only the formal analysis of system
calls, but also supports their simulation. In fact, our extended
model provides the capability to simulate and verify non-
deterministic computations in general, including system calls
and x86 instructions like rdrand. We achieve this by way
of two modes in our model: the logical mode that supports
reasoning and the execution mode that allows simulation.

Our evolving x86 ISA model includes specifications for
64-bit segmentation, paging, supervisor calls/returns, system
registers, and many other system-level features. This model is
intended to mimic the ISA-level behavior of an x86 processor;

it does not currently include a specification of specialized
hardware, such as the APIC and RTC.

One might wonder why we choose to formally analyze
machine-code programs. In situations where source programs
are unavailable, such as executables downloaded from the Web
or many software distributions, we have no alternative but
to analyze machine-code programs. Compilers may produce
incorrect machine-code from higher-level programs, so it is
important to verify the actual code that is executed on a
processor. Also, programmers often optimize their high-level
programs by embedding assembly code in them; the veri-
fication of such programs is impossible without the ability
to analyze machine code. It quickly becomes intractable to
build and maintain tools targeting various aspects of software
verification; our approach provides a single, unified model that
can serve multiple purposes.

Our contributions are in three areas: one, a highly-validated
formal, executable model of the x86 ISA extended with system
calls; two, a framework that, for the first time, provides
the capability both to formally analyze and to efficiently
simulate user-level x86 machine-code programs that exhibit
non-determinism; and three, ACL2 libraries of lemmas that
facilitate automated machine-code proofs. We present a case
study to demonstrate the capabilities of our tool suite: the proof
of correctness of a machine-code, word-counting program
much like Linux wc. This case study suggests the viability
of interactive theorem-proving for complex interpreter-based
models with non-determinism, as in the case of our x86
model extended with system calls. All the specification and
verification of programs in our tool suite is done using the
ACL2 logic and its associated mechanical theorem-proving
system; we know of no comparably rigorous environment for
the analysis of x86 machine-code programs.

We emphasize the difference between our inference-based
approach and flow-based static analysis approaches. Though
flow-based approaches are being successfully used to detect
vulnerabilities like buffer overflows, they can not guarantee
that a given program meets its specifications. Indeed, the lack
of requirement of specifications as input is considered to be the
biggest strength of these approaches, thereby making them ac-
cessible to the average programmer. Our approach falls under
“heavyweight” verification; given a program’s specifications,
our focus is on building automated tools to verify whether the
program behaves as intended. Note that it is possible to prove
the absence of vulnerabilities in our approach.

In Section II, we describe our x86 ISA model and its
validation process. We discuss the extension of our model with
system calls in Section III. We introduce our example program
in Section IV, and present its proof of functional correctness in

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 91

Section V. We conclude with discussions of related and future
work in Sections VI and VII.

II. X86 ISA MODEL

Our x86 ISA model [1] implements an interpreter-style
operational semantics [2]. Our x86 model’s state contains reg-
isters like the general-purpose registers (rax, rbx, etc.), seg-
ment registers, flags register, model-specific registers, control
registers, instruction pointer rip, and memory. Each machine
instruction is specified by a semantic function that takes an x86
state and returns an appropriately modified next state. A step
function fetches, decodes, and then executes an instruction by
calling the appropriate instruction semantic function. Finally, a
run function takes the number of instructions, n, to be executed
and an initial x86 state, and returns a resulting x86 state; the
run function either takes n steps or stops if an irrecoverable
error is encountered, whichever comes first.

Our current modeling focus is on the 64-bit mode of Intel’s
IA-32e architecture (x86-64). We have a specification of all
addressing modes, 121 user-level instructions (223 opcodes),
IA-32e paging, and FS/GS-based segmentation. Our x86 ISA
model is around 40,000 lines of code, which includes proofs
about the specification, but does not include our tools for
binary analysis. The model can execute most user-level integer
programs emitted by the GCC/LLVM compiler — notable
exceptions are media and floating-point instructions, which we
plan to model in the near future.

Our model can be used in either a supervisor-level or
programmer-level mode of operation. The supervisor-level
mode includes support for IA-32e paging. In this mode,
our memory model characterizes a 252-byte physical address
space, which is the largest address space provided by modern
x86 implementations. This mode can be used to simulate
and verify system software. The programmer-level mode of
our model attempts to provide the same environment to a
programmer for reasoning as is provided by an OS for pro-
gramming; it allows the verification of an application program
while assuming that services like paging and I/O operations are
provided reliably by the operating system. In this mode, our
memory model supports the 64-bit linear addresses specified
for IA-32e machines.

The simulation speed of our model in programmer-level
mode is ∼3.3 million instructions/second and in supervisor-
level mode, with a two-level page table configuration, is
∼920,000 instructions/second on a machine with a 3.50GHz
Intel Xeon E31280 CPU. Achieving high simulation speeds
facilitates the use of our formal processor model as an
instruction-set simulator, which enables its validation against
the real machine, as we discuss below. It is a challenge to
support efficiency for both reasoning and simulation; specifi-
cation functions written to maximize simulation efficiency, like
those for our memory model specification [3], can be hard to
reason about and those written to enable simpler reasoning can
run slowly. We use abstraction techniques [4] to attain both
reasoning and simulation efficiency. For the rest of this paper,
we focus on the programmer-level mode of our x86 model.

ISA Model Validation: How can we trust that our model
faithfully represents the x86 ISA? A benefit of using ACL2
to develop our x86 model is that its efficient executability

enables validation of the model against the real machine
using co-simulation. We compile high-level programs using
GCC/LLVM and compare each run of a resulting x86 program
on the real machine to the corresponding run on our x86 model.
Our model is capable of running unmodified x86 machine-
code programs because we do not simplify the semantics of
x86 instructions. For example, we have successfully simu-
lated a contemporary SAT solver on our x86 model1. When
given an instance of the SAT’09 Competition Application
benchmark (cmu-bmc-barrel6.cnf), 9,142,833,444 machine in-
structions are executed at run-time for the solver to run to
completion. On all these instructions, our model produced
exactly the same effects on the memory and registers as those
produced by the real machine.

Our model validation framework uses GDB and Intel’s
dynamic instrumentation library, Pin [5], to extract the machine
state while running programs on the processor. In the execution
mode of the x86 model, the framework uses our own dynamic
instrumentation library, written entirely in ACL2, to extract our
model’s state so that it can be compared to the real machine
state at a desired level of granularity, be it on a per-instruction
or a per-breakpoint basis. This framework is largely automated
— it spawns off the GDB/Pin process on the real machine,
uses the information captured by GDB/Pin to initialize our
x86 model appropriately, runs the model in its execution
mode on concrete data, and produces a report containing
the differences observed, if any, between the real machine
state and the model’s state. This automated and easy-to-use
framework makes it convenient to run many co-simulations,
thereby facilitating fast and thorough model validation.

We have invested several person years of work in our
x86 model. We use the Intel manuals [6] as specification
documents; ambiguities are resolved by running tests on the
real processor and by consulting with processor architects. Our
model is a formal specification for the x86 ISA, and it can also
serve as the target specification for RTL design verification.

III. SYSTEM CALL MODEL

User-level programs, either directly or through higher-
level interfaces provided in libraries, often make system calls
to the underlying operating system to request services such
as file I/O and memory management. Though the x86-64
architecture provides other instructions to invoke and return
from system calls, we focus on syscall and sysret;
these instructions are the most common and efficient interface
between the kernel and a user application. The syscall
instruction is used by user-level code to call system-level
procedures at the highest privilege level by loading the rip
with the appropriate address from a model-specific register.
The companion instruction, sysret, returns control from
the system procedures to user-level code at the application
privilege level. These instructions allow fast privilege-level
transitions during the system call invocation and return process
by keeping all the information required for the transition in
general-purpose and model-specific registers, thereby avoiding
the overhead of table references in memory.

1This SAT solver was developed by Marijn J. H. Heule; its performance is
comparable to those of state-of-the-art solvers.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 92

From the perspective of a user-level program, system calls
are non-deterministic — different runs can yield different
results on the same machine. Since our x86 model serves
both as an executable instruction-set simulator and a formal
specification that is used to do proofs about machine code, we
need to be able to do the following:

1) Efficiently simulate runs of a program with system
calls on concrete data, and

2) Formally reason about such a program given sym-
bolic data.

Ideally, to accomplish both these tasks, modeling enough
features of the x86 would allow an operating system to be
loaded on the model to service system calls. Consequently,
we could both simulate and reason about system calls due to
the executable and formal nature of our ACL2-based model.
However, loading a modern OS on a processor model is non-
trivial; the added complexity of the low-level interaction of the
OS with the processor would not only make reasoning about
user-level programs harder, but also slow down the simulation
speed of concrete program runs.

Instead, for simulation of system calls, we set up the
execution mode of our x86 model to interact directly with the
underlying OS. ACL2 provides a mechanism [7] for allowing
arbitrary Common Lisp code to be defined in raw Lisp,
outside ACL2. The system call service is provided by raw Lisp
functions to obtain “real” results from the OS [8]. Simulation
of all instructions other than syscall happens within ACL2
(and hence, Lisp). Note that since we are abstracting away
the system-level procedures that are invoked by the OS when
a system call is made, we do not need to make a similar
arrangement for the sysret instruction.

These raw Lisp functions should not be used for reasoning
since they are impure: they are not axiomatized logically,
and indeed, are not even functions in the logical sense since
repeating the same call can yield different results. It is critical
for our framework to prohibit proofs of theorems that state that
some system call returns a specific value. If that were the case,
then due to the non-determinism inherent in system calls, we
might be able to prove that the same system call returns some
other value in a different ACL2 session. Or perhaps worse yet,
we could prove an instance of x 6= x by instantiating x with a
term that invokes the system call. Another disturbing scenario
would be when such theorems contradict results observed in a
program run simulation.

Thus, for reasoning about machine-code programs we
use the logical mode of our model, which incorporates into
the state an environment field to represent the part of the
external world that affects or is affected by system calls. To
reason about a system call’s effects, we simply consult that
env field. A well-formed env field contains sub-fields that
describe a subset of the file system and an oracle that provides
information that, though a part of the real environment, cannot
be inferred from our model of the file system. An example of
such information is the file descriptor of a file to be opened;
an OS assigns the file descriptor depending on the number of
files already opened for a particular process at the time the
open system call is made.

The contents of env can be abstract. For example, to
verify a program like grep that searches for occurrences of

a pattern in an input file, the pattern can be specified as an
arbitrary string and the file can be specified as an arbitrary
file in the file system (or not, if we wish to reason about the
case when the file does not exist). This ability to reason about
arbitrary elements in the environment is precisely what makes
reasoning about non-determinism possible. Of course, it is also
possible to reason about specific elements in the environment,
e.g., grep with a specific pattern on a specific file, by simply
initializing the env field with these elements.

Consider two runs of our model with the same initial x86
state, where one is in execution mode with real environment
ENV and the other is in logical mode with environment field
env. We say that env corresponds to environment ENV if
the execution of system calls produces the same results in the
logical mode as in the execution mode.

The execution mode does not unduly impact the logical
mode, since the raw Lisp functions do not influence the
reasoning process. Conversely, the env field does not interfere
with the impure functions in the execution mode. However,
the logical and execution modes are far from completely
independent, as noted by the following three properties.

(L) For reasoning, all the functions in the logical mode of
the x86 model are pure.

(E) The execution mode allows the use of raw Lisp func-
tions that directly interact with the underlying OS to
provide system call service. Note that the logical mode
and execution mode are identical for all instructions
except syscall — all other instructions have the
same definitions in both these modes.

(C) The following connection exists between the logical
mode and the execution mode. Let x0 be an x86
state. Suppose in the execution mode, the evaluation
of (run x0) returns x1 and updates the real en-
vironment from ENV to ENV’. Then, the following
is true for the logical mode: if env corresponds to
ENV, and x0’ refers to x0 augmented with env, then
the evaluation of (run x0’) in the logical mode
produces x1 augmented with env’, for some env’
corresponding to ENV’.

See Figure 1 for an illustration of a program run in both
the execution and logical modes. We discuss property (C) in
some detail later in this section. Due to property (C), we know
that evaluation results produced by raw Lisp functions will
not be contradicted by theorems proved about system calls;
in fact, each program run in the execution mode produces
a theorem under a hypothesis about the well-formedness of
the environment in the logical mode. Thus, observations made
while performing simulation in the execution mode hold in the
logical mode as well. Our method facilitates the maintenance
of an integrated software base for the logical and execution
modes of the x86 model.

Our framework makes reasoning about non-deterministic
computations in programs tractable. As we will see in Sec-
tion V, the proof of correctness of a program is not complicated
by the presence of system calls. We have used this approach
to model and implement the following system calls: read,
write, open, close, lseek, dup, link, and unlink.
We support the simulation of these system calls on both

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 93

Execution mode:

x0 x1

ENV’ENV

run r
run r

Logical mode:

x0

env
x1

env’

Figure 1. Illustration of a run in the execution mode (left) and in the logical mode (right). A run, r, from an initial state x0 in the execution mode gives a
final state x1, and the environment ENV on the real machine transitions to ENV’. In the logical mode, env corresponds to ENV, and r produces the same final
state, x1, augmented with env’, which corresponds to ENV’.

Linux and Darwin systems. Our approach can be used to
handle various sources of non-determinism, other than just
system calls, that arise in user-level programs. One such
example is the rdrand instruction, which is used to provide
cryptographically secure random numbers to applications.

System Call Model Validation: For all instructions but
syscall, comparing the real machine state to the model
state extracted in the execution mode validates the logical
mode as well since these modes are identical. However, for the
syscall instruction, the execution and logical modes of the
x86 model consist of different functions, and are thus distinct.
Consequently, two validation tasks need to be performed for
the syscall instruction:

1. Validate the execution mode of the x86 model against
the real system, i.e., processor plus system call service
provided by the operating system, and

2. Validate the execution mode against the logical mode
of the x86 model.

We accomplish the first validation task using our model
validation framework, as discussed in Section II. Since the raw
Lisp functions supporting the execution mode of the syscall
instruction interact with the underlying OS and hence, pass on
the results of the real machine to our framework, the only
functions of the execution mode that need to be validated are
those that marshal the input arguments and return values of
these raw Lisp functions, and those that capture the effects of
a return from the system call. The latter accounts for the effects
of the sysret instruction as well; for example, sysret
always clears the RF and VM flags, and the programmer’s view
of the processor after a return from a system call should also
depict these flags as cleared.

The second validation task is critical to ensure the property
(C) stated earlier. The logical mode for syscall can be
thought of as the specification for its execution mode. The
specification functions supporting the logical mode are written
in accordance with the man pages of the system calls and their
more detailed descriptions found elsewhere [9]. We validate
the execution mode against the logical mode by performing
extensive code reviews, and by comparing program runs in
the execution mode to corresponding runs in the logical mode.
We illustrate this process by a short example. Consider the
following five x86 instructions. This snippet of an assembly
program makes a read system call to obtain one byte from
a file with descriptor equal to 0, usually the standard input.
The arguments needed by the read system call are loaded into

appropriate registers, as dictated by the x86-64 Application
Binary Interface [10]. The rax register contains the Linux read
system call number, the rdi register contains a file descriptor,
the rsi register contains the address of the memory buffer
where the read bytes will be written, and the rdx register
contains the number of bytes to be read.

mov $0x0,%rax /* Syscall number */
xor %rdi,%rdi /* File descriptor */
mov -0x20(%rbp),%rsi /* Buffer address */
mov $0x1,%rdx /* Number of bytes */
syscall

In the execution mode, we initialize our x86 model to
reflect the state of the real machine when rip points to the
address of the first mov instruction. We set up the model
to make five steps, i.e., run this snippet. Then, the raw Lisp
function for the read system call collects the user’s input.

In the logical mode, we initialize the environment field env
so that it corresponds to the real environment. As such, the
contents of the standard input in the env field should contain
the user input that was collected in the corresponding run in
the execution mode. After setting up the rest of the fields of the
x86 state to be exactly the same as those of the initial state in
the execution mode, we run the model to simulate these five
instructions. A comparison of the final state obtained in the
logical mode and execution mode allows validation of these
modes against each other.

IV. PROGRAM: SIMPLE WORD COUNT

We analyze the machine code corresponding to a sim-
ple word count program taken from “The C Programming
Language” by Kernighan and Ritchie [11]. This C program
is a bare-bones version of the wc program found on Linux
systems. We use this program as a case study to assess the
capability of our model to simulate and reason efficiently about
programs that make system calls. GCC compilation generated
50 machine instructions (166 bytes) — 17 instructions for
the gc procedure, including the syscall instruction, and
36 instructions for the main sub-routine.

The program reads a character from the standard input until
the end of input (which is denoted by the character #), each
time incrementing the character counter nc. If the character is
a newline, then the newline counter nl is also incremented.
The word counter nw is incremented at the beginning of every
word, i.e., when state transitions from OUT to IN.

#define IN 1 /* inside a word */
#define OUT 0 /* outside a word */

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 94

#define EOF '#' /* EOF character */
#include <stdio.h>
int gc(void) {

char buf[1];
int n;
__asm__ volatile

(
"mov $0x0, %%rax\n\t"
"xor %%rdi, %%rdi\n\t"
"mov %1, %%rsi\n\t"
"mov $0x1, %%rdx\n\t"
"syscall"
: "=a"(n)
: "g"(buf)
: "%rdi", "%rsi", "%rdx");

return (unsigned char) buf[0];
}
/* count lines, words, characters in input */
int main () {

int c, nl, nw, nc, state;
state = OUT;
nl = nw = nc = 0;
while ((c = gc()) != EOF) {

++nc;
if (c == '\n')
++nl;

if (c == ' ' || c == '\n' || c == '\t')
state = OUT;

else if (state == OUT) {
state = IN;
++nw;

}
}
return 0;

}

The original program from Kernighan and Ritchie’s book
used the C standard library (glibc) function getchar instead
of our function gc. The machine code corresponding to
getchar used SIMD (AVX) instructions in some places
to speed up execution. Since we do not yet support SIMD
instructions in our model, we chose to write gc as our own
version of getchar. The function gc can be thought of as an
inefficient, unbuffered getchar. Every call of gc attempts
to read one byte from the standard input and stores it in a
memory buffer. An alternative to defining gc could be to use
a portable and lightweight standard library like newlib [12]
instead of glibc.

Before reasoning about the entire program in the logical
mode of our model, we ran simulations in the execution mode.
The program behaved as expected on our model, thereby
providing confidence that our model faithfully emulates a real
x86 system for the instructions of this program.

V. FUNCTIONAL CORRECTNESS OF SIMPLE WORD
COUNT MACHINE-CODE PROGRAM

In this section, we discuss the verification of the machine-
code program produced by running the GCC compiler on our
example program. This machine-code program is structurally
quite similar to its C source; in particular, it has a loop that
begins with a call to the gc sub-routine, which makes a
system call. The program variables nc, nl, nw, and state
are allocated on the stack in consecutive memory locations.

We apply a traditional theorem-proving approach to pro-
gram verification, since our previous automatic approach using
bit-blasting [13] is limited in its handling of loops and large
programs. We formally analyze this program using the Boyer-
Moore clock function method [14], [15]. We briefly describe
this method here. Given a clock function clock that specifies
the number of steps needed for a program to run to completion,
the following theorem states the total correctness of a program:
if x is an x86 state satisfying specified pre-conditions, then the
final state run(clock(x),x) satisfies the specified post-conditions.
It is the user’s responsibility to write these clock functions;
there is ongoing research to automate this task in ACL2 [16],
comparable to previous work for HOL4 [17], [18].

∀x : pre-conditions(x) =⇒ final-state(run(clock(x), x)) ∧
post-conditions(x, run(clock(x), x))

How can we state functional correctness for our program?
We choose to write a trio of simple ACL2 specification
functions that compute the character, line, and word counts of
a string, respectively. Our post-condition asserts that the values
returned by these three specification functions on standard
input are found in the expected memory locations of the final
x86 state, which is obtained by running the program on our
x86 model in its logical mode.

We now outline the proof of functional correctness of
the simple word count machine-code program. The program
structure can be used as a guide to decompose the proof into
two sub-tasks — one, the verification of the initial part of
the program when all counters are initialized to 0, and two,
the verification of the loop, which begins with a call to the
gc function. We use the theorems stating correctness of these
program components to obtain the final correctness theorem.

We begin by stating the assumptions made about the env
field in the x86 state, in order to reason about the system call
that performs a read in the gc function.

1) The file descriptor corresponding to the standard
input is 0. Note that we make this assumption only
because the program itself makes this assumption.

2) The contents of the standard input should be ter-
minated by the end-of-file character (# for this
program), and thus, be non-empty. We make this
assumption because the program does not terminate
unless this end-of-file character is encountered.

The read system call has the following interface:

ssize_t read (int fd, void *buf, size_t count);

This system call tries to read count bytes from the file
pointed to by the file descriptor fd into the memory buffer
beginning at buf [19]. The read made in the gc function of
the word-count program has fd referencing the standard input,
buf pointing to a stack address, and count equal to one. The
specification of the read system call in the logical mode of our
x86 model only tells us that one byte is read from the standard
input, modeled by the env field, and written to the memory
buffer unless some error is encountered. We can not deduce the
value of this byte. This permits us to reason about our program
for all possible bytes that can be returned by one call of gc.
Various errors, like buf pointing to an illegal memory address,
are also accounted for by our system call specification.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 95

Let us first focus on the loop. The loop pre-conditions loop-
pre are as follows.

1) The x86 state is well-formed.
2) The environment assumptions hold for this x86 state.
3) The program is loaded in the memory at its expected

location.
4) The instruction pointer, rip, points to the first in-

struction of the loop.
5) The stack pointer, rsp, is within a specified range.

This guarantees that the stack does not over-write the
code during the program’s execution.

Pseudo-code for the ACL2 function loopClk is shown
below. This function is the loop’s clock function, which
computes the number of steps needed for the loop to complete.
The argument state of loopClk corresponds to the state
variable of the simple word count program, offset corre-
sponds to the position of the next character to be read from
standard input, and strBytes corresponds to the contents of
standard input in bytes. Constants like cEOF, cNL, cSpace,
cTab, cOut, and cIn denote the number of instructions that
are executed during run-time in one loop iteration, according
to which branch of the loop is taken. Thus, the function
loopClk keeps recurring till EOF is encountered; for each
recursive call, it adds the number of instructions to be executed
at run-time based on the character read.

loopClk(state,offset,strBytes):

if !(envAssumptions(offset,strBytes)) then
// No instructions are run when environment
// assumptions fail.
0

else {
// gcSpec is gc's specification function.
char = gcSpec(offset,strBytes)
if (char == EOF) then

cEOF
else {

case (char) {
newline : state = OUT

loopSteps = cNL
space : state = OUT

loopSteps = cSpace
tab : state = OUT

loopSteps = cTab
otherwise : if (state == OUT) then

state = IN
loopSteps = cOut

else
loopSteps = cIn }

return(loopSteps +
loopClk(state,(1+ offset),strBytes))

} }

Given these pre-conditions and loop clock function
loopClk, the loop correctness theorem is as follows, where
we write l to abbreviate the application of loopClk to the
appropriate values stored in the x86 state, x.

Theorem 1: ∀x : loop-pre(x) =⇒ halted(run(l, x)) ∧
post(x, run(l, x))

where x is an x86 state that satisfies the loop pre-conditions
loop-pre, post relates the trio of our specification functions to

the values in the expected memory locations of the counters
in the halted state run(l,x), and l specifies the number of steps
the entire loop takes to reach the final state, i.e., l is a value
computed by loopClk.

Proof: This theorem can be proved by strong induction
on the value l of loopClk. If l is 0, then envAssumptions
is false; thus loop-pre(x) does not hold, which proves the base
case. Otherwise the proof splits into cases according to the
character read. Let us address the case that this character is
a newline, as the other cases are analogous. By the inductive
hypothesis, we may assume the following, which is obtained
from the theorem by replacing x with run(cNL, x) and l with
(l − cNL), and noting that (l − cNL) is the the application
of loopClk to the appropriate values stored in the x86 state,
run(cNL, x).

loop-pre(run(cNL, x)) =⇒
halted(run((l − cNL), run(cNL, x))) ∧
post(run(cNL, x), run((l − cNL), run(cNL, x))) (1)

The following fact is easy to prove by definition of the run
function.

run(l, x) = run((l − cNL), run(cNL, x)) (2)

By substituting 2 into 1, we obtain:

loop-pre(run(cNL, x)) =⇒ halted(run(l, x)) ∧
post(run(cNL, x), run(l, x)) (3)

The proof of Theorem 1 follows from the induction hypothesis
if we prove the following lemmas:

L1: ∀x : loop-pre(x) =⇒ loop-pre(run(cNL, x))

L2: ∀x : loop-pre(x) =⇒ post(x, run(cNL, x))

L3: ∀x : post(x, run(cNL, x)) ∧ post(run(cNL, x), run(l, x))

=⇒ post(x, run(l, x))

The proof of L1 is conceptually simple, and we lead ACL2
to simplify expressions representing the values of components
of the state run(cNL,x) that are relevant to loop-pre, such as
its rip. The proof of L2 proceeds in the same manner. Given
our description of post as relating stack values for the counters
with our specification functions, the proof of L3 follows from
the transitivity of post.

We then prove the following theorem about the initial part
of the program, i.e., the part preceding the loop. Here, pre has
a form similar to loop-pre but with obvious differences, for
example: the rip points to the first instruction of the program
instead of to the first instruction of the loop, and the constant
i is the number of instructions required to take the program
to the beginning of the loop.

Theorem 2: ∀x : pre(x) =⇒ loop-pre(run(i, x))

The proof is similar to the proof of L1. We finally prove total
correctness for this program by using Theorems 1 and 2. Here,
c is the value computed by the clock function for the entire
program on initial state x, that is, c = i + l.

Theorem 3: ∀x : pre(x) =⇒ halted(run(c, x)) ∧
post(x, run(c, x))

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 96

Though the proof of correctness of the word-count program
is straightforward, it is worth emphasizing that it was done
on a large interpreter-based model of the x86, where the
semantic functions of instructions are, on an average, ~200
lines of ACL2. This proof makes heavy use of compositional
reasoning and would have been harder to do had we not
developed our own libraries to automate reasoning about reads
and writes made to the x86 state. We proved many lemmas
about registers, flags, etc. Here we briefly discuss one such
library that facilitates reasoning about memory accesses and
updates.

Reasoning about memory usage is challenging, simply
because memory is so large. Moreover, code and data share
the memory, which requires establishing that each write to
the stack or heap during the program’s execution does not
overwrite program and data. Verifying position-independent
code entails reasoning about disjointness of memory regions
that are specified by symbolic or computed memory addresses.
As such, a lot of tedious low-level arithmetic reasoning about
inequalities and equalities involving these symbolic addresses
is required. Our library lifts this problem to reasoning about
membership of addresses in lists instead, and list-based reason-
ing is done largely automatically. An example is the automated
proof of the disjointness of the program and the stack done in
our word-count case study. Another proof that was discharged
automatically was that the word-count program does not mod-
ify unintended regions of memory, i.e., the only writes that
occur during the program’s execution are to the stack, and the
rest of the memory is the same as it was before the execution.
This is an important theorem because it rules out one kind of
potential “evilness” of our word-count program. Other kinds of
memory guarantees, like ruling out stack smashing and buffer
overflows, can also be established using our library.

In order to facilitate re-use, our proof libraries are designed
to be as general as possible. As we verify progressively
more complicated programs, we discover new lemmas and
extend these libraries. Below is some empirical evidence that
illustrates how our libraries can reduce manual effort:

Lines of ACL2 needed to verify the word count program:
• Without the libraries: ∼20K
• With the libraries: ∼8K

∼8K lines of ACL2 might still seem excessive. However, at
least half of these lines were generated by ACL2 in response
to commands to simplify specific symbolic expressions. The
simplified expressions are large because there are many up-
dates to different components of the x86 state to symbolically
run even a small program.

VI. RELATED WORK

Machine-code verification has long been an area of active
research. As such, many formal models of contemporary
processor ISAs have been developed to enable reasoning about
machine-code [20]–[23]. Our strategy of modeling an external
environment to account for non-determinism in programs
is similar to Moore’s work [24] in ACL2 to model non-
determinism in a pedagogical multiprocessor system. There has
been considerable research on the verification of system calls
from a micro-kernel point of view [25], [26]. In this paper,
we concern ourselves with reasoning about user-level x86

programs that interact with a contemporary operating system.
Here, we mention some recent work with goals similar to ours.

Morrisett et al., while working on software fault isola-
tion [27], developed an x86 ISA specification in the Coq [28]
proof assistant that can also be used for machine-code verifica-
tion. Morrisett’s x86 specification is not directly executable; an
executable OCaml simulator has to be extracted from the x86
specifications in Coq. The resulting simulator has an execution
rate of ∼50 instructions/second; it simulates ∼10 million
instructions in 60 hours on an 2.6 GHz, 8 core Intel Xeon
machine. This work is concerned with restricting certain kinds
of computations that can be performed natively on the host
machine in order to avoid information leaks to a web browser.
It is not designed to handle the verification of general user-level
programs that employ system calls. Feng et al. [29] use the
Coq proof assistant [28] to prove the functional correctness of
machine-code on a formal model of a processor that can handle
asynchronous events like signals and interrupts. However, this
processor model is a simplified version of the x86, and does not
handle 64-bit x86 machine-code programs. Dowse et al. [30]
used the Sparkle proof assistant [31] to verify programs that
perform I/O. This verification effort is targeted at higher-level
programs, specifically lazy functional programs. Malecha et
al. [32] also verified high-level Coq programs that perform I/O.
Reps et al. [33] have developed a sophisticated system called
TSL, that can create retargetable tools for different types of
machine code analyses, especially data-flow analyses. We do
not know of a TSL-created tool that can prove whether a given
machine code program meets its specification.

VII. CONCLUSION AND FUTURE WORK

We mechanically verify user-level x86 machine-code
programs with our ACL2-based ISA model extended with a
specification of system calls. Our effort is the first mechanical
verification of a user-level x86 machine-code program that
includes the use of system calls.

Our extended model has two modes: (a) a logical mode
that formally axiomatizes an external environment to enable
reasoning about programs that include instruction-based non-
determinism and that make system calls, and (b) an execution
mode that supports program simulation by interacting with the
underlying OS to produce results just as if executing a user-
level machine-code program natively on an x86 processor with
contemporary OS support. We regularly validate the accuracy
of our x86 model using co-simulation, having already done so
for many billions of instructions.

Our approach avoids any special treatment for system calls
when proving the functional correctness of a user program.
More generally, our framework makes formal analysis of non-
determinism in programs tractable. This effort has led to
the development of ACL2 libraries that automate machine-
code verification, in particular for reasoning about memory
reads and writes. Automating such tedious reasoning activities
considerably speeds up the proof development process.

Our case study of the verification of the word count
program provides compelling evidence that there is much
more potential for automating x86 machine-code proofs in our
framework. The proof for this program was tedious; similar
kinds of theorems were needed to reason about different parts

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 97

of the program. However, these proofs were already largely
automated due to the support provided by our libraries. We
continue to develop tools to support automation in order to
make machine-code verification in our framework accessible
to those unfamiliar with formal verification of programs on
interpreter-based models.

We should note that our model of the file system does
not account for concurrent updates by external processes. Our
verification work assumes that the input being processed will
not be changed during the execution of our program; thus, our
specification states the behavior of our programs in the absence
of such concurrent updates. Exploring program correctness in
view of possible interference by other programs would require,
at the very least, a more subtle model of the environment being
provided for our verification effort.

We believe that our specification of the x86 ISA, coupled
with the ACL2 system, can facilitate regular verification of
x86 machine-code programs. To realize this goal, we would
begin by verifying various programs in standard libraries; then,
we would verify programs that make use of these standard
libraries. Such compositional methods can provide a scalable
way to prove the functional correctness of machine-code
programs.

ACKNOWLEDGMENT

We thank Marijn J. H. Heule for his invaluable feedback on
the paper. This work is supported by DARPA under contract
number N66001-10-2-4087.

REFERENCES

[1] Matt Kaufmann and Warren A. Hunt, Jr., “Towards a formal model of
the x86 ISA,” Department of Computer Science, University of Texas at
Austin, Tech. Rep. TR-12-07, May 2012.

[2] J S. Moore, “Mechanized operational semantics,” Lectures in the
Marktoberdorf Summer School (August 5-16, 2008)., Online; accessed:
January 2014. http://www.cs.utexas.edu/users/moore/publications/talks/
marktoberdorf-08/index.html.

[3] Warren A. Hunt, Jr. and Matt Kaufmann, “A formal model of a
large memory that supports efficient execution,” in Proceedings of the
12th International Conference on Formal Methods in Computer-Aided
Design (FMCAD 2012, Cambrige, UK, October 22-25).

[4] Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann, “Abstract stobjs
and their application to ISA modeling,” in Proceedings ACL2 2013,
EPTCS 114, 2013, pp. 54-69.

[5] Intel, “Pin: A Dynamic Binary Instrumentation Tool,” http://software.
intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool.

[6] Intel, “Intel 64 and IA-32 Architectures Software Developer’s Man-
uals.” Order Number: 325462-048US. (September 2013). http://
download.intel.com/products/processor/manual/325462.pdf., online; ac-
cessed: January 2014.

[7] Matt Kaufmann, J S. Moore, Sandip Ray, and E. Reeber, “Integrating
external deduction tools with ACL2,” Journal of Applied Logic, vol. 7,
no. 1, pp. 3–25, Mar. 2009.

[8] CCL, “CCL Manual: Foreign Function Interface,” http://ccl.clozure.
com/manual/chapter13.html., clozure Common Lisp Manual. Online;
accessed: January 2014.

[9] Michael Kerrisk, The Linux Programming Interface. No Starch Press,
2010.

[10] Michael Matz, Jan Hubiĉka, Andreas Jaeger, and Mark Mitchell,
“System V Application Binary Interface: AMD64 Architecture Proces-
sor Supplement,” http://www.x86-64.org/documentation/abi.pdf, online;
accessed: January 2014.

[11] Brian W. Kernighan and Dennis M. Ritchie, The C Programming
Language, 2nd ed. Prentice-Hall, 1988.

[12] Newlib, “Newlib C Library,” https://sourceware.org/newlib/., online;
accessed: January 2014.

[13] Shilpi Goel and Warren A. Hunt, Jr., “Automated code proofs
on a formal model of the X86,” in Verified Software: Theories,
Tools, Experiments, ser. Lecture Notes in Computer Science,
Ernie Cohen and Andrey Rybalchenko, Ed., vol. 8164. Springer
Berlin Heidelberg, 2014, pp. 222–241. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-54108-7_12

[14] William R. Bevier, Warren A. Hunt, Jr., J S. Moore, and William D.
Young, “Special Issue on System Verification,” Journal of Automated
Reasoning, vol. 5, no. 4, pp. 409–530, 1989.

[15] Sandip Ray, Warren A. Hunt, Jr., John Matthews, and J S. Moore,
“A mechanical analysis of program verification strategies,” Journal of
Automated Reasoning, vol. 40, no. 4, pp. 245–269, May 2008.

[16] J S. Moore, “Code Walker Tool,” (presented as a Rump Session Talk
at the ACL2 Workshop, 2013, Laramie, Wyoming).

[17] Magnus O. Myreen, Formal Verification of Machine-code Programs.
British Computer Society., 2008.

[18] Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind, “Decom-
pilation into logic - improved,” in Formal Methods in Computer-Aided
Design (FMCAD), 2012, 2012, pp. 78–81.

[19] Linux, “read(2) - Linux manual page,” Retrieved from: http://man7.org/
linux/man-pages/man2/read.2.html., online; accessed: January 2014.

[20] Warren A. Hunt, Jr., “Microprocessor design verification,” Journal of
Automated Reasoning, vol. 5, no. 4, pp. 429–460, 1989.

[21] J S. Moore, Piton: A Mechanically Verified Assembly-level Language.
Kluwer Academic Publishers, 1996.

[22] Anthony Fox, “Directions in ISA specification,” Interactive Theorem
Proving (ITP), pp. 338–344, 2012.

[23] Ulan Degenbaev, “Formal Specification of the x86 Instruction Set
Architecture,” 2012.

[24] J S. Moore, “A mechanically checked proof of a multiprocessor result
via a uniprocessor view,” Formal Methods in System Design, vol. 14,
no. 2, pp. 213–228, 1999.

[25] Christoph Baumann, Bernhard Beckert, Holger Blasum, and Thorsten
Bormer, “Formal verification of a microkernel used in dependable soft-
ware systems,” in Computer Safety, Reliability, and Security. Springer,
2009, pp. 187–200.

[26] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, and Others, “seL4: Formal verification of
an OS kernel,” in Proceedings of the ACM SIGOPS 22nd symposium
on Operating Systems Principles. ACM, 2009, pp. 207–220.

[27] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and
Edward Gan, “Rocksalt: Better, faster, stronger SFI for the x86,” in
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’12. ACM, 2012,
pp. 395–404. [Online]. Available: http://doi.acm.org/10.1145/2254064.
2254111

[28] Coq, “Coq proof assistant,” http://coq.inria.fr/.
[29] Xinyu Feng, Zhong Shao, Yu Guo, and Yuan Dong, “Certifying

low-level programs with hardware interrupts and preemptive threads,”
Journal of Automated Reasoning, vol. 42, no. 2, pp. 301–347, 2009.

[30] Malcolm Dowse, Andrew Butterfield, Marko van Eekelen, and Maarten
de Mol, “Towards machine-verified proofs for I/O,” Technical Re-
port 0408 in the Proceedings of Implementation and Application of
Functional Languages, 16th International Workshop, IFL’04, Lübeck,
Germany., pp. 469–480., September 8-10, 2004.

[31] Maarten De Mol, Marko Van Eekelen, and Rinus Plasmeijer, “The math-
ematical foundation of the proof assistant Sparkle,” 2007, Technical
Report ICIS-R07025, Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands.

[32] Gregory Malecha, Greg Morrisett, and Ryan Wisnesky, “Trace-based
verification of imperative programs with I/O,” Journal of Symbolic
Computation,, vol. 46, no. 2, pp. 95–118., 2011.

[33] J. Lim and T. Reps, “Tsl: A system for generating abstract interpreters
and its application to machine-code analysis,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 35, no. 1, p. 4,
2013.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 98

DRUPing for Interpolants

Arie Gurfinkel
Carnegie Mellon Software Engineering Institute

http://arieg.bitbucket.org

Yakir Vizel
Electrical Engineering Department, Princeton University

Computer Science Department, The Technion
http://www.cs.technion.ac.il/∼yvizel

Abstract—We present a method for interpolation based on
DRUP proofs. Interpolants are widely used in model checking,
synthesis and other applications. Most interpolation algorithms
rely on a resolution proof produced by a SAT-solver for un-
satisfaible formulas. The proof is traversed and translated into
an interpolant by replacing resolution steps with AND and
OR gates. This process is efficient (once there is a proof) and
generates interpolants that are linear in the size of the proof. In
this paper, we address three known weakness of this approach:
(i) performance degradation experienced by the SAT-solver and
the extra memory requirements needed when logging a resolution
proof; (ii) the proof generated by the solver is not necessarily
the “best” proof for interpolantion, and (iii) combining proof
logging with pre-processing is complicated. We show that these
issues can be remedied by using DRUP proofs. First, we show
how to produce an interpolant from a DRUP proof, even when
pre-processing is enabled. Second, we give a novel interpolation
algorithm that produces interpolants partially in CNF. Third,
we show how DRUP proof can be restructured on-the-fly to
yield better interpolants. We implemented our DRUP-based
interpolation framework in MiniSAT, and evaluated its affect
using AVY — a SAT-based model checking algorithm.

I. INTRODUCTION

SAT-based Model-Checking, i.e., reducing Model Check-
ing to one or several instances of Boolean satisfiability (SAT),
has emerged as the most effective approach for scaling model
checking to industrial designs. Bounded Model Checking
(BMC) [1] is reduced to a single satisfiabilty problem that
checks for existence of a counterexample of a given length.
Safety verification (or Unbounded Model Checking) is re-
duced to an iterative process by repeatedly: (a) solving BMC
problems with increasing bound, (b) constructing a proof π
of bounded safety, and (c) attempting to generalize π to an
inductive invariant. The bounded safety proof π is extracted
from the resolution refutation proof of unsatisfiability of a
BMC instance by the process of Craig interpolation. Thus,
safety verification requires that a SAT-solver can produce
interpolants in addition to deciding satisfiability.

Formally, given an UNSAT formula G ≡ A∧B partitioned
into A and B, a Craig interpolant is a formula I such that A
implies I , I is inconsistent with B, and I is defined over
the variables common to A and B. In model checking, G
is a BMC instance, A is some prefix that contains the initial
condition, and B a suffix that contains the bad states [2]. Thus,
the interpolant I is an over-approximation of the set of states
reachable by the prefix A that does not contain any bad states.
It is convenient to generalize Craig interpolants to a sequence.
In this case, G ≡ G1 ∧ · · · ∧ GN is partitioned into N parts,
and an interpolant is a sequence I1, . . . , IN−1 such that Ii is a

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. This material has been approved for public release and unlimited distribution. DM-0001563.

Craig interpolant between G1∧ · · ·∧Gi and Gi+1∧ · · ·∧GN .
That is, Ii over-approximates the set of states reachable after
i steps. The sequence corresponds to an inductive invariant
if for some i, Ii implies

∨
1≤j<i Ij . Most SAT-based model

checking algorithms (e.g., [2]–[7]) are based in some way on
sequence interpolants, although, they vary widely in interpolant
computation and in many additional details.

Interpolants can be extracted directly from a resolution
proof of unsatisfiability. There are several such proof-based
procedures that convert a resolution refutation into a circuit by
replacing resolution steps by AND and OR gates [2], [8], [9].
They are simple to implement and produce interpolants that are
linear in the size of the proof. Their variations (for strength [9],
[10], structure [11]–[13], and size [13]) and model checking
specific properties (e.g., [9], [14]) are widely studied. However,
they require a SAT-solver to log the resolution proof. While
this is not technically difficult [15], it significantly increases
the memory usage of the solver [16]. Furthermore, it appears
that combining proof-logging and common pre-processing is
difficult. Most solvers (e.g., [17]) treat proof-logging and pre-
processing as mutually exclusive.

Alternatively, interpolants can be constructed by parti-
tioning the clauses of G ≡ A ∧ B into two groups and
restricting the SAT-solver to work with either A or B clauses,
but not with both at the same time. The solver is allowed
to communicate implicants of B to A, and consequences
of A to B. The interpolant is the set of all communicated
A-consequences. This proof-less approach was pioneered by
IC3 [5] (together with many other improvements), has been
applied for interpolation by Chockler et al. [18], and has been
further refined by Bayless et al. [19] by allowing additional
communication between partitions. Such algorithms compute
interpolants in CNF (which is often desired) and do not need
proof-logging. However, partitioning the clauses and restricting
the solver significantly degrades performance. This is less of
an issue when these techniques are a part of a tightly integrated
verification loop, as in IC3. Finally, partitioning negatively
affects pre-processing.

Goldberg and Novikov [20] suggest a low-overhead proof
logging technique by showing that the sequence of all learnt
clauses, in the order learnt by a CDCL SAT-solver – the clausal
proof – is both easy to log and sufficient to reconstruct the
complete resolution proof. Recently, Heule et al. [16] intro-
duced a trimmed variant, called DRUP-proofs, that additionally
account for the clauses deleted by the solver. They show that
DRUP-proofs can be expanded (or validated) into a resolution
proof efficiently, and suggest them for solver certification,
UNSAT core extraction, and interpolation.

In this paper, we propose a novel interpolation algorithm

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 99

based on DRUP-proofs. We are motivated by the fact that
logging DRUP-proofs is easy even in the presence of pre-
processing. The naı̈ve approach is to expand a DRUP-proof
into a resolution proof (e.g., [15]) and apply existing interpo-
lation techniques. While this is reasonable, we take a different,
more flexible, approach.

Our contributions are as follows. We present a framework
for computing sequence interpolants from DRUP-proofs im-
plemented on top of MiniSAT. The approach consists of two
phases. The first traverses the DRUP-proof backward, trim-
ming it, and identifying the core. Unlike [16], our traversal is
geared towards interpolation and not proof minimization. The
second traverses the trimmed proof forward constructing an
interpolant on-the-fly. During this phase, local transformations
are applied to the proof to guide it to a better interpolant.
It is important to note that our framework is focused on
interpolation and not solver certification. Hence, it is made
efficient through reuse of many of the solver’s data-structures
and procedures, and through reuse of the final state of the trail
when the final conflict is reached. Note that while it seems
theoretically trivial to expand a DRUP-proof into a resolution
proof, such expansion may take as much time as solving the
original SAT instance [16]. Thus, our careful implementation
and reuse of the solver’s final state is beneficial.

Furthermore, we present a novel interpolation algorithm
that computes an interpolant as a pair of formulas p ∧ g such
that g is in CNF. In some cases this results in a pure CNF
interpolant. To our knowledge, this is unique. Finally, our local
proof restructuring, mentioned above, aims at maximizing the
CNF component of the interpolant. This restructuring proce-
dure is possible partially due to the flexibility our framework
enables when constructing an interpolant.

We evaluated our framework in the context of model check-
ing using AVY [7], a SAT-based model checking algorithm
that heavily relies on sequence interpolants. We show the
effect our DRUP-based interpolation framework has on AVY’s
performance when compared to a proof-logging SAT-solver.
In addition, we evaluate our different heuristics and show
their effect on the computed interpolants. Our experiments
show that DRUP-based interpolation is efficient and improves
the underlying model checking algorithm. In addition, our
new interpolation technique, together with our local proof
restructuring result in a significant number of clauses in the
CNF component of the computed interpolants.

II. PRELIMINARIES

Given a set U of Boolean variables, a literal ` is a variable
u ∈ U or its negation ¬u, a clause is a disjunction of literals,
and a formula in Conjunctive Normal Form, or a CNF for
short, is a conjunction of clauses. It is convenient to treat a
clause as a set of literals, and a CNF as a set of clauses. We
write � to denote the empty clause, Var(α) for variables of
a clause α, and Var(G) for variables of a set of clauses G.

The resolution rule states that given clauses α1 = β1 ∨ v
and α2 = β2∨¬v, where β1 and β2 are clauses and v and ¬v
are literals, one can derive the clause α3 = β1∨β2. Application
of the resolution rule is denoted by α1, α2 `vRES α3, and v is
called the pivot variable. We omit v when it is clear from the
context or irrelevant.

A resolution derivation of a clause α from a CNF formula
G is a sequence π = (α1, α2, . . . , αn ≡ α), where each clause
αk is either an initial clause of G or is derived by applying the
resolution rule to clauses αi, αj with i, j < k. A resolution
derivation of the empty clause � from G is called a refutation
or a proof, and shows that G is unsatisfiable.

A resolution derivation (α1, . . . , αk) is trivial [21] if all
variables resolved upon are distinct, and each αi, for i ≥ 3,
is either an initial clause or is derived by resolving αi−1

with an initial clause. It is convenient to capture a trivial
resolution derivation by a rule. A chain resolution rule,
written α1, . . . , αk `~xTVR α, states that α can be derived
from α1, . . . , αk by trivial resolution derivation. We call
α1, . . . , αk the chain and α1 – the anchor, and variables ~x =
(x1, . . . , xk−1) the chain pivots. Without loss of generality,
we assume that the chain and chain pivots are resolved in the
order given. That is, first α1 is resolved with α2 on x1, then
the resolvent is resolved with α3 on x2, etc. A chain derivation
is a sequence π ≡ (α1, . . . , αn) where each αk is either an
initial clause or is derived by chain resolution from preceding
clauses. A derivation witness of a chain derivation π is a total
function D from clauses of π to sub-sequences of π such that

D(α) = []⇒ α is initial D(α) 6= []⇒ D(α) `TVR α (1)

Note that a derivation witness is not unique. As usual, a
derivation of an empty clause is called a proof. Chain proofs
capture concisely the proofs produced by CDCL SAT-solvers
by logging learned clauses only. For example, the TraceCheck
proof format [22] is based on chain derivation.

A Craig interpolant [23] of a pair of inconsistent formulas
A and B is a formula I such that

A⇒ I I ⇒ ¬B Var(I) ⊆ Var(A) ∩Var(B) (2)

where Var(A) is the set of all variables of A. It is well known
that an interpolant can be computed in polynomial time from
a resolution proof of unsatisfiability of A ∧B [2], [8].

For interpolation, it is convenient to partition clauses of a
CNF as belonging to A or B. More generally, an N -colored
CNF is a pair (G, κ) of a CNF formula G and a coloring
function κ : G→ [1, .., N] that assigns to every clause α ∈ G
a color between 1 and N . We omit the coloring function κ
when it is clear from the context or irrelevant and write G for
(G, κ). For a colored CNF (G, κ), we write Gi = κ−1(i) for
the set of all clauses colored i. The coloring extends naturally
to variables. For each v ∈ Var(G), we define its minimum
and maximum color as follows:

κ↓(v) = min{i | ∃α ∈ Gi · v ∈ α} (3)
κ↑(v) = max{i | ∃α ∈ Gi · v ∈ α} (4)

A variable v is called local (to partition i) if κ↓(v) = κ↑(v) =
i, and shared otherwise. A clause α is shared if for all v ∈
Var(α), v is shared and κ(α) < κ↑(v). A colored CNF G
is striped if for all v ∈ Var(G), κ↑(v) − κ↓(v) ≤ 1. That is,
every variable is either local, or shared between partitions with
adjacent colors. Note that every non-striped CNF can be made
striped by adding fresh variables and equality constraints. In
the rest of the paper, for simplicity, we assume that all colored
CNFs are striped. Given a chain refutation π of a colored

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 100

CNF (G, κ) and a derivation witness D of π, we define the
maximum color for the clauses of π inductively as follows:

κ↑(α) =
{
κ(α) if α ∈ G
max{κ↑(β) | β ∈ D(α)} otherwise

(5)

Minimum color κ↓(α) is defined similarly.

A sequence (or path) interpolant for an N -colored un-
satisfiable striped CNF (G, κ) is a sequence of formulas
(> ≡ I0, . . . , IN ≡ ⊥) such that for all 1 ≤ i ≤ N :

Ii−1 ∧Gi ⇒ Ii ∀v ∈ Var(Ii) · κ↓(v) = i ∧ κ↑(v) = i+ 1

We assume that the reader is familiar with the basic CDCL
SAT algorithm, as presented in [24]. We assume that the solver
maintains all currently implied and decided (i.e., assigned)
literals in a queue, called the trail, in the order they are
assigned. We assume that the solver provides the following
API:

• UnitPropagation exhaustively applies unit propaga-
tion (UP) rule by resolving all unit clauses;

• ConflictAnalysis analyzes the most recent conflict
and learns a new clause;

• IsOnTrail checks whether a clause is in antecedent of
a literal on the trail;

• Enqueue enqueues one or more literals on the trail;
• IsDeleted, Delete, Revive checks whether a

clause is deleted, deletes a clause, and adds a previously
deleted clause, respectively;

• SaveTrail,RestoreTrail save and restore the state
of the trail.

III. TRIMMING CLAUSAL PROOFS

Clausal proofs were introduced by Goldberg and
Novikov [20] who showed that the sequence of all the learned
clauses, in the order they are learned by a CDCL solver, forms
a chain derivation. They show that the chain derivation can
be validated using UP facilities of the solver. The correctness
is based on the following lemma that shows the connection
between UP and trivial resolution.

Lemma 1 ([21]) Given a CNF G and a clause c, c is
deducible from G by unit propagation iff c is deducible from
G by trivial resolution. That is, F `UP c iff F `TVR c.

Two algorithms are suggested in [20], one for backward and
one for forward validation. The forward validation replays the
proof forward, checking that each clause is subsumed (using
UP) by prior clauses. Dually, backward validation walks the
proof backwards, removing clauses, and checking that each
removed clause is subsumed by the remaining ones.

Recently, backward validation has been improved by Heule
et al. [16] who noticed that (a) CDCL solvers aggressively
delete unnecessary clauses, and (b) keeping track of clause
deletion significantly reduces the number of clauses used by
UP during validation. They define a DRUP-proof as a sequence
π ≡ ((α0, d0), . . . , (αn, dn) ≡ (�,⊥)), where each dk is a
Boolean flag indicating whether the clause is deleted, and αk
is either an initial clause or is derived by chain resolution from
the set of k-active clauses {αj | j < k ∧ dj = ⊥ ∧ (∀j < i <

k · αi 6= αj)}. Validation of DRUP-proofs is efficient because
validation of a clause αk depends only on the k-active clauses.

Forward validation walks the proof from the leaves to
the empty clause. Thus, it is well suited for interpolation.
However, clausal proofs produced by a CDCL solver contain
many useless clauses making forward validation inefficient.
Heule et al. [16] suggest that in this case, backward validation
should be used to trim a clausal proof by removing all clauses
that do not contribute to the derivation of the empty clause.

In this section, we present an efficient trimming proce-
dure, called Trim and shown in Alg. 1, based on backward
validation. Unlike Heule et al., our goal is not to certify a
solver, but to trim the proof. Thus, we trust the solver and
reuse its intermediate state (namely, the final state of the
trail and deletion status of clauses) and routines (namely, unit
propagation and conflict analysis). This makes our procedure
efficient and easy to implement.

The input to Trim is a CDCL solver S in a conflicting
state, and a corresponding DRUP-proof πo. The output is a
chain derivation π such that all clauses of π participate in a
derivation of the empty clause. In the terminology of Heule et
al., all clauses of π are core. The algorithm maintains a set C
of core clauses. It walks the input DRUP-proof πo backwards.
Deleted clauses are revived (line 3). If the current clause αi is
on the trail, UndoTrailCore is used to pop the literals of
the trail up to and including the literal whose antecedent is αi.
In the process, antecedents of any core literal on the trail are
marked core as well. Next, αi is removed from the solver, and,
if it is not initial, validated using UP. For that, the negation
of the literals is put on a trail and UnitPropagate is used
to derive the conflict. Note that this always succeeds since we
assume that the solver S and the proof πo are valid. Finally,
ConflictAnalysisCore is used to analyze the conflict,
and, in the process, marks all clauses in the implication graph
of the conflict as core. When the main loop terminates, π is a
chain proof in reversed order.

We use Trim to trim a DRUP-proof before interpolation
using forward validation. In the rest of the paper, we assume
that all chain proofs are trimmed. The interpolation procedure
is described in Section IV. Trim provides two degrees of
freedom. First, different UP strategies result in different proofs.
For example, Heule et al. prefer core clauses during UP
to minimize the total size of the trimmed proof. Second,
ConflictAnalysisCore can introduce additional clauses
corresponding to different cuts of the implication graph. We
propose strategies that result in better interpolants in Section V.

IV. INTERPOLATION ALGORITHM

In this section, we present our interpolation algorithm.

Let (G, κ) be an N -colored striped CNF formula. Through-
out this section, we assume, for simplicity, that N = 3.
However, our results easily extend to an arbitrary number of
colors. We denote shared variables of partition j by Vj =
V ar(Gj) ∩ Var(Gj+1). For a clause α ∈ G, we write α|[k,l]
for a clause obtained from α by removing all variables v with
color less than k (κ↑(v) < k) or greater than l (κ↑(v) > l).
We write α|≤l for α|[1,l] and α|≥k for α|[k,N]. Recall that a
clause α is shared w.r.t. j if Var(α) ⊆ Vj and κ(α) = j.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 101

Algorithm 1: Trim(S, πo)
Input: A SAT-solver instance S with � on the trail and

the corresponding DRUP-proof
πo = ((α0, d0), . . . , (αn,⊥) ≡ (�,⊥))

Output: A chain derivation (β0, . . . , βm ≡ �)

1 π = [] ; C = {αn}
2 for i = n to 0 do
3 if S.IsDeleted(αi) then S.Revive(αi)
4 else
5 if S.IsOnTrail(αi) then
6 S.UndoTrailCore(αi, C)
7 S.Delete(αi)
8 if αi ∈ C then
9 if αi is not initial then

10 S.SaveTrail()
11 S.Enqueue(¬αi)
12 c = S.UnitPropagation()
13 S.ConflictAnalysisCore(c, C)
14 S.RestoreTrail()
15 π.Append(αi)
16 Reverse(π)

Our procedure, called ChainItp, is shown in Alg. 2. The
inputs are a N -colored CNF (G, κ) and a (trimmed) chain
derivation π. The output is a sequence interpolant I0, . . . , IN .
ChainItp walks π forward from α0 to αn and computes
partial interpolants for each partition (or color) separately. For
partition i and a clause αj , a partial interpolant is a conjunction
of a pair of formulas pi(αj)∧gi. gi contains the CNF part of the
interpolant, and pi(αj) contains the rest. The final interpolant
is obtained as a partial interpolant of the empty clause αn ≡ �.

For a fixed color k, we partition the clauses of π into two
groups: leaf and non-leaf. A clause is a leaf (for color k) if it
is either initial, or derived only using clauses with color less
than or equal to k. Otherwise, it is non-leaf. The leaf and non-
leaf clauses are interpolated using helper functions Leaf and
Tvr, respectively. Before going into detail, let us introduce
the following notion:

Definition 1 Let (G, κ) be an N -colored striped CNF for-
mula, π a chain refutation of G, D a derivation witness for π,
and k a natural number 1 ≤ k ≤ N . A shared leaf α ∈ π is
shared-derivable w.r.t. k and D if for all β ∈ D(α), κ↓(β) = k
or β is shared-derivable w.r.t. k − 1 and D.

Clearly, for initial shared clauses, this definition holds
trivially. Intuitively, α is shared-derivable w.r.t. k if it is derived
using only clauses from Gk and shared-derivable clauses w.r.t.
k − 1. Let us assume that our stripped CNF formula is
G1 ∧ G2 ∧ G3. All shared clauses w.r.t. G1 are also shared-
derivable. A shared clause w.r.t. G2 is shared-derivable w.r.t.
2 iff it is derived using clauses from G2 and clauses that are
shared-derivable w.r.t. G1. Note that we maintain a derivation
witness D as part of the definition due to the fact that a chain
derivation represent a space of possible resolution steps that
may lead to a derived clause. Thus, in order for our recursive
definition to apply, we must make sure a specific derivation
witness is used.

Lemma 2 Let (G, κ) be an N -colored striped CNF formula.
Given a chain derivation π, let D be a derivation witness of π.

Let (g0 = >, g1, . . . , gN) be a sequence such that gi is a CNF
containing all shared-drivable clauses w.r.t. a color i and D,
then gi−1 ∧Gi ⇒ gi for 1 ≤ i ≤ N .

The proof is immediate from the definition of shared-
derivable clauses.

We now go into more detail about the mechanics of Leaf
and Tvr. The function Leaf is applied to initial clauses
(line 4) and to derived leaf clauses (line 15). The input is
a clause α, a color j and a derivation witness D. The output
is a pair (p, g) such that p∧ g is a partial interpolant of α for
color j, and g is in CNF. It works according to the following
rules:

• if α is shared-derivable w.r.t. j and D: p = > and g = α.
• otherwise, if κ(α) ≤ j then p = α|≥j+1 and g = >
• otherwise, p = g = >
The function Tvr is applied to derived clauses. The input

is a clause α, a corresponding chain derivation ~β `~xTVR α, and
a color j. The chain ~β = (β0, . . . , βb) is obtained by UP and
conflict analysis (lines 8-10) as described in Section III. The
output is a formula qb, where

ql =
{
pj(β0) if l = 0
ql−1 1jxl

pj(βl) ow
1jx =

{∧ if κ↑(x) ≤ j
∨ ow

That is, Tvr walks up the chain ~β, and, at each resolution
step, either conjoins or disjoins the partial interpolants of the
chain clauses. Tvr is effectively a direct extension of the
interpolation rules of [2] from resolution to chain resolution.

It is important to note that the derivation witness D is not
stored explicitly in our implementation of the algorithm, and it
is used implicitly by Leaf. We only mention it in Algorithm 2
for clarity.

Our interpolation algorithm is somewhat unorthodox since
it treats some of the derived clauses as leaves. Furthermore,
it keeps a CNF part of the interpolant separately (using gj).
We show that none-the-less, it still produces a valid sequence
interpolant.

Definition 2 Given an unsatisfiable N -colored striped CNF
(G, κ) and a chain derivation π. A sequence of partial in-
terpolants (>, p1, . . . pN−1,⊥) and a set of CNF formulas
{gj}N−1

1 are valid iff for every 1 ≤ k ≤ N , and for every
α ∈ π, (pk(α) ∧ gk ∧Gk+1)⇒ (pk+1(α) ∨ α|≥k+1) ∧ gk+1.

Note that a valid partial interpolant sequence results in
a valid sequence interpolant. We show that the partial inter-
polants of ChainItp satisfy validity requirement of Def 2.

Theorem 1 Given an N -colored striped CNF (G, κ) and
a chain derivation π, the sequence of partial interpolants
(>, p1, . . . pN−1,⊥) and the set of CNF formulas {gj}N−1

1
computed by ChainItp are valid.

Proof: For simplicity, we show the proof for the case
N = 3. The proof for the general case is similar. Furthermore,
we rely on the fact that without our special leaf handling,
ChainItp is a straightforward extension of McMillan’s pro-
cedure [2] to chain resolution. We use qj(α) to denote the
partial interpolant of [2].

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 102

Algorithm 2: ChainItp
Input: A SAT-solver instance S, colored CNF (G, κ),

κ : G→ [1..N], and a chain derivation
π = (α0, . . . , αn ≡ ⊥)

Output: An interpolation sequence
(> ≡ I0, I1, . . . , IN ≡ ⊥)

1 for i = 0 to n do
2 if αi ∈ G then
3 for j = 1 to N − 1 do
4 (pj(αi), g)← Leaf(αi, j)
5 gj ← gj ∧ g
6 else
7 S.UnitPropagate(), S.SaveTrail()
8 S.Enqueue(¬αi)
9 β0 = S.UnitPropagate()

10 ~β = S.ConflictAnalysisTvr(β0, αi)
/* ~β = (β0, . . . , βb) is a subsequence

of π s.t. ~β `~xTVR αi */
11 D(αi)← ~β

12 κ(αi)← max{κ(c) | c ∈ ~β}
13 for j = 1 to N − 1 do
14 if κ(αi) ≤ j then
15 (pj(αi), g)← Leaf(αi, j)
16 gj ← gj ∧ g
17 else
18 pj(αi)← Tvr(~β, αi, j)

19 S.RestoreTrail()
20 S.Revive(αi)

21 I0 ← >, IN ← ⊥
22 for j = 1 to N − 1 do Ij ← pj(αn) ∧ gj

The proof is by induction on the graph induced by π and
D. The base case follows from [14] since for an initial clause α
pj(α) ∧ gj = qj(α). For the inductive step, we only consider
the case of a single resolution step. Let c1 and c2 be two
clauses that resolve on v to get c. W.l.o.g., assume v ∈ c1 and
¬v ∈ c2. By inductive hypothesis:

p1(c1) ∧ g1 ∧G2 ⇒ (p2(c1) ∨ c1|≥2) ∧ g2 (6)
p1(c2) ∧ g1 ∧G2 ⇒ (p2(c2) ∨ c2|≥2) ∧ g2 (7)

Since we rely on [2], [14], we only need to prove the
correctness for our modifications, namely treating derived
clauses as leaves. Thus, there are only two cases: (1) c is
derived using only clauses from G1, or (2) c is derived using
only clauses from G1 and G2. Case (1) is immediate by
Lemma 2. For case (2), w.l.o.g., assume that c1, c2, and c
are not leaves w.r.t. 1, but are leaves w.r.t. 2. In this case, we
can substitute p2 with a partial interpolant for the leaf. The
induction hypothesis becomes:

p1(c1) ∧ g1 ∧G2 ⇒ (c1|≥2) ∧ g2 (8)
p1(c2) ∧ g1 ∧G2 ⇒ (c2|≥2) ∧ g2 (9)

By the definition of p1 we know that if v ∈ Var(G3) then
p1(c) = p1(c1) ∧ p1(c2), otherwise p1(c) = p1(c1) ∨ p1(c2).
We take care of the following two cases. Case 1, c is shared-
derivable. We need to show that (p1(c)∧g1)∧G2 ⇒ (>∨c)∧

g2. Since c is shared-derivable c ∈ g2 and g1 is unchanged.
By Lemma 2, p1(c) ∧ g1 ∧G2 ⇒ g2 holds.

Case 2, c is not shared-derivable. We need to show that
(p1(c) ∧ g1) ∧ G2 ⇒ (c|≥3 ∨ c|≥2) ∧ g2. Since c is not
shared-derivable both g1 and g2 are unchanged. Assume that
v 6∈ Var(G3), then p1(c) = p1(c1) ∨ p1(c2). Assume, to the
contrary, that p1(c) ∧ g1 ∧ G2 ⇒ c|≥2 ∧ g2 does not hold.
Then, there is an assignment s.t. (p1(c) ∧ g1) ∧ G2 evaluates
to > while c|≥2 ∧ g2 evaluates to ⊥. From Lemma 2, we
know that g2 evaluates to >, therefore, c|≥2 is ⊥. W.l.o.g.
assume that under this assignment p1(c1) evaluates to >. By
the induction hypothesis c1|≥2∧g2 evaluates to > as well. Due
to our assumption that c|≥2 evaluates to ⊥, v must evaluate
to >. but, since v ∈ c1|≥2, it must aslo be part of c|≥2. Thus,
indicating that c|≥2 evaluates to >, in contradiction to our
assumption. The other cases are proved similarly.

V. COLORS, PROOFS, AND CNF

In this section, we discuss how to combine our framework
with a light-weight proof restructuring. The goal of restructur-
ing is to increase the number of shared derived leaves in the
proof to increase the CNF component of the interpolant. We
first introduce the concept of colorable chain refutations and
show that they lead to a simple CNF interpolation procedure.
However, an ordinary chain refutation is exponentially stronger
than colorable one. Hence, restricting to colorable refutations
is not practical. Instead, we propose a polynomial algorithm
to restructure a refutation on-the-fly to increase its colaribility.

Let (G, κ) be a striped N -colored CNF, π a chain refutation
of G, and D a derivation witness for π. The witness D is called
colored if for every derived clause α ∈ π, the corresponding
derivation sequence D(α) = (β0, . . . , βn) satisfies the follow-
ing condition: for all 0 ≤ i ≤ n, κ↑(βi) = κ↓(βi) = κ↑(α)
or κ↑(βi) < κ↑(α) and βi is shared. A chain refutation π is
colorable if there exists a colored refutation witness for it.

Colorable refutations induce a simple interpolation proce-
dure. Let π = (α0, . . . , αn) be a colorable chain refutation
with N colors. Then, the sequence ~I ≡ (I0 ≡ >, . . . , IN ≡ ⊥)
defined as follows:

Ii = {α ∈ π | κ↑(α) = i ∧ α is shared} (10)

is a sequence-interpolant. Furthermore, ~I is in CNF and is
linear in the size of the chain refutation π. This is not a
coincidence. Colorable chain refutations and CNF interpolants
are closely related.

Theorem 2 For every colorable chain refutation π of N -
colored CNF G there exists a sequence interpolant ~I such
that

∑N
i=0 |Ii| < |π|. For every CNF sequence interpolant ~I

of G, there is a corresponding colorable refutation containing
the clauses of ~I .

Proof: For simplicity, we only show the case when N =
2, where there is only one non-trivial interpolant: I1. First,
we show (10) defines a sequence interpolant. By definition, I1
is the set of all shared clauses of π colored 1. By definition
of coloring, each 1-colored clause is implied by G1, hence,
G1 ⇒ I1. By colorability of π, there is a refutation of I1∧G2.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 103

Second, for each clause α ∈ I1, let πα be a chain refutation
of G1 ∧ ¬α, and π2 be chain refutation of I1 ∧ G2. The
refutation π is obtained by concatenating those refutations.

Ordinary chain refutations are exponentially stronger than
colorable ones. For example, let k be a natural number and
consider the 2-colored CNF Gk = Gk1 ∧Gk2 , where

Gk1 = (
k∨
i=1

xi) ∧
k∧
i=1

(xi ⇒ ai) ∧ (xi ⇒ bi) G2 =
k∧
i=1

(¬ai ∨ ¬bi)

The CNF interpolant Ik1 = CNF(
∨k
i=1(ai∧ bi)) is exponential

in k. Therefore, a colorable refutation of G is exponential
in k as well. Thus, transforming a chain refutation into a
colorable one is worst-case exponential. Note that proof-
less interpolation techniques such as [18], [19] correspond to
colorable chain refutations, and hence, in the worst case are
exponentially more expensive than CDCL.

Given a proof π, if ChainItp (Alg. 2) returns the
interpolant in CNF, then π is colorable. The converse is not
true because ChainItp picks an arbitrary witness D. Thus,
it might not find a colorable witness, even if one exists. We
propose two strategies to improve ChainItp.

First, we propose to apply UP on line 9 of ChainItp
ordered by the color of the clauses. In the forward-order, UP
is first applied to 1-colored clauses, than two 1- and 2-colored
clauses, etc. Conversely, the backward-order starts with N -
colored clauses. Both strategies increase the number of clauses
that are derived within a partition boundary.

Second, we propose a new algorithm to restructure the
chain derivation produced by ConflcitAnalysisTvr
on line 10 of ChainItp. The new algorithm, called
ConflictAnalysisClr, is shown in Alg. 3. It takes a
SAT-solver in a conflicting state and a conflict clause, and
produces a sequence of chain derivation Π and a new learned
clause α. The interpolation step of ChainItp (lines 12–19)
is then applied to each chain derivation in Π. The main step
of the algorithm is done by the supporting procedure, called
Colorize, shown in Alg. 4.

The algorithms make the following assumptions about the
SAT-solver. All clauses are sorted relative to the current assign-
ment so that >-valued literals precede all ⊥-valued literals.
All implied literals are stored in the trail in the implication
order. nil indicates undefined values (literals and clauses).
Value(q) is the value of literal q in the current assignment.
Reason(q) is the unique clause that implies the literal q or
¬q. Reason(q) = nil if q is not implied by any other clause.
SetReason(q, c) sets clause c as the reason for q and ¬q.

Intuitively, Colorize walks the chain derivation from
the anchor β0, and applies only resolutions that are in the
same partition as β0. Clauses from earlier partitions are re-
cursively colorized by attempting to turn them into shared-
derived clauses. Clauses from later partitions are ignored.
ConflictAnalysisClr applies Colorize starting from
the partition of the anchor, and then as many time as nec-
essary to remove all UP-implied literals from the learned
clause. In the worst case, the set Π is linear in the num-
ber of clauses in the original chain derivation found by
ConflictAnalysisTvr.

Algorithm 3: ConflictAnalysisClr
Input: A SAT-solver S and a conflict clause confl .
Output: A learned clause α and a chain proof Π.

1 k ← κ(confl)
2 forever do
3 α← Colorize(S, confl , k)
4 let T = {q ∈ α | S.Reason(q) = nil}
5 if T = ∅ then break
6 k ← min{κ(q) | q ∈ T}

Algorithm 4: Colorize
Input: A SAT-solver S, a conflict confl and a color k
Output: A learned clause α and a chain proof Π

1 p← nil, α = [], β = [],W = ∅
2 if S.Value(confl [0]) = > then
3 p← confl [0], α.Append(p)
4 forever do
5 if κ(confl) < k then
6 confl ← Colorize(S, confl , κ(confl))
7 S.SetReason(confl [0], confl)
8 β.Append(confl)
9 foreach q ∈ confl do

10 if q = p ∨ q ∈W ∨ q ∈ α then continue
11 r ← S.Reason(q)
12 if r 6= nil ∧ κ(r) ≤ k then W ←W ∪ {¬q}
13 else α.Append(q)
14 if W = ∅ then break
15 p← q ∈W s.t. q has the largest trail index
16 W ←W \ {p}, confl ← S.Reason(p)
17 if β 6= [] then Π.Append((β `TVR α))

VI. EXPERIMENTS

We have implemented our DRUP-based interpolation
framework on top of MiniSAT 2.2. It is available at part of AVY
model checker at http://arieg.bitbucket.org/avy. For evaluation,
we used two sets of experiments. First, we compared the sizes
of the sequence interpolants and the time it takes to extract
them for Bounded Model Checking (BMC) problems. Second,
we evaluated the framework within our interpolation-based
model checker AVY [7]. In both cases, we use benchmarks
from HWCCC’131. For baseline, we compare against proof-
based interpolation in ABC [25]. Note that we have extended
the ABC implementation to sequences in a straight-forward
way. However, the comparison with ABC has to be taken with
a grain of salt since ABC uses a customized version of an older
version of MiniSAT, rewritten in C with some new features
back-ported. None-the-less, ABC implementation is the state-
of-the-art used by many other hardware model checkers, and
we found it to perform well (compared to MiniSAT 2.2).

Fig. 1 shows the sizes of interpolants for BMC problems
of depth 20. All problems were given a 180 seconds timeout.
In majority of cases, the DRUP-based approaches produce
smaller interpolants, measured as number of AIG nodes. Note
that for our interpolation algorithm, we conjoin the CNF into
the AIG. Clearly, without conjoining this part the interpolants

1Benchmarks are available from http://fmv.jku.at/hwmcc13.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 104

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

S
im

p
lif

ie
d
 i
n
te

rp
o
la

n
t

si
ze

 f
o
r

A
B

C

Simplified interpolant size for DRUP

Timeout

Fig. 1: Comparing sizes (AND gates) of interpolants

0

5

10

15

20

25

30

0 5 10 15 20 25 30

In
te

rp
o
la

ti
o
n
 t

im
e
 f

o
r

A
b
c

Interpolation time for DRUP

Timeout

Fig. 2: Comparing time (seconds) to extract interpolants

are even smaller. Careful inspection of the results shows that
only two cases were insolvable by DRUP-based methods. On
the other hand, 9 cases were not solved by the traditional proof
logging solver. This gives us an indication about the strength
of a DRUP-based solver, which was apparent in all of our
experiments: when the SAT problem becomes hard, the DRUP-
based approach outperforms a traditional proof logging solver.
Fig. 2 shows the extraction times for the same BMC problems.
Note that the extraction time is comparable to the resolution
proof based method, but consumes less memory (since the
resolution proof is not logged)2.

Table I analyzes the performance of our model checker
AVY when using different interpolation algorithms. This is an
important analysis as it shows the affect on the runtime of
the model checker and on the depth at which convergence is
achieved. First, note that all DRUP-based approaches outper-
forms our ABC baseline w.r.t. number of solved instances. In
addition to that, AVY performs better when using DRUP on
the majority of cases. One can note that in most cases, there is
a correlation between depth of convergence and performance
where lower depth of convergence indicates better runtime.

2More comparison charts are at http://arieg.bitbucket.org/avy/drup/plots.

TABLE I: Running time for AVY using different interpolation
algorithms. ABC is for ABC’s MiniSAT, DRUP is for MiniSAT with
DRUP and ordered UP; +Clr adds our colorizing algorithm; and +Pre
adds MiniSAT’s Pre-processor. ‘t’ stands for time, ’d‘ for depth of
the solution, ‘–’ for time-out or other failure.

Name ABC DRUP DRUP+Clr DRUP+Pre DRUP+Pre+Clr
t (s) d t (s) d t (s) d t (s) d t (s) d

6s102 203 23 91 24 340 37 175 33 399 37
6s121 – – 418 50 248 34 – – – –
6s130 136 8 144 9 165 9 192 9 216 9
6s144 – – 533 25 583 24 668 26 560 22
6s189 622 21 382 21 572 26 396 21 552 23
6s206rb025 66 5 13 3 13 3 15 3 15 3
6s207rb16 46 8 96 8 96 8 127 8 110 8
6s209b1 181 24 106 24 115 24 142 24 157 24
6s215rb0 7 7 4 7 4 7 4 7 4 7
6s216rb0 21 13 12 13 11 13 13 13 13 13
6s218b1246 588 9 283 9 272 9 293 9 281 9
6s271rb045 371 11 256 10 262 10 – – – –
6s273b37 162 20 216 20 217 20 277 20 284 20
6s275rb253 4 6 7 6 7 6 8 6 10 6
6s276rb318 19 10 11 10 11 10 15 10 16 10
6s277rb342 18 10 15 13 10 10 13 10 22 13
6s282b15 103 18 99 25 106 19 184 17 209 17
6s288r – – 376 24 338 22 468 23 444 22
6s289rb00529 77 7 38 7 37 7 38 7 37 7
6s291rb18 517 78 341 74 283 73 – – 717 73
6s305rb069 270 18 139 18 128 18 133 18 136 18
6s306rb03 219 17 58 13 56 13 58 13 59 13
6s307rb06 127 13 86 13 90 13 102 13 109 13
6s311rb1 69 2 19 2 18 2 20 2 20 2
6s326rb02 34 11 14 11 15 11 17 11 17 11
6s327rb10 25 9 11 9 11 9 12 9 12 9
6s330rb11 10 3 5 3 4 3 5 3 5 3
6s335rb60 2 4 1 4 1 4 1 4 1 4
6s343b31 – – – – – – 332 15 503 15
6s349rb12 185 13 143 15 142 15 158 15 169 15
6s364rb03158 519 2 198 2 198 2 191 2 188 2
6s372rb31 358 29 322 30 162 21 295 29 276 26
6s374b029 467 9 264 9 258 9 264 9 256 9
6s380b129 226 20 109 20 109 20 131 20 122 20
6s384rb194 – – – – – – 786 22 868 30
6s385rb444 441 13 237 12 257 13 218 12 203 12
6s386rb07 – – 871 13 868 13 855 13 828 13
6s388b07 0 0 0 0 0 0 0 0 0 0
6s389b11 6 4 3 4 3 4 3 4 3 4
6s38 341 14 301 15 296 13 624 19 347 14
6s403rb0609 17 5 11 5 12 5 14 5 14 5
6s404rb4 55 4 45 4 65 5 69 4 78 4
6s405rb611 85 6 53 6 54 6 58 6 65 6
6s406rb111 735 16 521 16 612 16 544 16 662 17
6s407rb296 417 12 354 12 360 12 378 12 405 12
6s408rb191 264 8 452 8 420 8 340 8 371 8
6s410rb043 193 9 150 9 156 9 275 10 273 10
6s9 166 10 194 9 219 9 309 9 221 9

SOLVED 42 46 46 45 46

Also note that this experiment confirms the results of the above
figures which show that interpolation time is comparable with a
proof-logging SAT solver and that sizes are in favor of DRUP.

Another important analysis is the effect Colorizing has on
AVY’s performance. Clearly, using colorize results in different
interpolants. We can see from the results that there are cases
where this results in better convergence depths and thus better
performance. Note that using this feature is more demanding
than simply extracting an interpolant since it restructures
local chain derivations. Even though, when the convergence
depth is similar the performance degradation due to the extra
computation is small. It is important to note that colorizing
results in many shared-derivable leaves, which means that the
CNF component of the interpolant is meaningful. Currently,
we did not make any special use of the CNF component and
we leave this option for future research and exploration.

Finally, in Table II, we show the number of shred-derivable
leaves, i.e. number of clauses in the CNF component of the
interpolant computed by our method. Recall that DRUP is used

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 105

TABLE II: Number of shared-derivable leaves using our inter-
polation algorithm when solving BMC problems using bound 20.
Algorithm names are as in Table I.

Name DRUP DRUP+Clr DRUP+Pre DRUP+Pre+Clr
6s102 0 73 0 257
6s119 0 976 0 0
6s122 0 223 0 216
6s152 0 449 0 217
6s188 0 651 0 521
6s196 0 648 0 642
6s276rb318 0 230 0 122
6s27 0 507 0 572
6s282b15 0 1684 0 270
6s291rb18 0 420 24 177
6s292rb024 0 1043 0 577
6s302rb09 0 1257 0 369
6s309b046 0 641 0 669
6s310r 0 1334 1 810
6s351rb02 0 6956 0 6910
6s384rb194 0 1144 0 408
6s44 0 1701 0 1188
6s50 0 617 0 166
6s7 0 1372 1 860
6s8 0 1123 1 615

with ordered UP while DRUP+Clr is used with ordered UP and
colorize. Here too, we use fixed bound BMC problems. It is
clear that our colorizing algorithm is very effective in finding
a large number of clauses. While we present only a selected
subset, this trend holds in all our experiments.

Note that while the underlying model checking algorithm
AVY did not make a special use of the CNF component, we
believe that specialized usage of the CNF component will
result in better performance [5], [7], [12].

VII. RELATED WORK

To our knowledge, this paper is the first to present and
evaluate a DRUP-based interpolation framework. Moreover,
we introduce a novel algorithm that computes a sequence in-
terpolant partially in CNF. Finally, our restructuring algorithm
is not based on pivot reordering as in previous works, but tries
to keep resolution steps within a given partition (colorizing).
We have already discussed proof-based and proof-less interpo-
lation methods in Sec. I, and clausal proofs in Sec. III. Thus,
in this section, we only focus on proof restructuring for CNF.

Many works deal with generating better interpolants, either
using new interpolation algorithms or by proof restructuring.
Our work is a synergy of these two approaches. [11] and [13]
suggest local transformation rules that are based on pivots
reordering to get CNF interpolants. Rollini et al. [13] also
suggest a compression of a resolution proof as a pre-processing
step. Unlike our work, they rely on explicit resolution proofs.
Furthermore, our restructuring does not rely on pivot reorder-
ing and supports sequence interpolation natively.

Our interpolation algorithm identifies the CNF component
of an interpolant even if the interpolant itself is not in CNF.
Vizel at al. [12] introduce an interpolation procedure that also
produces (near) interpolants in CNF. However, unlike [12],
our framework does not rely on explicit resolution proofs and
produced complete interpolants. We leave extending [12] to
DRUP-proofs for future work.

VIII. CONCLUSION

In this paper, we introduce a DRUP-based interpolation
framework. We show how DRUP-proofs can be trimmed and

restructured for interpolation. We develop a novel interpolation
algorithm that computes interpolants partially in CNF. Further-
more, we show how DRUP-proofs can be locally restructured
to maximize the size of the CNF component without expo-
nentially increasing the proof. Based on previous works [5],
[7], [12], we believe that getting a CNF component for an
interpolant is beneficial for the underlying model checking
algorithm. Our framework is implemented in MiniSAT and is
publicly available. Our experiments show that the framework
is very effective in the context of both bounded and unbounded
model checking applications.

REFERENCES

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” in TACAS, 1999, pp. 193–207.

[2] K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in
CAV, 2003, pp. 1–13.

[3] ——, “Lazy abstraction with interpolants,” in CAV, 2006, pp. 123–136.
[4] Y. Vizel and O. Grumberg, “Interpolation-sequence based model check-

ing,” in FMCAD, 2009, pp. 1–8.
[5] A. R. Bradley, “SAT-Based Model Checking without Unrolling,” in

VMCAI, 2011, pp. 70–87.
[6] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient implementation

of property directed reachability,” in FMCAD, 2011, pp. 125–134.
[7] Y. Vizel and A. Gurfinkel, “Interpolating property directed reachability,”

in CAV, ser. Lecture Notes in Computer Science, A. Biere and R. Bloem,
Eds., vol. 8559. Springer, 2014, pp. 260–276.

[8] P. Pudlák, “Lower bounds for resolution and cutting plane proofs and
monotone computations,” J. Symb. Log., vol. 62, no. 3, 1997.

[9] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher, “Inter-
polant strength,” in VMCAI, 2010, pp. 129–145.

[10] G. Weissenbacher, “Interpolant strength revisited,” in SAT, 2012.
[11] R. Jhala and K. L. McMillan, “Interpolant-Based Transition Relation

Approximation,” in CAV, 2005, pp. 39–51.
[12] Y. Vizel, V. Ryvchin, and A. Nadel, “Efficient generation of small

interpolants in cnf,” in CAV, 2013, pp. 330–346.
[13] S. F. Rollini, R. Bruttomesso, N. Sharygina, and A. Tsitovich, “Reso-

lution proof transformation for compression and interpolation,” CoRR,
vol. abs/1307.2028, 2013.

[14] A. Gurfinkel, S. F. Rollini, and N. Sharygina, “Interpolation properties
and sat-based model checking,” in ATVA, 2013, pp. 255–271.

[15] A. Van Gelder, “Producing and verifying extremely large propositional
refutations - have your cake and eat it too,” Ann. Math. Artif. Intell.,
vol. 65, no. 4, pp. 329–372, 2012.

[16] M. Heule, W. A. Hunt, Jr, and N. Wetzler, “Trimming while checking
clausal proofs,” in FMCAD, 2013, pp. 181–188.

[17] S. F. Rollini, L. Alt, G. Fedyukovich, A. E. J. Hyvärinen, and N. Shary-
gina, “PeRIPLO: A Framework for Producing Effective Interpolants in
SAT-Based Software Verification,” in LPAR, 2013, pp. 683–693.

[18] H. Chockler, A. Ivrii, and A. Matsliah, “Computing interpolants without
proofs,” in Haifa Verification Conference, 2012, pp. 72–85.

[19] S. Bayless, C. G. Val, T. Ball, H. H. Hoos, and A. J. Hu, “Efficient
modular SAT solving for IC3,” in FMCAD, 2013, pp. 149–156.

[20] E. I. Goldberg and Y. Novikov, “Verification of Proofs of Unsatisfiability
for CNF Formulas,” in DATE, 2003, pp. 10 886–10 891.

[21] P. Beame, H. A. Kautz, and A. Sabharwal, “Towards understanding and
harnessing the potential of clause learning,” J. Artif. Intell. Res. (JAIR),
vol. 22, pp. 319–351, 2004.

[22] A. Biere, “PicoSAT Essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97, 2008.
[23] W. Craig, “Linear Reasoning. A New Form of the Herbrand-Gentzen

Theorem,” J. Symb. Log., vol. 22, no. 3, pp. 250–268, 1957.
[24] J. P. M. Silva, I. Lynce, and S. Malik, “Conflict-Driven Clause Learning

SAT Solvers,” in Handbook of Satisfiability, 2009, pp. 131–153.
[25] R. K. Brayton and A. Mishchenko, “ABC: An Academic Industrial-

Strength Verification Tool,” in CAV, 2010, pp. 24–40.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 106

Efficient Extraction of Skolem Functions
from QRAT Proofs

Marijn J.H. Heule
The University of Texas at Austin

marijn@cs.utexas.edu

Martina Seidl and Armin Biere
Johannes Kepler University, Linz
{martina.seidl, biere}@jku.at

Abstract—Many synthesis problems can be solved by formu-
lating them as a quantified Boolean formula (QBF). For such
problems, a mere true/false answer is often not enough. Instead,
expressing the answer in terms of Skolem functions reflecting
the quantifier dependencies of the variables is required. Several
approaches have been presented to extract such functions from
term-resolution proofs. However, not all solvers and preproces-
sors are able to produce term-resolution proofs, especially when
universal expansion is involved. In previous work, we developed
the QRAT proof system consisting of three simple rules which
allowed us to overcome this issue and to equip modern expansion-
based tools like the preprocessor bloqqer with proof tracing. In
this paper, we show how to extract Skolem functions from QRAT
proofs. We present a general extraction tool and compare its
performance to similar resolution-based tools. We show that the
Skolem functions extracted from QRAT proofs are smaller than
those produced by alternative approaches making our method in
particular useful for synthesis applications.

I. INTRODUCTION

Synthesis problems, which aim at the automatic derivation
of an implementation from a given specification, typically ask
whether for all possible inputs by the environment there exists
a strategy for the system such that certain properties like safety
hold. If the answer is positive, then this strategy provides
the means to synthesize the required implementation of the
system which by construction obeys the given specification.
Therefore, a tool solving such a synthesis problem should
not only provide a yes/no answer, but also a strategy of the
specification in the case of realizability.

A natural way to encode synthesis problems is offered
by quantified Boolean formulas (QBFs) [1], [2], which ex-
tend propositional logic by quantifiers over propositional
variables [3]. The QBF formalism provides a convenient
framework for modeling finite two-player games [4] which
is reflected by the popular game-based view on the semantics
of QBFs. Here, the evaluation of a QBF is described as a
game between the existential player who owns the existential
variables and the universal player who owns the universal
variables of the formula. The existential player wants to satisfy
the formula, while the universal player wants to falsify the
formula. The moves are assignments to the variables, where
the order of the variables in the quantifier prefix has to be
respected. If the formula is satisfiable, then there exists a
strategy for the existential player to always win the game and
respectively, there is a strategy for the universal player to win
the game if the formula is unsatisfiable.

By using existential and universal quantification, QBFs
allow for exponentially more succinct encodings than propo-
sitional logic, with the consequence that the satisfiability
problem of QBF is PSPACE-complete [3]. Therefore, the
field of application of QBF ranges from efficient encodings
of verification problems like model checking tasks to plan-
ning (see [2] for a survey on QBF applications).

All these applications have in common that they require
models if the formula encoding the application problem is
satisfiable. Whereas in SAT a model is given by a variable
assignment, in QBF the situation is more complicated [5]. A
model is an assignment tree giving a winning strategy to the
existential player. In practice, a more compact representation
than given by an assignment tree is required. To this end,
the concept of Skolem functions, which for example are
used in first-order logic to eliminate existential quantifiers, is
transferred to the context of QBF [5]. A Skolem function for an
existential x variable is a Boolean function over the universal
variables preceding x in the quantifier prefix.

Today, it is known how Skolem function extraction can
be realized in the context of DPLL-based QBF solving [6],
which is the solving paradigm realized by most state-of-the-art
solvers. Basically, the possibility of search-based approaches
is exploited to generate term-resolution proofs from which
winning strategies for the existential player can be gener-
ated [7], [8]. Unfortunately, this approach does not apply
to expansion-based techniques [9], [10], which have been
shown to be extremely powerful if realized in preprocessors.
Until recently, it was not possible to generate any proofs
when preprocessing is applied, because it is an open question
if expansion can be simulated by resolution [11]. However,
when preprocessing is restricted or even omitted, the solving
performance drastically decreases. To overcome this issue,
we presented the QRAT proof system [12] which is able
to capture all state-of-the-art preprocessing techniques by a
few simple rules. We could further show that emitting QRAT
proofs causes only small overhead and that the validation of
QRAT proofs is computationally cheap. Hence we were able to
provide a tool to certify the result of a preprocessor efficiently.

In this paper, we go one step further and show how to extract
Skolem functions from QRAT proofs of satisfiability. With
this work we solve one important issue hindering the practical
application of QBF. Moreover, the size of the Skolem functions
that we extract is smaller than in other approaches.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 107

In the following, we first recapitulate QBF basics in Sec-
tion II and review literature in Section III. Then we introduce
the QRAT proof system in Section IV which is the basis for the
Skolem function extraction approach presented in Section V.
Implementation details are discussed in Section VI, followed
by an experimental evaluation in Section VII. Finally, we
conclude this paper with an outlook to future work.

II. PRELIMINARIES

The language of QBF extends the language of propo-
sitional logic by existential and universal quantifiers over
the propositional variables. As usual, we assume a QBF to
be in prenex conjunctive normal form (PCNF).1 A QBF in
PCNF has the structure ⇧. where the prefix ⇧ has the
form Q1X1Q2X2 . . . QnXn with disjoint variable sets Xi and
Qi 2 {8, 9}. The formula is a propositional formula in
conjunctive normal form, i.e., a conjunction of clauses. A
clause is a disjunction of literals and a literal is either a variable
(positive literal) or a negated variable (negative literal). The
variable of a literal is denoted by var(l) where var(l) = x
if l = x or l = x̄. The negation of a literal l is denoted by
l̄. The quantifier Q(⇧, l) of a literal l is Qi if var(l) 2 Xi.
Let Q(⇧, l) = Qi and Q(⇧, k) = Qj , then l ⇧ k if i j.
We sometimes write formulas in CNF as sets of clauses and
clauses as sets of literals. We consider only closed QBFs,
so contains only variables which occur in the prefix. The
variables occurring in the prefix of � are given by vars(�). The
subformula l consisting of all clauses of matrix with literal
l is defined by l = {C | l 2 C, C 2 }. By > and ? we
denote the truth constants true and false. QBFs are interpreted
as follows: a QBF 8x⇧. is false iff ⇧. [x/>] or ⇧. [x/?]
is false where ⇧. [x/t] is the QBF obtained by replacing all
occurrences of variable x by t. Respectively, a QBF 9x⇧. is
false iff both ⇧. [x/>] and ⇧. [x/?] are false. If the matrix
 of a QBF � contains the empty clause after eliminating
the truth constants according to standard rules, then � is false.
Accordingly, if the matrix of QBF � is empty, then � is true.
Two QBFs �1 and �2 are satisfiability equivalent (written as
�1 ⇠ �2) iff they have the same truth value. Two QBFs �1

and �2 are logically equivalent (written as �1 ⇡ �2) if they
have the same set of (counter) models.

Whereas in propositional logic a model of a formula is given
by a satisfying variable assignment, for a QBF a model has
to reflect the variable dependencies between existential and
universal variables. Hence, QBF models are either expressed
in form of subtrees of assignment trees or as Skolem functions.

Definition 1. Let x be an existential variable of � = ⇧.
and let y1, . . . , yn be all universals of � with yi ⇧ x. Then
a propositional formula fx(y1, . . . , yn) is a Skolem function
for x, and called valid iff �[x/fx] ⇠ �. A set of Skolem
functions F which contains exactly one Skolem function for
every existential x is called a Skolem set. It is called valid iff
it only contains valid Skolem functions.

1Note that any QBF of arbitrary structure can be efficiently transformed to
a satisfiability equivalent formula in PCNF.

Obviously, for any satisfiable QBF �, a valid Skolem set F
gives a strategy for the existential player to satisfy the formula.
In the remainder of this paper, given a QBF ⇧. containing
an existential variable x, the function fx(U) denotes a Skolem
function for x with the set of universal variables U that are
outer to x in ⇧, as parameters.

To check that a Skolem set F is valid, it is necessary to
substitute in � all existential variables by their corresponding
Skolem functions in F and check that the resulting proposi-
tional formula is valid. This can be done by a SAT solver.
In practice, it also needs to be checked that a given Skolem
function for x does not contain universal variables yi with
yi >⇧ x. This syntactic criterion can easily be checked. Thus
while the satisfiability checking problem of QBF is PSPACE
complete, checking validity of a Skolem set is in co-NP [5].

We conclude the preliminary section by introducing the
concept of asymmetric literal addition.

Definition 2 (Asymmetric Literal Addition). Given a QBF
⇧. and a clause C. The clause ALA(, C) is the unique
clause obtained by repeatedly applying the extension rule

C := C [{l̄} if 9l1, . . . , lk 2 C and (l1 _ . . . _ lk _ l) 2
called asymmetric literal addition to C until fixpoint.

Asymmetric literal addition is indifferent with respect to
the quantification type of the involved literals. Originally it
was introduced for propositional logic in order to uniformly
characterize preprocessing and inprocessing techniques [13].
It turned out that asymmetric literal addition is the basis for
several powerful redundancy criteria which allow to safely
add and delete clauses in propositional logic. As ALA is
model preserving, for any QBF � = ⇧. ^{C} holds that
� ⇡ �[C/C 0] where C 0 = ALA(\ {C}, C) [12].

III. RELATED WORK

The importance of Skolem function generation for true
QBFs has been acknowledged to be a vital problem. Yet for a
long time, only solvers internally working with Skolemization
like Skizzo [14] and squolem [15] as well as the BDD-based
solver ebddres [16] were able to produce Skolem functions.
All three solvers are not maintained any more and to best
of our knowledge no recent solver is built based on internal
Skolemization. Instead, two solving paradigms have shown to
be successful over the last years: most solvers implement a
variant of the search-based DPLL algorithm [6] with clause
and cube learning which is closely related to the techniques
found in state-of-the-art SAT solvers. Alternatively, expansion-
based systems [17], [9], [10] are developed which use variable
elimination and universal expansion for simplifying a formula.
The latter techniques have been shown to be extremely pow-
erful when used as preprocessing steps where they are not
applied until completion but where they just transform the
formula such that it becomes easier to solve for search-based
solvers.

For solvers and tools which are able to produce term-
resolution proofs, the approaches presented by Balabanov

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 108

TABLE I
THE QRAT PROOF SYSTEM

Rule Preconditions Postconditions

(N1) ⇧.
ATE(C)����! ⇧. \{C} C is an asymmetric tautology

(N2) ⇧.
ATA(C)����! ⇧0. [{C} C is an asymmetric tautology

⇧0 = ⇧9X with
X = {x | x 2 vars(C), x 62 vars(⇧)}

(E1) ⇧.
QRATE(C,l)�������! ⇧. \{C}

C 2 , Q(⇧, l) = 9
C has QRAT on l w.r.t.

(E2) ⇧.
QRATA(C,l)�������! ⇧0. [{C}

C 62 , Q(⇧, l) = 9
C has QRAT on l w.r.t.

⇧0 = ⇧9X with
X = {x | x 2 vars(C), x 62 vars(⇧)}

(U1) ⇧. [{C} QRATU(C,l)�������! ⇧. [{C\{l}}
l 2 C, Q(⇧, l) = 8, l̄ 62 C,
C has QRAT on l w.r.t.

(U2) ⇧. [{C} EUR(C,l)������! ⇧. [{C\{l}}
l 2 C, Q(⇧, l) = 8, l̄ 62 C,
C has EUR on l w.r.t.

and Jiang [7] and presented by Goultiaeva et al. [8] can be
applied to extract strategies from the proofs. With these works
it became possible to generate certificates for search-based
solvers.

For expansion-based solvers and tools, however, the situa-
tion is different. As soon as universal expansion is involved in
the solving process, it remains an open question if and how it
can be translated to resolution. Therefore, it is not possible to
produce resolution proofs for expansion-based systems [11],
what was especially problematic if a formula is only solv-
able by the application of universal expansion. In previous
work [18], we showed how to produce partial certificates for
the variables of the outermost quantifier block, but here only
single variable assignments are involved. Janota et al. [19]
proposed to use only techniques that can be translated into
resolution in order to bring certification and Skolem function
extraction to state-of-the-art preprocessing. However, then the
preprocessor looses a lot of its power.

To avoid any restriction of the applicable techniques when
certification is required, we introduced the QRAT proof sys-
tem [12] which is able to capture universal expansion as well
as all state-of-the-art preprocessing techniques by three simple
rules which can be checked easily. The obvious question is
how to extract Skolem functions from such proofs which we
answer in this paper.

IV. QRAT: QUANTIFIED RESOLUTION ASYMMETRIC
TAUTOLOGIES

The QRAT proof system which we introduced in [12] is the
first proof system for QBFs which captures all preprocessing
techniques as well as expansion-based solving. The rules of
the proof system are shown in Table II. The basic idea is to use
syntactic redundancy criteria to add, remove, or modify clauses
until the truth value of the formula is known. Soundness of the
rules is shown in [12], completeness follows from the fact that

the QRAT proof system simulates resolution. Please note that
for the sake of readability, we work with a definition consisting
of six rules in this paper instead of the more compact three
rule variant of our QRAT proof format [12], where (N1)+(E1),
(N2)+(E2), as well as (U1)+(U2) form the three rules. By
splitting up the original three rules in six rules, we do not
gain any additional expressiveness, but it allows us a more
focused view on the problem of extracting Skolem functions.
As we will see only those rules are relevant which delete
clauses in a satisfiability equivalence preserving manner. This
applies to (E1) only. Further, this allows us to present the rules
irrelevant for the Skolem function extraction in an intuitive
by abstracting from the concrete technical details. For the
complete formal definition of the proof system, we kindly refer
to [12].

The rules (N1) and (N2) eliminate and respectively add
asymmetric tautologies (AT). A clause C is an asymmetric
tautology w.r.t. a QBF ⇧. iff ALA(\{C}, C) is a tautology.
As the addition of asymmetric literals is model preserving,
it holds that ⇧. ⇡ ⇧. [C iff ALA({C}, C) is a
tautology. Hence, the application of (N1) and (N2) is model
preserving [12].

Rule (E1) and (E2) apply the QRAT redundancy criterion
which is defined below.

For some intuition about QRAT consider the following
scenario. Let ⇧. be a QBF, C a clause, and l a literal in
C. We are interested in the situation that for every assignment
satisfying and falsifying C, it holds that all clauses Di 2
with l̄ 2 Di are satisfied on literal k 2 Di with k 6= l̄, k ⇧ l.
As all clauses Di with l̄ 2 Di are satisfied by at least
two literals if C is falsified by a variable assignment �, the
assignment can be modified by flipping the value of l such
that C becomes satisfied while all Di stay satisfied. Hence,
the addition of C to � preserves satisfiability and the deletion

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 109

of C to � preserves unsatisfiability. The reasoning for QRAT
is similar and uses the following three definitions.

Definition 3 (Outer Clause). Let C be a clause occurring in
QBF ⇧. . The outer clause of C on literal l 2 C, denoted by
O(⇧, C, l), is given by the clause {k | k 2 C, k ⇧ l, k 6= l}.

Definition 4 (Outer Resolvent). Let C be a clause with l 2
C and D a clause occurring in QBF ⇧. with l̄ 2 D. The
outer resolvent of C with D on literal l w.r.t. ⇧, denoted by
R(⇧, C, D, l), is given by the clause O[(C\{l}) if Q(⇧, l) =
8 and by O [C if Q(⇧, l) = 9 assuming O = O(⇧, D, l̄).

Definition 5 (Quantified Resolution Asymmetric Tautology
(QRAT)). Given a QBF ⇧. and a clause C. Then C has
QRAT on literal l 2 C with respect to ⇧. iff it holds for
all D 2 l̄ that ALA(\ {C}, R) is a tautology for the outer
resolvent R = R(⇧, C, D, l).

The rules (U1) and (U2) eliminate universal variable occur-
rences for which redundancy criteria ensure that on those the
universal player will never be forced to use them to satisfy the
clauses. In particular, if a clause C has QRAT on universal
literal l w.r.t. to a QBF � = ⇧. with C 2 , then it can
be shown that removing l from C preserves satisfiability. This
rule subsumes universal pure literal elimination (i.e., literals
occurring in one polarity), which is an indispensable rule for
state-of-the-art QBF solvers. Finally, the rule (U2) allows the
elimination of a universal literal by the means of extended
universal reduction [12]. Universal reduction is part of the
resolution calculus for QBFs. It removes a literal l from a non-
tautological clause C iff C does not contain any existential
literal occurring to the right of l in the prefix. From the
game view this means that whenever the universal player has
to assign l, he can immediately falsify the clause, because
there is no existential literal left allowing the existential player
to satisfy the clause. The idea behind extended universal
reduction goes in a similar direction, but here existential
literals to the right of l in the prefix are allowed if they have
certain properties. As these properties are irrelevant for the
remainder of this paper, we refer the reader to [12] for the
details.

Example 1. Consider the true QBF ⇧. = 8a 9b, c.(a _ b) ^
(ā_ c)^ (b_ c̄). Clause (a_ c) has QRAT on c w.r.t. ⇧. : the
only clause that contains literal c̄ is (b_ c̄), which produces the
outer resolvent (a_b_c). Since ALA(\{(a_c)}, (a_b_c)) =
(a_ ā_ b_ b̄_ c_ c̄) is a tautology, QRATA can add (a_ c) to
 . Now, consider a new existential variable d in the innermost
quantifier block. The clause (b̄ _ c _ d) has QRAT on c (and
d) w.r.t. . Adding (b̄ _ c _ d) to results in the true QBF
8a 9b, c, d.(a _ b̄) ^ (ā _ c) ^ (b _ c̄) ^ (b̄ _ c _ d).

Definition 6 (Outer Formula). Let l be a literal occurring in
QBF ⇧. . The outer formula of l, denoted by OF(⇧, , l),
is {O(⇧, D, l̄) | D 2 , l̄ 2 D}.

If a clause C has QRAT on l 2 C w.r.t. a QBF formula ⇧. ,
we know that: 1) if the outer formula OF(⇧, , l) is falsified

by an assignment then C is satisfied by that assignment; and 2)
the outer formula OF(⇧, , l) is satisfied by an assignment,
then l can be assigned to true, thereby satisfying C. We use
this property of QRAT clauses to construct Skolem functions.
Given a QBF formula ⇧. , a valid Skolem set F for ⇧.
and a clause C that has QRAT on l 2 C w.r.t. ⇧. . We can
now make a valid Skolem set F 0 for ⇧. ^ {C} by updating
the Skolem function fvar(l)(U) as follows. First, create a new
variable y and make fy(U) := fvar(l)(U). Second, replace
fvar(l)(U) by the function stating that if OF(⇧, , l) evaluates
to true then return polarity of l else return fy(U).

V. FROM PROOF VALIDATION TO SKOLEM FUNCTIONS

In earlier work [12], we showed how to validate QRAT
proofs. In this section, we describe how to extend that method
to obtain Skolem functions after a satisfaction proof, i.e., a
proof for a true QBF, has been validated. We start with a brief
discussion on how to validate satisfaction proofs. Afterwards,
we explain how to integrate the extraction of Skolem functions
into the checking. We end this section with a running example
of the algorithm.

A. Validating QRAT Proofs

QRAT proofs are sequences of clause additions and
deletions. They are build using three kind of lines: addi-
tion (N2+E2), deletion (N1+E1), and universal elimination
(U1+U2). In the QRAT proof format, addition lines have no
prefix and are unconstrained in the sense that one can add any
clause at any point in the proof. Clause deletion lines have
prefix “d”, while universal elimination lines have prefix “u”.
Both are restricted in the following way: the clause after a “d”
or “u” prefix must be either present in the original formula
or as a clause added earlier in the proof. For satisfaction
proofs, a universal elimination line can be replaced by a clause
addition (N2) and clause deletion line (N1). We assume that
all universal elimination lines have been replaced and ignore
their existence for the remaining part of the paper.

Fig. 1 shows the basic algorithm to validate QRAT proofs.
Let us ignore line 1, 2, 9, and 13 for the moment, because
they are only required to produce Skolem functions. We loop
over the clauses in the proof in the order a QBF solver or
preprocessor added or removed clauses (line 3). The first
unexamined clause is obtained from the proof together with its
flag and pivot (line 4). The flag can be either add or delete
(in the proof format no prefix or a “d” prefix, respectively).
If the flag is add, no checking is required because this is
a strengthening step. The new clause is simply added to
(line 11). Else, the clause will be removed (line 6). This
elimination step needs to be validated. We check if the clause
is logically implied by by computing whether the clause
is an asymmetric tautology (line 7). If that is not the case,
the clause needs to have QRAT w.r.t. (line 8), otherwise
the proof is invalid (line 10). This procedure continues until
all clauses in the proof have been processed. At this point,
 should be empty, showing that the original formula is

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 110

satisfiability equivalent to the empty formula. If is empty,
the proof is valid (line 14), otherwise it is invalid (line 12).

validateQRAT (QBF formula ⇧. , QRAT proof P)
v1 let V = vars(P)

v2 initSkolem (⇧, V)
v3 while P 6= ; do
v4 hflag, l, Ci := P.dequeue()

v5 if flag = delete then
v6 := \ {C}
v7 if ALA(, C) is a tautology then continue
v8 else if C has QRAT on l 2 C w.r.t. ⇧. then
v9 addSkolem (⇧. , C, l)

v10 else return ‘INVALID PROOF’
v11 else := [{C}
v12 if 6= ; then return ‘INVALID PROOF’
v13 finishSkolem (V)
v14 return ‘VALID PROOF’

Fig. 1. Procedure to check QRAT proofs and output Skolem functions.

B. Extracting Skolem Functions

The basic QRAT validation algorithm can easily be en-
hanced to produce Skolem functions. In Fig. 1 this is shown
by the lines 1 and 2 (initialization), line 9 (producing Skolem
functions), and line 13 (termination). Notice that although
the QRAT proof system uses six rules, recall Table II, the
Skolem functions only depend on one of them, i.e., quantified
resolution asymmetric tautology elimination (E1). The reason
why only (E1) has be to taken into account is that the other
rules either strengthen or preserve logical equivalence.

Fig. 2 shows the procedures used to extract the Skolem
functions. An important part of the extraction algorithm is
the global array last which contains for each variable in the
QRAT proof a pointer to the last variable on which its Skolem
function depends. Initially, see initSkolem, last[x] := x for
existential variables and last[x] := 0 for universal variables,
since there are no Skolem functions for universal variables.
After the QRAT proof has been validated, for all variables x
pointed to in the last array, a Skolem function fx(U) is added
that is always true (>) (see finishSkolem).

The real work is done in the addSkolem procedure. This
algorithm is inspired on the solution reconstruction procedure
for RAT proofs, the variant of QRAT for propositional (SAT)
formulas [20]. The algorithm works as follows: pick an
arbitrary assignment. Loop over all clauses in the RAT proof in
reverse order. If a clause is falsified by the current assignment,
flip the truth value of the pivot. In order to make this algorithm
produce Skolem functions out of QRAT proofs, some changes
have to be made. Most importantly, we need to respect the
quantifier prefix, because Skolem functions may not depend
on variables that are more inner w.r.t. the quantifier prefix.

The addSkolem procedure uses two sub-procedures of
which the pseudo-code is not shown: pol(l) and eval(F). The
procedure pol(l) simply returns the polarity of literal l, i.e.,

> if l is a positive literal and ? if l is a negative literal.
The procedure eval(F) returns the clause set F under the
current Skolem functions. It replaces each positive literal x
with flast[x](U) and each negative literal x̄ by ¬flast[x](U).
For example, the expression eval((a_ b̄)^ (c)) is replaced by
(flast[a](U) _ ¬flast[b](U)) ^ flast[c](U).

At the end of Section IV, we discussed how to update
Skolem functions when adding a QRAT clause C. This update
step requires to evaluate the outer formula of the pivot. The
outer formula can be large which in turn would make the
Skolem functions large. Therefore, we first check whether we
can avoid computing the outer formula. This can be done when
C 0, a copy of C with all inner literals to the pivot removed, has
QRAT as well. In that case, we only need to check whether
the outer clause of C w.r.t. the pivot is falsified.

Now we have all elements to explain the addSkolem
procedure. A new existential variable y is created (line 2).
Afterwards, we compute C 0, a copy of C with all inner literals
to the pivot are removed (line 3). If C 0 has QRAT on l w.r.t.
⇧. (line 4) then the Skolem function for the pivot becomes
as shown in the pseudo-code on line 5. Otherwise, we need
to compute the outer formula of the pivot and use it for
the Skolem function (line 7). The procedure terminates by
updating the last array using y (line 8).

initSkolem (prefix ⇧, set of variables V)
iS1 foreach x 2 V do
iS2 if Q(⇧.x) = 8 then last[x] := 0 else last[x] := x

addSkolem (QBF formula ⇧. , clause C, literal l)
aS1 let x be last[var(l)]

aS2 let y be a new existential variable
aS3 let C0 := {k 2 C | k ⇧ l}
aS4 if C0 has QRAT on l w.r.t. ⇧. then
aS5 fx(U) := if(eval(O(⇧, C, l)) then fy(U) else pol(l)

aS6 else
aS7 fx(U) := if(eval(OF(⇧, C, l))) then pol(l) else fy(U)

aS8 last[var(l)] := y

finishSkolem (set of variables V)
fS1 foreach x 2 V do
fS2 if last[x] 6= 0 then flast[x](U) := >

Fig. 2. Procedures to init, add, and finish Skolem functions.

C. Running Example

The true QBF below is used to illustrate how the extraction
of Skolem functions from a QRAT proofs works:

⇧. := 9a, b8x, 9c.(a _ b) ^ (ā _ b̄) ^ (ā _ x _ c) ^ (x̄ _ c̄)

Fig. 3 shows how this formula looks in the QDIMACS format,
which is used by most QBF solvers and preprocessers (left)
and a QRAT proof for that formula (right). Note that in QRAT
proofs, the pivot of clause C is the first literal appearing in
the clause deletion line corresponding to C. The initialization

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 111

true QBF formula in DIMACS

p cnf 4 4
e 1 2 0
a 4 0
e 3 0

1 2 0
-1 -2 0

-1 3 4 0
-3 -4 0

satisfaction QRAT proof

d -2 -1 0
2 3 4 0

d -1 3 4 0
d 1 2 0
d 2 3 4 0
d -3 -4 0

Fig. 3. A true QBF (left) with a satisfaction proof (right). The formula
and proof are spaced to improve readability. Proofs consist of two kind
of lines: addition (no prefix) and deletion (“d ” prefix). The formula and
proof represent our running example in the DIMACS and QRAT format,
respectively. Variables in both formats are numbers. The following mapping
is used a corresponds to 1, b to 2, c to 3, and x to 4. Negative literals are
shown as negative numbers.

of Skolem functions will assign the last array as follows:
last[a] := a, last[b] := b, last[c] := c, and last[x] := 0.

The proof consists of the following steps. First, C := (ā_ b̄)
is removed from using b̄ as pivot. Since C has no inner
literals, C 0 := C and consequently C 0 has QRAT on b̄ w.r.t.
the new (from which C has been removed). We introduce
a new existential variable b1. Now the Skolem function fb(U)
will be – with eval(ā) replaced by ¬fa(U), and pol(b̄) by ?:

fb(U) := if(¬fa(U)) then fb1(U) else?
The second step in the proof is adding clause (b _ x _ c)

to . Since this involves clause addition, no Skolem function
is added. The third step is the most tricky one. Clause C :=
(ā _ x _ c) is now removed using pivot ā and checked for
redundancy. Both x and c are inner to ā, so C 0 := (ā). C 0 does
not have QRAT on ā w.r.t. the new (which now contains
(b_x_c), but no longer has (ā_x_c)). In this case the outer
formula F := (b). Although F is small, it can be almost as
large as in the worst case. Now, the Skolem function fa(U)
will be – with eval(F) replaced by fb1(U) and pol(a) by ?:

fa(U) := if(fb1(U)) then? else fa1(U)

The fourth step concerns the removal of (a_ b) using pivot
a. This step is practically the same as the first step. Now
last[a] = a1, so we compute for Skolem function fa1(U):

fa1(U) := if(fb1(U)) then fa2(U) else>
In the fifth step, C := (b_ x_ c), which was added in step

two, is removed. Again, the literals x and c are inner to b.
This results in C 0 := (b). In contrast to step three, this C 0 has
QRAT on b w.r.t. the current because no longer contains
any clause with literal b̄.

fb1(U) := if(?) then fb2(U) else>
Finally, the last clause (x̄_ c̄) is removed with pivot c̄. The

Skolem function fc(U) will be:

fc(U) := if(¬x) then fc1(U) else?

After the QRAT proof has been validated, we call
finishSkolem which does the following assignments:
fa2(U) := fb2(U) := fc1(U) := >. Using these Skolem func-
tions, we can set the earlier Skolem functions to fa(U) := ?,
fb(U) := >, and fc(U) := ¬x.

VI. IMPLEMENTATION, OPTIMIZATION AND VALIDATION

We enhanced our QRAT checking tool, called QRAT-trim,
with Skolem function extraction capabilities.2 The Skolem
functions can be emitted as a propositional formula in DI-
MACS format or as an and-inverter-graph in AIGER format.
This section describes some details about our implementation,
optimizations and validation of Skolem function extraction.

A. Reducing the Size of the Outer Formula

The outer formula computed in line 7 of the addSkolem
procedure (Fig. 2) is typically much larger than necessary and
consequently makes Skolem functions larger than necessary. In
order to produce smaller Skolem functions, we implemented
the following optimization (using the notation in addSkolem):
For all D 2 with l̄ 2 D, we compute the outer resolvent
R = O(⇧, D, l̄) [C 0. We check whether ALA(', R) is a
tautology and store all O(⇧, D, l̄) for which the corresponding
R is not a tautology. The alternative outer formula becomes
the conjunction of these O(⇧, D, l̄) together with the negation
of C 0 \ {l}.

B. Value of Final Skolem Functions

We presented finishSkolem such that it assigns all Skolem
functions flast[x](U) := >. However, for some variables,
flast[x](U) := ? is much more effective. We observed that
the best truth value for final Skolem functions flast[x] is based
on the polarity of a literal that was a pivot for a QRAT
check. For some variables x (typically a few hundred for each
benchmark), there are QRAT checks with literal x as a pivot,
but no QRAT checks with literal x̄ as pivot (or the other way
around). By assigning flast[x](U) := > (or flast[x](U) := ?,
respectively), and apply simplification, we obtain the Skolem
functions fx(U) := > (or fx(U) := ?, respectively).

C. Validation of Skolem Functions

Validating a set of Skolem functions consists of two checks.
If both checks succeeds, the set of Skolem functions is valid.
Let F be a set of Skolem functions for a QBF ⇧. . The first
check consists of substituting the existential variables in by
all the skolem functions in F . The resulting formula is negated
and checked by a SAT solver to be unsatisfiable.

The second check uses the AIG representation of the
Skolem functions and ⇧ to check that no input gate gi

(universal variable) influences the truth value of output gate go

(existential variable) with gi >⇧ go. So no universal variable
influences the truth of an inner-more existential variable.

Apart from implementing a tool that extracts Skolem func-
tions from a QRAT proof, we also implemented a tool that

2The QRAT-trim version with Skolem function extraction is available on
http://www.cs.utexas.edu/⇠marijn/skolem/.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 112

checks whether the Skolem functions are correct. A tool, called
CertCheck [21], has the same functionality but uses a more
strict check for the second part, i.e, whether the truth of no
existential variable x depends on the truth value of any variable
(also existential) inner to x. This check is too restrictive to
validate our Skolem functions.

Example 2. Consider the formula 9a8b9c.(a_b_c)^(ā_c̄). A
possible QRAT proof for this formula removes first (a_ b_ c)
with pivot c and afterwards (ā_ c̄) with pivot ā. The latter is
allowed because after removing (a_b_c) the prefix collapses
to 9a, c. Our procedure for extracting Skolem functions can
result in fa(U) = ¬fc(U) and fc(U) = > (depending on
which optimizations are used). Although the Skolem function
for a depends on the Skolem function for c which is inner to a,
the Skolem functions are correct because the Skolem function
of a does not depend on a universal variable inner to a.

Our validation tool called cheskol uses the less restrictive
dependency check and emits the result of substitution and
negation as a formula in DIMACS format (after Tseitin
encoding), the typical input format for SAT solvers.

TABLE II
STATISTICS OF EXTRACTING SKOLEM FUNCTIONS FROM QRAT PROOFS

PRODUCED BY BLOQQER ON QBF EVAL 12 BENCHMARKS.

.

formula sol-t ext-t tr-s ch-t qbc-s
c3 BMC p1 k2 1.08 2.10 1777 0.04 71
counter 8 0.39 0.38 266 0.07 37
itc-b13-fixpoint-8 16.32 75.53 124969 337.80 14756
k branch n-16 6.12 137.40 13127 7.14 1296
k branch n-7 3.71 25.33 25449 337.41 7467
k d4 n-10 1.08 3.23 5688 31.45 1988
k d4 n-11 1.22 3.97 6401 42.20 2244
k d4 n-14 1.58 7.36 9379 25.05 3158
k d4 n-15 1.75 8.78 10536 86.55 3459
k d4 n-20 2.53 18.94 16637 94.76 4885
k d4 n-21 2.75 22.08 18442 140.58 5296
k dum n-10 0.17 0.42 262 0.06 62
k dum n-11 0.23 0.49 335 0.07 74
k dum n-12 0.26 0.47 342 0.07 63
k dum n-16 0.26 0.60 432 0.09 95
k dum n-20 0.33 0.85 657 0.18 158
k dum n-21 0.44 0.93 761 0.32 204
lights3 021 1 022 0.18 0.46 253 0.09 54
lights3 021 1 033 0.23 0.41 388 0.07 47
lights3 035 1 059 0.39 0.70 639 0.34 111
rankfunc0 unsigned 64 1.70 7.55 3244 36.69 4985
rankfunc16 unsigned 16 0.33 1.42 783 0.83 342
rankfunc24 signed 32 0.56 1.82 1049 10.37 902
rankfunc27 unsigned 32 0.44 0.80 1446 1.90 569
rankfunc52 signed 64 1.80 9.23 3652 363.51 5058
s3330 d2 s 10.60 19.23 122569 3.59 798
stmt137 903 911 0.39 0.54 1037 0.27 112
stmt1 629 630 0.72 1.20 1671 0.74 187
stmt17 99 98 1.22 2.69 3388 2.19 373
stmt27 584 603 0.42 0.63 975 0.27 132
stmt27 946 955 0.39 0.53 977 0.32 113
stmt41 118 131 0.36 0.52 774 0.68 166
sol-t/ext-t/ch-t: solving/extraction/checking time (sec)
tr-s/qbc-s: size of QRAT file/qbc file (kilobyte)

VII. EXPERIMENTAL EVALUATION

At the moment, our preprocessor bloqqer is the only tool
able to produce QRAT proofs. As it is not a complete solver,
we consider the true formulas of the benchmark suite from
QBF Eval 12 which can be solved by bloqqer. We showed
in earlier work [12] that bloqqer with and without QRAT
proof logging solves the same instances. In the following, we
evaluate how our Skolem function extraction algorithm per-
forms on the formulas for which QRAT proofs are available.
Table II shows the results of our Skolem function extraction
tool, i.e., a modified version of QRAT-trim. We converted all
our proofs to the QBC format in order to make a comparison
with other tools more clear. Notice that the extracted Skolem
functions are typically smaller than the used QRAT proofs. We
validated our Skolem functions using cheskol which checks
the dependencies and computes whether the Skolem functions
imply the formula using the SAT solver lingeling [22].

Janota et al. [19] restricted bloqqer such that it is able
to produce resolution (RES) proofs. However, several prepro-
cessing techniques are not supported by that approach. As a
consequence, their modified version of bloqqer solves less
formulas (only 22 out of 32). If a formula cannot be solved by
bloqqer they use the solver depQBF to compute a resolution
proof of the simplified formula. They merge the certificate
(resolution proof) obtained from depQBF with the partial cer-
tificate obtained from their bloqqer. The results of resolution-
based approaches, our approach and some older tools [15],
[16], [14] that are shown in Table III. The only tool that
has comparable performance compared to our bloqqer+QRAT
approach is bloqqer+RES+depQBF — although it cannot
solve four of the harder benchmarks in the test suite.

A. Comparing the Size of Skolem Functions

If all preprocessing techniques are turned on, the average
size of the Skolem functions produced by bloqqer+QRAT
is larger than those from bloqqer+RES+depQBF. Recall that
bloqqer+RES+depQBF does not support several preprocess-
ing techniques. Consequently, unsupported techniques such
as covered clause elimination (QCCE) [23] are turned off.
Although bloqqer+QRAT supports QCCE, using it has a
negative impact on the size of Skolem functions. On harder
benchmarks, the Skolem functions are about four times larger
due to this technique. Hence, turning QCCE off reduces the
size of Skolem functions significantly — at the cost of solving
one formula less (s3330 d2 s).

For a fair comparison between the size of Skolem func-
tions produced by both approaches, we turn off QCCE for
bloqqer+QRAT as done by bloqqer+RES+depQBF. The AIG
files of the bloqqer+QRAT approach are converted into QBC
certificates to have the same file format. The scatter plot
shown in Fig. 4 illustrates that the Skolem functions ex-
tracted by bloqqer+QRAT are smaller than those produced by
bloqqer+RES+depQBF, especially for the harder benchmarks.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 113

TABLE III
RESULTS OF SKOLEM FUNCTION PRODUCING TOOLS ON QBF EVAL 12

solver sol-# sol-t ch-# ch-t cer-s
bloqqer+QRAT 32 1 32 47 1851
bloqqer+RES 22 1 22 1 861
bloqqer+RES+depQBF 28 113 27 13 1040
depQBF 2 843 2 1 224
ebdd 15 491 7 118 409479
squolem 16 465 16 2 382
sKizzo 23 275 23 1 108750
sol-#: # solved formulas, sol-t: avg. solving time (s),
ch-#: checked certificates, ch-t: avg. checking time (s)
cer-s: avg. certificate size (kilobyte)

VIII. CONCLUSION AND FUTURE WORK

The QRAT proof system is the first framework that allows
verification of all preprocessing techniques for QBFs. We
developed an algorithm that extracts Skolem functions of
QRAT proofs. Hence, the techniques presented in this paper
allow us to obtain Skolem functions for all QBF preprocessing
techniques. Moreover, these Skolem functions are smaller than
those produced by alternative approaches – a very favorable
property for many synthesis applications.

We expect that the produced Skolem functions can be
further reduced in size: we applied the circuit simplification
tool ABC [24] on the AIGs representing the set of Skolem
functions and noticed a significant reduction. However, the
simplified Skolem functions are not necessarily valid, as ABC
is not aware of the dependency restrictions. In future, we want
to consider Skolem function reduction by circuit simplification
while taking into account the dependencies.

ACKNOWLEDGEMENTS

This work was supported by the Austrian Science Fund
(FWF) through the national research network RiSE (S11408-
N23), Vienna Science and Technology Fund (WWTF) under
grant ICT10-018, DARPA contract number N66001-10-2-4087
and National Science Foundation grant no. CCF-1153558.

REFERENCES

[1] R. Bloem, R. Könighofer, and M. Seidl, “SAT-Based Synthesis Methods
for Safety Specs,” in VMCAI, ser. LNCS, vol. 8318. Springer, 2014.

[2] M. Benedetti and H. Mangassarian, “QBF-Based Formal Verification:
Experience and Perspectives,” JSAT, vol. 5, no. 1-4, pp. 133–191, 2008.

[3] H. Kleine Büning and U. Bubeck, “Theory of Quantified Boolean
Formulas,” in Handbook of Satisfiability, 2009.

[4] C. Ansótegui, C. P. Gomes, and B. Selman, “The achilles’ heel of qbf,”
in AAAI. AAAI Press / The MIT Press, 2005, pp. 275–281.

[5] H. Kleine Büning, K. Subramani, and X. Zhao, “Boolean functions as
models for quantified boolean formulas,” J. Aut. Reas., vol. 39, no. 1,
2007.

[6] E. Giunchiglia, P. Marin, and M. Narizzano, “Reasoning with quantified
boolean formulas,” in Handbook of Satisfiability. IOS Press, 2009, vol.
185, pp. 761–780.

[7] V. Balabanov and J.-H. R. Jiang, “Resolution Proofs and Skolem
Functions in QBF Evaluation and Applications,” in CAV, ser. LNCS,
vol. 6806. Springer, 2011, pp. 149–164.

 100

 1000

 10000

 100 1000 10000

si
ze

 o
f Q

BC
 S

ko
le

m
 fu

nc
tio

ns
 o

f b
lo

qq
er

 +
 R

ES
 +

 D
ep

Q
BF

size of QBC Skolem functions of bloqqer + QRAT

Fig. 4. Comparison between the size (in kilobyte) of QBC Skolem functions
produced by the bloqqer+QRAT and bloqqer+RES+depQBF approaches
on QBF Eval 2012 benchmarks. Above the line means that bloqqer+QRAT
produces smaller files. Unsolved formulas are shown as a 20,000 kb file.

[8] A. Goultiaeva, A. Van Gelder, and F. Bacchus, “A Uniform Approach
for Generating Proofs and Strategies for Both True and False QBF
Formulas,” in IJCAI. IJCAI/AAAI, 2011, pp. 546–553.

[9] A. Biere, “Resolve and expand,” in SAT (Selected Papers), ser. LNCS,
vol. 3542. Springer, 2004, pp. 59–70.

[10] A. Biere, F. Lonsing, and M. Seidl, “Blocked clause elimination for
QBF,” in CADE 2011, ser. LNCS, vol. 6803. Springer, 2011.

[11] M. Janota and J. Marques-Silva, “On Propositional QBF Expansions and
Q-Resolution,” in SAT 2013, ser. LNCS, vol. 7962. Springer, 2013, pp.
67–82.

[12] M. J. H. Heule, M. Seidl, and A. Biere, “A Unified Proof System for
QBF Preprocessing,” in IJCAR 2014, ser. LNCS, vol. 8562. Springer,
2014, pp. 91–106.

[13] M. J. H. Heule, M. Järvisalo, and A. Biere, “Clause elimination
procedures for CNF formulas,” in LPAR-17, ser. LNCS, vol. 6397.
Springer, 2010, pp. 357–371.

[14] M. Benedetti, “Skizzo: A suite to evaluate and certify QBFs,” in CADE-
20, ser. LNCS, vol. 3632. Springer, 2005, pp. 369–376.

[15] T. Jussila, A. Biere, C. Sinz, D. Kröning, and C. Wintersteiger, “A first
step towards a unified proof checker for QBF,” in SAT 2007, ser. LNCS.
Springer, 2007, vol. 4501, pp. 201–214.

[16] T. Jussila, C. Sinz, and A. Biere, “Extended resolution proofs for
symbolic sat solving with quantification,” in SAT, ser. LNCS, A. Biere
and C. P. Gomes, Eds., vol. 4121. Springer, 2006, pp. 54–60.

[17] M. Janota, W. Klieber, J. Marques-Silva, and E. M. Clarke, “Solving
QBF with Counterexample Guided Refinement,” in SAT 2012, ser.
LNCS, vol. 7317. Springer, 2012.

[18] R. Könighofer and M. Seidl, “Partial witnesses from preprocessed
quantified boolean formulas,” in DATE. IEEE, 2014, pp. 1–6.

[19] M. Janota, R. Grigore, and J. Marques-Silva, “On QBF Proofs and
Preprocessing,” in LPAR, ser. LNCS, vol. 8312. Springer, 2013.

[20] M. Järvisalo, M. J. H. Heule, and A. Biere, “Inprocessing rules,” in
IJCAR, ser. LNCS, vol. 7364. Springer, 2012, pp. 355–370.

[21] A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, and A. Biere, “Resolution-
Based Certificate Extraction for QBF,” in SAT 2012, ser. LNCS, vol.
7317, 2012, pp. 430–435.

[22] A. Biere, “Lingeling, Plingeling and Treengeling entering the SAT
competition 2013,” in Proceedings of SAT Competition 2013, 2013.

[23] M. J. H. Heule, M. Järvisalo, and A. Biere, “Covered clause elimination,”
in LPAR-17-short, ser. EPiC Series, A. Voronkov, G. Sutcliffe, M. Baaz,
and C. Fermüller, Eds., vol. 13. EasyChair, 2013, pp. 41–46.

[24] Berkeley Logic Synthesis and Verification Group, ABC: A System
for Sequential Synthesis and Verification. http://www.eecs.berkeley.edu/
⇠alanmi/abc/.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 114

Small Inductive Safe Invariants

Alexander Ivrii
IBM Research

alexi@il.ibm.com

Arie Gurfinkel
Software Engineering Institute

http://arieg.bitbucket.org

Anton Belov
Synopsys

http://anton.belov-mcdowell.com

Abstract—Computing minimal (or even just small) certificates
is a central problem in automated reasoning and, in particular,
in automated formal verification. For example, Minimal Un-
satisfiable Subsets (MUSes) have a wide range of applications
in verification ranging from abstraction and generalization to
vacuity detection and more. In this paper, we study the problem
of computing minimal certificates for safety properties. In this
setting, a certificate is a set of clauses Inv such that each clause
contains initial states, and their conjunction is safe (no bad
states) and inductive. A certificate is minimal, if no subset of
Inv is safe and inductive. We propose a two-tiered approach for
computing a Minimal Safe Inductive Subset (MSIS) of Inv . The
first tier is two efficient approximation algorithms that under-
and over-approximate MSIS, respectively. The second tier is an
optimized reduction from MSIS to a sequence of computations
of Maximal Inductive Subsets (MIS). We evaluate our approach
on the HWMCC benchmarks and certificates produced by our
variant of IC3. We show that our approach is several orders of
magnitude more effective than the naı̈ve reduction of MSIS to
MIS.

I. INTRODUCTION

Computing minimal (or even just small) certificates is a
central problem in automated reasoning, and, in particular,
in Model Checking. For reachability, the certificates take the
form of counterexamples. It is widely believed that small
counterexamples are the key to success of Model Checking
in practice, as they increase user comprehension and provide
better fault localization. In SAT-based Bounded Model Check-
ing (BMC), the certificates for bounded safety (i.e., absence
of counterexamples bounded by a given fixed length) corre-
spond to unsatisfiable subsets. Minimal Unsatisfiable Subsets
(MUSes) have a wide range of applicability. For example,
they are a key ingredient in Proof-Based Abstraction [1],
and have also been used to improve user’s comprehension of
verification results through vacuity [2]. For Unbounded Model
Checking (or unreachability) the certificates are represented
by safe inductive invariants. A recent trend, borrowing from
the breakthroughs in Incremental Inductive Verification (such
as IMC [3], IC3 [4], and PDR [5]), is to represent such
invariants by a set of simple lemmas. In this paper, we study
the problem of efficiently minimizing the set of such lemmas,
and especially constructing a minimal safe inductive subset of
a given safe inductive invariant. We focus on the algorithmic
aspects of the problem and on empirical evaluation, and leave
exploring the numerous potential applications for future work.

Throughout the paper, we assume that all formulas are in
CNF and that a safe inductive invariant is represented by a
set of clauses Inv such that each clause contains the initial

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. This material has been approved for public release and unlimited distribution. DM-0001309.

states, and their conjunction is invariant under the transition
relation and does not contain any bad states. The set Inv is
minimal, called Minimal Safe Inductive Invariant (MSIS), if,
in addition to being safe and inductive, no subset of Inv is
safe and inductive.

In this paper, we make the following contributions. First,
in Section III, we show that computing an MSIS is reducible
to a sequence of computations of Maximal Inductive Subset
(MIS). While this yields a simple-to-implement algorithm, we
show that it is not efficient. Second, we propose a two-tiered
algorithm. The first tier, described in Section IV, consists
of two approximation algorithms. The first algorithm under-
approximates an MSIS by identifying the necessary clauses
that are shared between all MSISs. The second, uses a se-
quence of MUS computations to over-approximate an MSIS.
While these algorithms do not guarantee minimality, they can
be used as an effective pre-processing step. The second tier,
described in Section V, consists of two alternative optimized
reductions from MSIS to MIS. The key idea is to combine
the basic MSIS to MIS reduction with some of the pre-
processing techniques to reduce the number of redundant SAT
calls in each MIS computation. Third, we evaluate all of
the algorithms on the benchmarks from the Hardware Model
Checking Competition. We show that our ultimate algorithm
that combines pre-processing and optimizations is several order
of magnitude faster than the naı̈ve approach. Furthermore, we
show that the technique is extremely effective at reducing the
size of the certificate, compared to the certificate produced by
our custom variant of IC3.

To our knowledge, the problem of computing MSIS is not
widely studied in SAT-based Model Checking (as opposed to
computing minimal counterexamples or minimal unsatisfiable
subsets). The only alternative solution is proposed by Bradley
et al. [6] in the context of FAIR algorithm, which is similar
to our base algorithm in Section III. However, we show that
it does not scale in our context. On the other hand, we
believe that efficient algorithms for computing MSIS are just
as important as efficient algorithms for computing minimal
unsatisfiable subsets, and they are necessary for extending
many of the applications (in particular vacuity and abstraction)
from BMC to Unbounded Model Checking. We believe that
our work lays the foundation for numerous applications of
small safety certificates in SAT-based Model Checking.

II. PRELIMINARIES

Let V be a set of variables. A literal is either a variable
b ∈ V or its negation ¬b. A clause is a disjunction of literals.
A Boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. It is often convenient to treat a clause

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 115

Input: P = (Init ,Tr ,Bad), CNF L
Output: Inv ⊆ L the MIS of L relative to P

1 Inv ← L
2 forever do
3 let R = {d ∈ Inv | (Inv ∧ Tr) 6⇒ d′}
4 if R 6= ∅ then
5 Inv ← Inv \R

Fig. 1. A generic MIS algorithm.

as a set of literals, and a CNF as a set of clauses. For example,
given a CNF formula F , a clause c and a literal `, we write
` ∈ c to mean that ` occurs in c, and c ∈ F to mean that c
occurs in F .

A variable assignment is a map σ : V → {>,⊥} that
assigns > or ⊥ to every variable in V . A clause c is satisfied
by an assignment σ if σ(`) = > for a literal ` ∈ c. A CNF
formula F is satisfied by σ if σ satisfies every clause in F . A
CNF formula is SAT if there exists an assignment that satisfies
it and is UNSAT otherwise.

A SAT-solver is a complete decision procedure for propo-
sitional formulas in CNF. We assume that the reader is familiar
with the basic interface of an incremental solver. We use the
following API: (a) Sat_Add(ϕ) adds clauses corresponding
to the formula ϕ to the solver; (b) Sat_Checkpoint() saves
the current state of the solver; (c) Sat_Rollback() restores
the solver to the previously saved state.

Let F be an UNSAT CNF formula. A minimal unsatisfiable
subset (MUS) of F is a subset of clauses U ⊆ F such that
U is UNSAT, and for every clause c ∈ U , U \ {c} is SAT.
There are many efficient algorithms for computing an MUS
[7]–[9]. In the paper, we write Sat_Mus(F) for a call to
an unspecified MUS algorithm. We assume that the MUS is
always computed relative to the clauses already added to the
solver using Sat_Add.

Let V be a set of variables and V ′ = {v′ | v ∈ V}. A safety
verification problem is a tuple P = (Init ,Tr ,Bad), where
Init(V) and Bad(V) are formulas with free variables in V
denoting initial and bad states, respectively, and Tr(V,V ′) is
a formula with free variables in V ∪V ′ denoting the transition
relation. Without loss of generality, we assume that Init and
Tr are in CNF, and that Bad is a single literal.

The verification problem P is SAT (or UNSAFE) iff there
exists a natural number N such that the following formula is
SAT:

Init(~v0) ∧
(
N−1∧
i=0

Tr(~vi, ~vi+1)

)
∧ Bad(~vn) (1)

P is UNSAT (or SAFE) iff there exists a formula Inv(V),
called a safe invariant, that satisfies the following conditions:

Init(~v)⇒ Inv(~v) Inv(~v) ∧ Tr(~v,~v′)⇒ Inv(~v′) (2)
Inv(~v)⇒ ¬Bad(~v) (3)

A formula Inv that satisfies (2) is called an invariant, while
a formula Inv that satisfies (3) is called safe. Without loss of
generality, we assume that ¬Bad ∈ Inv .

Input: (Init ,Tr ,Bad), safe inductive invariant Invo
Output: A minimal safe inductive subset Inv ⊆ Invo

1 Inv ← Invo ;W ← Invo
2 while W 6= ∅ do
3 c← a clause from W ;W ←W \ {c}
4 X ← MIS((Init ,Tr ,Bad), Inv \ {c})
5 if (X ⇒ ¬Bad) then Inv ← X

Fig. 2. A naı̈ve MSIS algorithm for Minimal Safe Inductive Subset.

Throughout the paper, we fix a problem P =
(Init ,Tr ,Bad). Let L be a formula in CNF. A maximal
inductive subset (MIS) of L relative to P is the largest subset
Inv ⊆ L that satisfies (2). There are several algorithms for
computing MIS [10]–[12]. A generic MIS algorithm is shown
in Fig. 1, in which we first set Inv to L, and then we repeatedly
remove those clauses R ⊆ Inv that fail to be inductive relative
to Inv . We write MIS(L) for a call to an MIS algorithm.

III. MINIMAL SAFE INDUCTIVE SUBSET

Fix a safety verification problem P = (Init ,Tr ,Bad), and
let Inv be a safe inductive invariant of P in CNF. A subset
of clauses S ⊆ Inv is called a safe inductive subset of Inv
relative to P if S is inductive and safe. S is minimal if any
subset of S is either not safe or not inductive. In this section,
we give a basic algorithm to compute a minimal safe inductive
subset (MSIS) of a safe inductive invariant in CNF.

The algorithm is shown in Fig. 2. It works by a repeated
application of the MIS algorithm. The input is a safety problem
and a safe inductive invariant Invo. The algorithm keeps a
work-set W of yet unprocessed elements of Invo. In each
iteration of the loop, a clause c ∈ W from the work-set
(line 3) is removed, and an MIS algorithm is used to compute
the maximal inductive subset X of Inv \ {c} (line 4). If
X is also safe, then X represents a smaller safe inductive
invariant of Inv (not containing c and possibly some additional
clauses), and so Inv is replaced by X (line 5). Otherwise, c
must belong to an MSIS of Invo. The algorithm terminates
when there are no more unprocessed clauses, at which point
we claim that Inv is an MSIS of Invo. The fact that Inv
remains safe follows from the fact that the initial invariant
Invo was safe and that each update of Inv maintains that. For
the sake of contradiction, suppose that Inv is not minimal, i.e.
that there is a minimal safe inductive invariant Invm (Inv .
Take any clause c ∈ Inv \ Invm. Consider the iteration of the
loop corresponding to the removal of c from W and let Inv1

represent Inv on that iteration. Since c was not removed from
Inv1, the maximal inductive subset of Inv1 \ {c} is not safe.
On the other hand, Invm is a safe inductive subset of Inv \{c}
and hence of Inv1 \ {c}, leading to a desired contradiction.

While this naı̈ve algorithm is simple, it is not efficient. In
our experience, the calls to MIS are the bottleneck. Further-
more, the algorithm makes a lot of redundant calls because it
does not take into account the dependency between clauses.
Often, the inductive clauses occur in a group such that re-
moving any one of the clauses makes the MIS of the result
unsafe. In the rest of the paper, we propose two significant im-
provements. First, in Section IV, we give efficient algorithms
to under- and over-approximate MSIS. While these algorithms

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 116

Input: (Init ,Tr ,Bad), Inv ,No ⊆ Inv s.t. ¬Bad ∈ No
Output: safe necessary set N s.t. No ⊆ N ⊆ Inv

1 ϕ← (
∧
c∈No

c) ∧ (
∧
c∈Inv\No

ac ⇔ c) ∧
2 (

∑
c∈Inv\No

āc ≤ 1) ∧ Tr
3 Sat_Add(ϕ)
4 N ← No ;W ← No
5 while W 6= ∅ do
6 d← a clause from W ;W ←W \ {d}
7 while ϕ ∧ ¬d′ is SAT (with model M) do
8 let c ∈ Inv \ N be a clause s.t. M |= (ac = 0)
9 Sat_Add(ac)

10 N ← N ∪ {c} ;W ←W ∪ {c}
Fig. 3. NEC algorithm.

do not necessarily compute a minimal set, they are used as
effective pre-processing steps. Second, in Section V, we give
a more efficient variant of MSIS that attempts to minimize
the amount of wasted work in each iteration and show how to
combine it with the over- and under-approximating algorithms.
Our results in Section VI show that this achieves orders of
magnitude improvements in performance.

IV. APPROXIMATING SIS

In this section, we present two algorithms to approximate
a MSIS of a given inductive invariant Inv . The first algorithm,
called NEC, under-approximates an MSIS by identifying a
set of clauses that must be included in any safe inductive
subset. The second algorithm, called FEAS, over-approximates
an MSIS by removing clauses that do not belong to some
SIS. Throughout the section, we fix a verification problem
P = (Init ,Tr ,Bad) and let Inv be a safe inductive invariant
of P .

A. Necessary Under-Approximation

A clause c ∈ Inv is called safe necessary (or necessary for
short) if c is included in every MSIS of Inv . While computing
all necessary clauses is expensive, they can be approximated
by the set NEC defined as the smallest subset of Inv that
satisfies the following recursive definition:

¬Bad ∈ NEC
∀c ∈ Inv , d ∈ NEC · (Inv \ {c} ∧ d ∧ Tr 6⇒ d′)⇒ c ∈ NEC

That is, NEC contains the ¬Bad clause, and all clauses that
are necessary to ensure that other clauses in NEC remain
inductive. It is easy to show by induction that if a clause
c ∈ NEC then c is safe necessary. However, NEC does
not contain all necessary clauses. For example, consider the
problem P1 = (Init1,Tr1,Bad1) and Inv1, where

Init1 = Inv1 ≡ x ∧ y ∧ z (4)
Tr1 ≡ x′ = y ∧ y′ = x ∧ z′ = x ∨ y (5)

Bad1 ≡ ¬z (6)

Inv1 is a MSIS of itself. Thus, all of its clauses are necessary.
However, NEC 1 = {z} because

x ∧ z ∧ Tr1 ⇒ z′ y ∧ z ∧ Tr1 ⇒ z′

Input: (Init ,Tr ,Bad), Invo,N ⊆ Invo s.t. ¬Bad ∈ N
Output: A safe inductive set Inv s.t. N ⊆ Inv ⊆ Invo

1 Inv ← N , W ← N
2 while W 6= ∅ do
3 Sat_Checkpoint()
4 ϕ← Inv ∧ Tr ∧ (

∨
c∈W ¬c′)

5 Sat_Add(ϕ)
6 W ← Sat_Mus(Invo \ Inv)
7 Inv ← Inv ∪W
8 Sat_Rollback()

Fig. 4. FEAS algorithm.

The set NEC can be computed efficiently using an incre-
mental SAT solver, as shown in the algorithm in Fig. 3. The
algorithm takes as input a verification problem, an inductive
invariant Inv , and a starting subset No of Inv of safe necessary
clauses. We require that ¬Bad is in No, but it is possible for
No to include additional clauses as well (the value of this will
become clear in Section V-C). The output of the algorithm is
a possibly enlarged safe necessary subset N of Inv .

The algorithm starts by creating a Boolean formula ϕ
(line 1) consisting of the following components:

• The clauses c ∈ No.
• For each clause c ∈ Inv \No, we introduce a new variable
ac and clauses for c ⇔ ac (so that c is satisfied if and
only if ac evaluates to 1).

• Clauses for the at-most-one constraint over the negations
of the variables ac. In practice, we implement such
constraints using a sequential counter construction [13].

• The transition relation clauses Tr .

It maintains a work-set of yet unprocessed elements of N
in W . In each iteration of the outermost loop (line 5), a
clause d ∈ N is selected and tested using the SAT query
shown on line 7. Note that ¬d′ is passed via assumptions
interface. Suppose that this query is satisfiable. We claim
that in the satisfying assignment exactly one of the variables
ac is assigned to 0. Indeed, since Inv ∧ Tr ⇒ d′, not all
ac can be 0. On the other hand, assigning more than one
ac to 0 is prohibited by the at-most-one constraint. Letting
c ∈ Inv \ N be the corresponding clause, we obtain that
Inv \ {c} ∧ d ∧ Tr 6⇒ d′, and c can be added to NEC . This
is accomplished on lines 8–10 by marking c as necessary and
permanently setting ac to 1. The algorithm terminates when all
of the necessary clauses have been processed. The algorithm
makes at most 2|N | SAT queries: one satisfiable query for
each new clause in N and one unsatisfiable query for each
clause in N .

B. Feasible Over-Approximation

Given two subsets C,D ⊆ Inv , D is inductively supported
(supported for short) by C iff C is a set such that C∧D∧Tr ⇒
D′. That is, D is inductive relative to C. If D is supported
by C, then C inductively supports D. Given a safe inductive
invariant Invo, it is possible construct a SIS Inv of Invo by
first adding ¬Bad to Inv , and then, repeatedly, adding to Inv
supporting clauses of Inv until fix-point. Note that the fix-point
always exists. In the worst case, Inv = Invo.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 117

An optimized implementation of this idea is shown in
Fig. 4. In addition to Inv , we maintain a work-setW ⊆ Inv of
clauses which are not yet supported. On line 1, we initialize
both Inv and W to N (which includes ¬Bad and possibly
some additional clauses as well). Let us consider one iteration
of the loop (lines 3-8). Our goal is to support W by including
in Inv as few additional clauses as possible and we achieve it
by a reduction to Sat_Mus. Let ϕ = Inv∧Tr∧¬(

∨
c∈W ¬c′).

Since W can be supported by including all of the clauses in
Inv0 \Inv , the formula (Inv0 \Inv)∧ϕ is unsatisfiable. Thus,
the set of clauses required to support W can be computed
as Sat_Mus(Inv0 \ Inv) (with respect to ϕ). After this set
is found, we include it in Inv (line 7) and by induction this
set represents exactly the set of clauses of Inv not known
to be supported. If empty, then Inv is already a SIS, and the
algorithm terminates. The algorithm makes at most |F | queries
to Sat_Mus (and much fewer in practice).

We remark that even though we always choose a minimal
set of clauses to be added to Inv , the overall algorithm does not
necessary produce a MSIS. We illustrate this using the follow-
ing example. Consider the problem P2 = (Init2,Tr2,Bad2)
and Inv2, where

Init2 = Inv2 ≡ x ∧ y ∧ z (7)
Tr2 ≡ x′ = y ∧ y′ = y ∧ z′ = x ∨ y (8)
Bad ≡ ¬z (9)

It is easy to see that {z} is not inductive, but can be
supported by either x or y. Suppose that x is chosen and
is included to F . Since {x} itself is not supported, the next
iteration will include y as well, ending up with F = Inv2.
However, the MSIS of Inv2 is {y, z}.

We conclude this section with several observations on the
interaction between NEC and FEAS algorithms. First, we have
found that running FEAS after NEC produces tighter over-
approximations and takes less time on average then running
FEAS alone. This can be explained, as illustrated by the exam-
ple above, by the fact that FEAS heavily depends on the order
in which clauses are added to Inv . On the other hand, NEC
marks the necessary clauses that must be eventually included in
any SIS. Thus, FEAS makes better choices when started with
those clauses upfront and is faster on average. Second, for a
similar reason, we have found that the effort spent on finding a
minimal set W to be incrementally added to Inv also pays off
– both in terms of the quality of the final over-approximation
and the time spent by the algorithm. Finally, Bradley et al. [6]
suggest to over-approximate a SIS by computing a “global”
unsatisfable core of Invo ∧Tr∧¬Inv ′o by minimizing the set
of clauses of Invo required for unsatisfiability. We have not
found this approach useful, even with the MUS version of the
computation. In fact, on our benchmarks it seems that there
are large sets of clauses which can be removed from Invo but
which are required to support themselves. In such a case, the
global approach keeps these clauses in the over-approximation,
while the iterative approach has a good chance for removing
them.

V. MINIMAL INDUCTIVE SAFE INVARIANT

In this section, we present two algorithms for finding
a minimal inductive safe subset of a given safe inductive

Input: (Init ,Tr ,Bad), Invo,No ⊆ Invo s.t.
¬Bad ∈ No

Output: An MSIS Inv ⊆ Invo
1 Inv ← No ;W ← Invo \ No
2 while W 6= ∅ do
3 c← a clause from W
4 W ←W \ {c} ; U ← W
5 forever do
6 let R = {d ∈ Inv ∪ U | (Inv ∧ U ∧ Tr) 6⇒ d′}
7 if R = ∅ then
8 W ← U ; break
9 else if R ∩ Inv 6= ∅ then

10 Inv ← Inv ∪ {c} ; break
11 else U ← U \R

Fig. 5. An optimized SIS algorithm (OptMSIS).

invariant Inv . Our first algorithm (Section V-A) is a simple
yet powerful optimization of the basic algorithm from Fig. 2
which identifies the necessary clauses as soon as possible.
Our second algorithm (Section V-B) additionally exploits the
support dependency between different clauses in a MSIS
and avoids performing redundant computations as much as
possible.

A. Optimized MSIS algorithm

The OptMSIS algorithm is shown in Fig. 5. As before,
the input is a verification problem, an initial safe inductive
invariant Invo, and a subset No of safe necessary clauses of
Invo. The output is a minimal safe inductive invariant Inv .
We maintain two sets of clauses Inv and W such that the
while-loop satisfies the following invariants: (1) Inv ∪ W is
a safe inductive invariant, and (2) Inv is safe necessary for
Inv ∪W . Initially, Inv = No andW = Invo \ Inv . Intuitively,
the algorithm proceeds by selecting a clause c ∈ W and either
deducing that c is safe necessary (adding it to Inv) or finding
a safe inductive subset of Inv ∧ W that does not contain c
(shrinking W accordingly). The algorithm terminates when
W = ∅ at which point Inv is indeed a minimal safe inductive
invariant.

In more details, on each iteration of the while-loop we
select a clause c ∈ W , remove it from W , and denote the
resulting set by U (lines 3-4). Next, on each iteration of the
inner loop, we compute the set of clauses R ⊆ Inv ∪ U that
are no longer supported. On one hand, if R = ∅, then Inv ∪U
remains a SIS, which means that we have succeeded in remov-
ing c (and possibly some other clauses) fromW , in which case
we update W and proceed with the next unprocessed clause
(lines 7-8). On the other hand, if R∩ Inv 6= ∅, then one of the
necessary clauses in Inv becomes unsupported, in which case
we conclude that c must be included in any MSIS of Inv ∪W ,
mark c as necessary, and proceed with the next unprocessed
clause (lines 9-10). Finally, if all of the necessary clauses in
Inv remain supported but R 6= ∅, then the clauses in R cannot
be part of any SIS of Inv ∪U , and so we remove these clauses
from U and make another iteration of the inner loop (line 11).

In our implementation, we compute the clauses in R
incrementally, making a separate SAT query for each clause
d ∈ Inv ∪ U . This computation is aborted as soon as a clause

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 118

Input: (Init ,Tr ,Bad), Invo,No ⊆ Invo s.t.
¬Bad ∈ No

Output: An MSIS Inv ⊆ Invo
1 Inv ← No ;W ← Invo \ No
2 while W 6= ∅ do
3 c← a clause from W
4 S ← 〈{c}〉
5 forever do
6 Suppose that S = 〈C1, . . . , Cn〉
7 let R = {d ∈ Inv ∪ (W \ Cn) |
8 (Inv ∧ (W \ Cn) ∧ Tr) 6⇒ d′}
9 if R = ∅ then

10 W ←W \ Cn
11 S ← 〈C1, . . . , Cn−1〉
12 if S is empty then break
13 else if R ∩ Inv 6= ∅ then
14 Inv ← Inv ∪ C1 ∪ · · · ∪ Cn
15 W ←W \ (C1 ∪ · · · ∪ Cn)
16 break
17 else if R ∩ Ci 6= ∅ for some i ≤ n then
18 S ← 〈C1, . . . , Ci−1, Ci ∪ · · · ∪ Cn〉
19 else
20 d← a clause from R
21 S ← 〈C1, . . . , Cn, {d}〉

Fig. 6. Binary Implication Graph MSIS algorithm (BigMSIS).

from Inv is added to R. Furthermore, the clauses in Inv are
checked before the remaining clauses in U . In other words, the
OptMSIS corresponds to the naı̈ve MSIS algorithm in which
(1) the safe necessary clauses are marked as soon as they are
discovered, (2) computing an MIS is aborted as soon as one of
the necessary clauses becomes unsupported, and (3) necessary
clauses are checked first. In practice, this significantly reduces
the number of SAT queries done by the algorithm.

B. B.I.G. MSIS algorithm

Our ultimate algorithm for finding MSIS exploits the
dependency of including some clauses to a SIS based on the
inclusion of other clauses. We say that a clause c is necessary
for a clause d if c is included in every MSIS of Inv that
contains d. In particular, if Inv \ {c} ∧ Tr 6⇒ d′, then c is
necessary for d. From the definition, the necessary relation is
transitive: if c is necessary for d and d is necessary for e, then
c is necessary for e as well.

Consider a directed graph G on the clauses of Inv so that
there is an edge from a clause c ∈ Inv to d ∈ Inv if and only
if c is necessary for d. Them, for every strongly connected
component C of G and every MSIS Inv of Invo either all of
the clauses of C are included in Inv , or none of the clauses
of C are included in Inv .

The BigMSIS algorithm shown in Fig. 6 makes use of
these observations by incrementally learning and exploiting the
underlying graph structure. It has the same input and output as
the OptMSIS algorithm, and similarly keeps two sets Inv and
W ⊆ Invo such that Inv ∪W is safe and inductive and Inv
is safe necessary for Inv ∪ W . In addition, we use a vector
of sets 〈C1, . . . , Cn〉, with the following properties: (1) The
sets Ci are pairwise disjoint and contained in W; (2) For any

Input: (Init ,Tr ,Bad), safe inductive invariant Inv0

Output: minimal safe inductive invariant Inv s.t.
¬Bad ∈ Inv ⊆ Inv0

1 Inv ← Inv0; N ← {¬Bad}
2 N ← NEC((Init ,Tr ,Bad), Inv ,N)
3 Inv ← FEAS((Init ,Tr ,Bad), Inv ,N)
4 N ← NEC((Init ,Tr ,Bad), Inv ,N)
5 Inv ← MSIS((Init ,Tr ,Bad), Inv ,N)

Fig. 7. Combined MSIS algorithm.

i ≤ j, any clause c ∈ Ci, and any clause d ∈ Cj the clause c
is necessary for d. In particular, for every i all of the clauses
in Ci belong to the same connected component of the graph.

In the outermost while-loop of the algorithm we pick the
next unprocessed clause c ∈ W and initialize S to consist of a
single component {c}. We always focus on the last component
Cn of S. On each iteration of the inner loop we compute the
set R of clauses that become unsupported if Cn is removed
from Inv ∪ W . Let us analyze the possible outcomes of this
query in detail.

• (lines 9-12) The set Inv ∪ (W \ Cn) is inductive. Since
¬Bad ∈ Inv , it is also safe. In this case, we tighten
Inv by removing all of the clauses c ∈ Cn (and focus
on Cn−1, or proceed with the next unprocessed clause if
n = 1).

• (lines 13-16) A safe necessary clause in Inv is no longer
supported. It follows that every clause in C1∪· · ·∪Cn is
safe necessary as well. In this case we update the set Inv
by including all of the clauses in S (and proceed with the
next unprocessed clause).

• (lines 17-18) A clause d ∈ Ci is no longer supported. In
this case all of the clauses in Ci ∪ · · · ∪ Cn belong to
the same connected component, and we replace the sets
Ci, . . . , Cn in S by a single set Ci ∪ · · · ∪Cn (and focus
on this new set).

• (lines 19-21) A clause d ∈ W is no longer supported.
Moreover, d is not one of the clauses in S. In this case,
we add a new component Cn+1 = {d} to S (and focus
on Cn+1).

As before, in our implementation R is computed incre-
mentally. Moreover, we have found it beneficial to abort the
computation as soon as the first unsupported clause d ∈
Inv ∪ (W \ Cn) is found, and executing the corresponding
branch (13-16, 17-18 or 19-21) right away. In this respect,
BigMSIS is highly customizable: we can prioritize checking
first the known necessary clauses (Inv), or the clauses already
visited (S), or the clauses not yet explored.

Even though the high-level descriptions of OptMSIS and
BigMSIS are rather similar, there is an important theoretical
difference between the two algorithms: in the worst case,
OptMSIS executes its inner-loop a quadratic number of times,
while BigMSIS executes its inner-loop only a linear number
of times. We illustrate this using the following example. Con-
sider the problem P3 = (Init3,Tr3,Bad3) and an invariant

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 119

Inv3, where

Init3 = Inv3 ≡ x1 ∧ · · · ∧ xn (10)
Tr3 ≡ x′1 = xn ∧ x′2 = x1 ∧ · · · ∧ x′n = xn−1

(11)
Bad3 ≡ ¬xn (12)

Further, suppose that initially No = {xn} ≡ {¬Bad}.
Suppose that OptMSIS picks the clause x1 for removal. Then,
after one iteration of the inner loop, the clause x2 will be
removed, after another iteration – the clause x3, and so on,
in total requiring n iterations to detect that ¬Bad is removed.
However, this only allows to deduce that x1 is safe necessary
(and can be included in Inv) giving no information about the
other clauses. So OptMSIS would then proceed to remove x2,
leading to yet another n−1 iterations of the inner loop, and so
on, leading to a quadratic number of iterations. The BigMSIS
algorithm, on the other hand, requires one iteration of the inner
loop to detect that x1 cannot be removed unless x2 is removed,
another iteration to detect that x2 cannot be removed unless
x3 is removed, and so on, overall requiring only n iterations
to detect that none of x1, . . . , xn can be removed.

C. The combined algorithm

In practice even our best MSIS algorithm is slow due to a
large number of required SAT queries. Fortunately, we achieve
a significant improvement in runtime by suitably combining
the computation of an MSIS with the the under- and over-
approximating approaches. The combined algorithm is shown
in Fig. 7. The algorithm takes as input a verification problem
and an initial safe inductive invariant Inv0. In the rest of this
section, we analyze the suggested approach in detail.

• (Line 1) We mark the ¬Bad clause as necessary and we
set Inv to Inv0.
• (Line 2) We run NEC to detect additional clauses that

must be included in any MSIS of Inv . We emphasize the
number of SAT calls performed by NEC is proportional
to the number of necessary clauses detected.
• (Line 3) We run FEAS to prune the set of clauses

in Inv . As discussed in Section IV-B, FEAS uses the
necessary clauses found NEC for better overall choices of
the algorithm.
• (Line 4) After some of the clauses were removed, we have

new opportunities to mark additional clauses as necessary,
and indeed we have found it beneficially to do so. The
second run of NEC reuses the necessary clauses found in
the first run.
• (Line 5) Finally we call an MSIS algorithm.

VI. EXPERIMENTS

In this section, we present our experimental results. All
experiments were performed on a 2.0 GHz Linux-based ma-
chine with Intel Xeon E7540 processor and 4 GB of RAM.
We consider the unsatisfiable single property benchmarks from
the 2011 and 2013 Hardware Model Checking Competitions
[14], [15]. To obtain initial invariants, we preprocessed each
of the benchmarks using a combinatorial logic optimization,
and, if needed, ran (our implementation of) IC3 with 3 hours
time limit. Altogether, IC3 successfully completed verification
(and produced safe inductive invariants) of 305 benchmark

instances. We use these to evaluate the techniques presented
in this paper.

We denote by NAIVE the naı̈ve MSIS algorithm from
Fig. 2 (Section III) with the additional optimization described
by Bradley et al. [6]: the computation of the maximal in-
ductive subset of Inv \ {c} (see Fig. 1) aborts as soon
as the current subset becomes unsafe. We denote by OPT
the OptMSIS algorithm from Fig. 5 (Section V-A), and by
BIG the BigMSIS algorithm from Fig. 6 (Section V-B).
We denote by NAIVE+NFN, OPT+NFN, and BIG+NFN (re-
spectively) the combination of each of these algorithms with
preprocessing (computing under-approximations using NEC,
and over-approximations using FEAS), as described in Fig. 7
(Section V-C). We have run each of these 6 algorithms on each
of the 305 testcases with a time limit of 1 hour.

The cactus plot in Fig. 8 presents a comparison between
the algorithms. Note that preprocessing has a huge impact on
any of the three MSIS algorithms, both in terms of instances
solved and the total time (for example, NAIVE is able to
solve 258 problems without preprocessing, and 293 problems
with preprocessing). The best algorithm is BIG+NFN (solving
294 problems). The effectiveness of preprocessing is further
corroborated by the fact that on average the initial NEC pass
identifies about 70% of the final MSIS clauses as necessary;
the following FEAS pass on average over-approximates the
MSIS by only 4%; finally, after the second NEC pass, over
90% of the final MSIS clauses are marked as necessary. Thus,
the final MSIS pass has to deal with only about 10% of the
MSIS clauses on average.

We emphasize that when searching for small (and not nec-
essary minimal) inductive invariants, the preprocessing stage
alone (or, more precisely, NEC + FEAS) produces an almost
optimal invariant in most cases, and as such the final MSIS
stage can be skipped. Furthermore, any of the MSIS algorithms
can be adapted to run with a resource limit, providing a safe
and inductive over-approximation in case this limit is reached
(such as the set W in the naı̈ve MSIS algorithm, and the set
Inv ∪W in the OptMSIS and BigMSIS algorithms).

The scatter plot on the left of Fig. 9 demonstrates that
BIG+NFN is 2 to 3 orders of magnitude more effective than
NAIVE, and hence represents the overall improvement of our
best algorithm over prior work. The scatter plot in the center
compares BIG and BIG+NFN, and serves to highlight that
preprocessing is a crucial technique for most of the problems.
Finally, the scatter plot on the right shows that even when
preprocessing is used, BIG is an order of magnitude better
than NAIVE. It should be noted the most of the points on the
diagonal correspond to the problems solved by preprocessing
alone.

It is also interesting to compare the number of clauses in
the MSIS with the number of clauses in the original invariant
computed by IC3. In this aspect there is very little variance
between different algorithms, so we provide the data only for
BIG+NFN, see Fig. 10. On average, the reduction is the more
pronounced the larger is the initial invariant. In fact, this says
something about IC3: even when IC3 learns a lot of invariants
(and takes a long time to solve a problem), it does not mean
that these invariants are useful for the final proof. Finally, we
note that on our benchmarks MSIS on average removes 20%

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 120

Fig. 8. Comparison between various algorithms, with and without preprocessing.

Fig. 9. CPU time comparison between selected algorithms.

Fig. 10. Number of clauses in the MSIS (computed by BIG+NFN) vs. the
initial invariant.

of variables.

VII. CONCLUSION

In this paper, we advocate for the problem of computing
small inductive certificates in the context of unbounded model
checking. We believe that this problem is as fundamental as
computing minimal unsatisfiable subsets, and that it has just
as wide of a variety of applications.

We propose an efficient algorithm for finding minimal safe
inductive invariants, which combines: (1) An algorithm to
under-approximate an MSIS by identifying necessary clauses
that must be included in any safe inductive subset; (2) An
algorithm to over-approximate an MSIS by removing clauses
that do not belong to some safe inductive subset; (3) Two
alternative algorithms to compute an MSIS via an optimized
reduction to a series of computations of a maximal inductive
subset. We show that on the benchmarks from the Hardware
Model Checking Competition, our combined algorithm is sev-
eral orders of magnitude more efficient than a naı̈ve approach.

REFERENCES

[1] K. L. McMillan and N. Amla, “Automatic Abstraction without Coun-
terexamples,” in TACAS, ser. Lecture Notes in Computer Science,
H. Garavel and J. Hatcliff, Eds., vol. 2619. Springer, 2003, pp. 2–
17.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 121

[2] J. Simmonds, J. Davies, A. Gurfinkel, and M. Chechik, “Exploiting
Resolution Proofs to Speed Up LTL Vacuity Detection for BMC,” in
FMCAD. IEEE Computer Society, 2007, pp. 3–12.

[3] K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in
CAV, ser. Lecture Notes in Computer Science, W. A. H. Jr. and
F. Somenzi, Eds., vol. 2725. Springer, 2003, pp. 1–13.

[4] A. R. Bradley, “SAT-Based Model Checking without Unrolling,” in
VMCAI, ser. Lecture Notes in Computer Science, R. Jhala and D. A.
Schmidt, Eds., vol. 6538. Springer, 2011, pp. 70–87.

[5] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient implementation
of property directed reachability,” in FMCAD, P. Bjesse and A. Slo-
bodová, Eds. FMCAD Inc., 2011, pp. 125–134.

[6] A. R. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang, “An incremental
approach to model checking progress properties,” in FMCAD, P. Bjesse
and A. Slobodová, Eds. FMCAD Inc., 2011, pp. 144–153.

[7] A. Belov and J. Marques-Silva, “MUSer2: An Efficient MUS Extractor,”
JSAT, vol. 8, no. 1/2, pp. 123–128, 2012.

[8] J. Marques-Silva, M. Janota, and A. Belov, “Minimal sets over mono-
tone predicates in boolean formulae,” in CAV, ser. Lecture Notes
in Computer Science, N. Sharygina and H. Veith, Eds., vol. 8044.
Springer, 2013, pp. 592–607.

[9] A. Nadel, V. Ryvchin, and O. Strichman, “Efficient MUS extraction
with resolution,” in FMCAD. IEEE, 2013, pp. 197–200.

[10] A. Gurfinkel, A. Belov, and J. Marques-Silva, “Synthesizing Safe Bit-
Precise Invariants,” in TACAS, ser. Lecture Notes in Computer Science,
E. Ábrahám and K. Havelund, Eds., vol. 8413. Springer, 2014, pp.
93–108.

[11] A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke, “Automatic
Abstraction in SMT-Based Unbounded Software Model Checking,”
in CAV, ser. Lecture Notes in Computer Science, N. Sharygina and
H. Veith, Eds., vol. 8044. Springer, 2013, pp. 846–862.

[12] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo, “Incremental
formal verification of hardware,” in FMCAD, P. Bjesse and A. Slo-
bodová, Eds. FMCAD Inc., 2011, pp. 135–143.

[13] C. Sinz, “Towards an Optimal CNF Encoding of Boolean Cardinality
Constraints,” in CP, ser. Lecture Notes in Computer Science, P. van
Beek, Ed., vol. 3709. Springer, 2005, pp. 827–831.

[14] “Hardware Model Checking Competition 2011,” http://fmv.jku.at/
hwmcc11.

[15] “Hardware Model Checking Competition 2013,” http://fmv.jku.at/
hwmcc13.

[16] P. Bjesse and A. Slobodová, Eds., International Conference on Formal
Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA,
October 30 - November 02, 2011. FMCAD Inc., 2011.

[17] N. Sharygina and H. Veith, Eds., Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July 13-
19, 2013. Proceedings, ser. Lecture Notes in Computer Science, vol.
8044. Springer, 2013.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 122

On Interpolants and Variable Assignments
Pavel Jancik, Jan Kofroň

Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Email: name.surname@d3s.mff.cuni.cz

Simone Fulvio Rollini, Natasha Sharygina
Faculty of Informatics,

University of Lugano, Switzerland,
Email: name.surname@usi.ch

Abstract—Craig interpolants are widely used in program
verification as a means of abstraction. In this paper, we (i)
introduce Partial Variable Assignment Interpolants (PVAIs) as
a generalization of Craig interpolants. A variable assignment
focuses computed interpolants by restricting the set of clauses
taken into account during interpolation. PVAIs can be for
example employed in the context of DAG interpolation, in
order to prevent unwanted out-of-scope variables to appear in
interpolants. Furthermore, we (ii) present a way to compute
PVAIs for propositional logic based on an extension of the
Labeled Interpolation Systems, and (iii) analyze the strength of
computed interpolants and prove the conditions under which they
have the path interpolation property.

I. INTRODUCTION

In software model checking Craig interpolants play an
important role. They are typically used to refine an abstraction
of a program. Many techniques have been introduced to
compute interpolants for various theories such as proposi-
tional logic, conjunctive fragments of linear arithmetic, and
octagon domain. For propositional logic, McMillan’s [9] and
Pudlák’s [11] interpolation systems are well established; they
are generalized by the Labeled Interpolation Systems [6]
(LISs), which permit to systematically compute interpolants
of different logical strength from the same refutation.

Given two formulas A and B such that A ∧ B is un-
satisfiable, a Craig interpolant is a formula I such that A
implies I , I is inconsistent with B and I is defined over
the common variables of A and B. In other words, I is
an over-approximation of A (which can be used to abstract
the behavior of a system, represented by A) disjoint from B
(which often represents unacceptable behaviors).

In this paper, we introduce Partial Variable Assignment
Interpolants (PVAIs) – a generalization of Craig interpolants
– which, in addition to the standard subdivision of an un-
satisfiable formula (the interpolation problem) into A and
B, is parametric in a partial variable assignment (PVA). A
PVA defines a sub-problem on which a PVAI is focused. A
sub-problem is obtained from the interpolation problem by
removing the clauses (constraints) satisfied by the assignment.
Due to the specialization, (1) it is possible to restrict the vari-
ables occurring in an interpolant to those relevant to the sub-
problem, i.e. those shared between the A and B parts of the

This work is partially supported by: ICT COST Action IC0901, the Grant
Agency of the Czech Republic project 14-11384S, and Charles University
Foundation grant 203-10/253297.

sub-problem. Moreover, since the irrelevant constraints (those
not occurring in the sub-problem) need not be considered by
interpolation, (2) the interpolants for the sub-problem can be
of smaller size, compared to Craig interpolants computed from
the interpolation problem.

In the motivating example in Sec. II we show how PVAIs
apply to program verification. For instance, in the context
of abstract reachability graphs (ARG) (and DAG interpola-
tion [2]), an interpolation problem is the encoding of a whole
ARG (representing all paths in the ARG), while for a given
ARG node i the related sub-problem represents the set of
paths that pass through that node. An over-approximation of
the states reachable at i via these paths (a node interpolant)
can be computed by means of a PVAI. Properties of PVAIs
guarantee that the interpolant contains only in-scope program
variables.

An alternative approach could be to solve each sub-problem
separately, which involves calling a SAT/SMT solver for each
sub-problem and applying standard Craig interpolation. The
method we propose allows one to perform just a single call to a
solver for an interpolation problem which encompasses all the
sub-problems, thus (i) processing the parts common to multiple
sub-problems only once. A single solver call results in a single
proof from which all the interpolants for the sub-problems are
computed. The presence of a single proof, in turn, enables (ii)
generating collections of interpolants which satisfy properties
relevant to verification, such as path interpolation [7], [13].
Such collections are hard to obtain if multiple proofs are
involved. In the case of PVAIs, a collection may consist of
the interpolants associated with different sub-problems.

We also propose the new framework of Labeled Partial
Assignment Interpolation Systems (LPAISs) – a generalization
of LISs, which computes PVAIs for propositional logic. We de-
fine the notion of logical strength for LPAISs and show how in-
troducing a partial order over LPAISs allows to systematically
compare the strength of the computed interpolants (a feature
intuitively relevant to verification since it affects the coarseness
of the over-approximations realized by interpolants [12]). We
also show how LPAISs can be used to generate collections
of interpolants which enjoy the path interpolation (inductive
step) property. These results can be applied in the context
of ARGs, where the path interpolation property of computed
node interpolants (labels) guarantees well-labeledness [10] of
the ARG.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 123

1: int max(int i, int j) {
2: if (i > j)
3: return i;

else
4: return j;
5: }

// The main function
6: assert(max(random(), 0) >= 0);

Figure 1. Motivating example

2

1

3 4

5

6

τ12 ≡ j = 0
τ23 ≡ i > j τ24 ≡ ¬(i > j)

τ35 ≡ result = i τ45 ≡ result = j

τ56 ≡ ¬(result >= 0)

Figure 2. Abstract reachablity graph

µ1 ≡ (n1 ⇒ n2) ∧ ((n1 ∧ n2)⇒ τ12)
µ2 ≡ (n2 ⇒ (n3 ∨ n4)) ∧ ((n2 ∧ n3)⇒ τ23) ∧

∧ ((n2 ∧ n4)⇒ τ24)
µ3 ≡ (n3 ⇒ n5) ∧ ((n3 ∧ n5)⇒ τ35)
µ4 ≡ (n4 ⇒ n5) ∧ ((n4 ∧ n5)⇒ τ45)
µ5 ≡ (n5 ⇒ n6) ∧ ((n5 ∧ n6)⇒ τ56)

Cond ≡ n1 ∧ µ1 ∧ µ2 ∧ µ3 ∧ µ4 ∧ µ5

Figure 3. The Cond formula

II. MOTIVATION

In the following, we illustrate a possible application of
PVAIs, which originally motivated this work; nonetheless, the
proposed PVAIs are not limited to this context. As an example,
consider the source code on the left-hand side of Fig. 1 and
the corresponding ARG in Fig. 2. Node i is associated with
location i in the program. Node 1 is the initial node, while
node 6 is the node representing an error location. The edge
constraints τij encode the semantics of the corresponding
program statements. Note that τ12 originates from the call to
the max function in main, on line 6. Further, in node 3, the
parameter i is the only in-scope variable; similarly in node 4
the parameter j is the only in-scope variable. A variable is
in-scope at a given node, if there is a path through the node
where the variable is used before as well as after the node.

In the context of software verification, an important question
is whether an error location is actually reachable from the
initial location of a program – this is known as the reachability
problem. The question can be answered by computing, for
each node i, the set of states reachable at i via paths in the
program ARG [4], [10]. Typically, it is enough to compute
an over-approximation of these states, i.e. a node interpolant.
To this end, the ARG is converted into a Cond formula1,
which represents all execution paths in the ARG. An auxiliary
structure-encoding Boolean variable ni is introduced for each
node i in the ARG; for each i (except for the error node), a
node formula µi is created, which encodes the labels on the
outgoing edges (Fig. 3).

For illustration, we describe the meaning of µ2. The first
conjunct n2 ⇒ (n3∨n4) expresses that after reaching node 2,
a path has to proceed to a successor node (3 or 4). The second
conjunct (n2 ∧ n3) ⇒ τ23 guarantees that if a path goes via
the edge 2 → 3, the semantics of the edge is preserved (i.e.,
the constraint τ23 is satisfied). Similarly, the third conjunct
enforces the semantics of the edge 2→ 4.

The Cond formula is satisfiable if and only if a feasible path
exists that leads from node 1 to node 6 in the ARG. Suppose
now that Cond is unsatisfiable; then a node interpolant for each
node i can be computed. First the ARG needs to be partitioned
into A and B – so that A corresponds to the antecedents of i, B
to all the other nodes in the ARG – and then a Craig interpolant
I is generated as an over-approximation of the states reachable
at i. For instance, in the case of node 3, A would be set to

1Cond has the same meaning as ArgCond in [3].

n1 ∧ µ1 ∧ µ2 and B to µ3 ∧ µ4 ∧ µ5. However, employing
standard Craig interpolation in this manner to compute a node
interpolant I is not sufficient; out-of-scope variables might
in fact belong to both A and B, they could therefore appear
in I , and should be consequently eliminated. Variable j, for
example, could appear in the interpolant for node 3. Even
though out-of-scope variables can be eliminated by resorting
to quantification, followed by a quantifier-elimination phase,
this approach is a well-known bottleneck in verification.

Computing node interpolants using PVAIs effectively solves
the problem of out-of-scope program variables. Suppose that
a node interpolant is to be computed for a node k; the
created PVA assigns False to all structure-encoding variables
corresponding to nodes not lying on the paths through k.
By setting a variable nj to False, in fact, the paths via
node j are blocked; moreover, the whole node formula µj
is satisfied and thus µj is not a part of the sub-problem for
node k. On the other hand, the PVA assigns nk to True to
express that each considered path has to pass through k (the
node for which the interpolant is computed). In particular, to
compute an interpolant for node 3, we assign n3 to True and
n4 to False to block the path through node 4; the rest of
variables remain unassigned. This assignment satisfies (and
thus removes) n2 ⇒ (n3 ∨n4), (n2 ∧n4)⇒ τ24 and µ4 from
the sub-problem (see Fig. 4). In the A part, the sub-problem for
node 3 contains the edge labels (and consequently the program
state variables) related to the path from node 1 to node 3, and
in the B part information related to the path from node 3 to
node 6. The program state variables shared by the A and B
parts of the sub-problem are the in-scope variables, which are
exactly those that may appear in PVA interpolants.

III. PRELIMINARIES

A clause is a finite disjunction of literals. We use angle
brackets 〈Θ〉 to denote the clause built over the literals in Θ.
Let 〈Θ, p〉 and 〈Θ′, p〉 be clauses. Using variable p as the pivot,
their resolution yields the clause 〈Θ,Θ′〉. In the following, we
consider propositional formulas in conjunctive normal form,

π3 ≡ n3 ∧ n4
A3 ≡ n1∧

(n1 ⇒ n2) ∧ ((n1 ∧ n2)⇒ j = 0)∧
∧ ((n2 ∧ n3)⇒ i > j)

B3 ≡ (n3 ⇒ n5) ∧ ((n3 ∧ n5)⇒ result = i)∧
(n5 ⇒ n6) ∧ ((n5 ∧ n6)⇒ ¬(result >= 0))

Figure 4. The A and B parts of the sub-problem for node 3

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 124

i.e., as conjunctions (or equivalently sets) of clauses. We use
Var(l) to denote the variable of literal l and Var(A) for the
variables occurring in the set of clauses A.

We adopt the definition of resolution proof from [6]: a
resolution proof is a tuple (V,E, cl, piv, s), where V is a set of
vertices in the proof, E is a set of edges. Each inner vertex v
represents resolution of its antecedent vertex-clauses (specified
by cl) using the pivot piv(v). A refutation proof derives an
empty clause in the sink vertex s.

Since the resolution proofs take the set of clauses as input,
the input formula is first converted into a conjunction of
clauses. Thus in the following we use the terms formula and
set of clauses interchangeably.

A Craig interpolant [5] for the pair of formulas (A,B) such
that A∧B is unsatisfiable is a formula I such that (1) A⇒ I ,
(2) B ∧ I ⇒ ⊥, and (3) Var(I) ⊆ Var(A) ∩ Var(B).

An interpolant sequence for the unsatisfiable formula A1 ∧
A2 ∧ ... ∧ An is a tuple of formulas (I0, I1,In), where Ii
is an interpolant for (A1 ∧ ... ∧ Ai, Ai+1 ∧ ... ∧ An). If for
all i, Ii ∧Ai ⇒ Ii+1, then (I0, I1,In) is said to satisfy the
path interpolation (PI) property. In [7], it was proved that the
path interpolation property holds for any LISs, including the
well-known McMillan’s and Pudlák’s systems, whenever the
interpolant sequence is computed from the same proof.

Let A be a set of clauses. A variable assignment assigns
either True (>) or False (⊥) to each variable in the Var(A)
set. The variable assignment can be seen as a conjunction of
literals. A partial variable assignment (PVA) π assigns values
only to a subset of variables in Var(A). A PVA π can be used
as an assumption w.r.t. A (i.e., π |= A) to restrict the set of
models of A to those compatible with π.

Definition 1 (Clauses under assignment): Let A be a set of
clauses and π be a PVA over Var(A). We define the sets of
satisfied clauses Aπ = {〈Θ〉|〈Θ〉 ∈ A and π |= 〈Θ〉} and
unsatisfied clauses Aπ = {〈Θ〉|〈Θ〉 ∈ A and π 6|= 〈Θ〉}.

Satisfied clauses contain at least one literal evaluated to >
under π, while, for unsatisfied clauses, every literal is either
unassigned or falsified. The unsatisfied clauses Aπ determine
the sub-problem. We use π |= l to express that a literal l
evaluates to > in a given PVA π.

IV. PARTIAL VARIABLE ASSIGNMENT INTERPOLANTS

In this section, we formally define partial variable as-
signment interpolation, which, in addition to the subdivision
of an unsatisfiable formula into A and a B parts, requires
specification of a PVA.

Definition 2: Let R be an (A,B)-refutation and π a partial
variable assignment over Var(A ∧ B). A partial variable
assignment interpolant (PVAI) is a formula I such that:

(D2.1) π |= A⇒ I
(D2.2) π |= B ∧ I ⇒ ⊥
(D2.3) Var(I) ⊆ Var(Aπ) ∩ Var(Bπ)
(D2.4) Var(I) ∩ Var(π) = ∅

In the following we use (A,B, π) to denote that a PVAI is
computed from an (A,B)-refutation using the partial assign-
ment π.

Since π |= (A ⇔ Aπ), D2.1 and D2.2 can be equivalently
rewritten as π |= Aπ ⇒ I and π |= Bπ ∧ I ⇒ ⊥; in other
words, I is an interpolant for the sub-problem (Aπ ∧ Bπ).
Note that even after removing (the satisfied) clauses, the sub-
problem remains unsatisfiable (assuming π).

On the other hand, a PVAI cannot be obtained from standard
interpolants by application of a partial assignment (I[π]). The
reason is that, in addition to assigned variables (disallowed
by D2.4), rule D2.3 excludes from the PVAI also all unas-
signed (out-of-scope) variables that occur in satisfied clauses
only, which can still appear in I[π].

Calling a solver multiple times can be quite resource-
consuming. An (A,B)-refutation proof is independent of a
PVA; this important fact allows to call the solver only once
on the overall problem A ∧ B, and later to introduce various
PVAs (representing relevant sub-problems) for which the PVAI
can be efficiently computed.

Although Craig interpolation has many applications in pro-
gram verification, verification tools often require interpolation
sequences with specific properties [7]. The PVAI for all the
sub-problems are computed from the same proof, thus they are
related to each other. The existence of a single proof permits
the application of a standard proving technique in the area of
interpolation – structural induction over a refutation proof –
to show various properties of PVA interpolant sequences. All
the techniques where interpolants for different sub-problems
are computed using different proofs (e.g., applying a solver
directly on each sub-problem, or incremental solving with
assumptions) do not, per se, guarantee any properties of their
sequences.

V. LABELED PARTIAL ASSIGNMENT INTERPOLATION
SYSTEM

To show that PVAIs are not just a theoretical concept, we
present the framework of Labeled Partial Assignment Interpo-
lation Systems, a generalization of LISs [6], which computes
PVAIs for propositional logic, and prove its soundness. Next,
in order to prove the path interpolation property, we introduce
the concept of logical strength on LPAISs, which allows
one to systematically compare the strength of the generated
interpolants.

In order to define LPAISs, first we have to extend the
definitions of labeling functions and locality from LISs to take
variable assignments into account. Note that if no variable is
assigned, LPAISs are equivalent to LISs.

A labeling function assigns labels to literals in a refutation;
the labeling drives the computation of an interpolant from the
proof and determines its strength.

Definition 3 (Labeling function): Let L = (S,v,u,t) be
the lattice of Fig. 6, where S = {⊥, a, b, ab, d+} and ⊥ is the
least element, and let R = (V,E, cl, piv, s) be a resolution
proof over a set of literals Lit. A function LabR,L : V×Lit→ S

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 125

Leaf v: 〈Θ〉, [I]

I =

〈Θ〉[π]|b,v,Lab if 〈Θ〉 ∈ Aπ Hyp-Aπ
¬〈Θ〉[π]|a,v,Lab if 〈Θ〉 ∈ Bπ Hyp-Bπ
> if 〈Θ〉 ∈ Aπ ∪Bπ Hyp-Aπ , Hyp-Bπ

Inner vertex v:
v1 : 〈p,Θ1〉, [I1] v2 : 〈p̄,Θ2〉, [I2]

〈Θ1,Θ2〉, [I]

I =

I1 ∨ I2 if Lab(v1, p) t Lab(v2, p) = a Res-a
I1 ∧ I2 if Lab(v1, p) t Lab(v2, p) = b Res-b
(I1∨p)∧ (I2∨p) if Lab(v1, p)t Lab(v2, p) = ab Res-ab
I2 if Lab(v1, p) = d+ Res-d+

I1 if Lab(v2, p) = d+ Res-d+

Figure 5. Labeled Partial Assignment Interpolation System

ab

d+

a b

⊥

Figure 6. Lattice of labels (according to v)

is called labeling function for a refutation R iff ∀v ∈ V and
∀l ∈ Lit, LabR,L satisfies the following conditions:

(D3.1) LabR,L(v, l) = ⊥ if and only if l /∈ cl(v), and
(D3.2) LabR,L(v, l) = LabR,L(v1, l)tLabR,L(v2, l), where
v1, v2 are the predecessor vertices.

From condition D3.2 it follows that the labeling function
is fully determined once the labels in the leaves have been
specified. We omit subscripts R and L if clear from the
context.

Naming conventions: Let us assume a pair of sets of clauses
(A,B) and a PVA π. The clause sets are split into four groups,
the unsatisfied clauses Aπ and Bπ which specify the sub-
problem and are taken into account during interpolation, and
the satisfied clauses Aπ and Bπ , which are disregarded.

We distinguish among the following kinds of variables,
depending on the standard notions of locality and sharedness,
as well as on where the variables appear in the four groups of
clauses. We say that a variable k is unassigned if k 6∈ Var(π).
An unassigned variable k is:

Aπ-local if k ∈ Var(Aπ) and k 6∈ Var(Bπ)
Bπ-local if k 6∈ Var(Aπ) and k ∈ Var(Bπ)
AπBπ-shared if k ∈ Var(Aπ) and k ∈ Var(Bπ)
AπBπ-clean if k 6∈ Var(Aπ) and k 6∈ Var(Bπ)

The properties above are independent of the occurrence of k
in Var(Aπ) and Var(Bπ). The “clean” variables occur only in
the satisfied clauses, thus are out-of-scope and cannot appear
in a PVA interpolant.

We say that a variable k is McMillan-labeled if, whenever
k is AπBπ-shared or AπBπ-clean, k is labeled b (the labels of
the remaining variables are not limited to b). If all variables are
McMillan-labeled, a LIS reduces to McMillan’s interpolation
system [6], which yields the strongest interpolant that LISs
(and LPAISs) can produce from a given refutation proof.

A variable k is labeled consistently if all occurrences of k
in a refutation have the same label.

Not all labeling functions can be used to generate inter-
polants; in LPAIS, interpolants are computed if a locality
preserving labeling is used.

Definition 4: A labeling function Lab for an (A,B, π)-
refutation R is locality preserving iff ∀v ∈ V, ∀l ∈ cl(v):

(D4.1) Lab(v, l) = d+ ⇔ π |= l
(D4.2) Var(l) is unassigned and Aπ-local ⇒ Lab(v, l) = a
(D4.3) Var(l) is unassigned and Bπ-local ⇒ Lab(v, l) = b
(D4.4) Var(l) is unassigned and AπBπ-clean ⇒

it is consistently labeled a or b.
Locality constraints provide freedom in labeling AπBπ-shared
and AπBπ-clean variables; the choice of labels directly affects
the strength of the computed interpolants. The label of AπBπ-
shared variables can be set freely to a, b, or ab. The same holds
for falsified literals; their labels are irrelevant since they are
removed by the assignment filter (defined below).

The D4.2 and D4.3 rules are equivalent to the locality
requirements of LIS, where A-local and B-local variables must
be labeled a and b, respectively. D4.1 concerns the satisfied
literals. The label d+ is used in the interpolation process to
identify resolutions with an assigned pivot and parts of the
proof which are not relevant to the sub-problem. The D4.4
requirement is specific to PVAI and deals with variables which
occur in the satisfied clauses only. The requirement guarantees
that such variables do not occur in the interpolant, because ab-
resolution cannot be applied. Further, note that for the empty
assignment the locality constraints reduce to those of LISs,
since D4.1 and D4.4 do not apply to any literal.

Filters: For a clause 〈Θ〉, a labeling function Lab, a resolution-
proof vertex v ∈ V, and a label c, we define the match filter |
as 〈Θ〉|c,v,Lab = {l ∈ 〈Θ〉 | c = Lab(v, l)}; it preserves only
the literals with the specified label. Similarly, we define the
upward filter � as 〈Θ〉�c,v,Lab= {l ∈ 〈Θ〉 | c v Lab(v, l)};
it preserves the literals with labels above c in Fig. 6. The
subscripts Lab, v are omitted if clear from the context. Given
a partial assignment π and a clause 〈Θ〉, we also define the
assignment filter 〈Θ〉[π] = {l ∈ 〈Θ〉 | Var(l) 6∈ Var(π))},
which removes all the assigned literals (satisfied and falsified
ones).

Moreover, we assume that filters have a higher precedence
than negation. E.g., ¬〈Θ〉[π]�a can be equivalently rewritten
as ¬((〈Θ〉[π])�a).

An interpolation system is a procedure for computing an
interpolant from a refutation. It assigns a partial vertex-

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 126

interpolant to each vertex of the refutation, yielding the final
interpolant at the sink vertex.

Definition 5: For a locality preserving labeling function Lab
and an (A, B, π)-refutation R, Fig. 5 defines the Labeled
Partial Assignment Interpolation System LpaItp(Lab, R).

An LPAIS produces interpolants in the following way:
first the vertex-interpolants for leaves of the refutation proof
are computed using the rules in the upper part of Fig. 5
(hypothesis rules). Depending on the occurrence of the vertex-
clause 〈Θ〉 in A or B sets, the corresponding rule describes the
transformation of the vertex-clause into a vertex-interpolant.
Later, going down through the proof from leaves to the sink,
the vertex-interpolants for inner vertices are computed using
rules in the lower part of Fig. 5. The labels assigned to the
pivots determine how vertex-interpolants of both predecessors
are combined. This process ends at the sink vertex where the
PVAI is derived. The interpolants are computed in time linear
to the size of the proof.

The main difference compared to LISs are the additional d+

rules. For instance, consider the last rule, where Lab(v2, p) =
d+. In contrast to the standard rules, the partial interpolant
is simpler, because it does not contain I2, omitted due to the
variable assignment. Generally, these rules cut out the satisfied
sub-tree of the proof. Usually, the later in the refutation the
assigned variable is resolved, the larger sub-tree is pruned and
the smaller the resulting interpolant is.

The differences between LPAISs and LISs are motivated
by the way variable assignments work. The new d+ rules
can be seen as a specialization of the ab resolution rule if
a PVA π is assumed. A similar relationship holds for the
hypothesis rules in the leaves of a refutation. These rules are
equivalent to LIS hypothesis rules if applied on a clause under
the assumed assignment. The changes we introduce w.r.t. LISs
are of two kinds: those in LPAISs rules force specialization
of the interpolant on a sub-problem, while the changes in the
locality constraints remove unassigned out-of-scope variables
from the interpolant.

Theorem 1 (Correctness): LpaItp(Lab, R), for an (A, B, π)-
refutation R and a locality preserving labeling function Lab,
generates a partial variable assignment interpolant.

Proof sketch: By structural induction over R we show that,
for each vertex v of a resolution proof, the following invariants
hold:

π |= A ∧ ¬〈Θ〉�a,v,Lab⇒ Iv

π |= B ∧ ¬〈Θ〉�b,v,Lab⇒ ¬Iv

Iv is the partial vertex-interpolant and 〈Θ〉 is a vertex-clause
of v. These invariants yield the PVAI constraints (D2.1, D2.2)
at the sink vertex, where ¬〈Θ〉 = >. The full proof can be
found in [8].

The attentive reader may notice that the locality constraints,
as well as the way LPAISs compute interpolants, are symmetric
for the Aπ and Bπ sets of satisfied clauses. It reflects the fact

that these clauses are not a part of the sub-problem under
consideration, thus irrelevant for PVAI interpolants. Given a
fixed π, the satisfied clauses can be moved freely between
the A and B sets; both computed interpolants and locality of
the labeling functions are not affected if satisfied clauses are
moved. This fact allows us to articulate the strength theorem
in an elegant way.

A. Strength

b

ab = d+

a

⊥

Figure 7. Strength ordering (�)

Interpolation systems based
on labeling provide some free-
dom in the choice of labels
(e.g., for shared variables); this
choice affects the resulting in-
terpolants, in particular their
strength. In the following we
investigate this relationship in
more detail.

Definition 6 (Strength order): Let � be a pre-order relation
defined on the set of labels S = {⊥, a, b, ab, d+} as: b �
ab = d+ � a � ⊥ (see Fig. 7). Let Lab and Lab′ be labeling
functions for a refutation R. We say Lab is stronger than Lab′,
denoted as Lab � Lab′, if for all vertices v ∈ V and for all
literals l ∈ cl(v) it holds that Lab(v, l) � Lab′(v, l).

Note that labels ab and d+ are of the same strength and
can be exchanged if the locality requirements permit; b is the
strongest label, while a is the weakest one a literal can get.

The following theorem states that the introduced strength or-
der on labeling functions also orders the produced interpolants
by logical strength.

Theorem 2 (Interpolant strength): Let Lab be a locality
preserving labeling function for an (A, B, π)-refutation R,
and Lab′ be a locality preserving labeling function for (A, B,
π′)-R. Let I be a partial variable assignment interpolant for
LpaItp(Lab, R) and I ′ be a PVAI for LpaItp(Lab′, R).

If Lab � Lab′ then π, π′ |= I ⇒ I ′.

Note that when π and π′ are empty assignments, we obtain
exactly the theorem on interpolant strength from [6]. Also note
that the theorem permits different variable assignments for
the interpolants. Thus it relates the interpolants generated for
different sub-problems (e.g., interpolants considering different
sets of paths through a given ARG node). Since both π and π′

are assumptions of the formula I ⇒ I ′, the theorem applies to
cases common to both sub-problems (i.e., to the shared paths).
Both interpolants (I and I ′) have to be computed using the
same A and B parts, thus interpolants for different ARG nodes
cannot be compared using this theorem; a generalization in this
direction is shown in the following sub-section.

In the following proof, we need a new type of filter. Let Lab
and Lab′ be labeling functions to be compared by strength and
v be a vertex of the refutation proof. The new weakened-labels
filter |�Lab,Lab′

v preserves the literals whose label is weaker in
Lab′ than in Lab. E.g., the filter preserves a literal l if the
strongest labels b (Lab(v, l) = b) is weakened into label a or

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 127

ab in Lab′(v, l), while it filters-out a literal if both functions
assign label a to it. The vertex and the labeling functions are
omitted if clear from the context.

Proof sketch (Theorem 2): By structural induction over
R, we show that for each vertex of the resolution proof the
following invariant holds:

π, π′ |= Iv ∧ ¬〈Θ〉|�v⇒ I ′v

〈Θ〉 is the vertex-clause, Iv and I ′v are the partial vertex-
interpolants for the vertex v as generated by our interpolation
system using the labeling functions Lab and Lab′, respectively.
The full proof in [8] shows that the invariant holds for all
combinations of rules that can be used to define the vertex-
interpolants Iv and I ′v .

Similarly to LISs, for a fixed variable assignment there
is a lattice of LPAISs ordered according to the strength of
labeling functions. The top element of the lattice involves the
strongest labeling function, which assigns label b to AπBπ-
shared and AπBπ-clean variables, while the labeling function
of the bottom element assigns label a to them. Theorem 2
claims that LPAISs produce interpolants ordered by strength
according to the lattice.

B. Path interpolation property
Several verification approaches such as [3], [10], [14]

depend on the path interpolation property (PI). In [13] the
authors show that LISs can be employed to generate path
interpolants by providing a sequence of labeling functions that
are decreasing in terms of strength. In this subsection we study
conditions for labeling functions that have to be satisfied in
order to guarantee the PI property of interpolant sequences
generated by LPAISs.

First, we show that the PI property holds if the same
partial assignment along a sequence is used to compute the
interpolants (i.e., considering the same set of paths at different
ARG nodes). Later on, we generalize the result to permit
different partial assignments for particular interpolants (i.e.,
relating node interpolants).

Fixed PVA: To show the PI property, it is enough to prove
that, for any consecutive interpolants in the sequence, it holds:
I ∧ S ⇒ I ′, where I is an interpolant for (A,S ∪B, π), I ′ is
an interpolant for (A ∪ S,B, π), and S is a set of clauses.

For LISs, [13] defines a set of labeling constraints on the
labeling functions used to compute the interpolants I and
I ′; if the labeling constraints are satisfied, the interpolants
have the PI property. However, we prove the PI property
in another way, more suitable for LPAISs. Given a labeling
function to compute the interpolant I , we define the strongest
labeling function which can be used to compute the successor
interpolant I ′.

Definition 7: Let Lab be a labeling function for an (A,S ∪
B, π)-refutation R. The strongest successor labeling function
LabS (for the set S) is defined in Fig. 8.

It is easy to see that LabS is a valid labeling function
and that if Lab is locality preserving, then LabS is locality

preserving for (A ∪ S,B, π). Hence, LabS can be used to
compute an interpolant for (A ∪ S,B, π).

The first alternative (D7.1) forces label a for all literals
which become (Aπ ∪Sπ)-local due to the shift of the clauses
in S from the B to the A part. Any locality preserving function
Lab′ has to also assign the label a to these literals. So, it is
easy to see that if Lab � Lab′ then also LabS � Lab′. This
expresses the meaning of strongest. Moreover, Lab � LabS ,
because either the labels are equal or the weakest label a is
used in the labeling LabS .

The following lemma states the PI property for the strongest
successor labeling.

Lemma 1: Let Lab be a locality preserving labeling function
for an (A, S∪B, π)-refutation R and let LpaItp(Lab, R) = I .
Let LabS be the strongest successor labeling for Lab and S,
and LpaItp(LabS , (A ∪ S,B, π)) = I ′.

Then π |= I ∧ S ⇒ I ′.

Proof sketch: By structural induction over R, we show that
for each vertex v of the resolution proof the following invariant
holds:

π |= Iv ∧ S ∧ ¬〈Θ〉|�v⇒ I ′v

〈Θ〉 is the vertex-clause, Iv and I ′v are the partial vertex-
interpolants for the vertex v as generated by our interpolation
system using the labeling functions Lab and LabS , respec-
tively. The full proof can be found in [8].

Lemma 1 guarantees the PI property only if the sequence
of the strongest successors labeling functions is used. Below
we generalize this result in such a way that the strength of the
labeling function can decrease along the sequence; Theorem 3
states the main result for a fixed partial assignment – the path
interpolation property.

Theorem 3: Let Lab and Lab′ be locality preserving la-
beling functions for an (A, S ∪ B, π)-refutation R and
(A ∪ S, B, π)-R, respectively. Let LpaItp(Lab, R) = I and
LpaItp(Lab′, R) = I ′.

If Lab � Lab′ then π |= I ∧ S ⇒ I ′.

Proof: Let IS be the partial variable interpolant for the
strongest successor labeling function LabS . From Lemma 1
it holds that π |= I ∧S ⇒ IS . As shown above LabS � Lab′;
so Theorem 2 can be applied and π |= IS ⇒ I ′.

The result in this case is the same as for LISs. In the
following we focus on the case when different PVAs are used,
and the situation becomes more challenging.

Different PVAs: The goal to prove when different partial
assignments π and π′ are used to compute interpolants I and
I ′ (respectively) is:

π, π′ |= I ∧ S ⇒ I ′

Looking back at the motivating example, for each node in
the ARG a different partial variable assignment is typically
used; thus, the generalization done in this section is needed to
relate the interpolants of adjacent ARG nodes. Assume node

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 128

LabS(v, l) =
{
a if Var(l) ∈ Var(Sπ) ∧ Var(l) 6∈ Var(Bπ) ∧ Var(l) 6∈ Var(π) (D7.1)
Lab(v, l) otherwise (D7.2)

Figure 8. Strongest successor labeling function

interpolants I2 for node 2 and I3 for node 3. The desired
property is then I2∧τ23 ⇒ I3 (well-labeledness in the context
of ARGs [3], [10]), which follows from the aforementioned
goal. In Theorem 4, we work out the conditions the labeling
functions (for I2 and I3) have to satisfy so that the interpolants
have the desired property.

Assignments: Having two different PVAs π and π′, the ex-
pression (π, π′) represents the PVA formed by the union of
π and π′. We say that a PVA σ is an extension of a PVA π,
if σ ⇒ π (viewing the PVAs as conjunctions of literals). In
other words, σ can be created from π by assigning additional
variables. In case of conflicting π and π′ (assigning one >
and the other ⊥ to a particular variable), the goal above holds
trivially and therefore we omit the case from now on.

Definition 8: We say that the variable is assignable if it is
McMillan-labeled and not Aπ-local.

Each assignable variable must have label b, therefore, after
assigning it, its label becomes weaker. The following theorem
states the main result for different PVAs.

Theorem 4: Let Lab be a locality preserving labeling
function for an (A,S ∪ B, π)-refutation R and let I =
LpaItp(Lab, (A,S ∪ B, π)). Let Lab′ be a locality preserv-
ing labeling function for (A ∪ S,B, π′)-R and let I ′ =
LpaItp(Lab′, (A ∪ S,B, π′)).

Suppose that (i) Aπ ⊆ Aπ′ , (ii) Bπ′ ⊆ Bπ , (iii) the variables
assigned by π′ and not by π are assignable in Lab, and (iv)
the variables assigned by π and not by π′ are not Bπ′ -local.

If Lab � Lab′ then it holds π, π′ |= I ∧ S ⇒ I ′.

Intuitively, the constraints (i) and (ii) prevent from com-
paring interpolants of unrelated sub-problems. The only way
to violate the constraint (i) Aπ ⊆ Aπ′ is to assign a new
variable by π′. In terms of ARGs, it means that π′ blocks
some paths in addition to those blocked by π. The interpolant
I over-approximates the states reachable in the corresponding
node via non-blocked paths in the A part. If the assignment π′

blocks some paths related to I ′ in addition to those blocked by
π, then I ′ may not cover (over-approximate) the states coming
from the blocked paths, thus it may be not implied by I . A
similar reasoning can be used for (ii).

Proof sketch: The overall idea of the proof is shown in
Fig. 9. The proof consists of four simpler steps. In the first
step (1 → 2) new variables get assigned by π′, in the second
step (2 → 3) the clauses of S are moved. In the third step
(3 → 4) the assignment π is removed, in the last step (4 →
5) the labeling function is weakened. In the second line of

Fig. 9, it is expressed how the interpolation problem is divided
into A and B parts and which PVA is used. In all but the
second step the division into A and B parts does not change,

thus Theorem 2 can be used to relate particular interpolants
with each other via implications; in the second step the partial
variable assignment does not change, so Theorem 3 is utilized.

To be able to apply this scheme (Theorems 2 and 3),
locality preserving labeling functions of decreasing strength
are needed. The third line of Fig. 9 specifies a labeling function
for each step. The idea of the approach is similar to the one
used for fixed variable assignments. In each step, we create
the strongest possible labeling function; in particular for the
first step (1 → 2) we create an extended-assignment label-
ing function (Lab+

π→(π,π′)) – the strongest locality-preserving
labeling function if new variables get assigned. For the second
step (2 → 3) we use the strongest successor labeling
function as defined in Def. 7. For the third step (3 → 4) we
create a restricted-assignment labeling function (Lab−(π,π′)→π′)
– the strongest locality-preserving labeling function if vari-
ables get unassigned. For the sake of space, we skip the
definitions of the aforementioned labeling functions and proofs
of the required properties; they can be found in [8].

Via the above construction we create the strongest locality-
preserving labeling function (Lab−(π,π′)→π′) for (A∪S,B, π′)
which satisfies Lab � Lab−(π,π′)→π′ . In the last step (4 → 5)
we decrease the strength into Lab′, in the same way as it is
done for LabS in Theorem 3.

The last line of Fig. 9 shows how the interpolants in each
step are related to each other and how the overall claim of this
theorem follows from the particular steps.

C. Application to ARGs

While the locality constraints are simple to satisfy for a
single interpolant, the situation becomes more complicated if
several interpolants need to be related by the path interpolation
property. In such a case, the labels of the literals have to be
chosen in an appropriate way. In the following, we briefly
discuss how to set labels for ARG nodes (using the same
encoding as in our motivating example) to apply Theorem 4
and, thus, to obtain well-labeled node interpolants.

Recall that in ARGs there are two kinds of variables –
(1) structure encoding (ni), which can be assigned, and (2)
program variables, which are not assigned. The first rule is
that the structure encoding variables have to be McMillan-
labeled (obtaining the strongest possible labels). This rule and
the properties of ARG encoding are enough to satisfy the (i)–
(iv) requirements of Theorem 4.

Only the last requirement – Labi � Labj – restricts also
the labels for program variables. It is easily satisfied in ARGs
by a quite simple general rule: once an AπBπ-shared or an
AπBπ-clean literal gets a label weaker than the strongest label
b at a node, the same or a weaker label has to be assigned at
all its successor nodes, until it becomes Aπ-local.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 129

1 → 2 → 3 → 4 → 5
(A,S ∪B, π) (A,S ∪B, (π, π′)) (A ∪ S,B, (π, π′)) (A ∪ S,B, π′) (A ∪ S,B, π′)

Lab � Lab+
π→(π,π′) � LabS(π,π′) � Lab−(π,π′)→π′ � Lab′

π, π′ |= I ∧ S T2=⇒ I+ ∧ S T3=⇒ IS
T2=⇒ I−

T2=⇒ I ′

Figure 9. Idea of Theorem 4

Apparently, if for all nodes in an ARG the strongest possible
labeling functions are used (i.e., all variables are McMillan-
labeled), the aforementioned rules on labeling functions are
satisfied, and well-labeled node interpolants are obtained.

A well-known inherent property of node interpolants is
that for a path p in ARG the resulting node interpolants do
not form path interpolants. A node interpolant summarizes
information about all paths via the node. To be able to express
this “summary”, the variables shared (between A and B) on
any path via the node need to be employed; we call these in-
scope variables. However these variables are not necessarily
AB-shared in the selected path p.

Still, path interpolants for a single path can be computed
from the overall problem by means of PVAIs. Using a PVA
that blocks all paths except for the one of interest, LPAISs
yield path interpolants focused only on that path and over the
variables shared on that path.

VI. RELATED WORK

To the best of our knowledge, the only strongly related
works in this area are [1], [3].

The approach of [3], implemented in the UFO tool, can han-
dle linear integer arithmetic. The main idea of the technique
is to linearize a DAG into a single path; after that, standard
path interpolants are computed and, if out-out-scope variables
are present in the interpolants, quantification is used to remove
these variables. So, in general the approach leads to quantified
interpolants, while LPAISs yield quantifier-free interpolants.

In [1], the authors present a different solution to the problem
of out-of-scope variables. Instead of quantification, the fol-
lowing operations are proposed to remove them: (a) assigning
constants to variables in the interpolant (> or ⊥ in case of
propositional logic) or (b) modifying the structure of the DAG
encoding. Comparing to (a), our approach is more general. We
naturally handle any provided assignments, thus it is possible
to assign additional variables to obtain the same interpolant
as suggested by [1]. Moreover, we provide more flexibility,
e.g., in the case of AπBπ-clean variables one may choose
either label b to obtain a stronger interpolant, or label a to
get a weaker one. In our work we also show the constraints
under which a property relevant to verification – the path
interpolation property – holds, which is not guaranteed in [1].

An aspect common to the above approaches is that they are
applied as post-processing techniques, after an interpolant has
been computed and only if it contains out-of-scope variables.
On the contrary, our method is integrated into the computation
of the interpolant, and simplifies the proof on the fly according

to the corresponding variable assignment, yielding a possibly
smaller interpolant.

VII. CONCLUSION

In this paper, we introduced the new concept of Partial
Variable Assignment Interpolants, which, unlike Craig inter-
polants, permits specialization to sub-problems specified in the
form of variable assignments. We showed how PVAIs find
application in the context of Abstract Reachability Graphs and
DAG interpolation. We also developed the new framework of
Labeled Partial Assignment Interpolation Systems, which can
be used to compute PVAIs for propositional logic, and showed
its properties.

As future work, we plan to extend the framework of
LPAISs and to introduce a PVA interpolation system for linear
integer arithmetic – a theory particularly relevant to program
verification.

Acknowledgment.: Special thanks go to Ondřej Šerý for his
valuable contribution.

REFERENCES

[1] Albarghouthi, A., Gurfinkel, A.: DAG-Interpolation for Software Model
Checking (2013), http://cav2013.forsyte.at/files/aws_albarghouthi.pdf

[2] Albarghouthi, A., Gurfinkel, A., Chechik, M.: Craig Interpretation. In:
SAS ’12. LNCS, vol. 7460, pp. 300–316 (2012)

[3] Albarghouthi, A., Gurfinkel, A., Chechik, M.: From Under-Approxima-
tions to Over-Approximations and Back. In: TACAS ’12. LNCS, vol.
7214, pp. 157–172 (2012)

[4] Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Ufo: A Framework
for Abstraction- and Interpolation-Based Software Verification. In: CAV
’12. LNCS, vol. 7358, pp. 672–678 (2012)

[5] Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory. J. of Symbolic Logic pp. 269–285 (1957)

[6] D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant
strength. In: VMCAI’10. LNCS, vol. 5944, pp. 129–145 (2010)

[7] Gurfinkel, A., Rollini, S.F., Sharygina, N.: Interpolation Properties and
SAT-Based Model Checking. In: ATVA ’13. LNCS, vol. 8172, pp. 255–
271 (2013)

[8] Jančík, P., Kofroň, J.: On Partial Variable Assignment Interpolants.
Tech. Rep. 2013/5, Dept. of Distributed and Dependable Systems,
Charles University in Prague (2013), http://d3s.mff.cuni.cz/publications/
download/D3S-TR-2013-05-PVAI.pdf

[9] McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: CAV
’03. LNCS, vol. 2725, pp. 1–13 (2003)

[10] McMillan, K.L.: Lazy Abstraction with Interpolants. In: CAV ’06.
LNCS, vol. 4144, pp. 123–136 (2006)

[11] Pudlák, P.: Lower Bounds for Resolution and Cutting Plane Proofs and
Monotone Computations. Journal of Symbolic Logic 62(3), 981–998
(1997)

[12] Rollini, S., Alt, L., Fedyukovich, G., Hyvärinen, A., Sharygina, N.:
PeRIPLO: A Framework for Producing Effective Interpolants in SAT-
Based Software Verification. In: LPAR (2013)

[13] Rollini, S.F., Sery, O., Sharygina, N.: Leveraging Interpolant Strength in
Model Checking. In: CAV ’12. LNCS, vol. 7358, pp. 193–209 (2012)

[14] Vizel, Y., Grumberg, O.: Interpolation-sequence based Model Checking.
In: FMCAD ’09. pp. 1–8. IEEE (2009)

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 130

Post-silicon Timing Diagnosis Made Simple using
Formal Technology

Daher Kaiss and Jonathan Kalechstain
Core CAD Technologies, Intel Corporation

Email: {dkaiss, jkalechs}@iil.intel.com

Abstract— With the increasing demand for microprocessor
core operating frequencies, debugging post silicon synchro-
nization (or speed) failures is a critical time consuming post
silicon debug activity. Inability to complete the isolation of
all possible speed failures on time, forces companies to go to
market with products that run at a lower frequency than their
upper frequency limits. This might cause revenue losses or
lead to loss of market segment shares. Laser-Assisted Device
Alternation (LADA) machines are the main vehicle for debugging
post silicon speed failures at Intel. Operating such expensive
machines consumes a substantial portion of the overall post
silicon debug effort. Moreover, with the increasing complexity
of manufacturing processes, these machines need to be renewed
from one process generation to the next, which increases the
product cost. This paper describes a novel method, based on
formal technology, which brings a productivity breakthrough in
isolating post-silicon speed failures. We demonstrate that in many
cases optical probing using LADA can be fully replaced by our
approach.

I. INTRODUCTION

Due to the increasing design size and complexity of modern
VLSI design and the decreasing time-to-market, design bugs
are more likely to escape the pre-silicon verification and are
only found after a chip has been manufactured. Therefore the
efficiency of post-silicon debugging is becoming more critical
to improve the productivity. With the rising demand for micro-
processor core operating frequencies, challenges with on-die
synchronization increase accordingly. Such synchronization
challenges limit the upper frequency bound of a complex
integrated circuit, and thus isolating and fixing performance-
limiting circuits continues to consume a significant portion of
the post-silicon validation bandwidth [1]. A speedpath is a
frequency-limiting critical path which affects the performance
of a chip [2], [3]. A speedpath that violates timing constraints
at the post-silicon stage is called failing speedpath[4].

While pre-silicon static timing analysis [5], [6], [7] plays a
vital role in facilitating fast and reasonably accurate measure-
ment of circuit timing, post-silicon speed failures appear due
to the use of simplified delay models, and due to the limited
ability of such static timing analysis tools to consider the
effects of logical interactions between signals. Such limitations
are the reasons for the mis-correlation between the pre-silicon
timing models and the post-silicon real behavior.

The process of debugging a speed failure on a multi-billion
transistor microprocessor is a challenging, yet well structured
process. It starts by applying test vectors to the microprocessor
or by running a test program, such as end-user applications

or functional tests, on the microprocessor until an error is de-
tected. Such a process is applied on dedicated machines called
testers. Post-silicon speed failures are normally observed when
similar microprocessors produce different results on a tester at
different frequencies. Post-silicon debugging is carried out to
localize and rectify the root cause of the erroneous behavior.
The fix of the failure is normally done by modifying the circuit
either by replacing a cell/gate with a faster/slower one, or by
performing a simple design retiming operation.

To assist the debugging process, design-for-test (DFT) fea-
tures such as scan [8], [9] are added to the microprocessor.
Such features increase the observability of the functional
behavior of internal gates in the microprocessor. If the test
fails, the values of the DFT scan gates are saved for debug
purposes. For historical reasons, and due to cost reduction
considerations, Intel didn’t adopt the full-scan methodology.
Instead, another technique which was developed to increase
the debuggability of speed failures is based on on-die clock
shrinking [10], [11] which helps narrow the list of failing
source candidates. Such a technique is based on driving
the microprocessor into clock regions (or domains) where
global, regional and local clock distributions are introduced.
In this way, post-silicon timing debugging can be improved by
controlling the clock behavior of each of the clock domains
in order to localize the source of the speed failure. The tester
can be configured to operate the microprocessor at different
clock frequencies for each of the above timing domains, and
thus bind the source of the timing failure into smaller regions.

However, due to the large number of gates dominated by
each clock domain (can reach thousands of sequential/storage
signals per clock domain), there is still a need to narrow the
list of failing source candidates into a smaller group of logic
gates in an efficient and reliable manner. Such a technique,
which is widely used at Intel today for debugging post-silicon
speed failures, is a laser-based analytical technique, referred
to as Laser Assisted Device Alteration - LADA [12]. LADA
provides the ability to rapidly isolate failing speedpaths and
their limiting components, down to the individual logic gate
level with high confidence.

The LADA technique uses a laser incident from the device
backside, to generate localized photocurrent within the active
regions, temporarily altering transistor characteristics. Due to
the different effect on PMOS versus NMOS devices, LADA
can be used to speed up or slow down devices, so that
when applied to devices in critical timing paths, performance

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 131

limiting circuits can be rapidly isolated.
Despite the successes of LADA in isolating post-silicon

speed failures, such a process is still time consuming and labor
intensive. In addition to the high cost of the LADA machines
(>$1M for each machine), they require operators, sometimes
with special expertise, to configure the machine to optically
probe the regions of interest. Such a debugging process might
take hours up to weeks per speed failure, depending on the
complexity of the failure. When dealing with hundreds of
speed failures to debug per microprocessor project, the debug
process can take months, putting the whole project schedule
at risk, or alternatively, forcing project management to make
compromises on the marketed microprocessor frequency. A
previous attempt to address this issue was presented in [13],
but it was based on logic simulation and suffered from
accuracy limitations and thus resulted in a large number of
false paths. Another SAT-based attempt to address debugging
post-silicon failing speedpaths was presented at [14], however
the authors use a model which is based on using copies of a
gate to represent the value of a gate at different points in time.
In the worst case, the size of the model may be exponentially
larger than the original circuit.

This paper suggests a novel SAT-based method to dramati-
cally reduce the effort of the LADA based speed debug, saving
the cost of the machines, reducing resources for operating
them, and reducing the time-to-market (TTM) for launching
new products. We will show that our tool can potentially
replace the LADA based debug process. The superiority of
our approach is in its ability to model speed failures without
the need to have a timing model as we use a zero delay
model. In addition, we use efficient modeling which avoids
the possibility of exponential model size. As it will be shown,
such efficient modeling is translated into better performance
with the ability to deal with large instances taken from the
latest Intel microprocessor designs.

The rest of this paper is organized as follows. In the next
section, we present the notion of functional failing speedpath
and present useful characteristics of it. Section III presents a
framework for a precise, yet flexible, representation of the
circuit network. Section IV describes the way we isolate
failing speedpaths. Section V shows how our algorithm deals
with reconverging paths, while section VI describes multiple
approaches to dealing with complexity. Experimental results
are reported in Section VII. Future work is discussed in
section VIII. We conclude in section IX.

II. CHARACTERISTICS OF A FAILING SPEEDPATH

Splitting the design into multiple clock domains enables a
flexible way to control the phase of the clock dominating a
set of sequentials. The basic idea of being able to change
the relative phases is to give some paths more (or less)
time to complete. By doing this, we can trigger or remove
timing problems. One way to reduce the region of interest
that contains the source of speed failure is to perform a ”trial
and error” analysis which changes the relative phase of a given
clock. This process is performed in a semi-automatic manner

Fig. 1. Clock distribution

by iterating over the clock domains of the microprocessor.
If after changing the phase of the clock of a given domain,
the speed failure is still reproduced, we can then conclude
that the signals responsible for the failure are not controlled
by such a clock domain. We keep this process until we find
the clock domain which eliminates the failure(s). This process
is completed by finding two domains: the source (denoted
by src) and the destination (denoted by dst). These are sets
of sequential signals which bind combinational logic that
contains the signal(s) responsible for the speed failure. See
Fig. 1.

Each topological path starting from a sequential signal in
the src domain, and ending at a sequential signal in the dst
domain is called a speed path. A speedpath containing the
errornous signal responsible for the speed failure is called
a failing speedpath. A signal in a circuit M is said to be
toggling at phase t in a trace π if the value of the signal
at phase t is different from its value at phase t − 1 in π.
The failing speedpath originates normally from a toggling
sequential in the src domain, at some phase, and the new value
does not propagate properly. We refer to the first sequential
in the path as the root signal. Notice that as part of the
process of identifying the source and destination domains, the
phase of the toggling sequential is detected as well. Another
important characteristic of the failing speedpath is that it
normally originates from one toggling root.

As mentioned earlier, the traditional method to isolate the
failing speedpath is based on LADA machines. First, all the
possible topological paths between signals in the src and the
dst domains are computed. Then, using LADA machines, laser
is used to temporarily alter the operating characteristics of
transistors on the devices participating such paths. The device
being tested is electrically stimulated and the device output is
monitored. This technique is applied to the back side of the
semiconductor device, thereby allowing direct access of the
laser to the device active diffusion regions. The effect of the
laser on the active transistor region is to generate a localized
photocurrent. This photocurrent is a temporary effect and only
occurs during the time that the laser is stimulating the target
region. The creation of this photocurrent alters the transistor
operating parameters, which may be observed as a change in
the function of the device. The effect of this change in param-
eters may be to speed up or slow down the operation of the
device. This makes LADA a suitable technique for determining
critical timing paths within a semiconductor circuit [15].

From the perspective of logic behavior, one can consider the
failing speedpath failure as a wrong propagation of a toggling

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 132

Fig. 2. A failing speedpath from SRC to DST, and its propagation

root sequential in the src domain. Instead of propagating a
value v, the inverse value v̄ propagates through its fanout logic
and causes some observable (or scan signal) to get an inverted
value which causes the test to fail. See the illustration in Fig.
2. The line from a sequential in the src domain (root) to the
dst domain is the reported failing speedpath, while the dashed
line is the propagation of its impact till the failing scan.

III. LOGIC PRESENTATION OF THE MICROPROCESSOR

A circuit design is modeled at the gate level in terms
of combinational signals and sequential signals. Sequential
signals can be of two types: (1) a latch, which is a device
that transports its input to its output when the clock signal is
high (T), and holds the output value when the clock signal is
low (F), and (2) a flip flop, which is a device that transports
the previous value of the input when the clock signal rises,
and holds the output otherwise.

We consider ternary modeling of circuit node values. A
value could be one of the binary values, T or F, or an undefined
value, ⊥ (elsewhere also denoted by X). Given a ternary input
vector sequence π, and an initial ternary state s, nt will denote
the value of node n in a circuit M at time t after 3-valued
simulation of M with π starting in s.

A circuit M can be represented by a collection of next-state
functions (NSFs) of the sequentials as well as of the outputs,
where a NSF is a function of current and next-state values
of inputs and sequentials. For example, consider the circuit
M which is illustrated in Fig. 3. It consists of five inputs
a, b, c, clk1 and clk2, one latch l, one flop f , and an output
(o) which is the output of the circuit. We denote the current
state value of a variable ”v” using v and the next state value of
the same variable using v′. This way, the next state function of
the output o is l′∨f ′, while the NSF of the active-high latch l
is (clk1′∧a′∧b′)∨(¬clk1′∧l). The NSF of the rising-edge flop
f is (¬clk2∧clk2′∧c)∨(¬(¬clk2∧clk2′)∧f). Available con-
venient representations for next state functions can be BDDs
[16] or boolean expressions (simple graph data structures for
representing propositional logic, where nodes of the graph
represent binary operation ∧,∨, with an annotation whether
a variable is negated or not, and variables appear as leafs).
We adopted boolean expressions in our work since uniqueness

Fig. 3. Example of latch, flop and output functions

of BDDs is not needed. Modeling of sequential logic is done
using a compact representation of infinite variable sequences.
For a signal v, an infinite sequence of propositional variables
{v0, v1, v2, · · ·} represents symbolically its sequential behav-
ior. This allows one to reduce sequential verification problems
to propositional satisfiability. The sequence representations can
be unrolled to a desired depth k, producing k propositional
variables {v0, v1, · · · vk−1}, which represent all the possible
first k values of the signal v. This representation is suitable not
only for modeling sequential behavior of inputs, but also for
internal combinational signals, sequential signals, and outputs.
For example, for a given output o in Figure 3, the sequential
behavior is represented by a disjunction of the sequences
representing l and f . Similarly, we can define the behavior
of any sequential signal by using NSFs.

IV. DETECTING FAILING SPEEDPATHS USING FORMAL
TECHNOLOGY

Our goal is to detect the failing speedpath within the
hundreds (sometimes thousands) of speedpaths between the
sequential signals in the src and dst domains, and thus bypass
the manual and expensive optical probing stage. We provide
the following inputs to the tool:

• Logic representation of the circuit in gate level Register
Transfer Level (RTL) format (e.g. Verilog)

• A stimuli file containing the microprocessor simulation
trace. This file results from simulating the test program on
the RTL presenting the circuit starting from a given initial
state. Since such trace might consist of thousands of
simulation cycles, our tool extracts only a short window
of it (see below)

• The name of the src and dst clock domains
• The phase when a src candidate toggled. It will be

denoted by tsrc.
• The scan signal where the failure was observed
• The phase in which the failure at the scan signal was

observed. It will be denoted by tscan.
Definition 4.1: Given a circuit M at a given state s, which

is a result of 3-valued simulation of M with a ternary input
vector sequence π at time t, a signal l is called to be sensitive
at time t if flipping the value of l at time t in s causes the
value of the failing scan signals to flip at a given phase tscan.
A failing speedpath is thus a topological path starting from

from some sensitive sequential in the src domain at time tsrc.
Detecting failing speedpaths starts after detecting the src and

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 133

dst clock domains. The idea behind our solution is to model the
symptom of the speedpath failure using logic representation.
Our method is based on modeling two machines: The good and
the bad machine. The good machine models the functional be-
havior of the test as it is reproduced on RTL simulation when
it is assumed to exhibit the correct functional behavior. The
bad machine models the failure at the tester where the speed
failure happens. Finding the failing speedpath is performed by
running BMC [17], [18] comparing the sequential behavior of
the two machines. The bound k for BMC is defined by the
user (default value is set as 50) and it is an upper bound to the
maximum length of the sequential depth between the phase of
the failing scan and any sequential in the src domain.

The good machine is built as follows: the machine has one
output which is the failing observed/scan signal. For the rest
of this paper, we will refer to the failing observed signal as the
failing scan signal. The sequential logic that drives the scan
signal is modeled based on the real modeling in the circuit. The
inputs, the output and the internal signals (both combinational
and sequential signals) are constrained by the concrete values
taken from each phase of the given trace window (of length
50). If for some reason, a signal does not have a trace in
the given simulation traces, it is modeled as X. All signals
have dual rail modeling [19], [20], [21], where each signal is
modeled by a pair of variables.

Since we are dealing with complete microprocessor simu-
lation, building the logic model of the complete full-chip was
normally beyond the capacity limits of our internal logic mod-
eling tools. Normally, the Verilog that models the schematics
is very low in its abstraction level, compared to normal RTL
which represents the abstract model of the design. In order
to overcome such capacity issues, we black-box the irrelevant
blocks and keep the ones between the block containing the
failing scan, and the block containing the signals in the src
domain.

The bad machine is built similarly to the good machine, but
with the following differences:

• Assuming that the scan signal is failing at phase tscan,
and assuming that the trace of the scan signal in the good
machine is [v0 v1 · · · vtscan · · · vk−1] (where every vi is
a ternary value), we constrain the behavior of the failing
scan signal in the bad machine with [v0 v1 · · · ¬vtscan

· · · vk−1] . In other words, if the variable of the failing
scan at time tscan is annotated by v and the concrete
simulation value of the failing scan at the same time is c,
then we add a constraint that v is equivalent to ¬c. Notice
that it is necessary to have a binary trace value for the
failing scan signal at the failing phase tscan. Otherwise,
the algorithm aborts.

• The set of the src candidate sequentials will be denoted
by S. For each sequential s ∈ S, we add a new XOR gate
with two entries: the first is fed by the sequential s and the
second is fed by a new free inputs s control. The logic
that was fed originally by the sequential s will be fed
now by the new XOR node. Each XOR signal enables
modeling the flipping of the value of the sequential s in

the sense that if the control signal s control has a value
of T, then the output of the XOR is simply the inverse
of the value of s. See Fig. 4 for illustration.

Fig. 4. Good and bad machine modeling

• Assuming that the failing speedpath originates from a
sequential which toggles at a given phase tsrc, we assume
that the value of each control input s control is a free
variable at phase tsrc, and is constrained to F for the rest
of the phases:

∀s∈S.∀0≤t≤k∧t ̸=tsrc .(s controlt = F) (1)

• Since we assume that the failing speedpath originates
from only one source, we add an extra constraint that
only one control variable can be T (at phase tsrc).

A SAT-based bounded model checker (BMC) is called to find
a satisfying assignment to the above constraints. If a satisfying
assignment is found, then we extract the root sequential out of
the counter examples by finding the control variable which got
a value of T. Extracting a complete path is done by backward
traversal from the scan signal, by comparing the values of each
signal in the good and bad machine.

Definition 4.2: A failing functional speedpath is a se-
quence of pairs of the form {(sig0, ph0), (sig1, ph1),
. . . , (sign, phn)}, where ph0 ≤ ph1 ≤ . . . ≤ phn, sigi is
a signal name, and phi is the first phase where the signal sigi

got different values between the good and the bad machines.

Clearly, tsrc ≤ phi ≤ tscan, and the path starts with a pair
(s, tsrc) for some sequential s in the src domain, and ends
with a pair (scan, tscan). Other signals in the speedpath can
be either sequential or combinational ones. For the rest for the
paper, the failing functional speedpath will be referred to as
the failing speedpath. Generating multiple paths is performed
via an iterative process where new constraints are added at
each iteration to direct the BMC engine not to reproduce the
found path for the next time. We annotate the value of a

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 134

signal s in the good/bad machine at time t with sgood
t and

sbad
t respectively. The constraint which is added to prevent a

failing functional speedpath P from being generated again is:

¬
∧

(s,t)∈P
(sgood

t ̸= sbad
t) (2)

Notice that paths which do not go through any sequential in the
dst domain are excluded from the tool report. The last iteration
happens when BMC does not find any new speedpath.

V. HANDLING RECONVERGING PATHS

In this section, we describe the main challenge in achieving
this kind of symbiosis between timing analysis and formal
technology. Consider the simple AND gate illustrated in Fig.
5. From a logic analysis perspective, regardless whether it is

Fig. 5. Differences between timing and logic analysis

logic simulation or formal analysis, the output of the circuit
at output out is F, even if the value of the input a transitions
from F to T. Though, from a timing perspective, a transition
from F to T at the input a might be propagated at different
speeds through the buffer and inverter, resulting in two T’s
at the entries of the AND gate and causing the output out
to get a value of T for a short period of time. We call this
phenomenon a glitch and it can be one of the reasons for
speed failures as the output out can be captured with the wrong
value. Clearly, the logic representation of the circuit does not
capture the speed behavior described in the simple AND
illustration, and it definitely limits the tool from being able
to isolate real failing speedpaths. Looking into the problem
in a more generic view, the problem results when the cone
of influence of the scan signal contains internal signals which
form a reconvergence point of different paths starting from the
same root signal. The propagation of the toggling value on
the root signals is masked by a value of two or more signals
feeding the same reconvergence point, which masks further
propagation of the value till the failing scan signal.

In this section, we describe a novel technique for dealing
with masking values at reconvergence points. The idea is
based on performing a naive topological analysis on the cone
of influence to detect the reconvergence points. For each
convergence signal s, with n inputs denoted by Ii where
0 ≤ i < n, we perform the following modeling modifications
to the bad machine:

• For each input Ii, we introduce a new MUX gate with
two entries. The first entry will capture the signl Ii from
the good machine, while the second entry will capture the
signals Ii from bad machine. The selector of the MUX
gate will be a new free variable sensitivity selector Ii.

Fig. 6. Handling reconvergence points

• Each signal driven by the signal s will be now driven by
the new MUX gate.

• We add a constraint that only one of the sensitivity
selector variables sensitivity selector Ii (0 ≤ i < n)
can be T. To clarify, this constraint is added for each
reconvergence signal separately.

The basic assumption behind the above is the fact that a
valid failing speedpath contains signals with only one driver
that has a value in the bad machine which is inverse to the
value in the good machine. By adding the above MUX gates,
adding an assumption that only one selector can be T ensures
that only one of the immediate drivers has an inverse value
between the good and the bad machines. Fig. 6 illustrates the
approach. The upper part of the illustration models the good
machine while the lower part models the bad one. The XOR
gate models flipping the value of SRC if the selector is T.
The two MUX gates driving s are responsible for handling the
reconverging signals I1 and I2, while their selectors guarantee
that only one value out of I1 and I2 propagates to s in the bad
machine. Notice that extracting the failing speedpath is done
with a simple modification: for each reconvergence signal,
we go backwards at the immediate driver with the active
sensitivity selector.

VI. DEALING WITH COMPLEXITY

Another challenge that we faced was run time of the
algorithm for instances with a large sequential depth between
the failing scan signal and the src candidates. The cone of in-
fluence was computed using a naive breadth-first search (BFS)
on the sequential signals up to src candidates. In some cases,
this computation resulted in cones with thousands of sequential
signals which caused the core BMC engine to choke. We
have developed an iterative process for computing the cone
of influence based on functional detection of sensitivity of
sequential signals.

Sensitivity of a sequential signal s at phase t is detected
using our algorithm by assuming that s is the src candidate
and assuming that tsrc = t. The motivation behind the above
iterative expansion process is that if a sequential signal is not
sensitive during the window [tsrc, tscan], then there is no need

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 135

to expand the cone over it, and thus it can be abstracted and
considered as an input (constrained by the trace).

Data: scan, tsrc, tscan

Result: Compute cone of influence
tcurrent = tscan;
ExpansionList = {} ;
while {tcurrent ̸= tsrc} do

C = ComputeConeOfInfluence(scan,

ExpansionList);
L = ExtractSetOfSequentialsAtBoundary (C);
S = FilterSensitive (L, tcurrent);
if empty S then tcurrent = tcurrent - 1;
else ExpansionList = ExpansionList ∪ S ;

end
return ComputeConeOfInfleuce(ExpansionList) ;

A pseudocode explaining the steps of the algorithm for com-
puting the cone of influence is presented herein: The function
ComputeConeOfInfluece accepts as an argument a list of
sequential signals and computes the cone of influence starting
from the failing scan signal going backwards while stopping
at the first sequential signals which do not belong to the list of
sequential signals included in ExpansionList. The function
ExtractSetOfSequentialsAtBoundary computes the se-
quential signals at the boundary of the cone of influence. The
function FilterSensitive finds sensitive sequential signals
belonging to the set L at phase tcurrent. The algorithm keeps
expanding at sensitive sequentials at phase tcurrent till no
more sensitive sequentials are found, and only then it decreases
the phase tcurrent. The algorithm stops at phase tsrc. For
illustration, during the first iteration, scan will be detected as
sensitive at tscan and thus it will be added to ExpansionList.

The algorithm computes a sub-cone of the cone computed
by the naive BFS approach, and thus the detection of the
failing speedpaths happens in a smaller cone which BMC
can handle. The algorithm is sound in the sense that if a
failing speedpath exists in the cone generated by the naive
BFS approach, then it is guaranteed to be detected at the
sub-cone generated by the iterative expansion algorithm. The
proof for the soundness of the algorithm is based on showing
a contradiction between the existence of such a path, and
the fact that the algorithm didn’t expand on a sequential in
the boundary of the the sub-cone. Illustration of the proof is
presented in Fig. 7.

Let M be a circuit with a failing scan signal scan at
phase tscan and let C be the topological cone of influence of
scan computed using the naive BFS, where the stop points
are primary inputs of M or sequential signals driving src
candidates. Let us denote the set of internal sequential signals
in C by L. Let LSRC be a set of src candidates where
LSRC ⊆ L. Let C′ be the topological cone of influence of
scan computed by expanding on a set of internal sequential
signals L′, where L′ ⊆ L. We denote the phase when a
sequential was expanded with te and the first phase when the
sequential was sensitive by ts.

Fig. 7. Iterative expansion soundness

Lemma 6.1: If a sequential signal li is sensitive at phase
tsi , and it was expanded in the iterative expansion process at
phase tei , then tsi ≤ tei .

Proof: If li is sensitive at phase tsi , then there is
some failing speedpath P starting at (li, tsi) and containing
the sequentials {(li, tsi), (li+1, t

s
i+1), . . . , (ln, tsn)} (recall that

ln = scan) where every sequential li drives li+1 through a
combinational cloud, and tsj ≤ tsj+1 for i ≤ j < n. Recall
also that if (l, t) belongs to a path, then l is sensitive at time t.
Let us denote a list of corresponding phases {tei , tei+1, . . . , t

e
n}

annotating for each sequential li the phase tei when it was
expanded in the iterative expansion. Recall that ten is the phase
when scan was expanded and tsn and is the phase when the it
was sensitive. Both values should be equal to tscan.

We will first show that for each j where i ≤ j < n, that
if tsj ≤ tej then tej+1 < tsj . Let us assume on the contrary
that tsj ≤ tej+1, since the algorithm detects sensitivity of lj
at the window [tsrc, . . . , t

e
j+1], and the fact that lj was found

sensitive only at phase tej , means that the algorithm didn’t
detect sensitivity of lj at tsj which contradicts the fact that lj
is sensitive at tsj .

Thus tej+1 < tsj and since tsj < tsj+1, we conclude that
tej+1 < tsj+1. Based on that, tei < tsi implies tej < tsj for each
i ≤ j ≤ n, implying that ten < tsn. This is a contradiction since
it means that the expansion phase for the scan signal is less
than the sensitive phase of the same signal which contradicts
the fact that they should be equal.

Theorem 6.2: If the algorithm detects a set of failing speed-
paths SP for the cone C, then it will detect the same set of
failing speedpaths for the sub-cone C ′.

Proof: Let us assume on the contrary that there is a
failing speedpath P = {(l1, t1), (l2, t2), . . . , (ln, tn)} ∈ SP
which is not detected in C ′. Then there exists a sequential

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 136

Test # signals # of inputs # of latches # of reconverg. # of path length # of Run Time
No. in cone on boundary in cone signals iterations (in phases) paths (Sec.)
1 296 26 2 4 5 3 1 248
2 509 67 14 11 6 4 1 278
5 405 54 3 12 11 8 1 214
7 305 19 3 0 6 4 1 290
9 248 11 1 0 1 1 1 186
13 517 50 14 26 55 44 1 227
15 497 83 4 3 7 4 1 222
16 1528 212 59 86 14 8 1 745
18 27696 3009 635 8569 31 16 1 7168
6 3025 617 43 650 15 8 2 434
11 2403 345 22 209 12 7 2 318
12 1798 258 58 236 33 20 2 442
10 855 164 8 27 8 5 3 222
17 25895 7279 294 1070 30 16 3 6458
21 21864 4618 165 2266 33 18 3 3395
8 855 164 8 27 8 5 4 242
22 1545 303 46 5 12 6 5 5555
14 837 90 39 29 23 12 6 619
4 4665 704 106 1149 31 18 7 579
19 8789 994 125 2132 26 14 7 1713
20 26226 4035 168 2422 27 14 15 3285
3 4931 675 167 689 27 14 40 780

TABLE I
FAILING SPEEDPATHS FOUND ON NEXT GENERATION INTEL MICROPROCESSOR

signal (li, tsi) ∈ P where li belongs to L but not L′, and there
is a combinational path from li to a boundary sequential lj
where (lj , tsj) ∈ P and lj ∈ L′, and there is a combinational
path from lj to an internal sequential lk where (lk, tsk) ∈ P
and lk ∈ L′. Recall that tsj ≤ tsk. Let us assume that the lk
was expanded at phase tek. Since lk is part of the path, then
based on lemma 6.1, tsk ≤ tek, and thus tsj ≤ tek . Recall that lj
is driving lk, and lk was expanded at phase tek. The fact that
the iterative expansion couldn’t detect sensitivity for lj during
the window [tsrc . . . tek], and the fact that tsj belongs to that
window, contradicts the fact that lj is sensitive at tsj .

VII. RESULTS

We are currently at the early deployment stage of our
application to the post-silicon speedpath debug lab responsible
for the quality of the next generation Intel microprocessor.
Most of the speedpaths shown in table I were detected using
LADA first, and our tool was run afterwards to demonstrate its
ability to detect the same failing speedpaths. In all the testcases
shown in the table, we successfully found the same failing
speedpath which was detected by LADA. For some cases,
it took about two weeks trying detect the failing speedpath
using LADA with no success, but after running the tool,
the tool was able to isolate the failing speedpath easily. In
other cases, our tool was run before LADA and was able to
detect the failing speedpath and thus LADA was bypassed
totally. Table I presents some information about each failing
speedpath, when the cone of influence was produced using the
iterative expansion algorithm. Column 2 shows that number
of the signals in the cone computed by the iterative expansion

algorithm. Column 3 shows the number of variables at the
boundary of the cone, while column 4 shows the number of
the internal sequential signals in the cone of influence. Column
5 shows the number of the internal reconvergence signals in
the cone while column 6 shows the number of the expansion
iterations to compute the cone of influence. Columns 7 shows
the path length in phases from the path root to scan while
column 8 shows the number of the paths detected by the
tool. Run time of the tool is shown in column 8. These
results were produced on a 2.6 GHz Intel(R) Xeon(R) CPU
processor. The run time demonstrates that isolation of post-
silicon failing speedpaths can be completed in less than two
hours using our tool compared to the costly, manual LADA
based process, which took about a day to debug in average
per failing speedpath.

VIII. FUTURE WORK

We have already started to see first cases where the vision
of eliminating the need for optical probing for speed debug
becomes a reality. Our next steps are to penetrate this tech-
nology to be used across the different microprocessor projects
at Intel. Our next challenge is to eliminate the need to generate
the RTL simulation trace, which today consumes long hours
per test. Our alternative will be to get partial trace from the
tester which produces the trace values for the scan signals
only. Our algorithm will work the same, but will have to
deal with more signals that do not have concrete value, but
have X value instead. We hope that the scan signals will have
enough coverage of the sequential signals so that they will
be able to propagate concrete values coming from the scan

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 137

signals, forward and backward, and thus eliminating the X
values. Current results are encouraging and we are optimistic
that we will be able to reduce (and possibly eliminate) the
LADA effort for all Intel microprocessor projects.

IX. SUMMARY

We have introduced a new SAT-based algorithm that enables
detecting failing speedpaths that are detected at the post-
silicon debug stage. The value that this method brings is by
reducing (and possibly eliminating) the cost of post-silicon
speed debug using optical probing which is done today at Intel
using LADA machines. Such a process consumes expensive
machines, operators and costly TTM. Our method uses formal
technology to model the incorrect behavior of the silicon from
a functional perspective. We introduced a novel technique
to model glitches by introducing new MUX gates in the
reconvergence gates.

REFERENCES

[1] S. Mitra, S. A. Seshia, N. Nicolici, ”Post-silicon Validation Oppor-
tunities, Challenges and Recent Advances”, in Design Automation
Conference (DAC), 2010.

[2] P. Bastani, K. Killpack, L.-C. Wang, and E. Chiprout, ”Speedpath
prediction based on learning from a small set of examples”, in Design
Automation Conf., 2008, pp. 217222.

[3] L. Lee, L.-C. Wang, P. Parvathala, and T. M. Mak, ”On silicon-based
speed path identification”, in VLSI Test Symp., 2005, pp. 3541.

[4] L. Xie, A. Davoodi, and K. K. Saluja, ”Post-silicon diagnosis of
segments of failing speedpaths due to manufacturing variations”, in
Design Automation Conf., 2010, pp. 274279.

[5] T.M. McWilliams, ”Verification of timing constraints on large digital
systems”, in DAC, 1980, pp. 139-147.

[6] G. Martin, J. Berrie, T. Little, D. Mackay, J. McVean, D. Tomsett, L.
Weston. ”An integrated LSI design aids system”, in Microelectronics
Journal, Vol. 12, Issue 4, 1981, Pages 1822.

[7] R. Hitchcock, G.L. Smith, and D.D. Cheng. ”Timing analysis of
computer hardware”, in IBM Journal of Research and Development
(IBM), Vol. 26, Issue 1, 1982, pp. 100105.

[8] R. S. Venkataraman, ”A Technique for Fault Diagnosis of Defects in
Scan Chains”, in Int. Test Conference Proc., 2001, pp. 268-277.

[9] K. Cheng, ”Partial Scan Designs Without Using a Separate Scan
Clock”, in VLSI Test Symposium. Proc., 13th IEEE, pp. 277-282.

[10] S. Rusu and S. Tam, ”Clock Generation and Distribution for the First
IA-64 Microprocessor”, in IEEE Solid State Circuits Conference, 2000,
pp. 176-177.

[11] S. Tam, S. Rusu, U. Nagarji Desai, R. Kim, Ji Zhang, I. Young, ”Clock
Generation and Distribution for the First IA-64 Microprocessor”, in
IEEE Journal of Solid State Circuits, Vol. 35, 2000, pp. 1545- 1552.

[12] R. Rowlette; T. Eiles, ”Critical Timing Analysis in Microprocessors
Using Near-IR Laser Assisted Device Alteration (LADA)”, in Proc.
IEEE International Test Conf., 2003, pp. 264-273.

[13] R. McLaughlin; S. Venkataraman and C. Lim, ”Automated Debug of
speedpath Failures Using Functional Tests”, in VLSI Test Symposium,
2009, pp. 91-96.

[14] M. Dehbashi; G. Fey, ”Automated Post-Silicon Debugging of Failing
Speedpaths”, in Asian Test Symposium, 2012, pp. 13-18.

[15] C. H. Kong and E. P. Castro. ”Application of LADA for Post-Silicon
Test Content and Diagnostic Tool Validation”, in Proceedings of the
32nd International Symposium for Testing and Failure Analysis, pp.
4317, 2006.

[16] Randal E. Bryant. ”Graph-Based Algorithms for Boolean Function
Manipulation” in IEEE Transactions on Computers, Vol. 35 Issue 8,
1986, pp. 677-691.

[17] A. Biere, A. Cimatti, E. Clarke. ”Symbolic model checking without
BDDs” in Tools and Algorithms for the Construction and Analysis of
Systems, Vol. 1579, 1999, pp. 193-207.

[18] A. Biere, A. Cimatti, E. Clarke, M. Fujita. Y. Zhu, ”Symbolic model
checking using SAT procedures instead of BDDs” in DAC, 1999.

[19] R. E. Bryant, ”Boolean Analysis of MOS Circuits”, in IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 6, No. 4, 1987, pp. 634 - 649.

[20] C-J.H. Seger, R.E. Bryant, ”Formal verification by symbolic evaluation
of partially-ordered trajectories”, in Formal Methods in System Design,
Vol 6, No. 2, 1995, pp. 147-189.

[21] D. Kaiss, M. Skaba, Z. Hanna, Z. Khasidashvili, ”Industrial Strength
SAT-based Alignability Algorithm for Hardware Equivalence Verifica-
tion”, in FMCAD, 2007.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 138

Leveraging Linear and Mixed Integer Programming
for SMT

Tim King∗

∗New York University

Clark Barrett∗ Cesare Tinelli†

†The University of Iowa

Abstract—SMT solvers combine SAT reasoning with spe-
cialized theory solvers either to find a feasible solution to a
set of constraints or to prove that no such solution exists.
Linear programming (LP) solvers come from the tradition of
optimization, and are designed to find feasible solutions that are
optimal with respect to some optimization function. Typical LP
solvers are designed to solve large systems quickly using floating
point arithmetic. Because floating point arithmetic is inexact,
rounding errors can lead to incorrect results, making inexact
solvers inappropriate for direct use in theorem proving. Previous
efforts to leverage such solvers in the context of SMT have
concluded that in addition to being potentially unsound, such
solvers are too heavyweight to compete in the context of SMT. In
this paper, we describe a technique for integrating LP solvers that
improves the performance of SMT solvers without compromising
correctness. These techniques have been implemented using the
SMT solver CVC4 and the LP solver GLPK. Experiments show
that this implementation outperforms other state-of-the-art SMT
solvers on the QF LRA SMT-LIB benchmarks and is competitive
on the QF LIA benchmarks.

I. INTRODUCTION

Solvers for Satisfiability Modulo Theories (SMT) combine
the ability of fast Boolean satisfiability (SAT) solvers to find
solutions for complex propositional formulas with the ability
of specialized theory solvers to find solutions to systems of
constraints with respect to specific first order theories. SMT
solvers excel in applications that require reasoning about non-
trivial Boolean combinations of specific theory atoms.

Theory solvers for linear real and integer arithmetic are
found in nearly every modern SMT solver, and are an essential
building block for verification applications built on top of
SMT. The best-performing arithmetic theory solvers are based
on an algorithm that adapts the well-known simplex method
to the SMT setting [1]. Because of their use in verification,
SMT solvers typically use exact precision numeric represen-
tations internally in order to ensure that their calculations are
correct and do not compromise the soundness of the overall
system. For many typical SMT problems with significant
Boolean structure (such as the majority found in the SMT-
LIB benchmark library), this approach is sufficient, as the
required theory reasoning is not too complex and the numbers
involved in the internal calculations tend to stay relatively
small. Moreover, such problems require tens or hundreds
of thousands of calls to the theory solver. Thus, the theory
solver’s ability to incorporate new constraints quickly, to
rapidly detect inconsistencies, and to backtrack efficiently, are

far more important for overall efficiency than is the speed
of the internal numerical calculations. However, there do
exist problems for which this is not the case. If the internal
simplex solver receives constraints that lead to large and dense
linear systems, then using exact precision for the calculations
required for the simplex search can overwhelm the solver.

The standard simplex algorithm finds a solution that is
“best” according to some criteria. This is made mathematically
explicit by adding a linear objective function that is to be
maximized. The linear constraints combined with a linear
objective are called Linear Programs (LPs), and systems that
solve them are called LP solvers. Simplex-based LP solvers
differ from SMT solvers in several important ways, including
the following: (i) LP solvers solve only conjunctions of con-
straints - they cannot handle arbitrary Boolean combinations;
(ii) LP solvers focus on both feasibility and optimization rather
than just feasibility; (iii) LP solvers (generally) use floating
point rather than exact precision arithmetic internally; and (iv)
the product of many decades of research, modern LP solvers
incorporate highly sophisticated techniques, making them very
efficient in practice. The techniques used in LP solvers have
been extended to the problem of optimizing constraints where
all or some of the variables are required to be integers (Integer
Programming (IP) and Mixed Integer Programming (MIP)).

On challenging simplex instances, LP and MIP solvers are
considerably more efficient than the techniques used inside of
SMT solvers. However, LP and MIP solvers are not optimized
for rapid incremental calls, making them inefficient as theory
solvers for many SMT applications. Also, their use of floating
point means that they will occasionally return incorrect results.
In this paper, we show how LP and MIP solvers can be effi-
ciently and soundly incorporated into a modern SMT solver.
Our work builds on previous efforts to leverage LP solvers
for SMT but is the first to obtain significant improvements
in performance by doing so. It is also the first to attempt
integrating a MIP solver with SMT.

The rest of the paper is organized as follows. We give
an overview of relevant background on SMT and simplex in
Section II. Section III discusses our approach for integrating
an LP solver in a theory solver for linear real arithmetic,
and section IV shows how to extend this strategy to use an
MIP solver in a theory solver for linear integer arithmetic.
We conclude with section V, which reports and discusses
experimental results.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 139

II. BACKGROUND

The core SMT problem is to determine whether a first
order formula φ is satisfiable with respect to a fixed first
order theory T [2]. Most modern SMT solvers rely on a
DPLL(T) framework which combines a Boolean satisfiability
(SAT) solver with decision procedures for various theories.
The SAT solver is used to find an assignment of theory
literals to truth values that is propositionally consistent with
the Boolean skeleton of φ. The theory-specific modules used
by SMT solvers are called theory solvers.

A theory solver for theory T takes as input a set Φ of theory
literals1 and determines whether Φ is consistent with respect to
T . If so, the theory solver responds with Sat and (optionally)
a model, an assignment to the free variables in Φ that makes
every formula in Φ true. If not, the theory solver responds with
Unsat together with a small (ideally minimal) subset of Φ
known to be unsatisfiable in T , called a conflict set. A conflict
set C is converted into a clause

∨
l∈C ¬l, and sent to the SAT

solver. In addition, any T -valid formula can be sent to the
SAT solver by the theory solver and such formulas are called
theory lemmas. Theory lemmas are used by theory solvers to
help direct and guide the SAT solver during its search.

The focus of this paper is a novel theory solver for
quantifier-free mixed linear integer and real arithmetic. We
assume a language that includes the usual arithmetic constants
and operators, a vector V = 〈x1 . . . xn〉 of variables,2 and
a unary predicate IsInt. We assume that atoms are of the
form (i)

∑
ci · xi ./ d where ci and d are rational constants,

./ ∈ {<,≤,=}, and xi ∈ V , or of the form (ii) IsInt(xi),
where xi ∈ V . An assignment a maps each xi ∈ V to a value
in the set R of real numbers. An assignment a satisfies an atom∑
ci · xi ./ d whenever

∑
ci · a(xi) ./ d holds and satisfies

IsInt(xi) whenever a(xi) is an integer. An atom that is
satisfied by some assignment is said to be satisfiable. We lift
the notion of satisfaction to arbitrary Boolean combinations
of atoms in the natural way. We write φ |=T β if every
assignment satisfying φ also satisfies β. We assume that V
is partitioned into a set VR of real variables and a set VZ
of integer variables. The integer-tightening of a formula Φ is
defined as φ ∧ ∧z∈VZ IsInt(z), and the real relaxation of
a formula α is obtained by replacing every application of the
IsInt predicate in α by True.3 A formula is integer-feasible
if its integer-tightening is satisfiable (and integer-infeasible
otherwise), and an assignment is called integer-compatible if
it assigns an integer to each integer variable. If a formula’s
real relaxation is satisfied by some assignment, we say it is
real-feasible (or just feasible).

We first describe the well-known approach for simplex-
based theory solvers in SMT, an approach we call Simplex
for DPLL(T) (more details can be found in [1], [3]). The
input is a conjunction of atoms of the form

∑
ci · xi ≤ d.

1We will follow the common practice of overloading Φ to mean
∧

ϕ∈Φ ϕ
in contexts where a formula rather than a set is expected.

2For convenience, we will also use V to refer to the set {x1 . . . xn}.
3We assume that IsInt occurs only positively in input formulas.

Weak inequalities are transformed by introducing a fresh
real variable s for

∑
ci · xi and rewriting the constraint as

s =
∑
ci · xi ∧ s ≤ d. The original xi variables are called

structural while the introduced s variables are called auxiliary.
The orig function maps each auxiliary variable to its definition,
orig(s) ≡ ∑

ci · xi. Strict inequalities
∑
ci · xi < d are

rewritten as
∑
ci ·xi + δ ≤ d where δ is a small constant that

can be determined later. To properly reason in the presence
of δ, some of the internal constants are represented as special
δ-rationals , pairs 〈a, b〉 of rationals interpreted as a + b · δ.
Details on this technique can be found in [4].

After applying these transformations, the resulting con-
straints can always be written as: TV = 0∧ l ≤ V ≤ u, where
T is a matrix, and l and u are vectors of lower and upper
bounds on the variables. We use Ti to denote the i-th row of
T . We use l(x) and u(x) to denote the lower and upper bound
on a specific variable x. If x has no lower (upper) bound, then
l(x) = −∞ (u(x) = +∞). The theory solver searches for an
assignment a : V 7→ R that satisfies the constraints.

We assume T is an n × n matrix in tableau form: the
variables V are partitioned into the basic variables B and non-
basic variables N (to emphasize when a variable xi is basic,
we will write bi as a synonym for xi when xi ∈ B), and
Ti is all zeroes iff xi ∈ N . Furthermore, for each column
i such that bi ∈ B, we have Tk,i = 0 for all k 6= i and
Ti,i = −1. Thus, each nonzero row Ti of T represents a
constraint bi =

∑
xj∈N Ti,j · xj . Initially, the basic variables

are exactly the auxiliary variables.
The simplex solver works by making a series of changes to

an initial assignment a and the tableau T until the constraints
are satisfied or determined to be unsatisfiable. During this
process, T · a(V) = 0 is an invariant. To initially satisfy
this invariant, we can set a(xi) = 0 for all i. To maintain
the invariant, whenever the assignment to a non-basic variable
changes, the assignments to all dependent basic variables are
also updated. Changes to the tableau are made via pivoting.
Pivoting takes a basic variable bi and a non-basic variable xj
such that Ti,j 6= 0, and swaps them: after pivoting, xj becomes
basic and bi becomes non-basic.

Simplex for DPLL(T) solvers modify the assignment a and
pivot the tableau T until a satisfying assignment is found or
a row conflict is detected: a basic variable bi violates one of
its bounds but none of the non-basic variables that bi depends
on can be used to fix this without violating their own bounds.
For example, suppose a(bi) > u(bi) and for all xj ∈ N with
positive coefficients in row Ti (Ti,j > 0), a(xj) = l(xj) and
for all xk ∈ N with negative coefficients in row Ti (Ti,k < 0),
a(xk) = u(xk). Then, bi ≥ a(bi) is entailed by the row and the
constraints on the non-basic variables.4 Since this contradicts
bi ≤ u(bi), the entire system of constraints is unsatisfiable,
and the following conflict set is generated:⋃
Ti,j>0

{xj ≥ l(xj)} ∪
⋃

Ti,k<0

{xk ≤ u(xk)} ∪ {bi ≤ u(bi)}.

4There is a dual case when a(bi) < l(bi).

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 140

The current best implementations of theory solvers for
mixed linear integer and real arithmetic use a sound but
incomplete procedure that layers integer reasoning on top of
a solver for linear real arithmetic. Given a set Φ of atoms,
the real solver is first used to solve the real relaxation of
Φ. If the solver terminates, the result is either a conflict set
or an assignment a (when Φ is real-feasible). In the first
case, no additional work is necessary as a conflict set for
the real relaxation of Φ is also a conflict set for Φ. In the
second case, the assignment a is examined to see whether it
is integer-compatible. If not, more work is needed to refine
the assignment. The following branching technique can be
used to ensure that the current assignment is refined in the
next invocation of the theory solver: select a variable x ∈ VZ
whose assignment is non-integer, and then send the following
theory lemma to the SAT solver,

IsInt(x)→ (x ≤ ba(x)c ∨ x ≥ da(x)e) (1)

The SAT solver will assert one of the two new bounds on x
before reinvoking the theory solver.

Naive use of this heuristic can trigger an infinite sequence
of branches, so more sophisticated methods based on cutting
planes have been developed [5]. Consider a set Φ of assertions.
A cutting plane is a plane through the solution space of the
real relaxation of Φ that cuts off some of the non-integer-
compatible assignments. More precisely,

∑
cixi = d is a

cutting plane for Φ and H ≡ ∑
cixi ≤ d is a cut iff the

following conditions hold: (i) every assignment satisfying the
integer-tightening of Φ also satisfiesH; and (ii) at least one as-
signment satisfying the real relaxation of Φ also satisfies ¬H.5

The inequality H can be safely added to Φ without changing
any of the (integer-compatible) satisfying assignments. A cut
is always entailed by the integer-tightening of Φ and never
by the real relaxation of Φ. Cuts can be implemented using
theory lemmas, by sending the lemma Φ ⇒ H to the SAT
solver. Previous work has looked at using Gomory and Mixed
Gomory cut techniques in SMT solvers [4].

III. LEVERAGING LP SOLVERS

The first contribution of this paper is a method for lever-
aging the strengths of both SMT and LP solvers to construct
an efficient and robust theory solver for linear real arithmetic.
This idea has been explored before. Early work by Yu and
Malik [6] reports results on using an LP solver as a theory
solver for SMT, but the issue of potentially incorrect results
from the LP solver is not addressed. Faure et al. [7] integrate
several LP solvers into the Barcelogic SMT solver [8]. They
use an exact solver to lazily check the results from the LP
solver to ensure soundness. Finally, in recent work by de
Oliveira and Monniaux [9] (a continuation of the work in [10]),
extensive experiments are done using an LP solver within
OpenSMT [11]. In this work, the LP solver is called first and
the results are used to “seed” the search in the exact solver.

5Often, an additional requirement is that H is not satisfied by the current
assignment a. We will not require this here.

Thus most of the search is done by the LP solver, while the
exact solver still ensures correctness.

In each of these studies, experimental results on SMT-LIB
benchmarks show that existing SMT solvers outperform the
experimental solvers modified to use LP solvers, even if the LP
solver results are not checked for correctness. The main reason
for this is that for these benchmarks (and the applications they
represent), solving requires many related calls to the theory
solver, each of which is relatively simple. The algorithms used
in SMT solvers are optimized for this case and thus perform
better, even though they use exact arithmetic which in general
is much slower than floating point arithmetic. A solution to
this problem advocated in [7] is to build a floating-point LP
solver optimized for many, simple, related calls.

Here, we present an alternative approach. The idea is to take
the two existing algorithms as they are and use each one only
in cases when it is likely to do well. We thus use an exact
solver optimized for fast incremental checks as the primary
theory solver. However, we also instrument this solver so that
it can detect when it is starting to have difficulty, and in these
cases we have it call the LP solver.

The overall approach is given by the algorithm BALANCED-
SOLVE shown in Figure 1. First, an efficient incremental exact
solver EXACTSOLVE is called with a heuristic cap on the
number of pivots it may perform, kEX . We assume that
EXACTSOLVE returns a status c (Sat, Unsat, or Unknown).
If the exact solver returns Sat or Unsat, we are done and
return the result. Otherwise, the heuristic cap was exceeded.
In this case, the LP solver is called. We must convert the
simplex problem described by T , l, and u to an analogous
problem for the LP solver. We denote the LP analogs of the
exact data by using the ∼ annotation. They are constructed
(following [9]) as follows. For each auxiliary variable s,
the equality s = orig(s) ≡ ∑

cixi, is added to T̃ as
s̃ =

∑
float(ci) · x̃i, where the conversion function float maps

a rational to the nearest float. For each variable x̃, the bounds
l̃(x) and ũ(x) are constructed from the δ-rationals , l(x) and
u(x) by approximating δ as a small constant ε. For example,
if l(x) = 〈c, d〉, then l̃(x) becomes float(c+ ε · d).

The LP solver is invoked with its own pivot limit kLP .
If the LP solver terminates with Sat or Unsat, we retrieve
the assignment ã as well as the final set of basic variables
B̃ from the LP solver. The assignment ã is converted into
a rational assignment a′ by the IMPORTASSIGNMENT routine
(given below). The SEEDEXACT procedure takes B̃ and a′ and
tries to verify the result of the LP solver using the exact solver.
If this fails (or if the LP solver reaches its heuristic limit), the
exact precision solver is run with a final limit kFI . For final
calls to BALANCEDSOLVE (i.e. the DPLL(T) SAT engine has
found a propositionally satisfying assignment), kFI should be
+∞. It can be less for non-final calls.

An important contribution of this paper is the procedure
shown in Figure 2. This procedure attempts to assign a rational
value to each variable that is close to the one given by
the LP solver, but biased towards values that are easy to
represent, partly because that makes them easier to calculate

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 141

1: procedure BALANCEDSOLVE
2: c← EXACTSOLVE(kEX)
3: if c is Sat or Unsat then return c
4: Construct T̃ , l̃, ũ from T, l, u
5: 〈c̃, ã, B̃〉 ← LPSOLVE(kLP , T̃ , l̃, ũ)
6: if c̃ is Sat or Unsat then
7: a′ ← IMPORTASSIGNMENT(ã)
8: c← SEEDEXACT(a′, B̃)
9: if c is Sat or Unsat then return c

10: return EXACTSOLVE(kFI)

Fig. 1: The BALANCEDSOLVE procedure.

1: procedure IMPORTASSIGNMENT(ã)
2: for all x ∈ V do
3: r ← DIOAPPROX(ã(x), D)
4: if |r − a(x)| ≤ ε then r ← a(x)
5: if x ∈ VZ and |r − bre| ≤ ε then r ← bre
6: if r > u(x) or |r − u(x)| ≤ ε then r ← u(x)
7: else if r < l(x) or |r − l(x)| ≤ ε then r ← l(x)
8: a′(x)← r

9: return a′

Fig. 2: The IMPORTASSIGNMENT procedure.

with, but also partly because the discarded portion often
corresponds exactly to a rounding error. For each variable
x in the assignment, IMPORTASSIGNMENT first approximates
ã(x) as a rational using a technique based on continued
fraction expansion called Diophantine approximation [5]. This
technique finds the closest rational value with a denominator
less than some fixed constant integer D. Next, we check to
see if this value is within ε of the last known assignment for
x in the exact solver. If so, the last known assignment is used.
Next, if x ∈ VZ and the value is within ε of an integer z
(bre denotes the nearest integer to r), then z is used. Finally,
IMPORTASSIGNMENT examines the value with respect to l(x)
and u(x). If the value violates one of these bounds or is within
ε of a bound, then the bound is used instead.

The SEEDEXACT routine (Fig. 3) attempts to duplicate the
results from the LP solver within the exact solver. First the
procedure updates the exact solver assignment by calling
UPDATE on each non-basic variable. Next it computes the set,
B′, of variables that are non-basic in the exact solver but were
marked as basic by the LP solver. We loop until as many
variables in B′ as possible have been pivoted to become basic.
At the beginning of each iteration, we visit all the rows of T to
check for conflicts. ([3] discusses doing this check efficiently.)
While checking for conflicts, we can also detect whether any
basic variable violates its upper or lower bound. If not, we
have a satisfying assignment and stop early. If neither check
applies, we search for a pair of variables xi, xj such that xj is
in B′ meaning it is non-basic but should be basic, and Ti,j 6= 0
and xi 6∈ B̃ meaning that xi is basic but should be non-basic.
If we can find such a pair, we pivot i and j and update the

1: procedure SEEDEXACT(a′, B̃)
2: for all x ∈ N do
3: UPDATE(x, a′(x)− a(x))
4: B′ ← N ∩ B̃
5: while B′ 6= ∅ do
6: if T has a row conflict then return Unsat
7: if all variables satisfy their bounds then return Sat
8: if ∃ i j. xj ∈ B′ ∧ xi 6∈ B̃ ∧ Ti,j 6= 0 then
9: PIVOT(i, j)

10: UPDATE(i, a′(xi)− a(xi))
11: B′ ← B′ \ {xj}
12: else return Unknown
13: return Unknown

Fig. 3: The SEEDEXACT procedure.

1: procedure INTEGERSOLVE
2: c← BALANCEDSOLVE()
3: if c is Unsat then return c
4: Construct T̃ , l̃, ũ from T, l, u
5: 〈c̃, ã, B̃, t̃〉 ← MIPSOLVE(kMIP, T̃ , l̃, ũ)
6: if c̃ is Unsat then c← REPLAY(t̃)
7: else if c̃ is Sat then
8: a′ ← IMPORTASSIGNMENT(ã)
9: c← SEEDEXACT(a′, B̃)

10: if c is Unknown then c← EXACTSOLVE(+∞)
11: if (c is Sat and a is integer-compatible) or

(c is Unsat) then return c

12: Generate a branching theory lemma using (1)
13: return Unknown

Fig. 4: The INTEGERSOLVE procedure.

assignment of xi to a′(xi). Approximations made by the LP
solver or by IMPORTASSIGNMENT mean that SEEDEXACT may
fail to detect a satisfying assignment or a conflict in which
case it returns Unknown. The SEEDEXACT procedure can
be seen as achieving a similar effect as FORCEDPIVOT in [10]
using rounds of the simplex algorithm in [1].

An alternative to verifying the LP solution would be to use
an exact external LP solver (e.g. [12]–[14]). However, the use
of an exact external solver (as well as an attempt to implement
their rather sophisticated techniques) is beyond the scope of
this work. Our goal, rather, is to make a first effort at an
efficient integration of inexact floating-point solvers within
SMT search. Integrating an exact external solver would be
an interesting direction for future work.

IV. USING MIP SOLVERS TO IMPROVE THEORY SOLVERS
FOR MIXED LINEAR INTEGER AND REAL ARITHMETIC

We show how to extend the technique from the previ-
ous section to mixed linear integer and real arithmetic. The
INTEGERSOLVE algorithm (Fig. 4) illustrates our approach.
First, the real relaxation of the problem is solved using
the BALANCEDSOLVE algorithm described above. If the real

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 142

PROPAGATE

Ẽ ⊆ CN∪P̃ h̃ is an inequality constraint Ẽ ∪ I |=T h̃

N1 := N · 〈h̃, Ẽ〉
BRANCH

ã satisfies P̃ ∧ CN v ∈ VZ ã(v) = α α /∈ Z
N1 := N · 〈v ≤ bαc , ∅〉 ‖ N2 := N · 〈v ≥ dαe , ∅〉

Fig. 5: Derivation rules. N is the parent node, N1 and N2 its
child nodes. The symbol · denotes sequence concatenation.

relaxation is unsatisfiable, then we are done. Otherwise, we
construct an MIP instance and call an MIP solver (with a pivot
limit kMIP) to search for an integer-compatible solution. When
Unsat is returned, we also retrieve a proof tree t̃, which is
a record of the steps taken by the MIP solver, and attempt to
verify the tree by replaying its proof in the exact solver using
the REPLAY procedure described below. Otherwise, if Sat is
returned, we attempt to verify the assignment as before. If the
verification fails, we again call EXACTSOLVE to ensure that
we have a solution to the real relaxation before continuing. If
we are unable to verify that the problem is Unsat or do not
find an integer-compatible assignment, we force a branch by
generating a theory lemma of the form (1) and return.

We now show how proof trees extracted from the MIP solver
can be replayed within the exact solver. For the rest of the
section, let M be an MIP instance consisting of an LP problem
P of the form TV = 0∧l ≤ V ≤ u with the integer-tightening
constraints I ≡ ∧z∈VZ IsInt(z). Let P̃ be the approximate
version of P obtained by converting all rational constants in
P to their corresponding floating point constants.

The process that an MIP solver goes through before con-
cluding that P̃ is integer-infeasible can be described at an
abstract level as a search tree. The root node represents the
initial problem P̃ and each non-root node is derived from its
parent by adding either a cut or a branch to the problem. The
leaves of the tree represent real-infeasible problems.

Formally, we define a tree node N as a sequence of pairs
〈h̃, Ẽ〉, where h̃ is an inequality constraint and Ẽ is an
explanation, a (possibly empty) finite set, each element of
which is either some h̃′ where 〈h̃′, Ẽ′〉 appears earlier in N
or is a constraint from the initial problem P̃ . We denote by
CN the set {h̃ | 〈h̃, Ẽ〉 ∈ N}.

The root node of a proof tree is the empty sequence. Each
non-root node is the result of applying to its parent node
one of the derivation rules in Figure 5. The PROPAGATE rule
is used to record when the MIP solver adds a cut. The cut
must be entailed by some subset of constraints in the current
MIP problem. The cut and its explanation are recorded in
the child sequence. The BRANCH rule is used to record when
the MIP solver does a case split on an integer variable. This
can happen when the MIP solver has a solution ã to the
real relaxation of the current problem that is not integer-
compatible. The MIP solver chooses an integer variable v that
has been assigned a real value α and enforces the constraint
v ≤ bαc ∨ v ≥ dαe. The rule has two children, each of which

1: procedure REPLAY(H, t)
2: CH ← {h|〈h,E〉 ∈ H}
3: if t is a is a leaf node N then
4: Construct T , l, u from P ∪ CH
5: c← BALANCEDSOLVE()
6: if c is not Unsat then return Unknown
7: Let ψ⊆P∪CH be the conflict from BALANCEDSOLVE

8: return REGRESS(ψ,H)
9: if the root of t has only one child c then

10: t′ ← subtree of t rooted at c
11: 〈h,E〉 ← IMPORTCONSTRAINT(last(c))
12: if E ⊆ CH ∪ P and E ∪ I |=T h then
13: return REPLAY(H · 〈h,E〉, t′)
14: else return REPLAY(H, t′)
15: if the root of t has two children c1 and c2 then
16: for i = 1, 2 do
17: ti ← subtree of t rooted at ci
18: 〈hi, ∅〉 ← last(ci)
19: Ki ← REPLAY(H · 〈hi, ∅〉, ti)
20: K ← RESOLVEBRANCH(K1,K2)
21: return REGRESS(K,H)

Fig. 6: The REPLAY procedure.

records in its sequence one of the two branch cases (with an
empty explanation). A node N is a leaf when the MIP solver
concludes that the problem P̃ ∪ CN is (real)-infeasible.

Ideally, a proof tree would allow us to prove that the
original problem P is integer-infeasible. However, because of
the approximate representation used by the MIP solver, this is
not always the case. As a consequence, our theory solver uses
the proof tree just as a guide for its own internal attempt to
prove that P is integer-infeasible. This process is captured at
a high level by the REPLAY function.

The REPLAY function is shown in Figure 6. It takes an
initially empty sequence H and a proof tree t, and traverses
the tree with the goal of computing a conflict, a subset
of the constraints in the original LP problem P that are
integer-infeasible. As REPLAY traverses the tree, it constructs
a sequence H which is analogous to the sequences in the tree
nodes, except that it contains only those constraints that the
internal exact solver has successfully replayed and so may only
be a subset of those in the tree node. (The REPLAY procedure
returns Unknown if the replay has failed.)

If t is a leaf node, then P̃ ∪CN should be integer-infeasible.
We check the exact analog, P ∪ CH . If unsuccessful, we
fail, returning Unknown; otherwise, we return a conflict. To
compute the conflict, we make use of an auxiliary function,
REGRESS, which is not shown. REGRESS takes a conflict K and
a sequence H of constraint-explanation pairs and recursively
replaces any constraint in K by explanation [assuming the
explanation is non-empty]. The net effect is to ensure a conflict
which does not contain derived cuts.

If the root of t has a single child, this child must have
been derived using the PROPAGATE rule. The last element of

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 143

the sequence in the child node represents the new cut and
its explanation. We convert the cut and its explanation to their
exact analogs and then verify that we can derive the cut h from
the exact constraints in E. These steps are explained in more
detail below. If the cut can be verified, it and its explanation
are included in the parameter H passed to the next recursive
call to REPLAY. If not, the recursive call is made without h in
the hopes that it is not needed to derive a conflict.

The final case is when the root of t has two children,
indicating that the BRANCH rule was applied. Because branch
constraints only use integers, importing them cannot fail. We
are always able to represent them exactly. Thus, we simply
call REPLAY recursively on each of the two sub-trees, passing
one of the branch conditions to each sub-tree. The RESOLVE-
BRANCH procedure constructs a conflict from the two returned
conflicts K1 and K2. The procedure returns either: (i) the
result of resolving K1 and K2 to remove the branch literals,
(ii) Ki if it does not involve the branch, or (iii) Unknown
otherwise. (The failure case requires at least one branch to be
unknown.) As before, we use REGRESS to ultimately construct
a conflict with constraints in P (we require REGRESS to return
Unknown if K is Unknown).

Lines 12 and 13 of REPLAY require converting 〈h̃, Ẽ〉 to
an exact analog, 〈h,E〉, and then verifying that h can be
derived from E. We have implemented support for both
Mixed-Gomory cuts and a variant of aggregated Mixed Integer
Rounding cuts [15]. We will only explain here how reconstruc-
tion works for a special case of Gomory cutting planes.

The MIP solver can add a Gomory cutting plane h̃ when
the following conditions hold: (i) there is a row in T̃ , bi =∑
T̃i,j · xj ; (ii) all of the non-basic variables on the row are

assigned to either their upper or lower bound; (iii) a subset of
the variables on the row, that must include the basic variable
bi, are integer variables; and (iv) the assignment of bi is
non-integer. The premises (i)-(iv) make up the explanation
Ẽ.6 For simplicity of presentation, we additionally assume all
of the variables are integer and all the coefficients T̃i,j are
positive and assigned to their upper bounds. The assignment
to bi is then determined by the upper bounds of the non-
basic variables, ã(bi) =

∑
T̃i,j · ũ(xj). The cut h̃ for these

constraints is then∑ T̃i,j
ã(bi)− bã(bi)c (ũ(xj)− xj) ≥ 1.

Given 〈h̃, Ẽ〉, we can attempt to derive a trusted cut and
explanation 〈h,E〉 as follows. To reconstruct the cut, for every
bound xj ≤ ũ(xj) ∈ Ẽ, there must be a corresponding bound
xj ≤ u(xj) in the exact system. (Note: xj ≤ u(xj) can
be in either P or CH .) Next we attempt to reconstruct the
row bi =

∑
T̃i,jxj in exact precision as a row vector α. The

coefficient for the basic variable in α is -1 (αi = −1). Nonba-
sic variables’ coefficients are estimated from the approximate
variables, αj = DIOAPPROX(T̃i,j , D). If after approximation,
the sign of αj does not match the sign of T̃i,j , this cut cannot

6See [4] for a Gomory cutting plane rule without additional assumptions.

be reproduced. The equalities TV = 0 entail
∑
αkxk = 0 iff

α is in the row span of T . This entailment can be checked by
replacing auxiliary variables with their original definitions,

αi · xi +
∑

xj is structural

αj · xj +
∑

xkis auxiliary

αk · orig(xk),

and rejecting this cut if any of the coefficients do not cancel to
0.7 The row α and the bounds u(xj) are used to generate b =∑
αj · uj , which can be thought of as a potential assignment

to bi. The cut cannot be reproduced if b ∈ Z. If the value of
b is non-integer, the Gomory cut h

h :
∑ αj

b− bbc (u(xj)− xj) ≥ 1

has been reproduced in exact precision. The explanation for
h, E, includes the upper bounds xj ≤ u(xj), the integer
constraints, and the equations xk = orig(xk).

V. EXPERIMENTS AND DISCUSSION

All of the algorithms in this paper have been implemented
in the CVC4 SMT solver [16].8 In this section, we report the
results of experiments using these implementations.

The implementation contains additional heuristics and sev-
eral tunable parameters. While the authors have not done a
formal tuning of any of these parameters, we include these
values for completeness. There are two different simplex
implementations in CVC4, one that follows the well-known
simplex adapted for SMT described in [1], [4], and one based
on sum-of-infeasibilities as described in [3]. The experiments
were run using the latter method for the EXACTSOLVE proce-
dure with a pivot cap of kEX = 200 in Fig. 1 (with kFI = 200
for non-final calls). Values of other parameters used in our
experiments are D = 226; ε = 10−9; kLP = 10000; and
kMIP = 200000. For both the LP and MIP solvers, we
use the floating-point simplex solver in GLPK version 4.52
[17], instrumented to communicate the additional information
needed by CVC4 in order to verify assignments, conflicts,
and proof trees.9 To avoid branching loops in GLPK, GLPK is
halted if it branches 100 times on any one variable. To keep the
size of the numeric constants manageable, we reject any cut
containing a coefficient n

d where log2(|n|) + log2(|d|) > 512.
Further, we have a heuristic that dynamically disables the
GLPK solver if it claims the problem is real-feasible and then
integer-infeasible without generating any branches or cuts, a
strange situation that happens with the convert benchmarks
(see discussion below for details). GLPK is also dynamically
disabled if CVC4’s bignum package throws an exception while
trying to import a floating point number. CVC4 has a heuristic
that automatically detects and reencodes benchmarks in the
QF_LRA family miplib (which are derived from benchmarks
in [18]) in something closer to their original form.10

7α can also be generated by Gaussian elimination from
∧
xk = orig(xk).

8Experiments were run using a branch of CVC4 available at github.com/
timothy-king/CVC4/CVC4 (commit 2550b6d).

9Source for this modified version of GLPK is available at github.com/
timothy-king/glpk-cut-log (commit a35b8e).

10A comparison of other solvers on the miplib problems after this reencod-
ing gave similar results to those reported in Table I.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 144

CVC4+MIP CVC4 yices2 mathsat5 Z3 altergo cutsat scip glpk
set # inst. # sel. solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

Selecting all benchmarks in the family
QF LRA 652 652 645 6966 636 8557 632 5350 622 10913 615 5696 - - - - - - - -
non-conj. QF LIA 4579 4579 4489 86854 4472 86375 4375 30656 4543 55417 4474 75171 3956 262031 - - - - - -
conj. QF LIA 1303 1303 1249 11130 1068 31054 1111 55691 1154 33260 1039 19015 1232 2055 1018 35330 1255 7164 1173 8895
total 6534 6534 6383 104950 6176 125986 6118 91697 6319 99590 6128 99882 - - - - - - - -
Selecting QF LRA benchmarks on which either LPSOLVE or MIPSOLVE was called at least once
miplib 42 37 30 1530 21 3037 23 2730 17 5682 18 2435 - - - - - - - -
DTP-Scheduling 91 4 4 4 4 4 4 0 4 2 4 1 - - - - - - - -
latendresse 18 18 18 767 18 836 12 85 10 99 0 0 - - - - - - - -
total - 59 52 2301 43 3877 39 2815 31 5783 22 2436 - - - - - - - -
Selecting non-conjunctive QF LIA benchmarks on which either LPSOLVE or MIPSOLVE was called at least once
convert 319 282 208 9646 193 9343 188 4337 274 1876 282 118 166 272 - - - - - -
bofill-scheduling 652 460 460 5401 458 4490 460 748 460 1519 460 2060 67 55 - - - - - -
CIRC 51 11 11 0 11 0 11 0 11 0 11 0 11 0 - - - - - -
calypto 37 37 37 3 37 3 37 0 37 6 36 5 35 24 - - - - - -
nec-smt 2780 207 207 17276 207 18045 199 777 207 17925 201 7209 184 23724 - - - - - -
wisa 5 1 1 0 1 0 1 0 1 1 1 0 1 0 - - - - - -
total - 998 924 32326 907 31881 896 5862 990 21327 991 9392 464 24075 - - - - - -
Selecting conjunctive QF LIA benchmarks on which either LPSOLVE or MIPSOLVE was called at least once
dillig 233 189 189 49 157 9823 175 8557 188 7185 166 1269 189 5 166 5840 189 42 189 3
miplib2003 16 8 4 307 4 1283 4 507 5 354 5 1089 0 0 6 146 7 17 6 295
prime-cone 37 37 37 2 37 2 37 2 37 1 37 2 37 1 37 4 37 1 37 0
slacks 233 188 166 61 93 2003 107 15672 119 4741 90 1994 188 84 96 6324 161 2361 101 11
CAV 2009 591 424 424 69 346 10035 376 26351 421 10236 354 2759 423 323 377 17015 424 105 424 6
cut lemmas 93 74 62 9581 64 6865 72 1662 45 9472 38 5858 74 267 15 1887 72 1757 71 760
total - 920 882 10069 701 30011 771 52751 815 31989 690 12971 911 680 697 31216 890 4283 828 1075

TABLE I: Experimental results on QF_LRA and QF_LIA benchmarks.

The experiments were conducted on the StarExec plat-
form [19] with a CPU time limit of 1500 seconds and a
memory limit of 8GB. The first segment of Table I compares
our implementation with other SMT solvers over the full sets
of QF_LRA and QF_LIA benchmarks from the SMT-LIB
library (the “2013-03-07” version on StarExec), extended with
the latendresse QF_LRA benchmarks from [3]. The QF_LIA
benchmarks are divided into the conjunctive subset and the
non-conjunctive subset. The conjunctive subset consists of all
families, all of whose benchmarks are a simple conjunction
of constraints.11 The primary experimental comparison is be-
tween a configuration of CVC4 running just its internal solvers
(“CVC”) against a configuration with the techniques of this
paper enabled (“CVC4+MIP”). We additionally compare with
similar state-of-the-art SMT solvers: mathsat5 (smtcomp12
version) [20], z3 (v4.3.1) [21], and yices2 (v2.2.0) [22]. We
include a comparison against the version of AltErgo [23] used
in [24] on just the QF_LIA benchmarks. For the conjunctive
subset, we also give results for several solvers that support only
conjunctive benchmarks: cutsat (CADE11) [25], SCIP (scip-
3.0.0-ex+spx) [13], [26], and glpk (4.52) [17]. This version of
SCIP handles MIP problems in exact precision.

The remaining segments of Table I give more detailed

11The conjunctive families are dillig, miplib2003, prime-cone, slacks,
CAV 2009, cut lemmas, pidgeons, and pb2010. We translated these into the
SMT-LIBv1.0 and MPS formats: cs.nyu.edu/∼taking/conjunctive integers.tbz.

results for QF_LRA benchmarks, non-conjunctive QF_LIA
benchmarks, and conjunctive QF_LIA benchmarks respec-
tively. In each segment, we report only the results on bench-
marks for which CVC4+MIP invokes GLPK at least once.
(For each family, the second column of numbers indicates how
many benchmarks in the family are included in the results. See
cs.nyu.edu/∼taking/fmcad14 selections for a list of selected
benchmarks.)

Sat Unsat

set # sel. MIPSOLVE calls attempts successes attempts successes

QF LIA 1393 3873 2559 1058 652 425
convert 208 2130 1356 1 178 3
bofill-scheduling 254 254 245 245 0 0
CIRC 11 85 6 5 79 77
calypto 37 375 77 23 293 278
wisa 1 1 1 1 0 0
dillig 189 228 225 185 3 2
miplib2003 4 10 3 3 5 4
prime-cone 37 37 19 19 18 18
slacks 166 195 168 162 3 3
CAV 2009 424 469 459 414 8 7
cut lemmas 62 89 0 0 65 33

TABLE II: Success rate of reproducing results of MIPSOLVE

To better understand how successful the verification and

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 145

replaying algorithms for integers described in Section IV are,
we analyzed all of the QF_LIA instances which were solved
by CVC4+MIP and for which MIPSOLVE was invoked at
least once, and collected the following statistics: the number
of times MIPSOLVE was called, the number of attempts and
successes at verifying Sat results from MIPSOLVE, and the
number of attempts and successes at replaying Unsat results
from MIPSOLVE. The results are shown in Table II.

On QF_LRA benchmarks, CVC4+MIP solves all of the
problem instances that the already competitive CVC4 does
plus 9 additional problems (solving more than any other
solver), all from the challenging miplib family. After pre-
processing, these benchmarks are represented internally as
mixed linear real and integer problems, so the INTEGER-
SOLVE procedure is invoked. CVC4+MIP is the only solver
to solve the opt1217--{27,37,57}.smt2 benchmarks,
and it does so in about 1s each. These and a handful of
other miplib problems are real-infeasible and are solved very
quickly by BALANCEDSOLVE. INTEGERSOLVE is able to verify
that several other miplib benchmarks are Sat. It was not able
to successfully solve the most difficult problems which are
real-feasible but integer-infeasible.

CVC4+MIP is also quite competitive on the QF_LIA prob-
lem instances. Particularly dramatic is the improvement of
CVC4+MIP over CVC4 on the (related) families dillig, slacks,
and CAV 2009 benchmarks. These benchmarks are small,
randomly generated, conjunctive problems that are mostly
satisfiable [25], [27]. It appears from Table II that CVC4+MIP
does well on these families due to a high proportion of
successes when IMPORTASSIGNMENT and SEEDEXACT are used
to verify Sat instances. Excluding the convert family, GLPK
returned Sat 1203 times, and in 1057 cases, we were able
to verify this with the exact solver. Given the challenges of
implementing branching and cutting within SMT solvers, this
suggests that the technique of soundly verifying results from
an external solver offers a new powerful tool in designing
QF_LIA solvers. The empirical results on the REPLAY pro-
cedure, while not as dramatic, are also promising. Excluding
the convert benchmarks, REPLAY was successful on 425 out of
652 invocations and did particularly well on (relatively) easy
benchmarks e.g. calypto and prime-cone.

CVC4+MIP is competitive with the dedicated conjunctive
solvers we included. Of course, its performance is limited by
that of GLPK (Interestingly, CVC4+MIP outperforms GLPK
on these benchmarks.) Though most of the improvement of
CVC4+MIP over CVC4 is on conjunctive benchmarks, the
authors suspect this to be an artifact of the benchmarks.

The convert family is interesting in that almost every proof
reported by GLPK on these benchmarks fails to replay. The
benchmarks contain integer equalities between variables with
coefficients of massively different scales. To ensure numerical
stability, GLPK increases each bound by some amount ε,
where ε is proportional to the size of the bound. Because of the
dramatic differences of scale in the coefficients in the convert
family, GLPK increases some bounds by a large amount and
others by a small amount. As a result, GLPK frequently

makes incorrect conclusions (both feasible and infeasible)
about subproblems from this family. These benchmarks thus
present a challenge for the techniques given in section IV and
are a good subject for future research.

Acknowledgments: We would like to thank Morgan De-
ters for his help running experiments and Bruno Dutertre for
providing us with a custom version of yices2.

REFERENCES

[1] B. Dutertre and L. de Moura, “A Fast Linear-Arithmetic Solver for
DPLL(T),” in CAV, 2006, pp. 81–94.

[2] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, “Satisfiability Modulo
Theories,” in Handbook of Satisfiability. IOS, 2009, ch. 26.

[3] T. King, C. Barrett, and B. Dutertre, “Simplex with sum of infeasibilities
for SMT,” in FMCAD, 2013, pp. 189–196.

[4] B. Dutertre and L. de Moura, “Integrating Simplex with DPLL(T),” SRI
International, Tech. Rep. SRI-CSL-06-01, 2006.

[5] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Opti-
mization. New York, NY, USA: Wiley-Interscience, 1988.

[6] Y. Yu and S. Malik, “Lemma Learning in SMT on Linear Constraints,”
in SAT, 2006, pp. 142–155.

[7] G. Faure, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell,
“SAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and
Commercial Solvers,” in SAT, 2008, pp. 77–90.

[8] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodrguez-Carbonell, and
A. Rubio, “The Barcelogic SMT solver,” in CAV, 2008, pp. 294–298.

[9] D.C.B. de Oliveira and D.Monniaux, “Experiments on the feasibility of
using a floating-point simplex in an SMT solver,” in PAAR.CEUR, 2012.

[10] D. Monniaux, “On using floating-point computations to help an exact
linear arithmetic decision procedure,” in CAV, 2009, pp. 570–583.

[11] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich, “The OpenSMT
Solver,” in TACAS, 2011, pp. 150–153.

[12] D. L. Applegate, W. Cook, S. Dash, and D. G. Espinoza, “Exact solutions
to linear programming problems,” Operations Research Letters, vol. 35,
no. 6, pp. 693 – 699, 2007.

[13] W. Cook, T. Koch, D. E. Steffy, and K. Wolter, “A hybrid branch-and-
bound approach for exact rational mixed-integer programming,” Math.
Program. Comput., vol. 5, no. 3, pp. 305–344, 2013.

[14] A. Neumaier and O. Shcherbina, “Safe bounds in linear and mixed-
integer linear programming,” Mathematical Programming, vol. 99, no. 2,
pp. 283–296, 2004.

[15] H. Marchand and L. A. Wolsey, “Aggregation and mixed integer
rounding to solve mips,” Operations Research, vol. 49, no. 3, pp. 363–
371, 2001.

[16] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli, “CVC4,” in CAV, 2011, pp. 171–177.

[17] A. Makhorin, “GNU Linear Programming Kit, Version 4.52,” jun 2012.
[Online]. Available: http://www.gnu.org/software/glpk/glpk.html

[18] T. Achterberg, T. Koch, and A. Martin, “Miplib 2003,” Operations
Research Letters, vol. 34, no. 4, pp. 361 – 372, 2006.

[19] A. Stump, G. Sutcliffe, and C. Tinelli, “StarExec: a Cross-Community
Infrastructure for Logic Solving,” in IJCAR, 2014, pp. 367–373.

[20] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani, “The Math-
SAT5 SMT Solver,” in TACAS, 2013.

[21] L. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in TACAS,
2008, pp. 337–340.

[22] B. Dutertre, “Yices 2.2,” in CAV, 2014, pp. 737–744.
[23] F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, S. Lescuyer, and

A. Mebsout, “The Alt-Ergo Automated Theorem Prover.” [Online].
Available: http://alt-ergo.lri.fr

[24] F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, A. Mahboubi,
A. Mebsout, and G. Melquiond, “A Simplex-Based Extension of Fourier-
Motzkin for Solving Linear Integer Arithmetic,” in IJCAR, 2012, pp.
67–81.

[25] D. Jovanovic and L. M. de Moura, “Cutting to the Chase Solving Linear
Integer Arithmetic,” in CADE, 2011, pp. 338–353.

[26] T. Achterberg, “Scip: solving constraint integer programs,” Mathemati-
cal Programming Computation, vol. 1, no. 1, pp. 1–41, 2009.

[27] I. Dillig, T. Dillig, and A. Aiken, “Cuts from Proofs: A Complete and
Practical Technique for Solving Linear Inequalities over Integers,” in
CAV, 2009, pp. 233–247.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 146

A Program Transformation for Faster Goal-Directed
Search

Akash Lal and Shaz Qadeer
Microsoft Research

Email: {akashl, qadeer}@microsoft.com

Abstract—
A goal-directed search attempts to reveal only relevant infor-

mation needed to establish reachability (or unreachability) of the
goal from the initial state of the program. The further apart the
goal is from the initial state, the harder it can get to establish
what is relevant. This paper addresses this concern in the context
of programs with assertions that may be nested deeply inside its
call graph—thus, far away interprocedurally from main. We
present a source-to-source transformation on programs that lifts
all assertions in the input program to the entry procedure of
the output program, thus, revealing more information about the
assertions close to the entry of the program. The transformation
is easy to implement and applies to sequential as well as
concurrent programs. We empirically validate using multiple
goal-directed verifiers that applying this transformation before
invoking the verifier results in significant speedups, sometimes
up to an order of magnitude.

I. INTRODUCTION

Automated program verification attempts to establish reach-
ability (or unreachability) of a goal from the initial state of the
program. The goal is usually expressed as the violation of an
assert statement in the program. Modern automated program
verifiers are typically goal-directed, i.e., they attempt to use
program information parsimoniously in order to establish
(un)reachability of the goal as efficiently as possible. The
challenge of distinguishing relevant from irrelevant and the
difficulty of the verification problem increases as the distance
of the goal from the initial state becomes larger. This paper
addresses this challenge for programs with assertions that
may be nested deeply inside its call graph—thus, far away
interprocedurally from the program entry point.

Deep assertions are natural in large programs. For instance,
in our benchmarks (Section VI), the static nesting depth of
assertions (i.e., length of an acyclic path in the call-graph
from main to a procedure containing an assertion) ranges
from 4 to 38 (Fig. 6) and the depth observed on real error
traces ranges from 5 to 15 (Fig. 7). At such depths, a naı̈ve
strategy of inlining procedures to expose control locations
of the assertions is infeasible for analysis because of the
exponential cost of inlining.

This paper presents an approach for lifting all assertions
to the entry procedure of the program, thus revealing more
information about the assertions close to the initial state of
the program. Our method is a source-to-source transformation
that produces output whose size is a small constant times the
size of the input, and applies to both sequential and concurrent
programs. We empirically validate using multiple verifiers that

applying this transformation before feeding a program to a
verifier results in upto order-of-magnitude speedups.

Our transformation is based on the observation that any
execution that descends into a call to a procedure P either
fails inside the call (and doesn’t return) or returns from it
without failing. We can convert assert statements inside P to
assume statements if (1) we make a copy of the body of P,
(2) instrument call sites of P to guess whether the call will
fail, and (3) either make the call in the success case or jump
to the copy in the failure case. This eliminates the need for
making a call in order to reach the control location of the
assertion. Further, we only need to make a single copy of the
body of P regardless of the calling context, because in the
failure case, control does not need to return to the caller. We
also lift assertions outside loops based on the observation that
in any execution only the last iteration of the loop (in that
execution) can fail. In the presence of concurrency, we exploit
the observation that at most one thread can fail.

Contributions. The contributions of this paper are: (1) a
novel program transformation that optimizes running time of
goal-directed verifiers for programs with deep assertions; and
(2) an extensive evaluation over real software that totals over
a month of verification time, and shows up to an order of
magnitude speedup for two very different verifiers.

Organization. Section II covers background and related
work on goal-directed verification techniques. Section III
presents an overview of our transformation. Sections IV and V
formally present the transformation for a simplified program-
ming language. Section VI presents the evaluation.

II. BACKGROUND

In order to describe the intuition behind our program
transformation, we first discuss some goal-directed verifiers
that are based on procedure inlining strategies. We choose
these kinds of verifiers for two reason: first, they form a part of
our evaluation (Section VI) and second, some inlining strate-
gies have been proposed to specifically address deeply-nested
assertions, thus, we compare the effect of our transformation
against them.

Bounded model-checking tools (e.g., CBMC [6], [5]) are
based on an eager inlining strategy that inlines all procedure
calls up to a certain depth to produce a single procedure with
all assertions inside it. Eager inlining fails for moderate to
large programs because the inlining can result in an exponen-
tial explosion, even for small bounds. For instance, in many

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 147

Algorithm 1 Forward and Alternating Inlining Strategies
1: procedure FWD(P)
2: if P has an error trace then
3: Return BUG
4: end if
5: Pover := Replace all calls c in P with

summary(c)
6: if Pover has an error trace then
7: Let c be a call on that trace
8: P := Inline c in P
9: Return FWD(P)

10: end if
11: Return CORRECT
12: end procedure

1: procedure ALT(P)
2: if FWD(P) = CORRECT then
3: Return CORRECT
4: end if
5: if P .head = main then
6: Return BUG
7: end if
8: for all callers c of P .head do
9: P ′ := Inline P in c

10: P ′.head := c
11: if ALT(P ′) = BUG then
12: Return BUG
13: end if
14: end for
15: Return CORRECT
16: end procedure

of the benchmarks used in this paper, eager inlining ran out
of memory even before the analysis was started.

To avoid the cost of eager inlining, there are several pro-
posed lazy inlining strategies that inline procedure on-demand
and in a goal-directed manner. Techniques such as structural
abstraction [2], inertial refinement [21], and stratified inlining
[14] are all forward-inlining strategies, described abstractly by
the method FWD of Alg. 1.

Forward Inlining. FWD takes a partially-inlined program P
as input. (One can think of P as a single procedure containing
some procedure calls.) Initially, P is just the body of main.
FWD checks if P contains a bug without going through a
procedure call (line 2). If not, then it picks a relevant procedure
call made by P (line 7), inlines the body of the callee (line
8) and repeats. The choice of picking relevant calls is guided
using procedure summaries (that are either pre-computed or
inferred on the fly): if no error trace in Pover goes through
a call c then this proves that no error trace of the original
program goes though c. A default summary based on mod-set
information, i.e., a procedure can arbitrarily modify variables
that it can touch, can always be used. FWD, even with default
summaries, has been shown to be much better than eager
inlining in some contexts [2], [14]. Further, one can treat loops
as tail-recursive procedures to extend FWD to perform loop
unrolling as well.

FWD raises two technical concerns: first, what do procedure
summaries mean in the presence of assertions, and second,
what does it mean to query Pover for error when it may not
even contain an assertion? Both these question are answered
using an error-bit instrumentation. As pre-processing, we add
a Boolean global variable err to the program; it is set to true
if and only if an assertion fails; and all procedures immediately
return when err is true. Then procedure summaries can use
err to distinguish failing executions from non-failing ones.
Moreover, we simply query Pover for a trace that ends with
err set. We note that the error-bit instrumentation results
in a program with the only assertion in main. However, it
does not reveal any information about the original assertions
themselves.

We illustrate FWD using the example in Fig. 1. This program
has two global variables s and g. The entry procedure main
initializes s and g and calls P1. The procedure P1 is the first

var s, g: int;
procedure main()
{ s := 0; g := 1;

P1();
}
procedure P1()
{ P2(); P2(); }
...

procedure Pn()
{ while (*) {

if (g == 1)
Open();

Close();
}

}

procedure Open()
{ s := 1; }

procedure Close()
{ assert s > 0;
s := 0;

}

Fig. 1: An example program

in a chain of procedures P1, . . . ,Pn each of which (except the
last) calls its successor twice. Pn contains a nondeterministic
loop that calls Open and Close in alternation. The assert
statement inside Close cannot fail.

Suppose we wish to explore all behaviors of this pro-
gram up to R loop iterations. In this case FWD will inline
O(2n)∗O(R) procedures to conclude unreachability (under R)
when using default summaries because no call will be deemed
irrelevant. This number comes down to O(1) when FWD has
the following (inductive) procedure summaries available for
each Pi: (old(g) == 1 && old(s) == 0) ==> (s
== 0 && !err), where old(v) refers to the value of v
at the beginning of the procedure. This says that if g and s
are 1 and 0, respectively, at the beginning of Pi then when
Pi returns, the value of s is still 0 and err has not been set.
Clearly, given this summary for P1, FWD can conclude the
absence of assertion failure just looking at main.

Alternating Inlining. Other inlining strategies include both
backward and forward search [1, Section 4.2] [22], captured
abstractly using ALT in Alg. 1. It starts with P as a procedure
with an assertion. It conducts a forward search (line 2) to find
an error trace from the initial state of P . If such a trace is
found, it picks a caller of P , inlines P inside it and repeats
until the search reaches main. An interesting remark is that
ALT does not require the error bit instrumentation. This is
because it starts with the assertion that it wishes to violate, and
all procedures inlined during the call to FWD are constrained to
not fail. Thus, all summary computation can be done assuming
fail-free executions.

On Fig. 1, ALT will inline O(2n) ∗O(R) procedures when
using default summaries. However, using just the (inductive)
fact that g == 1 is a valid precondition of each Pi, this
number comes down to O(1). This is because when the search
is at procedure Pn, then under this precondition, ALT can
already prove the absence of assertion violations (line 3)
without enumerating the calling contexts of Pn.

Thus, different inlining strategies can involve different
amount of inlining, and put different amount of stress on
invariant and summary generation.

III. OVERVIEW OF OUR PROGRAM TRANSFORMATION

In this section, we informally describe our novel contribu-
tion, a semantics-preserving source-to-source transformation
that lifts all assert statements in a program into its entry
procedure. As explained in Section I, our transformation
is based on the simple observation that any execution that
descends into a call to a procedure P either fails inside the
call or returns from it. We will convert all assert statements

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 148

(body of Pn-1)(body of P2)

s := 0;
g := 1;

P1();

skip;

P2();

P2();

skip;

Pn();

Pn();

skip;

if (g == 1)
Open();

Close();

if (g == 1)
Open();

Close();

assert s > 0;
s := 0;

skip;

P3();

P3();

(body of P1) (body of Pn)

(body of Pn’s
loop)

(body of
main)

(body of Close)

Fig. 2: Control-flow graph of transformed procedure main

inside P to assume statements and simulate failures in the body
of P by nondeterministically jumping to a copy of the body
of P at a call site.

Fig. 2 shows, as a control-flow graph, the result of our
transformation on the main procedure of our running example
from Fig. 1. The bodies of all other procedures remain
the same except for Close in which assert s > 0 is
converted to assume s > 0. The execution of transformed
main begins in the top-left block with the initialization of the
global variables. Next, it can non-deterministically choose to
call P1 or jump to a copy of the body of P1. The two calls to
P2 in the body of P1 are similarly instrumented, and so on.

The instrumentation of the body of Pn is interesting because
it contains a loop. In addition to lifting assertions out of
procedure calls, we would also like to lift them out of loops.
Our insight is that it suffices to allow only the final iteration
of the loop to fail. Therefore, we can make a copy of the
loop body, convert assert statements inside the loop to assume
statements, and then nondeterministically execute the copy of
the body after the loop at most once.

It is worth noting that in Fig. 2, we did not make a copy of
the body of procedure Open. We could do this optimization
because it was possible to statically determine that a call to
Open cannot fail.

When FWD is applied to the transformed program, it only
inlines O(1) number of procedures to conclude CORRECT.
(In particular, it only needs to inline the call to Open from
the new main.) The reason is that the value flow between
the initialization of g and the conditional expression guarding
the call to Open is apparent at the top-level without any
intervening loops and calls, even under default summaries. In
this case, inlining the call to Open is sufficient to discharge
the assertion. Thus, no summary or invariant generation was
required for this example after our transformation. This ex-
ample provides intuition for the speedup on programs with
an unreachable goal, however, pruning infeasible paths also
translates to finding the goal faster when reachable. This is
confirmed by our experiments.

While we have chosen to evaluate our program transforma-
tion against lazy inlining strategies (as each address the issue
of deep assertions), our approach is more general. It is not tied
to a particular analysis. It simply produces a new program
that can be fed to any verifier, with the hope of speeding
up the verifier. For instance, our evaluation uses the YOGI
verifier for C programs that is based on predicate-abstraction
and doesn’t directly implement an inlining strategy. This point

P ∈ Prog ::= (gs, ps)
p ∈ Proc ::= (x, is, os, vs, st)

vs ∈ Vars ::= · | x : t, vs gs, is, os ∈ Vars
ps ∈ Procs ::= · | p, ps
st ∈ Stmt ::= l :assume e | l :assert e | l :xs := es |

l :havoc xs | l :goto ls | l : loop st |
l :call xs := x(es) | l :async x(es) | l :yield |
st; st

xs ∈ Names ::= · | x, xs x ∈ Name
es ∈ Exprs ::= · | e, es e ∈ Expr
ls ∈ Labels ::= · | l, ls l ∈ Label
t ∈ Type

Fig. 3: Program syntax

is further emphasized when dealing with concurrent programs,
as we are not aware of inlining strategies that directly apply
to concurrent programs.

Remark: Here we note that our approach is inspired by
“Phase 2” of the RHS algorithm [19], [20]. RHS is the standard
tabulation-based algorithm for interprocedural dataflow analy-
sis. It works in two phases: the first phase computes procedure
summaries bottom-up in the call graph. The second phase
replaces procedure calls with the summaries and deletes return
edges. This transformation is similar to ours, however, we do
not use summaries and our target is goal-directed program ver-
ification, not dataflow analysis. Moreover, our transformation
has special handling for loops and concurrency.

IV. A SIMPLE PROGRAMMING LANGUAGE

We present a core programming language, similar to Boo-
gie [3], for formalizing our program transformation. The
syntax of the language is presented in Fig. 3. A program
P is a tuple comprising a set of global variable declarations
gs and a set of procedure declarations ps that is assumed
to contained a distinguished procedure called main. Each
procedure is a tuple comprising its name x, input parameters
is , output parameters os , local variables vs , and a statement
st . As notation, for a procedure f = (x, is, os, vs, st), let
name(f) = x, input(f) = is , output(f) = os , locals(f) = vs ,
and code(f) = st . We assume, without loss of generality, that
main is never called and it does not have output variables.

A statement st is a “;”-separated list of a label l and one
of the following—assert, assume, assignment, havoc, goto,
loop, call, async, or yield. In our presentation, we ignore the
syntax of expressions and types and assume the existence
of a type checker for validating that the program is well-
formed. Further, we may sometimes omit writing the label of
a statement, in which case it is assumed to have a fresh label
that is not used elsewhere in the program. Statement labels
must be unique and cannot be re-used.

The control flow in our language is straightforward. The
statement goto ls causes control to non-deterministically jump
to some label in ls; the type checker ensures that the labels
exist in the same procedure or enclosing loop. For all other
statements, control implicitly moves to the next statement by
following the sequential composition (“;”) operator. If there is
no next statement, then execution of the statement terminates.

assert e fails if e evaluates to false in the current state
and otherwise leaves state unchanged. assume e blocks if e

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 149

[[l :assume e]]stmt = l :assume e

[[l :assert e]]stmt = l :assert e

[[l :xs := es]]stmt = l :xs := es

[[l :havoc x]]stmt = l :havoc x

[[l :goto ls]]stmt = l :goto ls

[[st1; st2]]stmt = [[st1]]stmt; [[st2]]stmt

[[l :call xs := x(es)]]stmt =
l : if (?)then{call xs := x(es)}

else{input(x) := es; havoc locals(x); goto xentry}
[[l : loop st]]stmt = l : loop st; if (?)then{[[st]]stmt}else{skip}
[[(x, is, os, vs, st)]]proc = (x, is, os, vs, st)

[[(p, ps)]]proc = ([[p]]proc, [[ps]]proc)

[[(gs, (main, is, ·, vs, st), ps)]]prog = (gs,

(main, is, ·, vs ∪⋃
p∈ps input(p) ∪ output(p) ∪ locals(p),

[[st; die; xentry
1 :skip; code(x1); die; · · · ; xentry

n :skip; code(xn); die]]stmt),

[[ps]]proc) where ps = (p1, · · · , pn) and name(pi) = xi

Fig. 4: Transforming sequential programs

evaluates to false in the current state and otherwise leaves state
unchanged. xs := es is a parallel assignment that evaluates
es in the current state and updates variables xs to the result.
havoc xs puts nondeterministically chosen values into each
variable in xs . loop st is a nondeterministic structured loop
and executes st zero or more times. call xs := x(es) is call
to procedure x with inputs es; the output of the procedure call
is received in variables xs . async x(es) is an asynchronous
call to procedure x with inputs es; the call is executed in a
new thread that executes concurrently with all existing threads.
The multithreading model in our language is cooperative and
nondeterministic; yield yields control to a nondeterministically
chosen thread.

For convenience, we also use a statement
if (?)then{st1}else{st2} that denotes non-deterministic
branching between two statements. We use it as syntactic
sugar over using goto statements.

V. PROGRAM TRANSFORMATION

We begin by presenting our transformation for sequential
programs in Fig. 4 and generalize it to concurrent programs in
Fig. 5. We use skip and die to compactly denote assume true
and assume false , respectively. Our transformation depends
on an initial renaming of variables and labels in the program to
make them globally distinct. This initial renaming is standard
and we do not present it here. Further, for a statement st , let
st be the same statement where all occurrences of assert e in
st are converted to assume e.

A. Transforming sequential programs

Fig. 4 describes three transformations: [[.]]stmt for statements,
[[.]]proc for procedures and [[.]]prog for programs. First, note that
the transformation of a procedure simply disables all assertions
in the procedure. The transformation on a program leaves the
set of global variables unchanged and disables assertions in all
procedures except main. The main procedure is transformed
by absorbing the bodies of all other procedures (along with
their input, output and local variables) and applying the
statement transformer on them. It is easy to show that [[P]]prog
can only have assertions in main.

[[l :yield]]stmt = l :yield

[[l :async x(es)]]stmt = l : if (?)then{async x(es)}
else{assume flag = nil; ainput(x) := es; flag := cx}

[[(gs, ps)]]prog = (gs ∪ {flag}⋃p∈ps ainput(p),

(newmain, is, ·, vs
⋃

p∈ps input(p) ∪ output(p) ∪ locals(p), [[st]]stmt), [[ps]]proc)

where ps = (main, p1, · · · , pn), name(pi) = xi and

st
def
= flag := nil;

if (?)then{flag := cmain; goto mainentry; die}else{skip};
async main(is); yield; goto lx1 , · · · , lxn ; die;

lx1 :assume flag = cx1 ; input(x1) := ainput(x1); goto xentry
1 ; die;

· · ·
lxn :assume flag = cxn ; input(xn) := ainput(xn); goto xentry

n ; die;

[[mainentry :skip; code(main); die]]stmt;
[[xentry

1 :skip; code(x1); die; · · · ; xentry
n :skip; code(xn); die]]stmt

Fig. 5: Transforming concurrent programs

Let us now look at the statement transformer [[.]]stmt. It is
non-trivial only for procedure calls and loops. It transforms
a procedure call of x to a non-deterministic branch. The
then branch simulates an execution where the procedure call
succeeds. In this case, the call is left untouched. However, note
that x does not have assertions in the transformed program,
thus a call to it cannot fail. The else branch simulates an
execution where the procedure call fails. In this case, we
simply jump to xentry where a copy of the body of x resides.
Note the use of die in the [[.]]prog transformation. This prevents
the execution of, say, x2’s body to fall through onto the body
of x3. Thus, a jump to the body of a procedure cannot ever
return (but it may fail).

The statement transformation for loops works by first peel-
ing off the last iteration of the loop. (loop st is equivalent to
loop st ; if (?)then{st}else{skip}.) Next, the new loop’s body
is not allowed to fail (st), because only the last iteration of a
loop can fail. The statement transformer is applied recursively
to the last iteration.

B. Transforming concurrent programs

The transformation described in the previous section, al-
though adequate for lifting all assertions to the entry proce-
dures of all threads, is inadequate for lifting all assertions to
just the main block of the initial thread. This section extends
the transformation described earlier to achieve this goal.

Fig. 5 defines the statement transformer for yield and async
procedure calls. It also redefines the program transformation.
The rest is borrowed over from Fig. 4. The main insight
behind these transformations is that any erroneous execution
has exactly one assertion failure which stops the execution.
Therefore, it suffices to allow at most one thread, either
initial or dynamically-created, to fail. The start procedure of
a dynamically-created thread is one of a finite number of
procedures that are targets of asynchronous procedure calls.
We introduce fresh constants including the special constant nil
and a constant cx for each procedure in the input program with
name x; these constants are assumed to be distinct from each
other. We also introduce a fresh global variable flag whose
value is one of these freshly introduced constants; this variable
is initialized to nil . During the execution of the transformed

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 150

program its value changes at most once from nil to some
constant cx. The final value of flag , if different from nil ,
represents the entry procedure of the potentially failing thread.

The transformation of an asynchronous call async x(es)
is a non-deterministic choice. One choice is to keep the
asynchronous call, but to a procedure that cannot fail (recall
the procedure transformation from Fig. 4). The other choice
is to atomically update flag from nil to cx, which simulates
the creation of a failing instance of x. (The failing instance
executes in the entry procedure of the transformed program,
discussed later in program transformation rule.) Blocking on
the condition flag = nil ensures that at most one failing
instance is created. We use additional global variables av
(where v is an input argument to some procedure) for storing
the arguments of the failing thread instance.

The [[.]]prog transformation is more sophisticated. It works by
creating a new procedure, called newmain that is understood
to be the entry procedure of transformed program. It consists
of the bodies of all other procedures, including main. It starts
by initializing flag to nil . Next, it decides if the main thread
is the one that fails; if so, it jumps to main. Otherwise, it
spawns main as a separate thread (which cannot fail) and non-
deterministically jumps to a location lx for some procedure x.
The location lx waits for flag to be set to cx, grabs input
arguments from av variables, and jumps to the body of x.

C. Correctness
Let P be a program where all variables and labels are

globally distinct. The most important property of our trans-
formation is that it is failure-preserving. Therefore, verifying
the original program is equivalent to verifying the transformed
program.

Theorem 5.1: P fails an assertion if and only if [[P]]prog fails
an assertion.
The following theorem states that we succeeded in our objec-
tive of lifting all assert statements out of loops and procedures.

Theorem 5.2: In [[P]]prog, no procedure other than the entry
procedure can have assertions. Further, even loop statements
in the entry procedure cannot have assertions.
Next, we state a property about the compactness of our
transformation. Let |P | denote the size of the program P .
The loop nesting depth of a program is defined recursively as
follows.

LND(ps) = max ({LND(p) | p ∈ ps)})
LND((x, is, os, vs, st)) = LND(st)

LND(st1; st2) = max (LND(st1),LND(st2))
LND(l : loop st) = LND(st) + 1

LND() = 1

Theorem 5.3: |[[P]]prog| = |P | × (LND(P) + c) for a small
constant c.
Finally, our transformation enjoys the desirable property that
if the input program is recursion-free and has only structured
loops, then so is the output program.

Theorem 5.4: If P is recursion-free and each procedure has
an acyclic control-flow graph then [[P]]prog is recursion-free
and each procedure has an acyclic control-flow graph.

VI. EVALUATION

We refer to the transformation of Section V as the deep-
assert (DA) instrumentation. We conducted extensive experi-
ments to evaluate its effect on the running time of two different
verifiers:

1) CORRAL [14] is an SMT-based verifier that accepts
BOOGIE programs [16] as input. It consists of an outer
loop of abstraction refinement. Inside the loop, it verifies
a program using either FWD or ALT of Alg. 1, based
on stratified inlining [14] and alternating inlining [22],
respectively.

2) YOGI [4], [10] is a verifier for C programs. It alter-
nates between test generation (for proving “reachability”
information) and automated predicate abstraction (for
proving “unreachability” information).

We chose YOGI because: first, it currently uses the error-bit
instrumentation (Section II). Second, YOGI has been highly
optimized over several years of research and development
[18], [11], [4], [10], thus, any performance improvement is
considered significant. Third, it is a “third-party” tool; we were
never a part of the design or implementation of YOGI.

Let SI and AT refer to CORRAL with stratified inlining
and alternating inlining, respectively, and let SI+DA refer to
applying our deep-assert transformation followed by running
CORRAL with stratified inlining. Note that once the deep-
assert transformation is executed then using SI or AT is
identical as all assertions would be in main.

CORRAL uses HOUDINI [9] for generating program in-
variants and procedure (and loop) summaries. Let SI+H,
AT+H and SI+DA+H refer to configurations when HOUDINI is
enabled. HOUDINI requires invariant templates to be supplied
by the user. Invariant generation in YOGI is fully automated.

CORRAL and YOGI use different IR representation for pro-
grams. The implementation of the deep-assert instrumentation
for CORRAL was 969 lines of C# code1 and for YOGI was
166 lines of OCaml code.

All experiments were conducted on a server class machine
with two Intel(R) Xeon(R) processors (16 logical cores) ex-
ecuting at 2.4 GHz with 32 GB RAM. Different verification
instances were executed in parallel, with at most 16 instances
(one per core) executing in parallel at any given time.

Static Driver Verifier. Our first set of experiments is using
the Static Driver Verifier (SDV) [17]. SDV is a commercial-
grade tool offered by Microsoft to third-party driver devel-
opers. We collected a set of real device drivers that have
been historically challenging for SDV, shown in Fig. 6. The
drivers total 115KLOC, and additionally link against libraries
of size 75KLOC. Fig. 6 also gives the number of procedures
(#Procs) and “Assert Depth”, which is a pair consisting of the
smallest and largest acyclic path in the call graph from the
entry point to a procedure containing an assert. This is a static
measure for how deep the assertions were in the program.
The last column lists the number of verification instances for

1available open source at corral.codeplex.com.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 151

Name KLOC #Procs Assert Depth #Verif.
(min,max) Instances

fdc fail 9.2 216 4-18 226
kbdclass 7.1 230 4-31 252
daytona 21.5 345 4-27 316
parport 33.9 531 4-21 169
sys 2.2 108 4-27 596
isapnp 14.1 286 4-18 94
mouser 7.4 190 4-38 600
modem 14.4 289 4-26 157
kerneldriver 5.0 183 4-34 106
Total 115+75 2378 4-38 2516

Fig. 6: Details of SDV benchmarks

0

20

40

60

80

100

120

140

160

180

200

5 6 7 8 9 10 11 12 13 14 15

N
u

m
b

er
 o

f
er

ro
r

tr
ac

e
s

Stack Depth of Assertion

Fig. 7: Stack depth of SDV error traces

a driver: SDV verifies multiple properties of a driver and in
doing so, generates multiple different verification instances.
For our purpose, a verification instance is simply a program
with assertions. SDV generated verification instances have no
recursion (usually drivers don’t have recursion, and even when
they do, SDV statically unrolls the recursion up to a small
bound). Moreover, all loops are structured (i.e., the control-
flow graph of procedures are reducible), in which case we
can compile loops to use our loop statement. Fig. 7 shows
the stack depth at which the failing assert was reached among
all the error traces found in the benchmark suite. It shows a
reasonable range and variation.

SDV generates a set of predicates R1, · · · , Rn, S1, · · · , Sm
for each verification instance, based on the property that it
is checking [14]. The Ris are predicates over the input state
of a procedure; they serve as templates for preconditions.
The Sis are templates for postconditions (summaries). SI
uses the error-bit instrumentation; let err be the error bit
summarizing if an assertion has failed or not (see Section II).
SI+H uses HOUDINI to look for procedure summaries of the
following form: !err ==> Si (i.e., Si is a summary when
the procedure doesn’t fail) and Rj ==> !err (i.e., under
Ri, the procedure doesn’t fail). AT+H doesn’t use the error-
bit instrumentation; it looks for summaries of the form Si
and preconditions of the form Rj . While summaries can be
inferred bottom-up in the call graph, inferring preconditions
requires a top-down pass as well. SI+DA+H also doesn’t use
the error-bit instrumentation (there is no need because all
assertions are lifted to main by DA). Further, it only looks for
summaries of the form Si; the templates Rj are dropped as our
deep-assert transformation reduces the need for preconditions.

Aggregate results across all verification instances are shown
in Fig. 11. The table lists the total number of instances that

Algorithm #TO #Bnd #Bugs #Proof Houd. Time (1000 s)
(1000 s) Bug No-bug

SI 510 477 348 1181 0 23 154
AT 314 638 345 1219 0 31 126
SI+DA 213 383 363 1557 0 21 93
SI+H 73 129 360 1954 76 35 156
AT+H 126 226 350 1814 115 47 205
SI+DA+H 43 127 363 1983 53 32 123

Fig. 11: Results, in aggregate, for the SDV benchmarks

timed out after 2000 seconds (#TO), hit the search bound
(i.e., inconclusive) (#Bnd), produced an error trace (#Bugs),
or proved the instance correct (#Proof). The other columns list
the total time taken by HOUDINI (Houd), and the time spent
by CORRAL (inclusive of time spent by HOUDINI) on buggy
and non-buggy instances. Non-buggy instances include both
bound-hit and proofs, but not timeouts. Times are reported
in units of 1000 seconds. The entire table took 41 days of
verification time.

The table shows advantages of the deep-assert instrumen-
tation along several dimensions. SI+DA and SI+DA+H have
much fewer timeouts, find more bugs, prove more instances
correct, and take the least amount of time. Using HOUDINI
significantly reduces the number of timeouts and increases the
number of instances proved correct (for each of SI, AT, and
SI+DA). These numbers suggest that the templates used by
HOUDINI were complete to a good extent. However, the time
taken by HOUDINI is a significant fraction of the total running
time. Thus, optimizing HOUDINI usage is important. The table
shows that the simplification of templates provided by DA
improves the running time of HOUDINI. Because ALT requires
preconditions for pruning, AT+H spends the maximum amount
of time in HOUDINI—more than twice as much as SI+DA+H.
Consequently, AT+H is the slowest among other configurations
with HOUDINI. This indicates that ALT imposes a stricter
demand for invariants for pruning search. SI+DA, on the other
hand, does well even without invariant generation; in fact, it
finds all the 363 bugs without the help of HOUDINI.

Fig. 8 presents a more detailed comparison of the running
times of SI and SI+DA. The scatter plot (on the left) is the
distribution of running times: each dot is a single verification
instance. The chart on the right summarizes the number
of instances in which DA resulted in a particular speedup
(computed as a fraction of the running time). “Infinity” means
that a timeout was eliminated, and “-Infinity” means that a
timeout was introduced. For example, there are 54 instances in
which SI+DA is at least 10 times faster than SI. The numbers
on top of the bars indicate the average running time of SI
(in seconds) on an instance that falls in that bar. For example,
whenever SI+DA was 5 to 10 times faster than SI, the average
time taken by SI was 434.2 seconds. These numbers show that
the speedup was obtained on non-trivial instances. Further,
only 6 timeouts were introduced, and 303 were eliminated by
DA. Only 5 instances experienced a slowdown worse than a
factor of 2 (see the bar “< 0.5”). There are 1726 instances
with speedup in the range 0.5 to 1.75. These are not shown in
the figure, moreover, their average running time was just 69

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 152

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ti
m

e
 T

ak
e

n
 b

y
SI

+D
A

 (
s)

Time Taken by SI (s)

105.5

102.8

209.8

434.2 578.3

665.7

0

50

100

150

200

250

300

350

-Infinity < 0.5 1.75 - 2 2 - 5 5 - 10 10 - 50 50 - 100 Infinity

N
u

m
b

e
r

o
f

in
st

an
ce

s

Speedup of SI+DA over SI

Fig. 8: Comparisons of running time between SI and SI+DA

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ti
m

e
 T

ak
e

n
 b

y
SI

+D
A

+H
 (

s)

Time Taken by SI+H (s)

222.5

275.2

333.0

844.6

209.6
0

10

20

30

40

50

60

70

80

-Infinity < 0.5 1.75 - 2 2 - 5 5 - 10 10 - 50 Infinity

N
u

m
b

e
r

o
f

in
st

an
ce

s

Speedup of SI+DA+H over SI+H

Fig. 9: Comparisons of running time between SI+H and SI+DA+H

seconds. One can also visually observe high density of dots
near the origin of the scatter plot.

Fig. 9 shows similar graphs for SI+DA+H against SI+H. In
this case, 33 timeouts were eliminated and only 3 introduced
by DA. Only 4 instances observed a slowdown worse than
a factor of 2. There are 2323 instances with speedup in the
range 0.5 to 1.75 with an average running time of 76 seconds.

Fig. 10 shows the effect of DA on the running time of YOGI.
The overall speedup is a modest 9% but this increases to as
much as 50% (i.e, a factor of 2 faster) on harder instances that
take at least 600 seconds. The benchmarks used for YOGI were
the same set of drivers as mentioned in Fig. 6, but for a subset
of the verification instances (total 802). Because YOGI does
not support features like bitvector reasoning and arrays, we
disabled some of the SDV properties when using YOGI. DA
eliminated 8 timeouts and only 1 was introduced. As before,
the slowdowns are mostly on trivial instances. The average
running time on such instances was less than 2 minutes. The
harder instances, with longer running time, usually show a
speedup.

The scatter plot of Fig. 10 shows a greater spread than for
CORRAL (Figs. 8 and 9). We believe this is because CORRAL
uses a more powerful (SMT-based) intraprocedural analysis

Program LOC Assert #Inst- CORRAL CORRAL+DA
Depth ances (sec) (sec)

daytona 488 3-5 5 460.6 407.4
kbdclass 694 3-4 2 713.9 641.7
mouclass 581 3-4 7 3877.8 2964.0
ndisprot 592 3-5 3 314.9 345.9
pcidrv 449 3-5 6 796.4 988.5
total 2804 3-5 23 6163.9 5347.7

Fig. 12: Results on concurrency benchmarks

and this matches well with the programs produced by DA as
they have a large main procedure.

Memory Consumption: For SDV benchmarks, we observed
that the ratio of |[[P]]prog| to |P | ranged from 1.1 to 1.6,
which is much smaller than the worst-case mentioned in
Thm. 5.3. This is because bodies of nested loops tend to
be very small compared to the rest of the program. (DA
copies the body of a loop as many times as its nesting depth.)
Moreover, many procedures cannot statically reach an assert,
thus they need not be copied into main by the instrumentation.
Despite the increase in program size, DA still reduces memory
consumption because of the decreased analysis complexity. On
average, the peak memory usage of SI+H was 461MB, for
AT+H it was 663MB, and for SI+DA+H it was 443MB.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 153

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

Yo
gi

 w
it

h
 D

A
 In

st
ru

m
e

n
ta

ti
o

n
 (

se
c)

Yogi without DA Instrumentation (sec)

55.0

108.6

185.9

284.8

264.1

350.1 203.1

592.6
0

50

100

150

200

250

300

- Infinity < 0.5 0.5 - 1 1 - 1.75 1.75 - 2 2 - 5 5 - 10 10 - 50 50 - 100 Infinity

N
u

m
b

e
r

o
f

in
st

an
ce

s

Speedup when Yogi uses Deep-Assert Instrumentation

Fig. 10: Yogi with and without deep-assert instrumentation

Concurrency: One scalable approach for the analysis of
large (multiple-procedure) concurrent programs is the process
of sequentialization [13], [7], [8], [15] where a concurrent
program is transformed to a sequential program and then
verified using a sequential analysis tool. CORRAL supports
such a sequentialization; it feeds the resulting sequential
program to stratified inlining.

Remark. Sequentializations only preserve end-state reach-
ability and require a variant of the error-bit instrumentation
for assertions.2 This implies that the generated sequential
programs have an assertion only at the end of main. Con-
sequently, any transformation for revealing information about
deep assertions needs to be done on the concurrent program
before the sequentialization, as our transformation does.

Fig. 12 reports results on concurrent programs (obtained
from [13]) using CORRAL. The improvement is a modest
13% overall, and the assert depth of the benchmarks is also
quite shallow. We leave further investigation on concurrent
benchmarks for future work.

Summary: We note that there are several other choices of
verifiers and it is possible that our program transformation may
interact differently with the search heuristics of the verifier.
However, our experimental evaluation shows a large potential
for speedups, especially given that we do not algorithmically
modify the verifier. Further, the program transformation can be
applied with any verifier, and takes relatively minimal effort
to implement (a few hundred lines of code).

REFERENCES

[1] D. Babić. Exploiting Structure for Scalable Software Verification. PhD
thesis, University of British Columbia, Vancouver, Canada, 2008.

[2] D. Babic and A. J. Hu. Structural abstraction of software verification
conditions. In Computer Aided Verification, 2007.

[3] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
Formal Methods for Components and Objects, pages 364–387, 2005.

2There are sequentializations that preserve assertions [12], but these have
not yet been shown to be scalable to programs in real languages like C.

[4] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons.
Proofs from tests. In International Symposium on Software Testing and
Analysis, pages 3–14, 2008.

[5] CBMC: Bounded Model Checking for ANSI-C. http://www.cprover.org/
cbmc/.

[6] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 168–176, 2004.

[7] M. Emmi, A. Lal, and S. Qadeer. Asynchronous programs with
prioritized task-buffers. In Foundations of Software Engineering, 2012.

[8] M. Emmi, S. Qadeer, and Z. Rakamaric. Delay-bounded scheduling. In
Principles of Programming Languages, 2011.

[9] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for
ESC/Java. In Formal Methods Europe, pages 500–517, 2001.

[10] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali. Compositional
may-must program analysis: unleashing the power of alternation. In
Principles of Programming Languages, pages 43–56, 2010.

[11] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K.
Rajamani. SYNERGY: a new algorithm for property checking. In
Foundations of Software Engineering, 2006.

[12] S. La Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded
concurrent reachability to sequential reachability. In Computer Aided
Verification, 2009.

[13] S. Lahiri, S. Qadeer, and Z. Rakamaric. Static and precise detection of
concurrency errors in systems code using SMT solvers. In Computer
Aided Verification, 2009.

[14] A. Lal, S. Qadeer, and S. Lahiri. Corral: A solver for reachability modulo
theories. In Computer Aided Verification, 2012.

[15] A. Lal and T. Reps. Reducing concurrent analysis under a context bound
to sequential analysis. Formal Methods in System Design, 35(1), 2009.

[16] K. R. M. Leino. Boogie: An intermediate verification language. http:
//research.microsoft.com/en-us/projects/boogie.

[17] Microsoft. Static driver verifier. http://msdn.microsoft.com/en-us/
library/windows/hardware/ff552808(v=vs.85).aspx.

[18] A. V. Nori and S. K. Rajamani. An empirical study of optimizations
in YOGI. In International Conference on Software Engineering, pages
355–364, 2010.

[19] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow anal-
ysis via graph reachability. In Principles of Programming Languages,
1995.

[20] T. W. Reps. Program analysis via graph reachability. Information &
Software Technology, 40(11-12):701–726, 1998.

[21] N. Sinha. Modular bug detection with inertial refinement. In Formal
Methods in Computer Aided Design, 2010.

[22] N. Sinha, N. Singhania, S. Chandra, and M. Sridharan. Alternate and
learn: Finding witnesses without looking all over. In Computer Aided
Verification, pages 599–615, 2012.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 154

Infinite-State Backward Exploration
of Boolean Broadcast Programs

Peizun Liu and Thomas Wahl
Northeastern University, Boston, USA {lpzun|wahl}@ccs.neu.edu

Abstract—Assertion checking for non-recursive unbounded-
thread Boolean programs can be performed in principle by con-
verting the program into an infinite-state transition system such
as a Petri net and subjecting the system to a coverability check, for
which sound and complete algorithms exist. Said conversion adds,
however, an additional heavy burden to these already expensive
algorithms, as the number of system states is exponential in the
size of the program. Our solution to this problem avoids the
construction of a Petri net and instead applies the coverability
algorithm directly to the Boolean program. A challenge is that,
in the presence of advanced communication primitives such
as broadcasts, the coverability algorithm proceeds backwards,
requiring a backward execution of the program. The benefit
of avoiding the up-front transition system construction is that
“what you see is what you pay”: only system states backward-
reachable from the target state are generated, often resulting in
dramatic savings. We demonstrate this using Boolean programs
constructed by the SATABS predicate abstraction engine.

I. INTRODUCTION

Infinite-state system verification continues to be an active
field of research. A highly sought-after target are algorithms
for the reachability of state sets “upward-closed” with respect
to a given well quasi-order; a problem referred to as cov-
erability. Recent years have seen intense work on designing
practical coverability algorithms that attempt to defy the high
computational lower bounds known for this problem.

The application of these algorithms to programs — with
variable assignments and control flow — rather than state
transition systems, is more involved. The data complexity
of programs is typically addressed via predicate abstraction.
Recent work has pushed the limits of this technique to
encompass multi-threaded software [1]. The abstractions are
finite-state “Boolean” programs executed concurrently by a
possibly unbounded number of threads.

What remains is to close the gap between these programs
and the framework of well quasi-ordered systems (WQOS) [2],
for which coverability problems are decidable. In principle,
this can be achieved by formally translating the (symmetric)
unbounded-thread Boolean programs into transition systems
such as forms of Petri nets: thread-local variable valuations be-
come local states, which in turn are converted into unbounded
counter variables, recording the number of threads occupying
the corresponding local state at a given time.

In practice, however, this naive method only works for
programs with few variables, since the number of states in
the resulting WQOS is of course exponential in the size of

This work is supported by NSF grant no. 1253331.

the program. This explosion — before any kind of system
analysis has been performed — makes subsequent coverability
analysis intractable but for small programs. In finite-state
model checking, the classical method to curb the explosion
incured during the program-to-system translation is to avoid
the translation altogether and instead build the transition
system on the fly: system states are converted to program
states, the program is simulated one step, and the resulting
program state is converted back into a system state.

In this paper, we build on this idea and present a coverability
algorithm — a variant of infinite-state backward search [2] —
that operates directly on the Boolean program. What makes the
classical on-the-fly technique challenging in this context is:

1) the WQOS constructed on the fly does not encode the
simulated multi-threaded program directly, but a counting
abstraction of it: WQOS states store numbers of threads
in certain local states. This additional level of indirection
must be unraveled before the program can be executed
on a system state; and

2) the coverability algorithm [2] proceeds backwards. That
is, after unfolding a system state into a program state,
we have to execute the program backwards in order
to find predecessors. Moreover, the algorithm computes
preimages consisting not only of direct predecessors, but
also of cover predecessors: predecessors of states “larger”
than the current state.

The computation of cover predecessors is a consequence of
the infinite-state operation of the algorithm; how to do this
for Boolean programs is a main technical contribution of this
paper. The backward direction of the algorithm is essential
to be able to handle broadcasts, such as produced by a recent
predicate abstraction method [1]. Alternative, forward-directed
infinite-state algorithms such as the Karp-Miller procedure [3]
are known not to extend naturally to broadcast programs [4].

To summarize, we present in this paper the first, to our
knowledge, coverability algorithm for the broad class of
Boolean broadcast programs that avoids an up-front con-
struction of (broadcast|Petri) nets or other transition systems.
The exploration cost is thus proportional to the backward-
reachable system states, rather than the size of the conceivable
state space. We show experimental results on 30 predicate-
abstracted C programs that convincingly demonstrate how our
method speeds up algorithms otherwise known to be well-
performing coverability checkers.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 155

II. PREPARATIONS

This paper presents an approach to applying Abdulla’s
infinite-state backward search algorithm [2], designed for
well quasi-ordered transition systems (WQOS), to a Boolean
program family. In this section we sketch syntax and semantics
of Boolean programs, the notion of WQOS and their relation
to Boolean program families, and the basics of Abdulla’s
algorithm to decide certain reachability questions over WQOS.

A. Boolean Broadcast Programs

Boolean programs typically arise from predicate abstrac-
tions of C or Java code. All variables are of type bool. Control
flow constructs are optimized for automated analysis, rather
than ease of programming.

An overview of the syntax of Boolean programs is given in
Fig. 1 and mostly compatible with that used in the CPROVER
toolkit1. A program is a top-level declaration of Boolean
variables — called shared — with compile-time computable,
possibly nondeterministic initial values, followed by a list of
function definitions. A function definition is an initializing
declaration of Boolean variables called local, followed by a
list of labeled statements.

prog ::= decl initvarlist; func∗

func ::= name (varlist) { decl initvarlist; [label: stmt;]∗ }
stmt ::= seqstmt

| start thread label
| atomic { [stmt;]∗ }
| wait
| broadcast

seqstmt ::= skip
| goto labellist
| assume (expr)
| varlist := exprlist [constrain expr]
| if (expr) then seqstmt else seqstmt fi
| assert (expr)

Fig. 1: Boolean program syntax (partial; slightly simplified)

A formal description of the semantics of Boolean program
statements is beyond the scope of this paper. We sketch here
the main concepts; for some details see Table I, for more
details see [5]. The skip statement advances the program
counter (pc); goto labellist nondeterministically chooses one
of the given labels as the next pc; assume terminates ex-
ecutions that do not satisfy the given expression. The :=
statement assigns the values of the given expressions to the
respective variables, in parallel, but terminates the execution
if the result does not satisfy the constrain expression, if any.
The semantics of if is standard; assert indicates assertions for
verification and otherwise acts like skip. In all cases, expr is
a Boolean expression over shared and local variables of the
program, the constants 0 and 1, and the choice symbol ? ; the
latter nondeterministically evaluates to 0 or 1. For example,
the statement assume (b ∧ ?) behaves like skip in states

1http://www.cprover.org/boolean-programs/grammar.pdf

where b = 1, and terminates the execution in states where
b = 0. Function calls and return statements are omitted; they
have standard semantics.

The remaining statements in Fig. 1 support threading in
Boolean programs. Their intuitive semantics is as follows:
start thread label (i) advances the pc of the executing thread

to the next statement, and (ii) creates a new thread
whose local variables are copied from those of the
executing thread and whose pc is given by label.

atomic {stmt∗} denotes atomic execution: a thread executing
inside an atomic section cannot be preempted.

wait blocks the execution of a thread (see next).
broadcast advances the pc of the executing thread, and wakes

up all threads currently blocked at a wait statement,
if any, i.e. it advances their pc as well. A broadcast
is thus non-blocking. (More general models may of-
fer distinct pairs of wait/broadcast statements, using
condition variables.)

Thread termination is omitted, as — for the purposes of
reachability analysis — it can be simulated by trapping the
terminating thread in a self loop. Fig. 2 (left) shows a Boolean
program with an assertion. We are interested in this paper in
detecting assertion violations: does there exist a multi-threaded
execution of the program in which some thread reaches a
failing assertion?

B. From Programs to Infinite-State Transition Systems

Let B be a Boolean program defined over sets of shared
and local Boolean variables VS and VL, respectively, and let
{1, . . . , pcmax} be the set of program locations. B gives rise to
an infinite-state transition system M∞ as follows. The states
of M∞ have the form (s, `1, . . . , `n), where s is a valuation
of the shared variables of B and is called the shared state.
Symbol `i is a valuation of the pc and the local variables of
B and is called the local state of thread i. We write s.v (`i.v)
for the value of shared (local) variable v in shared (local) state
s (`i), and `i.pc for thread i’s current pc value. Finally, n is
a positive integer, intuitively the number of threads currently
running. The state space of M∞ is therefore the infinite set

S∞ = {0, 1}|VS | ×
∞⋃
n=1

(
{1, . . . , pcmax} × {0, 1}|VL|

)n
.

A transition of M∞ is of the form

(s, `1, . . . , `n) → (s′, `′1, . . . , `
′
n′)

such that one of the following conditions holds:
1) n′ = n and there exists i ∈ {1, . . . , n} such that (i) the

statement at `i.pc is a seqstmt; executing it atomically
from the variable valuation given by (s, `i) results in
the variable valuation given by (s′, `′i), and (ii) for
j ∈ {1, . . . , n} \ {i}, `′j = `j .

2) n′ = n + 1, s′ = s and there exists i ∈ {1, . . . , n}
such that (i) the statement at `i.pc is of the form
start thread x, (ii) `′i.pc = `i.pc + 1 and `′i.v =

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 156

`i.v for v ∈ VL, (iii) `′n′ .pc = x and `′n′ .v = `i.v for
v ∈ VL, and (iv) for every j ∈ {1, . . . , n} \ {i}, `′j = `j .

3) n′ = n, s′ = s and there exists i ∈ {1, . . . , n} such that
(i) the statement at `i.pc is broadcast, (ii) `′i.pc =
`i.pc + 1 and `′i.v = `i.v for v ∈ VL, (iii) for every
j ∈ {1, . . . , n} \ {i} such that the statement at `j .pc is
wait, `′j .pc = `j .pc+ 1 and `′j .v = `j .v for v ∈ VL, and
(iv) for every j ∈ {1, . . . , n}\{i} such that the statement
at `j .pc is not wait, `′j .pc = `j .pc and `′j .v = `j .v for
v ∈ VL.

In each case, thread i is called active, the others passive. We
omit the precise formalization of atomic blocks, which is,
however, straightforward. The initial states of M∞ are given
by (i) n = 1 and (ii) s and `1 determined by the (nondeter-
ministically) initializing declarations in B and by `1.pc = 1.

Transition system M∞ thusly defined is a well quasi-
ordered transition system (WQOS) [2]. That is, there exists
a well-quasi order � on S∞ that satisfies a monotonicity
property: for states x, y, x′ with x → x′ and y � x, we can
find y′ such that y′ � x′ and y → y′. This order is the covers
relation:

(s̄, ¯̀
1, . . . , ¯̀̄

n) � (s, `1, . . . , `n)

whenever s̄ = s and [¯̀1, . . . , ¯̀̄
n] ⊇ [`1, . . . , `n], where [·]

denotes a multiset. The well-quasi orderedness follows from
properties of ⊇ and Dixon’s lemma; the monotonicity of →
with respect to � follows since actions of a thread in a state
cannot be disabled by adding threads to the state; see semantics
of M∞. These are standard concepts.

The multi-threaded assertion violation question can now be
phrased as a coverability problem for the derived WQOS M∞:
let Q be the set of (shared, local) state pairs (s, `) such that the
statement at `.pc is an assertion that is violated by the variable
valuation given by (s, `). Coverability of the “bad-states set” Q
asks whether a state z is reachable such that, for some q ∈ Q,
z � q. Coverability is decidable but of high complexity, e.g.
Ackermann-complete for Petri nets with broadcasts (a form of
WQOS), which means that the complexity grows as fast as
the Ackermann function [6].

C. Backward Search

A sound and complete algorithm to decide coverability for
WQOS is the backward search algorithm by Abdulla et al.
[2], [7], a high-level version of which is shown in Alg. 1. In
this listing, symbol ↑ U stands for the upward closure of U :
↑ U = {ū : ∃u ∈ U : ū � u}. Input to Alg. 1 is a set of initial
states I ⊆ S∞, and a target set Q ⊆ S∞. The algorithm
maintains a work set W ⊆ S∞ of unprocessed states, and a
set U ⊆ S∞ of minimal encountered states. It successively
computes minimal cover predecessors

CovPre(w) = min{p : ∃w̄ � w : p→ w̄} (1)

starting from elements in Q, and terminates either by
backward-reaching an initial state (thus proving coverability
of some q ∈ Q), or when no unprocessed vertex remains (thus
proving uncoverability).

Algorithm 1 BWS(I,Q)
Input: initial states I , target set Q disjoint from I

1: W := Q ; U := Q
2: while ∃w ∈W
3: W := W \ {w}
4: for p ∈ CovPre(w)\ ↑ U
5: if p ∈ I then
6: “some q ∈ Q coverable”
7: W := min(W ∪ {p})
8: U := min(U ∪ {p})
9: “no q ∈ Q coverable”

III. BOOLEAN PROGRAM BACKWARD SEARCH: OVERVIEW

We illustrate our approach using the Boolean program B
in Fig. 2 (left). The program is started by one thread; the
nondeterministic goto in Line 1 determines whether to launch
an additional thread in Line 2. Suppose not (we proceed in
Line 3). Then the left branch starting at the node corresponding
to Line 4 (Fig. 2, right) is not executable since t = 0 violates
assume(t). Along the right branch, local variable m is not
modified, assume(!t) passes, and so does the assert(!m)
in Line 10.

d e c l t := ?;
main() {

d e c l m := 0;
1: goto 2,3;
2: s t a r t t h r e a d 3;
3: t := 0;
4: goto 5,8;
5: assume(t);
6: m := 1;
7: goto 9;
8: assume(!t);
9: t := !t;

10: a s s e r t(!m);
}

1

2 3

4

5 8

6

7

9

10

goto 2 goto 3

start thread 3

t := 0

goto 5 goto 8

assume(t)

m := 1

goto 9

assume(!t)

t := !t

Fig. 2: A Boolean program with VS = {t}, VL = {m} (left);
its control flow graph (right)

Nonetheless, program B permits an assertion violation, as
the backward trace in Fig. 3 shows. The target set is {(0|10/1),
(1|10/1)}; the trace shown starts from (0|10/1). Our backward
search algorithm proceeds from a given state w in two steps:
(i) we select a thread in w as active and compute all direct
predecessors that B permits; (ii) we try to find expanded
predecessors of w, explained below.

Let us first consider a direct predecessor example, using
state (1|7/1) in the first row. The algorithm first consults
the control flow graph, shown in Fig. 2 (right), for possible
control predecessors of pc′ = 7. There is only one, pc = 6.
The statement along this edge is m := 1. We therefore now
compute the weakest precondition of state t = 1,m = 1 under
this statement, i.e.

WPm := 1(t ∧m) = t ,

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 157

(0|10/1) (1|9/1) (1|7/1) (1|6/0)

(1|5/0)(1|5/0,
10/0)(0|5/0,

9/0)(0|5/0,
8/0)

(0|5/0,
4/0) (0|4/0,

4/0) (0|3/0,
4/0)

(1|3/0,
3/0)(1|2/0)(1|1/0)

t1 t1 t1

t1

�t2t2

t1

t1 t1

t2

t1t1

Fig. 3: Coverability analysis using backward search, applied
to the program in Fig. 2 (left). Targets are the states (s, `)
satisfying `.pc = 10, `.m = 1. Notation (t0|pc1/m1 , . . .)
denotes a global state with shared variable t = t0 and the given
values for the local variables pc and m, for the various threads.
Labels atop transitions indicate the active thread; � indicates
expansion

indicating {(1|6/0), (1|6/1)} as the set of direct predecessors.
Both are recorded in our algorithm; the trace shown in Fig. 3
continues with state (1|6/0).

Direct predecessor computation alone will never increase
the number of involved threads and thus cannot detect multi-
threaded assertion violations. Alg. 1 involves a step we call
expansion of w to a larger state w̄, by adding to w a thread in
a suitable local state not present in w. Expanded predecessors
of w are then the (minimal) direct predecessors of w̄, obtained
by backward-executing the added thread. Sections IV and V
present the details of this step, especially that adding a single
thread to w is sufficient, what a “suitable” local state is, and
that direct and expanded predecessors constitute exactly the
set of all cover predecessors of w (Eq. (1)).

Consider the example of state (1|5/0) in Fig. 3. The only
direct predecessor is (1|4/0), from which there is no further
direct predecessor: the only CFG edge entering Line 4 is
labeled with statement t := 0, which does not permit t = 1
in the current state. We thus try to expand. As we will see,
expansion is only useful if the added thread gives rise to a
predecessor with a modified shared state. Only few statements
in B change t; one is t := !t in Line 9. Expansion therefore
adds a thread with pc = 10, namely in local state 10/0.
The direct global predecessor state (0|5/0,

9/0) has changed t
by backward-executing t := !t. From now on the backward
search proceeds with two threads until we encounter the
start thread command; backward-executing it eliminates
thread 2. At the end, the search reaches the initial state (1|1/0),
proving reachability of the violated assertion.

IV. BOOLEAN PROGRAM BACKWARD SEARCH

This section presents our infinite-state backward search al-
gorithm, applied to an unbounded-thread Boolean program B.

A. Data Structures and Prerequisites

While exploring B, the algorithm builds — on the fly —
the infinite-state structure M∞. States τ = (s,m1, . . . ,mn)

of this structure are stored in the form

τ = 〈s, {(`1, n1), . . . , (`k, nk)}〉 (2)

where `1, . . . , `k are the distinct local states occurring in τ ,
and for i ∈ {1, . . . , k}, ni = |{j : mj = `i}|. That is, instead
of listing the local states of all n threads in τ , (2) collapses
multiple occurrences of local states and lists their count.
Threads in the same local state are equivalent under standard
symmetry equivalence; their order in τ and their identities are
immaterial. By construction, ni > 0 for all i.

The algorithm assumes the control flow graph (CFG) of B
is given as G = ({1, . . . , pcmax}, E). The CFG is a directed
graph over the program locations of B. Each edge e ∈ E, with
source and target source(e) and target(e), resp., is labeled
with the statement e.stmt of B that carries the control from
source(e) to target(e). For example, Line 1 of the program
in Fig. 2 (left) induces two edges in G, as shown on the right.

For a statement stmt and states (s, `) and (s′, `′) of B, let
WPstmt(s, `, s′, `′) be a Boolean formula asserting that state
(s, `) satisfies the weakest precondition for state (s′, `′) under
statement stmt . That is, WPstmt(s, `, s′, `′) holds exactly
if executing stmt from state (s, `) results in state (s′, `′).2

Examples for sequential statements are given in Table I.

Statement stmt WPstmt (s, `, s′, `′)
skip `′.pc = `.pc+ 1 ∧ invar
assume (t = m) s.t = `.m ∧ `′.pc = `.pc+ 1 ∧ invar
t := ? `′.m = `.m ∧ `′.pc = `.pc+ 1

TABLE I: Examples for weakest precondition formulas for a
program B with VS = {t} and VL = {m}. Symbol invar
stands for “data invariance”: s′.t = s.t ∧ `′.m = `.m

B. Cover Predecessor Computation

Our algorithm is an instance of the high-level scheme shown
in Alg. 1. The only (albeit substantial) modification is the
computation of the cover predecessor function in Line 4.
The definition of this function, Eq. (1), poses the following
challenges for an implementation:

1) given w, expanded elements w̄ � w need to be explored;
2) given w̄, a preimage needs to be computed.

Regarding 2), our algorithm will use the CFG of B and
weakest precondition transformers to compute preimages of
states. In order to meet challenge 1), we need an “upper
bound” on the expanded elements w̄. This is accomplished
by the following lemma. We denote by |w| the number of
threads in state w ∈ S∞, e.g. |(s, `1, . . . , `n)| = n.

Lemma 1. For a transition relation → induced by a Boolean
broadcast program, and states p, w, w̄ ∈ S∞,

p ∈ CovPre(w) ∧ w̄ � w ∧ p→ w̄ ⇒ |w̄| ≤ |w|+ 1.

Proof: Since p is a minimal cover predecessor of w, there
are no states o ≺ p and v̄ such that v̄ � w and o → v̄. Note
that o ≺ p abbreviates o � p ∧ ¬(o � p).

2We note that all atomic (non-compound) statements of B are terminating.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 158

We prove |w̄| ≤ |w| + 1 via contraposition: assume |w̄| ≥
|w|+2. From this assumption and w̄ � w, we conclude that w̄
contains, in some permutation, all |w| local states that w also
contains, and at least two more local states, say at positions
j1 and j2 with j1 6= j2. Let i be the index of the thread active
during transition p→ w̄. We observe that, since j1 6= j2, there
exists j ∈ {j1, j2} such that j 6= i. Let now o and v̄ be the
same states as p and w̄, respectively, except that thread j is
dropped. Then: (i) o ≺ p; (ii) o → v̄, because thread j is
not active in p → w̄, and dropping j does not invalidate the
transition; and (iii) v̄ � w, since w̄ � w and |w̄| ≥ |w| + 2,
and we have dropped only one thread from w̄ to obtain v̄.
Properties (i)–(iii) contradict the minimality of p, as stated at
the beginning of the proof.

We now turn to the main result in this paper: the procedure
for cover predecessor computation (Alg. 2). Input is a state
τ ′ in format (2) (we attach a prime ′ to the input symbols
to suggest that we are computing preimages). The results are
collected in a set C.

The computation of cover predecessors according to Eq. (1)
involves finding an element w̄ satisfying w̄ � w, and then de-
termining predecessors of w̄. Condition w̄ � w is tantamount
to w̄ �� w ∨ w̄ � w (where w̄ �� w means equivalence:
w̄ � w ∧ w � w̄). The algorithm deals with the two cases
w̄ �� w and w̄ � w separately, as follows.

1) Direct predecessors: Condition w̄ �� w means that
there exists a thread permutation π such that w = π(w̄) (π
reorders threads in the local state vector representation of w̄).
By thread symmetry, w and w̄ therefore have the same sets
of → predecessors, up to applying local state permutations.
Now observe that states that are identical up to local state
permutations have the same thread counter representation (2).
This means that, in the case w̄ �� w, we can ignore the
“detour” through w̄ and directly compute predecessors of w:
those are the elements of CovPre(w). Naturally, we call such
elements direct predecessors.

To compute direct predecessors, Alg. 2 iterates through all
local states `′i (thus, implicitly, threads) present in τ ′. It then
consults the CFG for edges e leading to the current program
location `′i.pc of any of the threads in `′i (Lines 2 and 3).
Reversing edge e, i.e. executing it backwards on (s′, `′i), gives
us the desired predecessors.

To this end, the algorithm switches over the possible types
of statement e.stmt :
start thread x: this is possible exactly if the current

state τ ′ contains a “started” thread in some local state
`′j with `′j .pc = x and same data as the thread in `′i
(Line 6). If so, in the predecessor state τ , the thread
in `′i is unchanged except that its pc is the previous
program location (Line 7; notation `′i [pc 7→ Y] returns
`′i except pc replaced by Y). To construct τ , we
update the thread counters: those for `′i and `′j are
decremented; that of the predecessor local state `i is
incremented (the thread in `′j has just been created, so
going backwards it “disappears”). These updates are
done in Line 8 via a function UPDATE-COUNTERS

explained below. The updates are performed for all
eligible local states `′j ; the results are added to C.

broadcast: since broadcasts are non-blocking, they are ex-
ecutable from any predecessor state. The broadcasting
thread’s pc is decreased by one; the change is recorded
in a temporary variable Y . Line 13 selects all threads
with program counter pc such that the statement at
pc − 1 is wait: these threads may have just been
released by the broadcast. However they may also
have resided in location pc before the broadcast was
issued — the exact subset J of indices of threads that
are released cannot be determined when exploring B
backwards.
Therefore, the algorithm iterates through all such sets
J ⊆ J and threads j ∈ J (Line 16): these threads
are “unreleased”, i.e. their pc is set back to the wait
location. The updates to Z in Lines 18–19 (see Alg. 4
for the MERGE function) perform counter updates for
the synchronous state change of all unreleased threads.

default: this case takes care of all sequential statements: using
the weakest precondition function WP, we generate
all possible predecessor program states (s, `), update
the counters, and add the results τ to C. Solving
the Boolean formula WPe.stmt(s, `, s′, `′i) for (s, `) is
done with the aid of a SAT solver (see Sect. VI).

Note that the switch in Line 4 does not process wait state-
ments: these cannot backward-execute by themselves, as re-
leasing waiting threads happens in synchrony with broadcasts.

2) Expanded predecessors: We now consider the case
w̄ � w. We have to expand state w by adding threads to it,
followed by the computation of predecessors of the expanded
state w̄. The following observations render this step feasible:
• by Lemma 1, adding a single thread to w is sufficient;
• when computing predecessors p of w̄, those obtained

when the single added thread is active are sufficient:
predecessors triggered by threads already present in w
are handled as direct predecessors of w.

Alg. 2 implements the expanded predecessor computation
along those principles. In Line 25 we determine states (s, `)
of B such that there exists a local state m′ (= that of the added
thread) not present in τ ′ such that the following holds: (i) the
pc values of ` and m′ form an edge e ∈ E, and (ii) executing
e.stmt from (s, `) leads to (s′,m′).

The solutions to the constraint in Line 25 are determined
using a SAT solver, which is passed the constraint as an
existentially quantified Boolean formula. In this formula, all of
s′, `′1, . . . , `

′
k are Boolean constants; the only variables are s, `

(free) and m′ (quantified). The solutions (s, `) we are looking
for are the assignments satisfying this formula, projected to s
and `. To avoid excessive enumeration, we discuss in Sect. V
how the selection of candidate local states m′ for expansion
can be substantially and soundly restricted.

We conclude this algorithm description by explaining func-
tion UPDATE-COUNTERS(T, T ′, Z ′), shown in Alg. 3. It in-
crements/decrements the counters for all local states in T /T ′,
using the MERGE function from Alg. 4.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 159

Algorithm 2 CovPre(τ ′)
Input: τ ′ = 〈s′, Z ′〉, where Z ′ = {(`′1, n′1), . . . , (`′k, n

′
k)}

Output: cover predecessors of τ ′

1: C := ∅
2: for each i ∈ {1, . . . , k} B direct predecessors
3: for each e ∈ E s.t. target(e) = `′i.pc
4: switch e.stmt :
5: case start thread x, for some x:
6: for each j ∈ {1, . . . , k} \ {i} s.t. `′j .pc = x ∧ ∀v ∈ VL : `′j .v = `′i.v
7: `i := `′i [pc 7→ `′i.pc− 1]
8: τ := 〈s′,UPDATE-COUNTERS({`i}, {`′i, `′j}, Z ′)〉
9: C := C ∪ {τ}

10: case broadcast:
11: `i := `′i [pc 7→ `′i.pc− 1]
12: Y := UPDATE-COUNTERS({`i}, {`′i}, Z ′)
13: J := {j ∈ {1, . . . , k} \ {i} s.t. stmt. at `′j .pc − 1 is wait}
14: for each J ⊆ J
15: Z := Y
16: for each j ∈ J
17: `j := `′j [pc 7→ `′j .pc− 1]
18: Z := Z \ {(`′j , n′j)}
19: MERGE(`j , n′j , Z)
20: C := C ∪ {〈s′, Z〉}
21: default:
22: for each (s, `) s.t. WPe.stmt(s, `, s′, `′i)
23: τ := 〈s,UPDATE-COUNTERS({`}, {`′i}, Z ′)〉
24: C := C ∪ {τ}
25: for each (s, `) s.t. ∃m′ 6∈ {`′1, . . . , `′k} : e := (`.pc,m′.pc) ∈ E ∧ WPe.stmt(s, `, s′,m′) B expanded predecessors
26: τ := 〈s,UPDATE-COUNTERS({`}, ∅, Z ′)〉
27: C := C ∪ {τ}
28: return C

Algorithm 3 UPDATE-COUNTERS(T, T ′, Z ′)
Input: T : local states whose counter is to be incremented

T ′: local states whose counter is to be decremented
Z ′: thread counter vector

1: for each ` ∈ T
2: MERGE(`, 1, Z ′)
3: for each `′ ∈ T ′
4: let n′ be such that (`′, n′) ∈ Z ′ B n′ is unique
5: Z := Z ′ \ {(`′, n′)} ∪ (n′ > 1 ? {(`′, n′ − 1)} : ∅)
6: return Z

V. EFFICIENCY

In Sect. IV-B2 we saw two specializations of the generic
backward coverability Alg. 1 that apply to the computation
of expanded cover predecessors for Boolean programs. In
particular, the bound on the size of expanded states w̄ makes
CovPre(w) effectively computable. In this section we describe
two improvements that are essential to, among others, curb the
number of candidate local states m′ in Line 25.

The first improvement is that m′ can be restricted such that
the statement along edge e = (`.pc,m′.pc) changes the shared

Algorithm 4 MERGE(`, n, Z)
Input: `: local state, n: counter, Z: thread counter vector

1: if there exists n′ such that (`, n′) ∈ Z then
2: Z := Z \ {(`, n′)} ∪ {(`, n′ + n)}
3: else
4: Z := Z ∪ {(`, n)}

state. The justification is as follows. Suppose e.stmt does not
change the shared state, i.e. s = s′. The cover predecessor state
τ is thus of the form (s′, . . . , `, . . .). Any cover predecessor of
τ that is obtained by backward executing B from program state
(s′, `) is also a cover predecessor of the original τ ′: we simply
expand τ ′ by local state ` instead of m′.

This improvement is easy to implement: we change Line 25
in Alg. 2 to the following two lines:

for each e ∈ E s.t. e.stmt may modify the shared state
for each (s, `) s.t. s 6= s′ ∧ ∃m′ 6∈ {`′1, . . . , `′k} :
target(e) = m′.pc ∧ WPe.stmt(s, `, s′,m′)
τ := . . . B (continue with Line 26 of Alg. 2)

That is, we first select edges e that have the potential to
change the shared state. Such are edges that assign a variable

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 160

in VS ; they can be identified inexpensively up front, while
building the CFG. We then determine states (s, `) of B such
that (i) shared state s is actually different from s′, and (ii)
there exists a local state m′ not present in τ ′ whose pc is the
target of e and such that WPe.stmt(s, `, s′,m′).

This improvement is also highly effective: only few of
the syntactically possible statements may actually change the
shared state, and their frequency in Boolean programs is
proportionately small, as we demonstrate in Table II (Sect. VI).

The second improvement exploits that local states m′ that
are not forward-reachable from an initial state of M∞ can
be omitted, since they obviously are not part of any legal
execution. While the exact determination of reachability of
a local state is of course a coverability problem in itself, we
can employ very inexpensive overapproximating analyses that
soundly provide unreachability information.

One such analysis, adapted from [8], is to execute B
essentially as a single-threaded program. That is, statements
related to multi-threading are ignored (start thread in
particular). Sequential statements are honored, except that:

1) assignments to shared variables are ignored
2) conditionals that depend on shared variables are replaced

by ?, i.e. in assume, constrain, and if statements.
The set L of local states reachable in this single-threaded
program is cheap to compute and overapproximates the precise
set of local states reachable in the multi-threaded execution
of B. That is, local states not in L are unreachable. We exploit
this information by adding the requirement m′ ∈ L to the
second for each statement in the above modification to Alg. 2.

In fact, this insight not only applies to the selection of states
m′ during expanded predecessor computation: we can simply
ignore local states generated during the backward search
(Lines 7, 11, 17, 22 in Alg. 2) that do not belong to L. This
technique can be seen as an instance of combining forward
and backward analysis for increased efficiency (executing B
is tantamount to forward reachability analysis). This idea was
used in several other works, such as [9], where an incom-
plete forward-searching Karp-Miller procedure assists a slower
but complete backward coverability analysis. Incidentally, the
Karp-Miller implementation used in [9] may not terminate and
may thus underapproximate the set of coverable configurations
when applied to broadcast nets. In contrast, we need an
overapproximation, as our goal is to prune encountered states
that are guaranteed to be unreachable.

VI. EMPIRICAL EVALUATION

In this section, we evaluate our verifier UCOB3 on a set of
30 non-recursive concurrent C programs. Threads synchronize
through diverse communication primitives, such as shared vari-
ables, mutex variables, and broadcasts. All programs contain
procedures executed by an arbitrary number of threads, which
are dynamically spawned by the initial thread.

3 “Unbounded-thread coverability analysis for boolean programs”

For each benchmark, we consider verification of a safety
property, specified via an assertion. In total, the programs
include roughly 2300 lines of code; on average they feature 3
shared and 6 local variables (cf. Table II). The programs are
available from the homepage of the second author.

01–10: thread-safe algorithms: atomic counters (1–2); con-
current pseudo-random number generator (3–4); max-
imum element finding algorithm (5–8); stack data
structure with concurrent operations (9-10).

11–17: OS code: code from the FreeBSD (11–12), NetBSD
(13), Solaris (14) and Linux (15–17) open-source
operating systems.

18–22: pthread programs: several programs that use the C
Posix Threads library.

23–28: mutex algorithms: test-and-set lock (23); multiple
locks control access to a shared resource (24–26); two
ticket algorithms (27–28).

29–30: misc: two simple examples from [1].

Implementation: UCOB uses SATABS [10] to construct
Boolean programs from C. To compare with coverability tools
that don’t accept Boolean programs as input, we also use
SATABS to generate thread transition system (TTS) models
as input (option --build-tts). Finally, we use miniSAT
[11] to solve WP formulas. UCOB offers both optimizations
presented in Sect. V: the shared-variable restriction, and the
single-thread forward-reachable local states computation. The
latter employs the tool BOOM [12], which we call a “forward
oracle” in this context (a terminology suggested in [9]).

The experiments are performed on a 2.3GHz Intel Xeon
machine with 64 GB memory, running 64-bit Linux.

Comparison: For 1 ≤ k ≤ 30, Fig. 4 plots the total time
(log-scale) taken to solve the k easiest of our benchmark
problems, for the following tools:

UCOB: our tool with shared-variable optimization;
UCOB/BOOM: UCOB with BOOM as forward oracle;
MCOV: MCOV without forward oracle [9];
MCOV/GKM: MCOV with forward oracle [9];
BOOM-KM: Karp-Miller implementation in BOOM [12].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3010−1

100

101

102

103

k of benchmarks analyzed successfully

tim
e
t

to
an

al
yz

e
k

be
nc

hm
ar

ks
(s

ec
.)

UCOB

UCOB/BOOM

MCOV

MCOV/GKM

BOOM-KM

Fig. 4: Cactus plot comparing UCOB with other coverability
tools. For each curve, entry (k, t) shows the time t it took
to solve the k easiest — for the method associated with that
curve — benchmarks (order varies across methods).

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 161

TABLE II: Benchmark characteristics and results: SV / LV / LOC = # of shared / local C program variables / lines of code;
Mtx? / Bc? = presence of mutex vars / broadcasts (= “yes”); |VS | / |VL| / Its. = # of shared / local Boolean variables /
CEGAR iterations; Mod.Sh. = percentage of statements that may modify the shared state; Safe? = program safety

ID/Program C Program Boolean Program Safe?
SV LV LOC Mtx? Bc? |VS | |VL| Its. Mod.Sh.

01/INC-L 2 1 46 # 3 1 2 7.5
02/INC-C 1 3 57 # # 0 4 4 0
03/PRNSIMP-L 2 4 63 # 2 3 2 7.7
04/PRNSIMP-C 1 5 95 # # 0 5 2 0
05/MAXSIM-L 3 3 59 # 1 0 2 3.7
06/MAXSIM-C 2 5 79 # # 0 1 2 0
07/MAXOPT-L 3 4 69 # 1 1 2 3.1
08/MAXOPT-C 2 6 86 # 0 2 2 0
09/STACK-L 4 2 79 # 1 3 3 3.8
10/STACK-C 3 3 89 # # 3 1 2 6.4
11/BSD-AK 1 7 90 3 1 15 11.7
12/BSD-RA 2 21 87 3 0 19 12.3
13/NETBSD 1 28 152 3 1 30 10.1
14/SOLARIS 1 56 122 5 1 14 10.9
15/BOOP 5 2 89 # # 5 2 4 11.4 #

ID/Program C Program Boolean Program Safe?
SV LV LOC Mtx? Bc? |VS | |VL| Its. Mod.Sh.

16/QRCU-2 7 6 120 # # 3 0 16 10.1
17/QRCU-4 8 8 182 # # 5 2 28 9.8
18/BS-LOOP 0 6 24 # # 0 7 1 0 #
19/COND 1 3 56 # 0 3 2 0
20/FUNC-P 2 1 67 # 2 6 3 8.3
21/S-LOOP 5 0 60 # 4 0 20 22.8
22/PTHREAD 5 0 85 # 7 0 5 17.1 #
23/TAS-L 2 2 58 # # 3 1 2 14.9
24/DOUBLE-1 3 0 70 # 7 1 10 16.4
25/DOUBLE-2 3 0 73 # 6 1 23 18.2
26/DOUBLE-3 3 0 66 # 4 1 3 15.3
27/TICKET-HC 3 1 61 # # 5 1 5 18.4
28/TICKET-LO 3 1 46 # # 5 1 5 20.8
29/UNVEREX 2 1 25 # # 4 0 3 8.9
30/SPIN 2 0 37 # 3 0 2 15.5

The results in the chart demonstrate that UCOB solves
almost all of the benchmarks (29), and does so in less time
for most programs. Furthermore, the results for UCOB/BOOM
show that the forward oracle, despite being an overapproxima-
tion, can accelerate the backward search by pruning unreach-
able cover predecessors. MCOV/GKM is the most competitive
proof tool. For the small-scale benchmarks, where the TTS
construction does not blow up, it takes the least amount of
time. However, the efficiency drops sharply with increasing
cost of either TTS generation or verification. The only other
unbounded-thread on-the-fly verifier we are aware of, BOOM-
KM, benefits from forward search and is thus competitive
“early”, but reports runtime errors for some of the more
complex benchmarks. Others it cannot solve: the Karp-Miller
implementation in BOOM-KM does not support broadcasts.

VII. RELATED WORK AND CONCLUDING REMARKS

The issue of the blow-up incurred when translating a pro-
gram model B into a transition system model M is classically
addressed using an on-the-fly exploration. In the context of
symmetric concurrent systems, things are more complicated as
the transition system (a WQOS) does not model B directly, but
via a counting abstraction. In [13], this issue was addressed for
the finite-state case, by interleaving the counting abstraction
and transition system construction. We have borrowed the state
representation (2) and (mostly) the counter update function
UPDATE-COUNTERS (Alg. 3) from that work.

We are aware of very few attempts to address the issue
in connection with (much more complex) infinite-state verifi-
cation techniques. While these techniques have been applied
to programs directly [14], [15], the application is typically
preceded by a static compilation of the program into an explicit
transition system, which only works for small local state
spaces, for example when predicates used for abstraction are
hand-picked.

An on-the-fly implementation of the Karp-Miller algorithm
is available in BOOM [12]. This algorithm proceeds forward,
making the implementation much easier. On the other hand,
due to theoretical limitations of Karp-Miller (see e.g. [4]), this

tool cannot handle broadcast programs, our target language.
On non-broadcast programs, it suffers from the notoriously
high space complexity of the Karp-Miller procedure. We have
compared against this tool in Sect. VI.

Recent research has established that, for the rich class
of Boolean broadcast programs, forward search tends to be
efficient but incomplete (or unsound), while backward search
guarantees correctness but lags behind. The solution is to
combine both searches, which we have done here in a some-
what shallow fashion. A goal for future work is therefore
to implement our on-the-fly strategy directly on an advanced
WQOS coverability algorithm such as [9].

REFERENCES

[1] A. Donaldson, A. Kaiser, D. Kroening, M. Tautschnig, and T. Wahl,
“Counterexample-guided abstraction refinement for symmetric concur-
rent programs,” Formal Methods in System Design, 2012.

[2] P. A. Abdulla, “Well (and better) quasi-ordered transition systems,”
Bulletin of Symbolic Logic, 2010.

[3] R. M. Karp and R. E. Miller, “Parallel program schemata,” J. Comput.
Syst. Sci., 1969.

[4] J. Esparza, A. Finkel, and R. Mayr, “On the verification of broadcast
protocols,” in LICS, 1999.

[5] B. Cook, D. Kroening, and N. Sharygina, “Symbolic model checking
for asynchronous Boolean programs,” in SPIN, 2005.

[6] P. Schnoebelen, “Revisiting Ackermann-hardness for lossy counter ma-
chines and reset Petri nets,” in MFCS, 2010.

[7] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay, “General
decidability theorems for infinite-state systems,” in LICS, 1996.

[8] A. Emerson and T. Wahl, “Efficient reduction techniques for systems
with many components,” Electr. Notes Theor. Comput. Sci., 2005.

[9] A. Kaiser, D. Kroening, and T. Wahl, “Efficient coverability analysis by
proof minimization,” in CONCUR, 2012.

[10] G. Basler, A. Donaldson, A. Kaiser, D. Kroening, M. Tautschnig, and
T. Wahl, “SATABS: A bit-precise verifier for C programs,” in TACAS,
2012.

[11] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, 2003.
[12] G. Basler, M. Hague, D. Kroening, L. Ong, T. Wahl, and H. Zhao,

“Boom: Taking Boolean program model checking one step further,” in
TACAS, 2010.

[13] G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening, “Context-aware
counter abstraction,” Formal Methods in System Design, 2010.

[14] T. Ball, S. Chaki, and S. K. Rajamani, “Parameterized verification of
multithreaded software libraries,” in TACAS, 2001.

[15] G. Delzanno, J.-F. Raskin, and L. V. Begin, “Towards the automated
verification of multithreaded Java programs,” in TACAS, 2002.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 162

Kuai: A Model Checker for
Software-defined Networks

Rupak Majumdar
MPI-SWS
Germany

Sai Deep Tetali
UC Los Angeles

USA

Zilong Wang
MPI-SWS
Germany

Abstract—In software-defined networking (SDN), a software
controller manages a distributed collection of switches by in-
stalling and uninstalling packet-forwarding rules in the switches.
SDNs allow flexible implementations for expressive and sophisti-
cated network management policies.

We consider the problem of verifying that an SDN satisfies a
given safety property. We describe Kuai, a distributed enumer-
ative model checker for SDNs. Kuai takes as input a controller
implementation written in Murphi, a description of the network
topology (switches and connections), and a safety property, and
performs a distributed enumerative reachability analysis on a
cluster of machines. Kuai uses a set of partial order reduction
techniques specific to the SDN domain that help reduce the state
space dramatically. In addition, Kuai performs an automatic
abstraction to handle unboundedly many packets traversing the
network at a given time and unboundedly many control messages
between the controller and the switches.

We demonstrate the scalability and coverage of Kuai on
standard SDN benchmarks. We show that our set of partial order
reduction techniques significantly reduces the state spaces of these
benchmarks by many orders of magnitude. In addition, Kuai
exploits large-scale distribution to quickly search the reduced
state space.

I. Introduction
Software-defined networking (SDN) is a novel networking

architecture in which a centralized software controller dy-
namically updates the packet processing policies in network
switches based on observing the flow of packets in the network
[9], [5]. SDNs have been used to implement sophisticated
packet processing policies in networks, and there is increasing
industrial adoption [12], [9].

We consider the problem of verifying that an SDN satisfies
a network-wide safety property. Since the controller code in
an SDN can dynamically change how packets flow in the
network, a bug in the controller code can lead to hard-to-
analyze network errors at run time. We describe the design of
Kuai, a distributed enumerative model checker for SDNs. The
input to Kuai is a model of an SDN consisting of two parts.
The first part is the controller, written in a simplified guarded-
command language similar to Murphi. The second part is the
description of a network, consisting of a fixed finite set of
switches, a fixed set of client nodes, and the topology of the
network (i.e., the connections between the ports of the clients
and the switches). Given a safety property of the network, Kuai
explores the state space of the SDN to check if the property
holds on all executions.

Figure 1 shows a simple SDN. It consists of two switches
sw1 and sw2 connected to two clients c1 and c2. Each client
has a port and each switch has two ports to send and receive
packets, and the figure shows how the ports are connected to
each other. Each connection between ports represents a bi-
directional communication channel that may reorder packets.

Fig. 1: SSH Example

1 def pktIn(pkt)
2 (sw,pt) = pkt.loc
3 if pkt.prot = SSH:
4 drop(pkt)
5 else:
6 dest = 2 if pt = 1 else 1
7 fwd(pkt, [|dest|], sw)
8 rule r1 = (5,{prot=SSH},[||])
9 rule r2 = (1,{port=1},[|2|])

10 rule r3 = (1,{port=2},[|1|])
11 message cm1 = add(r1)
12 message cm2 = add(r2)
13 message cm3 = add(r3)
14 for sw in [sw1, sw2]:
15 send_message(cm1, sw)
16 send_message(cm2, sw)
17 send_message(cm3, sw)

Listing 1: Controller for SSH
Moreover, the switches are connected to a controller through
dedicated links. Packets are routed in the network using flow
tables in switches. A flow table is a collection of prioritized
forwarding rules. A rule consists of a priority, a pattern on
packet headers, and a list of ports. A switch processes an
incoming packet based on its flow table. It looks at the highest
priority rule whose pattern matches the packet and forwards
the packet to the list of ports specified in the rule, and drops
the packet if the list of ports in the rule is empty. In case no
rule matches a packet, the switch forwards the packet to the
controller using a request queue and waits for a reply from
the controller on a forward queue. The controller replies with
a list of ports to which the packet should be forwarded, and
optionally sends control messages to the control queue of one
or more switches to update their flow tables. A control message
can add or delete a rule in a switch.

By specifying the rules to be added or deleted, a controller
can dynamically control the behaviors of all switches in an
SDN network. For example, suppose we want to implement
the policy that all SSH packets are dropped. The controller
can update the switches with a rule that states that no SSH
packets are forwarded, and another that states all non-SSH
packets are forwarded. List 1 shows a possible controller that
implements this policy. Essentially, the controller drops SSH
packets, and adds three rules on the switches: r1 to drop SSH
packets, r2 to forward packets from port 1 to port 2, and
r3 to forward packets from port 2 to port 1. Since dropping

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 163

SSH packets (rule r1) has higher priority, it will match SSH
packets, and rules r2 and r3 will only match (and forward)
non-SSH packets. The controller has a subtle bug. It turns out
that a switch can implement rules in arbitrary order. Thus, the
switches may end up adding rules r2 and r3 before adding r1,
thus violating the policy. Our model checker confirms the bug
A possible fix in this case is to implement a barrier after line
15, to ensure that rule r1 is added before the other rules. Our
model checker confirms the policy holds in the fixed version.

The verification of SDNs is challenging due to several
reasons. First, even when the topology is fixed with a finite
set of clients and switches, the state space is still unbounded,
as clients may generate unboundedly many packets and these
packets could be simultaneously progressing through the net-
work. For example, client c1 may send a packet to sw1 at
any point, and an unbounded number of packets can be in
the network before sw1 processes them. Similarly, there may
be an unbounded number of control messages (i.e., messages
sent from the controller to a switch) between the controller
and the switches. While there may be a physical limit on the
number of packets and control messages imposed by packet
buffers in the switches, the sizes of these buffers can be large
(of the order of megabytes) and precise modeling of buffers
will blow up the state space.

Second, the packets may be processed in arbitrary inter-
leaved orders, and the processing of one packet may influence
the processing of subsequent ones because the controller may
update flow tables based on the first packet. Similarly, control
messages between the controller and the switches may be
processed in arbitrary order and this may lead to potential
bugs, including the bug pointed to above.

Kuai handles these challenges in the following way. First,
instead of modeling unbounded multisets for packet queues,
we implement a counter abstraction where we track, for each
possible packet, whether zero or arbitrarily many instances of
the packet are waiting in a multiset. This abstraction enables
us to apply finite-state model checking approaches.

Second, we implement a set of partial-order reduction
techniques that are specific to the SDN domain. For example,
we note that while in principle a switch only processes one
packet at a time, we do not lose behaviors by processing all
packets at the packet queue of a switch atomically. Similarly,
using the semantics of the barrier message [12], we show that
a switch can atomically execute all control messages up to the
last barrier in its control queue. Specifically, this optimization
enables the model checker to bound the size of control queues.
Additionally, we show that whenever there is a packet in a
client’s packet queue, the client can receive and process it
immediately, so that sends from switches can be atomically
processed with receives at clients. Finally, we show that we
can eagerly serve requests to the controller, that is, we do not
lose behaviors if we restrict the controller’s request queue to
size one and service these requests as soon as they appear.

We empirically demonstrate that our set of partial order
reduction techniques significantly reduces the state spaces of
SDN benchmarks, often by many orders of magnitude. For
the simple SSH example, the number of explored states is
approximately 2 million without partial order reductions, but
only 13 with reductions!

To handle large state spaces, our model checker Kuai
distributes the model checking over a number of nodes in a
cluster, using the PReach distributed model checker [2] (based
on Murphi [4]) as its back end. The large-scale distribution

enables Kuai to model check large state spaces quickly.
Related Work. There is a lot of systems and networking
interest in SDNs [9], [5] and standards such as Openflow [12].
From the formal methods perspective, research has focused
on verified programming language frameworks for writing
SDN controllers [6], [8]. Here, verification refers to correct
compilation from Frenetic to executable code, or to checking
composability of programs, not the correctness of invariants.

Previous model checking attempts for SDNs mostly focused
either on proving a static snapshot of the network [10] or
on model checking or symbolic simulation techniques for a
fixed number of packets [3], [14]. Recent work extended to
controller updates and arbitrary number of packets [17], but
used a manual process to add non-interference lemmas. In
contrast, our technique automatically deals with unboundedly
many packets and, thanks to the partial-order techniques,
scales to much larger configurations than reported in [17].
Program verification for SDN controllers using loop invariants
and SMT solving has been proposed recently [1]. While the
invariants can quantify over the network (and therefore not
limited to finite topologies), the model of the network ignores
asynchronous interleavings of packet and control message
processing that we handle here.

Our work builds on top of distributed enumerative model
checking and the PReach tool [2]. Our contribution is iden-
tifying domain specific state space reduction heuristics that
enable us to explore large configurations.

II. Software-defined Networks
Preliminaries. A multiset m over a set Σ is a function Σ→ N
with finite support (i.e., m(σ) 6= 0 for finitely many σ ∈ Σ).
By M[Σ] we denote the set of all multisets over Σ. We shall
write m = Jσ2

1 , σ3K for the multiset m ∈M[{σ1,σ2,σ3}] with
m(σ1) = 2,m(σ2) = 0, and m(σ3) = 1. We write ∅ for an
empty multiset, mapping each σ ∈ Σ to 0. We write {} for
an empty set. Two multisets are ordered by m1 ≤ m2 if for
all σ ∈ Σ, we have m1(σ) ≤ m2(σ). Let m1 ⊕ m2 (resp.
m1 	m2) be the multiset that maps every element σ ∈ Σ to
m1(σ) +m2(σ) (resp. max{0,m1(σ)−m2(σ)}).

Given a set of states, a (guarded) action α is a pair (g, c)
where g is a guard that evaluates the states to a boolean and c
is a command. A action α is enabled in a state s if the guard
of α evaluates s to true. If α is enabled in s, the command of
α can execute and lead to a new state s′, denoted by s α−→ s′.
We write α(s) = s′ if s α−→ s′. A transition system TS is a
tuple (S,A,→, s0,AP , L) where S is a set of states, A is a
set of actions, →⊆ S ×A× S is a transition relation, s0 ∈ S
is the initial state, AP is a set of atomic propositions, and
L : S → 2AP is a labeling function. We write →∗ for the
reflexive transitive closure of →. A state s′ is reachable from
s if s→∗ s′. We write s→+ s′ if there is a state t such that
s → t →∗ s′. For a state s, let A(s) be the set of actions
enabled in s; we assume A(s) 6= ∅ for each s ∈ S. The trace
of an infinite execution ρ = s

α1−→ s1
α2−→ . . . is defined

as trace(ρ) = L(s)L(s1) The trace of a finite execution
ρ = s

α1−→ s1
α2−→ . . .

αn−−→ sn is defined as trace(ρ) =
L(s)L(s1) . . . L(sn). An execution is initial if it starts in s0.
Let Traces(TS) be the set of traces of initial executions in
TS . We define invariants and invariant satisfaction in the usual
way.
Syntax of Software-defined Networks We model an SDN as
a network consisting of nodes, connections, and a controller

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 164

program. Nodes come from a finite set Clients of clients and
a (disjoint) finite set Switches of switches. Each node n has
a finite set of ports Port(n) ⊆ N which are connected to
ports of other nodes. A location (n, pt) is a pair of a node
and a port pt ∈ Port(n). Let Loc be the set of locations. A
connection is a pair of locations. A network is well-formed if
there is a bijective function λ : Loc → Loc, called the topology
function, such that {((n, pt), λ(n, pt)) | (n, pt) ∈ Loc} is the
set of connections and no two clients are connected directly.

We model a packet pkt in the network as a tuple
(a1, . . . , ak, loc), where (a1, . . . , ak) ∈ {0, 1}k models an
abstraction of the packet data and loc ∈ Loc indicates the
location of pkt . Let Packet be the set of all packets.

Each switch contains a set of rules that determine how pack-
ets are forwarded. A rule is a tuple (priority , pattern, ports),
where priority ∈ N determines the priority of the rule,
pattern is a proposition over Packet , and ports is a multiset of
ports. We write Rule to denote the set of all rules. Intuitively, a
packet matches a rule if it satisfies pattern . A switch forwards
a packet along ports for the highest priority rule that matches.

Rules are added or deleted on a switch by the controller
through a set of control messages CM = {add(r), del(r) | r ∈
Rule}. Additionally, the controller uses a barrier message b
to synchronize.
type client {
Port : set of nat
pq : multiset of packets

}
rule "send(c, pkt)"
true ==> send(c, pkt)

end
rule "recv(c,pkt,pkts)"
exist(pkt:c.pq, true) ==> recv(c,pkt,pkts)

end

Listing 2: Client

A client c ∈ Clients is modeled as in List 2. It consists of
a finite set Port of ports and a packet queue pq ∈M[Packet]
containing a multiset of packets which have arrived at the
client. We use (guarded) actions to model behaviors of clients.
An action is written as “rule name guard =⇒ command end.”
Predicate exist(i : X,ϕ) asserts that there is an element i
in the set (or multiset) X such that the predicate ϕ holds.
Additionally, if exist(i : X,ϕ) holds, then the variable i is
bound to an element of X that satisfies ϕ and can be used
later in the command part. In each step, a client c can (1)
send a non-deterministically chosen packet pkt along some
ports (rule send), or (2) receive a packet pkt from its packet
queue and (optionally) send a multiset of packets pkts on some
ports (rule recv).

A switch sw is modeled as in List 3. It consists of a
set of ports, a flow table ft ⊆ Rule , a packet queue pq
containing packets arriving from neighboring nodes, a control
queue cq containing control messages or barriers from the
controller, a forward queue fq consisting of at most one pair
(pkt , ports) through which the controller tells the switch to
forward packet pkt along the ports ports , and a boolean
variable wait . Predicate noBarrier(sw) asserts sw .cq does
not contain a barrier. Predicate bestmatch(sw , r, pkt) asserts
that r is the highest priority rule whose pattern matches the
packet pkt in switch sw’s flow table.

Intuitively, a switch has a normal mode and a waiting mode
determined by the wait variable. When the switch is in the
normal mode, as long as there is no barrier in its control queue,
it can either attempt to forward a packet from its packet queue

type switch {
Port : set of nat
ft : set of rules
pq : multiset of packets
cq : list of barriers and

multisets of control messages
fq : set of forward messages
wait : boolean

}
rule "match(sw,pkt,r)"
!sw.wait & noBarrier(sw) &
exist(pkt:sw.pq,
exist(r:sw.ft, bestmatch(sw,r,pkt))) ==>

match(sw,pkt,r)
end
rule "nomatch(sw,pkt)"
!sw.wait & noBarrier(sw) & !RqFull(controller) &
exist(pkt:sw.pq,
!exist(r:sw.ft,bestmatch(sw,r,pkt))) ==>

nomatch(sw,pkt)
end
rule "add(sw,r)"
!sw.wait & noBarrier(sw) &
exist(add(r):sw.cq[0],true) ==>
add(sw,r)

end
rule "delete(sw,r)"
!sw.wait & noBarrier(sw) &
exist(del(r):sw.cq[0],true) ==>
delete(sw,r)

end
rule "fwd(sw,pkt,pts)"
sw.wait & noBarrier(sw) &
exist((pkt,pts):fq, true) ==>
fwd(sw,pkt,pts)

end
rule "barrier(sw)"
!noBarrier(sw) ==>
barrier(sw)

end

Listing 3: Switch

based on its flow table, or update its flow table according
to a control message in its control queue. When the switch
cannot find a matching rule in its flow table for a packet, it
can initiate a request to the controller, change to the waiting
mode, and wait for a forward message from the controller
telling it how to forward the packet. Once it receives a forward
message (pkt , pts) and there is no barrier in the control queue,
it forwards the pending packet pkt to the ports in pts , and
changes back to the normal mode. If the control queue contains
one or more barriers, the switch dequeues all control messages
up to the first barrier from its control queue and updates its
flow table.
type controller {
CS : set of control states
cs0 : CS cs : CS
rq : set of packets κ : N+

pktIn : function
}
rule "ctrl(pkt,cs)"
exist(pkt:controller.rq, true) ==>
ctrl(pkt,controller.cs)

end

Listing 4: Controller

A controller controller is modeled as in List 4. It is a
tuple (CS , cs0, cs, rq, κ, pktIn) where CS is a finite set of
control states, cs0 ∈ CS is the initial control state, cs is
the current control state, rq is a finite request queue of size
κ ≥ 1 consisting of packets forwarded to the controller from
switches, and pktIn is a function that takes a packet pkt and a
control state cs1, and returns a tuple (η, (pkt , pts), cs2) where
η is a function from Switches to (M[CM]∪{b})∗, (pkt , pts)

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 165

is a forward message, and cs2 is a control state. Intuitively,
in each step, the controller removes a packet pkt from rq
and executes pktIn(pkt , controller .cs). Based on the result
(η, (pkt , pts), cs ′), it sends back to the source of the packet
the forward message (pkt , pts) that specifies pkt should be
forwarded along pts , and goes to a new control state cs ′.
Further, for each switch sw in the network it appends η(sw)
to sw ’s control queue.
Semantics of Software-defined Networks The semantics
of an SDN is given as a transition system. Let N =
(Clients,Switches, λ,Packet ,Rule, controller) be an SDN,
where each component is as defined above.

A state s of the SDN N is a quadruple (π, δ, cs, rq),
where π is a function mapping each client c ∈ Clients to
its packet queue pq and δ is a function mapping each switch
sw ∈ Switches to a tuple (pq , cq , fq , ft ,wait) consisting of its
packet queue, control queue, forward queue, flow table, and
the wait variable.

For a non-empty list l = [x1, x2, . . . , xn], define l.hd=x1,
l.tl=[x2, . . . , xn], and l[i] as the i-th element in l. Given two
lists l1 and l2, let l1@l2 be the concatenation of l1 and l2. For
two non-empty lists l1 = [x1, . . . , xm] and l2 = [y1, . . . , yn] in
(M[CM]∪{b})∗, define l1+l2 be the list [x1, . . . , xm−1, xm⊕
y1, y2, . . . , yn] if xm 6= b and y1 6= b; l1@l2 otherwise.

Given a flow table ft and a list l ∈ (M[CM] ∪ b)∗, let
update(ft , l) be a procedure that updates ft based on l as
follows. It dequeues the head of l and sets l to l.tl . If the
head is a barrier b, then ignore it. If the head is a multiset m,
it nondeterministically chooses a fetching order p and based
on p, removes a control message cm with m(cm) > 0 from
m. If cm is add(r), then add the rule r to ft , or if cm is
del(r), then delete r from ft . It keeps updating ft based on p
until m becomes empty. It repeats the above instructions on l
until l becomes empty. Then it returns the resulting flow table
ft .

For a function f : X → Y , x ∈ X , and y ∈ Y , let f [x 7→ y]
denote the function that maps x to y and all x′ 6= x to f(x′).
Let f [x1 7→ y1;x2 7→ y2; . . . ;xn 7→ yn] denote the function
f [x1 7→ y1][x2 7→ y2] . . . [xn 7→ yn]. Given a subset X ′ =
{x1, . . . , xn} ⊆ X , let f [foreach xi ∈ X ′ : xi 7→ yi] be the
function f [x1 7→ y1] . . . [xn 7→ yn] where 1 ≤ i ≤ n. Given a
tuple t = (f1, . . . , fn), let t.fi be the field fi, for 1 ≤ i ≤ n.
By abuse of notation, we write t[fi 7→ v] to be the tuple such
that t[fi 7→ v].fi = v and for any j 6= i, t[fi 7→ v].fj = t.fj .

We define the following basic operations over δ and π:
1) Add or delete packets in switches or in clients. Given a

set X ⊆ Switches × PacketN, define addPkt(δ,X) =
δ[foreach (sw , pktk) ∈ X, sw 7→ δ(sw)[pq 7→ δ(sw).pq
⊕ JpktkK]]. Given a set Y ⊆ Clients × PacketN, de-
fine addPkt(π, Y) = π[foreach (c, pktk) ∈ Y, c 7→
π(c)⊕JpktkK]. We define delPkt(δ,X) and delPkt(π, Y)
analogously by replacing ⊕ with 	 above.

2) Set the wait bit of a switch sw to true or false. Define
setWait(δ, sw) = δ[sw 7→ δ(sw)[wait 7→ true]] and
unsetWait(δ, sw) = δ[sw 7→ δ(sw)[wait 7→ false]].

3) Add or delete a rule r in the flow table of a switch
sw. Define addRule(δ, sw, r) = δ[cq 7→ [δ(sw).cq .hd 	Jadd(r)K]; sw 7→ δ(sw)[ft 7→ δ(sw).ft ∪ {r}]]. De-
fine delRule(δ, sw, r) = δ[cq 7→ [δ(sw).cq .hd 	Jdel(r)K]; sw 7→ δ(sw)[ft 7→ δ(sw).ft\{r}]].

4) Add or delete a forward message msg in a switch sw .
Define addFwdMsg(δ, sw ,msg) = δ[sw 7→ δ(sw)[fq 7→

δ(sw).fq ∪ {msg}]] and delFwdMsg(δ, sw ,msg) =
δ[sw 7→ δ(sw)[fq 7→ δ(sw).fq\{msg}]].

5) Flush and run all control messages up to the first barrier
in a switch. Define flush(δ, sw) = δ[sw 7→ δ(sw)[cq 7→
l; ft 7→ update(δ(sw).ft , [m, b])]] where l = [∅], if
δ(sw).cq = [m, b]; l = l′, if δ(sw).cq = [m, b]@l′ and l′
is not an empty list.

6) Flush and run all control messages up to the last barrier in
a switch. Define flushall(δ, sw) = δ[sw 7→ δ(sw)[cq 7→
l1; ft 7→update(δ(sw).ft , l2)]] where l1 = [∅] and l2 =
δ(sw).cq if the last element of δ(sw).cq is a barrier.
Otherwise, let δ(sw).cq = l@[m]. Then l1 =[m] and l2 = l.

7) Add control messages and barriers to the con-
trol queues of the switches. Given a total func-
tion f : Switches → (M[CM] ∪ {b})∗, define
addCtrlCmd(δ, f) = δ[foreach sw ∈ Switches : sw 7→
δ(sw)[cq 7→ δ(sw).cq + f(sw)]].

For a switch sw , a packet pkt , and a multiset of ports
pts , let FwdToC (sw , pkt , pts) be a set {(c, pkt ′k) | ∃pt ∈
sw .Port . pts(pt) = k ∧ λ(sw , pt) = (c, pt ′) ∧ c ∈ Clients ∧
pkt ′ = pkt [loc 7→ (c, pt ′)]} and FwdToSw(sw , pkt , pts) be a
set {(sw ′, pkt ′k) | ∃pt ∈ sw .Port . pts(pt) = k∧λ(sw , pt) =
(sw ′, pt ′) ∧ sw ′ ∈ Switches ∧ pkt ′ = pkt [loc 7→ (sw ′, pt ′)]}.
Intuitively, when sw is about to forward pkt on its ports
pts , these two sets summarize how many packets should be
forwarded to its connected clients and switches.

For an SDN N , let Send = {send(c, pkt) | c ∈ Clients ∧
pkt ∈ Packet} be the set of send actions. We define analo-
gously the set of receive actions Recv , the set of match actions
Match , the set of no-match actions NoMatch , the set of add
actions Add , the set of delete actions Del , the set of forward
actions Forward , the set of barrier actions Barrier , and the
set of control actions Ctrl .

Let π0 = λc ∈ Clients.∅ and δ0 = λsw ∈
Switches.(∅, [∅], {}, {}, false). The semantics of an SDN N is
given by a transition system TS (N) = (S,A,→, s0,AP , L).
Here, S is the set of states, s0 = (π0, δ0, cs0, {}) is the initial
state, and A = Send∪Recv∪Match∪NoMatch∪Add∪Del∪
Forward ∪ Barrier ∪ Ctrl . The transition relation s α−→ s′ is
defined as follows.

1) α = send(c, pkt). (π, δ, cs, rq) α−→ (π, δ′, cs, rq) where
δ′ = addPkt(δ, {(sw , pkt)}) and sw = pkt .loc.n.

2) α = recv(c, pkt , pkts). (π, δ, cs, rq) α−→ (π′, δ′, cs, rq)
where π′=delPkt(π, {(c, pkt)}), δ′ = addPkt(δ,X) and
X = {(sw , pkt ′k) | pkts(pkt ′) = k ∧ pkt ′.loc.n = sw}.

3) α = match(sw , pkt , r). (π, δ, cs, rq) α−→ (π′, δ′, cs, rq)
where π′ = addPkt(π,FwdToC (sw , pkt , r.ports)) and
δ′ = addPkt(δ,FwdToSw(sw , pkt , r.ports)).

4) α = nomatch(sw , pkt). (π, δ, cs, rq) α−→ (π, δ′, cs, rq ′)
where rq ′ = rq ∪ {pkt}, δ′′ = delPkt(δ, {(sw , pkt)}),
and δ′ = setWait(δ′′, sw).

5) α = add(sw , r). (π, δ, cs, rq) α−→ (π, δ′, cs, rq) where
δ′ = addRule(δ, sw , r).

6) α = del(sw , r). (π, δ, cs, rq) α−→ (π, δ′, cs, rq) where
δ′ = delRule(δ, sw , r).

7) α = fwd(sw , pkt , pts). (π, δ, cs, rq) α−→ (π′, δ′, cs, rq)
where π′ = addPkt(π,FwdToC (sw , pkt , pts)),
δ1 = delFwdMsg(δ, sw , (pkt , pts)), δ2 = addPkt(δ1,
FwdToSw(sw , pkt , pts)), and δ′ = unsetWait(δ2, sw).

8) α = barrier(sw). (π, δ, cs, rq) α−→ (π, δ′, cs, rq) where
δ′ = flush(δ, sw).

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 166

9) α = ctrl(pkt , cs). Let pktIn(pkt , cs) = (η,msg, cs ′)
and sw = pkt .loc.n. (π, δ, cs, rq) α−→ (π, δ′, cs ′, rq ′)
where rq ′ = rq\{pkt}, δ′′ = addFwdMsg(δ, sw ,msg),
and δ′ = addCtrlCmd(δ′′, η).

An atomic proposition p ∈ AP is an assertion over packet
fields or over control states. Define an SDN specification
as a safety property �φ where φ is a formula over AP
and � is the “globally” operator of linear-temporal logic.
The model checking problem for an SDN asks, given an
SDN N and an SDN specification �φ, if TS (N) satisfies
�φ. For example, blocking SSH packets can be specified as
�
∧

pkt∈Packet(pkt .loc.n ∈ Clients ∧ pkt .src ∈ Clients ∧
pkt .loc.n 6= pkt .src ⇒ pkt .prot 6= SSH).

III. Optimizations
We now describe partial-order reduction and abstraction

techniques that reduce the state space. These techniques use
the structure of SDNs and, as we demonstrate empirically,
are crucial in making the model checking scale to non-trivial
examples. We state the correctness theorems; the proofs are
in the technical report [11].
Partial Order Reduction Let TS = (S,A,→, s0,AP , L) be
an action-deterministic transition system, i.e., s α−→ s′ and s α−→
s′′ implies s′ = s′′. Given two actions α, β ∈ A with α 6= β,
α and β are independent if for any s ∈ S with α, β ∈ A(s),
β ∈ A(α(s)), α ∈ A(β(s))), and α(β(s)) = β(α(s)). The
actions α and β are dependent if α and β are not independent.
An action α ∈ A is a stutter action if for each transition
s
α−→ s′ in TS , we have L(s) = L(s′).
For i ∈ {1, 2}, let TS i = (Si,Ai,→i, s

i
0,AP , Li) be

transition systems. Infinite executions ρ1 of TS 1 and ρ2 of
TS 2 are stutter-equivalent, denoted ρ1 , ρ2, if there is an
infinite sequence A0A1A2 . . . with Ai ⊆ AP , and natural
numbers n0, n1, n2, . . . ,m0,m1,m2, . . . ≥ 1 such that

trace(ρ1) = A0 . . . A0︸ ︷︷ ︸
n0 times

A1 . . . A1︸ ︷︷ ︸
n1 times

A2 . . . A2︸ ︷︷ ︸
n2 times

. . .

trace(ρ2) = A0 . . . A0︸ ︷︷ ︸
m0 times

A1 . . . A1︸ ︷︷ ︸
m1 times

A2 . . . A2︸ ︷︷ ︸
m2 times

. . .

TS 1 and TS 2 are stutter equivalent, denoted TS 1 , TS 2 , if
TS 1ETS 2 and TS 2ETS 1, where E is defined by: TS 1ETS 2

iff for all ρ1 ∈ Traces(TS 1). ∃ρ2 ∈ Traces(TS 2). ρ1 , ρ2.

A. Barrier Optimization
Intuitively, barrier optimization uses the observation that for

any state, we can always flush out control queues of switches
until there are no barriers in them. This implies that after a
control action is executed, one can immediately update flow
tables of switches whose control queue has barriers added by
the controller. Hence a control action and successive barrier
actions can be merged. We prove its correctness by viewing
it as an instance of partial order reduction.

For an SDN N , note that TS (N) is not action-deterministic
due to barrier actions. With different fetching orders,
barrier(sw) may lead to multiple states. Define b(s, sw) as

the number of transitions of the form s
barrier(sw)−−−−−−−→ s′. Note

that a barrier action from any s leads to at most 2|Rule|

states. Hence for each transition s
barrier(sw)−−−−−−−→ si where

1 ≤ i ≤ b(s, sw), we can append the action with the index

i, i.e., s
barrier(sw)i−−−−−−−−→ si. In the following, we redefine the set

Barrier = {barrier(sw)i | sw ∈ Switches∧1 ≤ i ≤ 2|Rule|},
and assume that TS (N) is action-deterministic by renaming
barrier actions.

A switch sw has a barrier iff there is a barrier in sw ’s
control queue. A state s has a barrier, denoted hasb(s), iff
some switch sw ∈ Switches has a barrier in s. Define the
ample set for every state s in TS (N) as follows: if s has a
barrier, then ample(s) = {barrier(sw)i | 1 ≤ i ≤ b(s, sw) ∧
sw has a barrier in s}, that is, all barrier actions enabled in s.
If s does not have a barrier, then ample(s) = A(s).

Given TS (N), we now define a transition system T̂S =
(Ŝ,A,⇒, s0,AP , L) where Ŝ = S is the set of states, and
the transition relation ⇒ is defined as: if s α−→ s′ and α ∈
ample(s), then s α=⇒ s′.

Theorem 1: Let TS (N) be an action-deterministic transition
system. TS (N) , T̂S .
Intuitively, Theorem 1 holds because any barrier action is
independent of other actions and is a stutter action. Hence
for an infinite execution s α1−→ s1 . . .

αn−−→ sn
barrier(sw)−−−−−−−→ t in

TS (N) where s has a barrier and αi is not a barrier action
for all 1 ≤ i ≤ n, we can permute barrier(sw) forward until
s and obtain a stutter-equivalent execution in T̂S .

Since Theorem 1 holds, we can merge a control ac-
tion and successive barrier actions into a single transition
s

ctrl(pkt,cs)−−−−−−−→2 s′ where we define the new semantics of
ctrl(pkt , cs) under the transition relation →2. Formally, Let
(η, (pkt , pts), cs ′) = pktIn(pkt , cs) and sw = pkt .loc.n.

Ctrl. (π, δ, cs, rq)
ctrl(pkt,cs)−−−−−−−→2 (π, δ′, cs ′, rq ′) where rq ′ =

rq\{pkt}. Define δ′′ = addFwdMsg(δ, sw , (pkt , pts)),
and δ′′′ = addCtrlCmd(δ′′, η). Let {sw1, . . . , swn} be
the set of all switches whose control queue has barriers
in δ′′′. Let δ0 = δ′′′ and δi = flushall(δi−1, sw i) for all
1 ≤ i ≤ n. Define δ′ = δn.

Given T̂S = (Ŝ,A,⇒, s0,AP , L), define a transition
system TS 2 = (S2,A2,→2, s0,AP2, L2) where S2 ⊆ Ŝ is a
set of states reachable by →2, A2 is A\Barrier , AP2 = AP ,
L2 = L, and →2 is defined inductively as

s0
α=⇒ s′

s0
α−→2 s

′
s0 →+

2 s
α=⇒ s′ ∧ α 6∈ Ctrl

s
α−→2 s

′

s0 →+
2 s

α=⇒ t⇒∗ s′ ∧ α ∈ Ctrl ∧ ¬hasb(s′)

s
α−→2 s

′

Since we only remove barrier actions which are stutter
actions, we have TS 2 , T̂S , TS (N). Hence we have the
following theorem:

Theorem 2: Given an SDN N and a safety property �φ,
TS (N) satisfies �φ iff TS 2 satisfies �φ.

B. Client Optimization
Given transition system TS 2 = (S2,A2,→2, s0,AP2, L2),

we further reduce the state space by observing that any receive
action of a client is a stutter action and is independent of
other actions. Formally, we define ample(s) for each state
s ∈ S2 as follows: if there is a client in s such that its packet
queue is not empty, then ample(s) = {recv(c, pkt , pkts) |
pkt is in c.pq at s}, that is, all receive actions enabled in s.
Otherwise, ample(s) = A(s). We now define a transition
system TS 3 = (S3,A3,→3, s0,AP3, L3) where S3 = S2,

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 167

A3 = A2, AP3 = AP2, L3 = L2, and where the transition
relation →3 is defined as: if s α−→2 s

′ and α ∈ ample(s), then
s
α−→3 s

′.
Theorem 3: (1) TS 2 , TS 3. (2) Given a safety property
�φ, TS 2 satisfies �φ iff TS 3 satisfies �φ.

C. (0,∞) Abstraction
The (0,∞) abstraction bounds the size of packet queues

and the multiset in each control queue. The idea is as follows.
One can regard a multiset as a counter that counts the number
of elements in it exactly. Instead, (0,∞) abstraction abstracts
a multiset so that for each element e, it either does not contain
e (i.e. 0) or contains unboundedly many copies of e (i.e. ∞).
Then the size of an abstracted multiset is bounded. Note that
for any state s in TS 3, any switch’s control queue contains
exactly one multiset. Hence, the abstraction bounds the length
of control queues.

Let N∞ = N∪{∞} be the extension of the natural numbers
with infinity. We naturally extend the addition operation by
assuming that ∞ +∞ = ∞ and ∞ + c = ∞ for all c ∈ Z.
Given a multiset m ∈ M[D] for some finite set D, define an
extended multiset over(m) such that for each element d ∈ D,
over(m)(d) = 0 if m(d) = 0, and over(m)(d) =∞ otherwise.
Define M[D]∞ as the set of all extended multisets and
multisets over D. Given a control queue cq with length n, let
over(cq) be such that for 1 ≤ i ≤ n, over(cq)[i] = over(cq [i])
if cq [i] 6= b; over(cq)[i] = b otherwise. For m1,m2 ∈M[D]∞,
we write m1 ≤e m2 iff for all d ∈ D, m1(d) ≤ m2(d)
or m2(d) = ∞. Given two control queues cq , cq ′ of same
length n, define cq ≤e cq ′ iff for each 1 ≤ i ≤ n,
(cq [i] = b↔ cq ′[i] = b) ∧ (cq [i] 6= b→ cq [i] ≤e cq ′[i]).

Given an SDN and the transition system TS 3 =
(S3,A3,→3, s0,AP3, L3), Define a transition system TS 4 =
(S4,A4,→4, s0,AP4, L4) where S4 = {over(s) | s ∈ S3},
A4 = A3, AP4 = AP3, and L4 = L3. The definition of
→4 is given in detail in [11]. We provide the intuition of
→4 here: →4 is defined so that (1) whenever a packet pkt
is added k ≥ 1 times into a packet queue pq , we set pq
to over(pq ⊕ JpktkK), and (2) whenever η(sw) is added into
switch sw ’s control queue cq , we set cq to over(cq + η(sw)).
The following lemma claims that TS 4 simulates TS 3, which
leads to Theorem 4.

Lemma 1: For any infinite initial execution s0
β1−→3

s1
β2−→3 s2 . . . in TS 3, there is an infinite initial execution

t0
β1−→4 t1

β2−→4 t2 . . . in TS 4 such that for all i ≥ 0,
si = (πi, δi, csi, rq i) and ti = (π′i, δ

′
i, cs

′
i, rq

′
i) satisfy the

following condition: for all c ∈ Clients , πi(c) ≤e π′i(c) and
for all sw ∈ Switches , δi(sw).pq ≤e δ′i(sw).pq , δi(sw).cq ≤e
δ′i(sw).cq , δi(sw).fq = δ′i(sw).fq , δi(sw).ft = δ′i(sw).ft , and
δi(sw).wait = δ′i(sw).wait , and csi = cs′i, and rq i = rq ′i.

Theorem 4: Given a safety property �φ, if TS 4 satisfies
�φ then TS 3 satisfies �φ.

D. All Packets in One Shot Abstraction
So far, a switch processes a single packet at a time. We can

further reduce the reachable state space by forcing a switch
to process all packets matched by some rule at a time. The
intermediate states produced by successive match actions in
a switch are removed. Let TS 4 = (S4,A4,→4, s0,AP4, L4).
Define a transition system TS 5 = (S5,A5,→5, s0,AP5, L5)
where S5 = S4, AP5 = AP4, L5 = L4, A5 is the union of
the new “multiple” match actions and A4 excluding the old

“single” match actions, and →5 is defined as:
s
α−→4 s

′ ∧ α is not a match action

s
α−→5 s

′

and if pkt lst = [pkt1, . . . , pktn] and r lst = [r1, . . . , rn]

s
match(sw ,pkt1,r1)−−−−−−−−−−−−→4 s1 . . . sn−1

match(sw ,pktn,rn)−−−−−−−−−−−−→4 s
′

s
match(sw ,pkt lst,r lst)−−−−−−−−−−−−−−−→5 s

′

We prove TS 5 simulates TS 4. We define a relation R ⊆
S4 × S5 such that ((π, δ, cs, rq), (π′, δ′, cs ′, rq ′)) ∈ R iff
for all pkt ∈ Packet , for all c ∈ Clients , π(c)(pkt) =
∞ → π′(c)(pkt) = ∞ and for all sw ∈ Switches ,
δ(sw).pq(pkt) = ∞ → δ′(sw).pq(pkt) = ∞, δ(sw).cq =
δ′(sw).cq , δ(sw).fq = δ′(sw).fq , δ(sw).ft = δ′(sw).ft , and
δ(sw).wait = δ′(sw).wait , and cs = cs ′, and rq = rq ′.

Theorem 5: (1)The relation R is a simulation relation. (2)For
a safety property �φ, if TS 5 satisfies �φ, then TS 4 satisfies
�φ.

E. Controller Optimization
We consider a restricted class of SDNs in which the size κ

of the controller’s request queue is one. Under this restriction,
we can define a new transition system TS 6 that is stutter
equivalent to TS 5 and has fewer reachable states. The idea is
to observe that a no-match action is a stutter action and is inde-
pendent of any actions before a corresponding control action is
executed. Formally, given TS 5 = (S5,A5,→5, s0,AP5, L5),
we define a new transition relation →6 inductively:

s0
α−→5 s

′

s0
α−→6 s

′

s0 →+
6 s1

nomatch(sw ,pkt)−−−−−−−−−−−→5 s2
ctrl(pkt,cs)−−−−−−−→5 s

′

s1
nomatch ctrl(sw ,pkt,cs)−−−−−−−−−−−−−−−−→6 s

′

s0 →+
6 s1

α−→5 s
′ ∧ α is not a no-match action

s1
α−→6 s

′

where a new action nomatch ctrl(sw , pkt , cs) merges
nomatch(sw , pkt) and ctrl(pkt , cs) actions. We define a
transition system TS 6 = (S6,A6,→6, s0,AP6, L6), where
S6 = S5 is the set of states, A6 is the union of all
nomatch ctrl(sw , pkt , cs) actions and A5\(NoMatch ∪
Ctrl), AP6 = AP5, and L6 = L5.

Theorem 6: Given an SDN N where the size of the request
queue of the controller is one, and a safety property �φ. (1)
TS 5 , TS 6. (2) TS 5 satisfies �φ iff TS 6 satisfies �φ.

IV. Implementation and Evaluation
Kuai1 is implemented on top of PReach [2], a distributed

enumerative model checker built on Murphi. We model
switches, clients, and the controller as concurrent Murphi
processes which communicate using message passing, with the
queues modeled as multisets. We manually abstract IP packets
using predicates used in the controller. We implement (0,∞)-
counter abstraction as a library on top of Murphi multisets.

Kuai takes as input topology information such as the
number of switches, clients, and their connections, (manually)
abstracted packets, and the controller code written as a Murphi
process, and invariants written in Murphi syntax. We found it
fairly straightforward to port POX [15] controllers due to the
imperative features of Murphi. Murphi allows arbitrary first
order logic formulas as invariants and it is easy to specify

1The tool is can be downloaded at https://github.com/t-saideep/kuai

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 168

Program Bytes/ w/o optimizations w/ optimizations
state States Time States Time

SSH 2×2 304 2,283,527 23.52s 13 6.40s
ML 3×3 320 9,109,456 89.99s 5308 6.39s
ML 6×3 748 23,926,202 604.07s
ML 9×2 1276 18,615,767 793.84s
FW(S) 1×2 332 2,110,986 26.89s 3645 5.45s
FW(M) 2×4 448 45,507 8.03s
FW(M) 3×4 560 512,439 55.06s
FW(M) 4×4 676 5,360,871 475.54s
RS 4×4 764 4998 6.60s
RS 4×5 764 590,570 82.82s
RS 4×6 764 5,112,013 327.39s
SIM 5×6 632 167 6.23s
SIM 5×8 632 167 6.34s
SIM 5×12 1108 167 6.85s

TABLE I: Experimental results. Omitted entries indicate that model checking
did not terminate. The number X×Y in the Program column means that there
are X switches and Y clients in the example.

Fig. 2: Verification time vs processes ◦ ML 9×2 ∆ ML 6×3 � FW(M) 4×4
safety properties. Kuai compiles them into a single Murphi file
and the model checking effort is then distributed across several
machines using PReach. Finally the output of the tool is an
error trace if the program invariant fails, or success otherwise.

We have evaluated Kuai on a number of real world Open-
Flow benchmarks. The experiments were performed on a
cluster of 5 Dell R910 rack servers each with 4 Intel Xeon
X7550 2GHz processors, 64 x 16GB Quad Rank RDIMMs
memory and 174GB storage. Our experiments had access to
a total of 150 cores and had access to 4TB of RAM.

Table I shows a summary of experimental results and
compares against model checking without the optimizations
from Section III. Empty rows indicate model checking did
not terminate in 1 hour or ran out of memory. Figure 2 shows
the scalability of model checking with increasing distribution
on the three largest examples. We noticed that the performance
of the distributed model checker plateaued around 70 Erlang
processes on these and other large examples. Thus, times (in
table I) are provided for configurations that use 70 Erlang
processes. As we introduced abstractions, it is possible that
we get false positives. We verified the existence of all bugs
reported by Kuai manually and there were no false positives.

Besides the table, we plot the MAC learning example in
Figure 3, which shows how significantly our optimization
techniques reduce the state space. Though we still suffer from
the state-space explosion problem, our optimizations delay it
and enable us to verify SDNs with much larger configurations.

We now describe the benchmarks in detail.

SSH We run Kuai on the SSH controller from Listing 1. It
finds the control message reordering bug in 0.1 seconds. By
adding a barrier after line 15, Kuai proves the correctness in
6.4 seconds by exploring 13 states. In contrast, the unopti-
mized version explores over 2 million states.

Fig. 3: State space of MAC learning controller: ∆: optimized, ◦ unoptimized

MAC Learning Controller (ML) This is based on the
POX [15] implementation of the standard ethernet discovery
protocol. We checked there are no forwarding loops (similar
to [17]), i.e., a packet should not reach a switch more than
once. Packets are augmented with a bit for each switch
which gets set when the switch processes that packet. The
invariant is specified using these visit-bits (called reached):
� ∀sw ∈ Switches. ∀pkt ∈ sw .pq. (¬pkt .reached(sw)).

A cycle in the topology will lead to forwarding loops as the
controller does not compute the minimum spanning tree. We
discover the bug in a cyclic topology of 3 switches 3 clients in
0.47 seconds. We re-ran the example on a topology containing
the minimum spanning tree of the original cyclic topology
and the tool is able to prove that there were no forwarding
loops in 6.39 seconds. We scale the example by adding more
switches. We notice that while the verification on topology
with 9 switches and 2 clients has fewer states than the one with
6 switches and 3 clients, each state in the latter case is bigger
than the former and hence the memory and communication
overheads are higher.

Single Switch Firewall (FW(S)) This is based on an advanced
GENI assignment [7] on building an OpenFlow based firewall.
The controller takes as input a simple configuration file which
is a list of tuples of the form (client1, port1, client2, port2).
This specifies that packets originating from client1 on port1
can be forwarded to client2 on port2. We abbreviate the tuples
as (client1: port1→ client2: port2). Any flow not explicitly
allowed is forbidden. The flows are uni-directional and the
above flow will reject traffic initiated by client2 on port2
towards client1 on port1. However, once client1 initiates a
flow, the firewall should allow client2 to reply back, making
the flow bi-directional until client1 closes the connection.

The naive implementation of the controller is as follows:
on receiving a packet (c1: p1 → c2: p2), check if there is
a tuple matching the flow in the policy. If it does, add rules
(c1: p1 → c2: p2) and (c2: p2 → c1: p1) and forward the
packet to c2. Otherwise add a rule to drop packets of the form
(c1: p1 → c2: p2). The invariant to verify here is to ensure
the policy of the firewall, i.e., a packet from c1: p1 should
be forwarded to c2: p2 if and only if (c1: p2 → c2: p2)
exists in the firewall policy or if (c2: p2 → c1: p1) exists
in the policy and c2 has already initiated the corresponding
flow. The following formula specifies that allowed packets
should not be dropped: �∀p ∈ Packet . on dropped(p) ⇒
¬flows[p.src][packet.src port][packet.dest][p.dest port],
where on dropped(p) is set if a packet-drop transition is fired
on packet p (and reset at the beginning of every transition).
flows is an auxiliary variable in the controller which keeps

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 169

track of allowed flows based on the firewall policy and
initiating client.

We ran the experiment on a topology with 2 clients and a
firewall. We found an interesting bug in our implementation
which is caused by not assigning proper priorities to rules.
For example, when (c1: p1 → c2: p2) is present in the
policy but not (c2: p2 → c1: p1), the rule to drop flows
should have a lower priority than the rules to allow flows.
Otherwise, the following bug would occur. If c2 initiates
the flow (c2: p2 → c1: p1) then the controller adds a rule
to drop packets matching that flow. Later on, if c1 initiates
(c1: p1→ c2: p2) and the controller adds the corresponding
rules to allow the flow on both directions, the switch now has
two conflicting rules of the same priority. One to allow and
the other to drop (c2: p2 → c1: p1). The switch may non-
deterministically choose to drop the packet. Once we fixed the
bug, the tool could prove the invariant in 5.45 seconds.
Multiple Switch Firewalls (FW(M)) We extend the above
example to include multiple replicated firewalls for load bal-
ancing. We now allow the clients to send packets to all of these
firewalls. We augment the implementation of the single switch
controller to add the same rules on all firewalls. However, this
implementation no longer ensures the invariant in the multi-
switch setting.

Consider the case with two firewalls, f1 and f2. The tool
reports the following bug: c1 initiates (c1: p1 → c2: p2)
on firewall f1. The controller adds the corresponding rules
to allow flows in both directions to f1 and f2 but only
sends a barrier to f1. Now f2 delays the installation of
(c2: p2→ c1: p1) and c2 replies back to c1 through f2 which
forwards the packet to the controller. The controller then drops
the packet.

The fix here is to add the rules along with barriers on
all switches and not just the switch from which the packet
originates. With this fix the tool is able to prove the property
in 8 seconds. In order to test the scalability, we tested the tool
on increasing number of firewalls in the topology.
Resonance (RS) Resonance [13] is a system for ensuring
security in large networks using OpenFlow switches. When
a new client enters the network, it is assigned registration
state and is only allowed to communicate with a web portal.
The portal either authenticates a client by sending a signal
to the controller (and the controller assigns the client an
authenticated state), or sets the client to quarantined state.
In the authenticated state, the client is only allowed to com-
municate with a scanner. The scanner ensures that the client
is not infected and sends a signal to the controller and lets
the controller assign it an operational state. If an infection
is detected, it is assigned a quarantined state. The clients
in operational state are periodically scanned and moved to
the quarantined state if they are infected. Quarantined clients
cannot communicate with other clients.

In our model, the web portal non-deterministically chooses
to authenticate or quarantine a client and the scanner non-
deterministically marks a client operational or quarantined.
We check the invariant that packets from quarantined clients
should not be forwarded: �∀p ∈ Packet . on forward(p) ⇒
(state(p.src) 6= Quarantined). Similar to on drop,
on forward is set when packet-forward transition is fired and
reset before the beginning of every transition. The controller
follows the Resonance algorithm [13].

We ran the experiment on a topology of two clients, one

portal, one scanner and four switches. The topology is the
same as in Figure 2 of [13] without DHCP and DNS clients.
Kuai proves the invariant in 6.6 seconds. We scale up the
example by increasing the number of clients.
Simple (SIM) Simple [16] is a policy enforcement layer
built on top of OpenFlow to ensure efficient middlebox traffic
steering. In many network settings, traffic is routed through
several middleboxes, such as firewalls, loggers, proxies, etc.,
before reaching the final destination. Simple takes a middlebox
policy as input and translates this to forwarding rules to
ensure the policy holds. The invariant ensures that all source
packets to a client will be received and forwarded by the
middleboxes specified in a given policy before the packet
reaches its destination.

We ran the experiment on a topology of two clients, two
firewalls, one IDS, one proxy and five switches (see Figure 1
of [16]). Kuai can prove the invariant in 6.48 seconds.

We scale up the example by fixing the destination client and
increasing the number of source clients that can send packets
to it. Because of our “all packets in one shot” optimization
(section III-D), no matter how many packets get queued
initially, they are all forwarded in lock-step as the controller
forwarding rule applies to all incoming packets.

References
[1] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,

M. Schapira, and A. Valadarsky. Vericon: Towards verifying controller
programs in software-defined networks. PLDI ’14, pages 282–293, 2014.

[2] B. Bingham, J. Bingham, F. de Paula, J. Erickson, G. Singh, and
M. Reitblatt. Industrial strength distributed explicit state model checking.
In PDMC-HIBI, pages 28–36, Sept 2010.

[3] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford. A NICE
way to test openflow applications. NSDI’12, pages 127–140, 2012.

[4] D. L. Dill. The Murphi verification system. CAV ’96, pages 390–393,
London, UK, UK, 1996. Springer-Verlag.

[5] N. Feamster, J. Rexford, and E. Zegura. The road to SDN. Queue,
11(12):20:20–20:40, Dec. 2013.

[6] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A network programming language.
ICFP ’11, pages 279–291, New York, NY, USA, 2011. ACM.

[7] GENI Assignment. http://groups.geni.net/geni/wiki/GENIEducation/
SampleAssignments/OpenFlowFirewallAssignment/ExerciseLayout/
Execute.

[8] A. Guha, M. Reitblatt, and N. Foster. Machine-verified network
controllers. PLDI ’13, pages 483–494, New York,USA, 2013. ACM.

[9] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat. B4: Experience with a globally-deployed software
defined wan. SIGCOMM13, pages 3–14, New York, NY, USA, 2013.

[10] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
Static checking for networks. In NSDI, pages 113–126, 2012.

[11] R. Majumdar, S. Tetali, and Z. Wang. Kuai: A Model Checker for
Software-defined Networks. Technical report. http://www.mpi-sws.org/
∼zilong/papers/kuai tr.pdf.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM, 38(2):69–74, Mar. 2008.

[13] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark. Resonance:
Dynamic access control for enterprise networks. WREN ’09, pages
11–18, New York, NY, USA, 2009. ACM.

[14] T. Nelson, A. Guha, D. J. Dougherty, K. Fisler, and S. Krishnamurthi.
A balance of power: Expressive, analyzable controller programming.
HotSDN ’13, pages 79–84, New York, NY, USA, 2013. ACM.

[15] POX. http://www.noxrepo.org/pox/about-pox/.
[16] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-

fying middlebox policy enforcement using SDN. SIGCOMM13, pages
27–38, New York, NY, USA, 2013. ACM.

[17] D. Sethi, S. Narayana, and S. Malik. Abstractions for model check-
ing SDN controllers. In Formal Methods in Computer-Aided Design
(FMCAD), 2013, pages 145–148, Oct 2013.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 170

1

ILP Modulo Data
Panagiotis Manolios, Vasilis Papavasileiou, and Mirek Riedewald

Northeastern University
{pete,vpap,mirek}@ccs.neu.edu

Abstract—The vast quantity of data generated and captured
every day has led to a pressing need for tools and processes to
organize, analyze and interrelate this data. Automated reasoning
and optimization tools with inherent support for data could
enable advancements in a variety of contexts, from data-backed
decision making to data-intensive scientific research. To this
end, we introduce a decidable logic aimed at database analysis.
Our logic extends quantifier-free Linear Integer Arithmetic with
operators from Relational Algebra, like selection and cross
product. We provide a scalable decision procedure that is based
on the BC(T) architecture for ILP Modulo Theories. Our decision
procedure makes use of database techniques. We also experimen-
tally evaluate our approach, and discuss potential applications.

I. INTRODUCTION

In 2010, enterprises and users stored more than 13 exabytes
of new data [1]. Database Management Systems (DBMS’s)
based on the Relational Model [3] are a key component in the
computing infrastructure of virtually any organization. With
big data playing a determining role in business and science,
we are motivated to rethink data management and analysis.

Database systems capable of symbolic computation could
enable powerful new methodologies for strategic planning,
decision making, and scientific research. We propose database
systems that (a) store symbolic (in addition to concrete) data,
and at the same time (b) allow queries of a symbolic nature,
e.g., with free variables. Such database systems can be dually
thought of as constraint solvers that reason in the presence
of data. Symbolic data allows us to encode partially specified
or entirely speculative information, e.g., database entries that
exist for the purpose of what-if analysis. Symbolic queries
enable deductive reasoning about data.

Existing relational query languages (e.g., SQL) only allow
concrete data and queries. Symbolic enhancements require a
formalism that combines constraints and relational queries.
We address this need by introducing the ∆ logic. ∆ ex-
tends quantifier-free Linear Integer Arithmetic (QFLIA) with
database tables and operators from Relational Algebra, like
selection (σ), union (∪), and cross product (×). While ∆ is
decidable, the logic in its general form gives rise to hard
satisfiability problems, primarily because it allows universal
quantification over cross products of big tables. We study
unrestricted ∆ (for it is a natural umbrella formalism), but also
provide restrictions that enable an efficient decision procedure.
In other words, we identify a class of database problems that
are a realistic initial target for formal analysis.

This research was supported in part by DARPA under AFRL Cooperative
Agreement No. FA8750-10-2-0233 and by NSF grants CCF-1117184 and
CCF-1319580.

We provide a scalable procedure based on the BC(T) archi-
tecture for ILP Modulo Theories (IMT) [10]. Our approach
is dubbed ILP Modulo Data, because an ILP solver co-exists
with a procedure that establishes a correspondence between
integer variables and database tables. The latter contain a mix
of concrete and symbolic data. ILP Modulo Data allows us to
use a powerful ILP solver based on branch-and-cut (B&C) on
the arithmetic side, while also utilizing database techniques
that allow us to scale to realistic datasets.

The compositional nature of ILP Modulo Data is well-suited
for potential applications. Organizations have access to vast
amounts of data, but at the same time rely heavily on Math-
ematical Programming technology. We enhance Mathematical
Programming tools with the ability to directly access data, thus
assisting data-backed decision making. Such tools would also
benefit scientists in fields ranging from ornithology [17] to
astronomy [5], by providing immediate feedback on the con-
sistency between models the scientists devise and datasets of
observations they collect. Our paper outlines potential applica-
tions, while our experimental evaluation relies on benchmarks
that characterize them. We experimentally demonstrate that
our ILP Modulo Data framework provides better performance
than the approach of eagerly reducing ∆ to QFLIA.

Paper Structure: Section II introduces our reasoning
paradigm through a motivating example. Section III presents
the ∆ logic, while Section IV identifies a ∆ fragment that
yields scalable procedures. Section V describes our deci-
sion procedure. We experimentally evaluate our approach
in Section VI. We provide an overview of related work in
Section VII, and conclude with Section VIII.

II. MOTIVATING EXAMPLE

Our motivating example (formalized in Figure 1) concerns
the problem of optimally investing a given amount of capital.
This is an appropriate application for our techniques, because
(a) investments are almost always data-driven as they take his-
torical stock prices into account, and (b) financial institutions
already rely on Mathematical Programming.

The problem involves investing in a portfolio of n pub-
licly traded stocks, with the goal of maximizing profit while
following guidelines that minimize risk. A database provides
information on these stocks, including stock prices from the
New York Stock Exchange (NYSE). We would like to pick
the n stocks that would have yielded the highest profit over
a period of time in the recent past, e.g., over the preceding
year. This optimization problem is subject to risk-mitigation
constraints that require us to pick companies from a variety of
sectors. While investing in the exact solver-generated portfolio

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 171

2

Id Cap Sector
1 (EMC) large tech
2 (FII) medium financials
3 (AKR) small retail
.

(a) stocks

Id Diff
1 128
2 117
3 89
.

(b) quotes

maximize
Σ1≤i≤nai · di

subject to
(xi, ci, si) ∈ stocks, 1 ≤ i ≤ n
(xi, di) ∈ quotes, 1 ≤ i ≤ n
xi 6= xj , 1 ≤ i < j ≤ n
Σ{i | 1≤i≤n,si=s}ai ≤ Σ1≤i≤nai/3, for every sector s
Σ{i | 1≤i≤n,ci=small}ai ≤ Σ1≤i≤nai/4

(c) Constraints

Fig. 1. Portfolio Management with ILP Modulo Data

(which relies only on past performance) is not necessarily a
good strategy, such a portfolio provides useful information for
the analysts who make the final investment decisions.

The data is given in tables stocks and quotes (Figures 1a
and 1b). Each company in stocks is described by a unique
ID (with the associated NYSE symbol parenthesized), its
capitalization (small, medium, or large), and its sector (e.g.,
tech, retail, financials, automotive, energy, emerging-markets).
While Figure 1 uses human-readable names, we can encode
these fields with bounded integer quantities. Each entry in
quotes describes the observed movement of a certain stock in
a given timeframe, assuming that dividends were reinvested.
For example, the first row describes an increase of 28% in the
price of EMC. quotes is an application-specific abstraction,
i.e., the actual database contains past stock prices and quotes
is a view produced by comparing data for two time periods.

The ith stock in the portfolio is characterized by a unique
ID xi that corresponds to entries in the dataset, i.e., there
exist entries (xi, ci, si) ∈ stocks and (xi, di) ∈ quotes. To
minimize risk, we force the n IDs xi to be distinct, and allow
no single sector to account for more than a third of the total
capital. Additionally, no more than a fourth of the capital goes
to smallcap companies. The objective function maximizes the
capital at the end of the period, and thus the profit.

Note that if the amounts ai are variables, the objective
function is non-linear. The problem can be circumvented by
providing integer constants for ai, i.e., by specifying how the
capital will be partitioned. With constants for ai, the non-
table constraints are essentially in QFLIA. (The summations
for i that satisfy conditions like si = s and ci = small are
easy to encode as sums of if-then-else terms.) Conversely, the
problem is essentially satisfiability of an arithmetic instance,
where certain variables correspond to database contents. This
is the kind of problem that we propose new techniques for. We
cannot use a standalone DBMS, since DBMS’s do not handle
constraints and optimization. Neither are existing solvers up
to the task, since they do not provide ways of managing data.

The constraints we have described are meant to be represen-
tative. Clearly investors also have to consider other options,

including investing in index funds, bonds, debt securities and
derivative contracts. These financial instruments may have
other characteristics that need to be modeled. Our constraints
are also based on simplifying assumptions, e.g., that we can
invest an arbitrary amount in any given stock at any time. It is
not within the scope of our paper to model investment prob-
lems comprehensively. What matters is that these additional
concerns also mix arithmetic with data, thus reinforcing the
need for data-aware solving.

III. THE LOGIC ∆

F ::= T1 ≤ T2 | ∃∃D | ¬F | F1 ∨ F2

D ::= {T+} | 〈σ x : F : D〉 | D1×D2 | D1∪D2

T ::= (T1, T2) | left(T) | right(T) |
x | K | K · T | T1 + T2

K ::= . . . | −2 | −1 | 0 | 1 | 2 | . . .
Fig. 2. Grammar of ∆

This Section introduces the logic ∆. ∆ combines arithmetic
with queries over tabular data. ∆ thus encompasses database
problems like our motivating example of Section II.

The grammar of ∆ is given in Figure 2. K, T , D, and
F are the non-terminal symbols for integer constants, terms,
tables, and formulas, respectively. The first line of productions
for T corresponds to pairs and their accessors; the second line
is for variable symbols (x) and integer expressions. A table
(non-terminal symbol D) is either an input table, a selection,
a cross-product, or a union. The selection 〈σ x : F : D〉 is a
table that consists of only those entries in D that satisfy F ,
i.e., the variable x ranges over the table entries; σ binds x in
F , but not in D. For formulas (non-terminal symbol F), ∃∃D
should be read as “D is not empty”. All other constructs bear
the obvious meaning. We assume that all variables not bound
by σ are integer. We will freely use derived operators, e.g.,
conjunction and integer equality.

∆ is typed. Each term is either of type int or of type s∗ t,
where s and t are types. left and right are only permissible
when applied to a term of type s ∗ t for some type s and
some type t; if x is of type s ∗ t, then left(x) is of type s and
right(x) is of type t. The integer constants are of type int.
The arithmetic operators (+, ·, and ≤) only apply to terms of
type int; + and · produce integers. Each table has a schema,
which is the type of its entries. (Schemas are the table-level
counterpart of types.) An input table is comprised of entries
of the same type. If table D1 has schema s1 and table D2 has
schema s2, then D1×D2 has schema s1∗s2. For 〈σ x : F : D〉
to be properly typed, F should be a properly-typed formula
under the assumption that the type of x is the schema of D;
the schema of 〈σ x : F : D〉 is the same as the schema of D.
Union expects tables of the same schema and preserves it.

Clearly, ∆ is at least as powerful as QFLIA. At the same
time, ∆ encompasses most features one would expect from a
relational query language. We have left out certain operators
usually present in query languages. First, note that projection

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 172

3

(π) would not provide additional power, since it is possible
to refer to any subset of the columns, without producing an
intermediate table that leaves out the irrelevant ones. Also, the
set difference A \ B can be encoded as 〈σ a : ¬∃∃〈σ b : a =
b : B〉 : A〉, assuming that the schema of A and B has exactly
one column; otherwise, in place of a = b we would have
a conjunction of equalities over all columns. Additionally, ∆
can express many forms of aggregation, including count (when
compared to a constant), min, and max.

Example 1. The portfolio encoded by Figure 1 can be
represented as the input table

portfolio = {(1, (x1, a1)), . . . , (n, (xn, an))}.
portfolio contains symbolic data, something which is not
allowed by DBMS’s. The first column ensures that the n entries
are distinct, irrespective of the assignment. portfolio is of
schema int ∗ (int ∗ int). Consider the following constraint:

¬∃∃
〈σ x : left(left(x)) 6= left(right(x)) ∧

left(right(left(x))) = left(right(right(x)))

: portfolio × portfolio 〉

The constraint states that there are no entries (i, (xi, ai)) and
(j, (xj , aj)) in portfolio such that i 6= j and xi = xj , i.e.,
portfolio references n distinct stocks (as was our intention
in Figure 1). The constraint essentially involves universal
quantification over portfolio× portfolio.

A. Decidability

∆ satisfiability can be reduced to QFLIA satisfiability. We
explain the reduction briefly. We represent a table expression
D of schema s as a set JDK consisting of pairs r � b, where
r is a term of type s and b is a QFLIA formula, with the
intended meaning that r is present in the table iff b is true. We
use the operator � to distinguish the auxiliary pairs used for
the reduction from the ones allowed by the syntax of ∆. For a
formula F , JF K denotes the corresponding formula in QFLIA;
similarly for integer terms. F [x/r] stands for substituting x
with r in F , with appropriate care for occurrences of the
symbol x bound by σ inside F . We define J·K for tables and
formulas below as two mutually recursive functions.J{r1, . . . , rn}K = {r1 � true, . . . , rn � true}J〈σ x : F : D〉K = {r � (b ∧ JF [x/r]K) | r � b ∈ JDK}JD1 ×D2K = {(r1, r2)� (b1 ∧ b2) |

r1 � b1 ∈ JD1K, r2 � b2 ∈ JD2K}JD1 ∪D2K = JD1K ∪ JD2K
(1)

JT1 ≤ T2K =JT1K ≤ JT2KJ∃∃DK =
∨

r�b∈JDK bJ¬F K =¬JF KJF1 ∨ F2K =JF1K ∨ JF2K
(2)

For encoding ∆ integer terms as QFLIA terms (e.g., JTiK in
Equation 2), all that needs to be done is elimination of pair

constructors and accessors via the rules left((x, y)) = x and
right((x, y)) = y. The reduction suffices to establish decid-
ability of ∆. The reduction also provides formal semantics
for ∆ by specifying its meaning in terms of QFLIA.

B. Complexity

Theorem 1. The satisfiability problem for ∆ is in NEXPTIME.

Proof Sketch. The reduction to QFLIA (Equations 1 and 2)
produces a formula exponentially larger than the input. Since
QFLIA is in NP, the reduction provides a non-deterministic
exponential time procedure for ∆-satisfiability.

Theorem 2. The satisfiability problem for ∆ is PSPACE-hard.

Proof Sketch. We reduce the (PSPACE-complete) QBF prob-
lem to ∆ satisfiability in polynomial time. We deal with
Boolean quantification by quantifying over the input table
B = {0, 1}. For example, the formula ∀x∃y(x∨¬y) becomes

¬∃∃ 〈σ x : ¬∃∃ 〈σ y : x = 1 ∨ y = 0 : B〉 : B〉 .

Complexity analysis of ∆ beyond Theorems 1 and 2 is
not within the scope of this paper, and has mostly theoretical
significance. In practice, query size is orders of magnitude
smaller than data size. Conversely, it is meaningful to study
data complexity [19], i.e., complexity where only the amount
of data varies. Instead of assuming a query of constant size,
we provide a stronger result by limiting the number of tables
that can participate in a cross product. (We also limit nested
quantifiers, because the latter can simulate cross products.) We
define below the rank function that characterizes this number.

rank({r1, . . . , rn}) = 1
rank(〈σ x : F : D〉) = rank(F) + rank(D)

rank(D1 ×D2) = rank(D1) + rank(D2)
rank(D1 ∪D2) = max(rank(D1), rank(D2))

(3)

rank(T1 ≤ T2) = 0
rank(∃∃D) = rank(D)
rank(¬F) = rank(F)

rank(F1 ∨ F2) = max(rank(F1), rank(F2))

(4)

Definition 1 (k-∆). For any natural number k, k-∆ is the set
of formulas {F | F ∈ ∆ and rank(F) ≤ k}.
Theorem 3. For any natural number k, k-∆ is NP-complete.

Proof Sketch. k-∆ is NP-hard , because any QFLIA formula
can be reduced to a 0−∆ formula in polynomial time (0−∆ ⊆
k-∆). We obtain membership in NP from the reduction defined
by Equation 2, which produces polynomially-sized QFLIA
formulas.

Given the class of formulas k-∆ for some k, the reduction
produces QFLIA formulas of size O(nk+1), where n is the
input size. While the reduction is polynomial (since k is fixed),
it may not be practical even for k = 2, given that datasets
of millions of entries are common. Conversely, we propose
restrictions that yield a lazy solving architecture.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 173

4

IV. THE EXISTENTIAL FRAGMENT OF ∆

We proceed to study the existential fragment of ∆, which
we denote by ∃∆.

Definition 2 (∃∆). A ∆ formula belongs to ∃∆ if the ∃∃
operator always appears below an even number of negations,
i.e., ∃∃ only appears with positive polarity.

The motivation for studying ∃∆ is as follows. Universal
quantification pushes for an approach similar to quantifier
instantiation, e.g., Example 1 (which is not in ∃∆) inher-
ently requires instantiating a constraint for every element
in portfolio× portfolio. This can be done incrementally
by applying patterns that are standard in verification tools. In
contrast, we are not aware of techniques that would be a good
match for the kind of existential quantification that arises in ∆.
Therefore, the rest of this paper focuses on ∃∆.

Formulas in ∃∆ can be transformed into formulas in a con-
venient intermediate logic without cross products, selections,
or unions. We rephrase ∃∃ in terms of a new membership
operator. Each formula of the form ∃∃D is viewed as x ∈ D,
where ∈ has the obvious semantics and x is a properly shaped
row comprised of fresh integer variables. We will refer to rows
like x that serve as witnesses for ∃∃ as witness rows. The next
step is to translate membership in arbitrary table expressions
to membership in input tables. (x, y) ∈ D × E becomes
x ∈ D ∧ y ∈ E, while x ∈ D ∪ E becomes x ∈ D ∨ x ∈ E.
Finally, x ∈ 〈σ y : F : D〉 becomes F [y/x] ∧ x ∈ D. We
eliminate all cross products, selections, and unions by repeated
application of the above transformations.

Example 2. The tables of Figures 1a and 1b can be easily
encoded as ∆ input tables of schemas int ∗ (int ∗ int)
and int ∗ int. Let small capitalization be represented by the
constant 0. Consider the following constraint:

∃∃

〈σ x : left(left(x)) = left(right(x)) ∧
left(right(left(x))) = 0 ∧
right(right(x)) ≥ 150

: stocks × quotes 〉

The constraint asserts the existence of some tuple
((x1, (x2, x3)), (x4, x5)) ∈ stocks × quotes that satisfies
Φ = [x1 = x4 ∧ x2 = 0∧ x5 ≥ 150]. (We have eliminated the
accessors left and right.) This is equivalent to asserting that
(x1, (x2, x3)) ∈ stocks ∧ (x4, x5) ∈ quotes ∧ Φ.

The procedure we outlined produces a decomposed formula
consisting of a QFLIA part and membership constraints. We
proceed to define these notions formally.

Definition 3 ((Conditional) Membership Constraint). A mem-
bership constraint is a constraint of the form

(x1, . . . , xk) ∈ {(y1,1, . . . , y1,k), . . . , (yl,1, . . . , yl,k)} (5)

for positive integers k and l and variable symbols xi, yj,i.
A constraint of the form b = 1 ⇒ m, where b is a
variable symbol and m is a membership constraint, is called
a conditional membership constraint.

A membership constraint may hold conditionally, either
because it arises from an ∃∃-atom that appears under proposi-
tional structure (and therefore holds conditionally), or because
of a disjunction introduced by the union operator. We use
conditions of the form b = 1 because ILP necessitates
[0, 1]-bounded integer variables in place of Boolean variables.
Implication in the opposite direction is never needed, since ∃∃
always appears with positive polarity (as per Definition 2).

Membership constraints do not contain arbitrary arithmetic
expressions, but only variable symbols. “Variable abstrac-
tion” [9] eliminates richer expressions. While variable abstrac-
tion allows for compositional reasoning and helps with theoret-
ical analysis, a limited fragment of arithmetic in membership
constraints yields more efficient implementation. Part of our
discussion will involve tables that contain integer constants
and terms of the form v + c, where v is a variable symbol
and c is an integer constant. (Everything we present is easy
to generalize for such terms.) For convenience, we flatten out
rows constructed using the pair constructor of Figure 2, and
instead deal with k-tuples of integers. This is only a matter of
presentation and has no impact on the algorithms.

Definition 4. A decomposed formula is a conjunction F ∧M ,
where (a) F is a QFLIA formula and (b) M is a conjunction
of possibly conditional membership constraints.

Theorem 4. ∃∆ satisfiability is NP-complete.

Proof. ∃∆ satisfiability is NP-hard, because ∃∆ is at least as
powerful as QFLIA. ∃∆ satisfiability is in NP, because we
can reduce ∃∆ to QFLIA in polynomial time. The reduction
first produces a formula in decomposed form (Definition 4).
Equation 5 is equivalent to

∨
j=1,...,l

∧
i=1,...,k xi = yj,i;

therefore, the membership operator can be eliminated. The
result is a formula in QFLIA.

The polynomial size of the reduction relies on the fact
that ∆ does not allow tables to be named and referenced from
multiple places, i.e., table expressions are not DAG-shaped.
Despite the polynomial reduction, a lazy scheme remains
relevant. The reason is that QFLIA solvers are not meant for
long disjunctions that essentially encode database tables.

V. BC(T) FOR ∆

The decomposed form of Definition 4 is particularly suited
for a scheme that combines separate procedures for QFLIA
and table membership. Given that the QFLIA part can be
encoded as a conjunction of integer linear constraints [10],
it becomes possible to solve instances in decomposed form
(and by extension ∃∆ instances) by instantiating the BC(T)
framework for IMT [10]. An ILP solver deals with the QFLIA
constraints, and exchanges information with a procedure that
checks membership in finite sets. Since database queries
typically have simple propositional structure, we do not expect
encoding the latter with linear constraints to be a bottleneck.

The membership procedure is confronted with a conjunction
of membership constraints (Definition 3). Dealing with condi-
tional constraints is essentially a matter of Boolean search. The
membership procedure needs to understand equality atoms,

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 174

5

equality being a primitive. (Our setting is standard first-order
logic with equality.) In particular, the procedure keeps track
of truth assignments to the equalities in:

{xi = yj,i | j ∈ [1, l], i ∈ [1, k]} (6)

The symbols xi and yj,i have the same meaning as in Defini-
tion 3. In the presence of multiple membership constraints, the
union of sets, like in Equation 6, is relevant. Given that mem-
bership constraints can be checked in isolation, our discussion
proceeds with a single constraint. The variables xi and yj,i also
appear in linear constraints. It simplifies our design to assume
that all of them appear in ILP, even if they are unconstrained
there. The BC(T) framework provides a mechanism (“differ-
ence constraints” [10]) for notifying background procedures
about atoms like the ones in Equation 6. Given truth values
for these atoms, we check that a membership constraint is
satisfied by simply traversing the table and looking for a tuple
that is column-wise equal to the witness row. The constraint
is violated if for every j ∈ [1, l], there exists some i ∈ [1, k]
such that xi 6= yj,i, i.e., there is no candidate tuple.

The arithmetic and membership parts share variables. It is
vital that we systematically explore the space of (dis)equalities
between these variables. This exchange of information resem-
bles the non-deterministic Nelson-Oppen scheme (NO) for
combining decision procedures [15]. We demonstrate that NO
can accommodate membership constraints.

Definition 5 (Arrangement). Let E be an equivalence relation
over a set of variables V . The set

α(V,E) = {x = y | xEy} ∪ {x 6= y | x, y ∈ V and not xEy}
is the arrangement of V induced by E.

Definition 6 (Stably-Infinite Theory). A Σ-theory T is called
stably-infinite if for every T -satisfiable quantifier-free Σ-
formula F there exists an interpretation satisfying F∧T whose
domain is infinite.

Fact 1 (Nelson-Oppen for Stably-Infinite Theories [15, 9]).
Let Ti be a stably-infinite Σi-theory, for i = 1, 2, and let
Σ1 ∩ Σ2 = ∅. Also, let Γi be a conjunction of Σi-literals.
Γ1 ∪Γ2 is (T1 ∪ T2)-satisfiable iff there exists an equivalence
relation E of the variables V shared by Γ1 and Γ2 such that
Γi ∪ α(V,E) is Ti-satisfiable, for i = 1, 2.

Lemma 1 (Nelson-Oppen for Membership Constraints). Let
T be a stably-infinite Σ-theory. Also, let Γ be a conjunction
of Σ-literals, and M be a conjunction of possibly negated
membership constraints. Γ∪M is T -satisfiable iff there exists
an equivalence relation E of the variables V shared by Γ and
M such that Γ∪α(V,E) is T -satisfiable and M ∪α(V,E) is
satisfiable.

A longer version of this paper [11] provides a proof of
Lemma 1. Note that Lemma 1 allows negated membership
constraints. While the latter do not pose algorithmic diffi-
culties, our discussion is limited to the positive occurrences
needed for ∃∆. The statement of Lemma 1 is structurally
similar to that of Fact 1, with membership constraints replacing
the constraints of some participating stably-infinite theory. It

follows that a membership procedure can participate in NO
as a black box, much like a theory solver, even though we
have not formalized membership constraints by means of a
theory. We can thus combine a form of set reasoning with any
stably-infinite theory.

BC(T) guarantees completeness for the combination of ILP
with a stably-infinite theory [10] by ensuring that the branch-
ing strategy explores all possible arrangements. We established
that membership can be used much like a stably-infinite
theory. All that is needed for completeness is a membership
procedure capable of checking consistency of its constraints
conjoined with a given arrangement (that contains all literals
of Equation 6). As we have seen, this operation is simple and
involves no arithmetic. In pursuit of efficiency, we proceed to
describe branching and propagation techniques based on table
contents. Meaningful branching and propagation involve the
integer bounds of variables, i.e., necessitate limited arithmetic
reasoning on the membership side.

A. Propagation

B&C-based ILP solvers keep track of variable lower and
upper bounds, and heavily rely on bounds propagation al-
gorithms. We describe how to enhance such propagation to
exploit the structure of membership constraints.

We denote by lb(v) an ub(v) the current lower and upper
bounds on variable v. lb(v) (respectively ub(v)) is either an
integer constant, or −∞ (resp. +∞) if no bound is known.
We use the notation lb′(v) and ub′(v) for bounds on v that the
membership procedure infers. We proceed with a membership
constraint as per Definition 3. Let x = (x1, . . . , xk); similarly,
we denote by yj the tuple (yj,1, . . . , yj,k). Let match(x, yj)
be true if and only if for all i ∈ [1, k], the sets [lb(xi),ub(xi)]
and [lb(yj,i),ub(yj,i)] intersect.

lb′(xi) = max(lb(xi),min{lb(yj,i) | j ∈ [1, l],match(x, yj)}) (7)

ub′(xi) = min(ub(xi),max{ub(yj,i) | j ∈ [1, l],match(x, yj)}) (8)

We over-approximate the values of the variables xi by con-
sidering all candidate entries (inner min and max). The outer
max and min guarantee that we do not weaken bounds. If
there exists exactly one value j such that match(x, yj), it is
sound to deduce the equalities xi = yj,i, for all i ∈ [1, k]. If
there is no candidate entry, inconsistency is reported.

Example 3 (Interleaved Propagation). Consider the decom-
posed formula x = y ∧ (x, y) ∈ {(1, 2), (2, 4), (3, 6), (4, 8)}.
The formula corresponds to a query over concrete tuples that
any DBMS can evaluate in linear time. It is thus vital that our
techniques yield acceptable performance. Equations 7 and 8
bound x to [min{1, 2, 3, 4},max{1, 2, 3, 4}] = [1, 4] and y to
[min{2, 4, 6, 8},max{2, 4, 6, 8}] = [2, 8]. Given the equality
x = y, ILP propagation deduces that x, y ∈ [2, 4], since [2, 4]
is the intersection of permissible ranges for x and y. The
membership procedure detects that match now only holds for
(2, 4), and fixes x to 2 and y to 4. The ILP solver in turn
deduces unsatisfiability, since x = y is violated. No branching
was needed. Encoding the formula in QFLIA would hide its
structure, leading to search. The example generalizes to other
lengths and bounded symbolic data.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 175

6

(x1, x2) ∈

{(1, 2),
(2, 3),

(3, 2),

(y1, y2)}

(0)

(x1, x2) ∈
{(1, 2),
(y1, y2)}

(1) (x1, x2) ∈
{(2, 3),
(3, 2),

(y1, y2)}
(2)

x1 < 2 x1 ≥ 2

(x1, x2) ∈
{(2, 3)
(3, 2)} (3) (x1, x2) ∈

{(2, 3)
(3, 2),

(y1, y2)}
(4)

x1 6= y1
x1 = y1

Fig. 3. Data-Driven Branching

B. Branching and Arrangement Search

It follows from Lemma 1 that a branching strategy which
exhaustively explores all possible arrangements of the shared
variables guarantees completeness. To achieve better per-
formance, we have to branch with the tabular structure of
databases in mind, without overlooking symbolic data.

Figure 3 provides an example. The root node (Node 0)
describes a single membership constraint, which we assume
to be part of a larger decomposed formula. We maintain
integer constants in the table, instead of performing variable
abstraction which would introduce auxiliary variables for
them. According to Equation 6, the membership procedure
needs truth assignments for the equalities in {x1 = 1, x1 =
2, x1 = 3, x1 = y1, x2 = 2, x2 = 3, x2 = y2}. It would not be
wise for the search strategy to overlook that this set originates
from a table containing numbers, and treat the set members
as if they were atomic propositions unrelated to each other.

In our example, branching on the condition x1 < 2 produces
two subproblems. Node 1 shows only the tuples that still
apply under the condition x1 < 2, i.e., the ones that still
satisfy the predicate match; similarly for Node 2. x1 < 2
is a choice informed by the tabular structure. Since 2 as the
value of the first column is close to the “middle” of the table,
branching on x1 < 2 rules out approximately half of the
candidates. (y1, y2) is present in both subproblems (Nodes
1 and 2). Branching based on constant bounds is therefore
not enough, for we will possibly have to deal with symbolic
tuples. Figure 3 demonstrates further branching on x1 = y1
to determine whether (y1, y2) is a suitable witness for the
membership constraint.

The example demonstrates the dual nature of the search
strategy needed. The problem naturally pushes towards branch-
and-bound (which is a restriction of B&C), e.g., branching on
x1 < 2 is meaningful. It remains necessary to also branch on
equalities between shared variables (e.g., x1 = y1), just like
in any practical implementation of NO. (To be precise, in ILP
we would have two separate nodes for x1 < y1 and x1 > y1
in place of x1 6= y1.) Implementing NO with B&C enables
both kinds of branching.

Branching is organically tied to propagation. Initially (Node

0), assuming no previously known bounds for x1, the ta-
ble contents only allow us to bound x1 to the range
[min(lb(y1), 1),max(ub(y1), 3)]; if y1 is unbounded, x1 re-
mains unbounded. The decisions x1 ≥ 2 and x1 6= y1 (i.e.,
Node 3) tighten x1 to [2, 3]. We also obtain the range [2, 3]
for x2, i.e., branching on some column potentially leads to
propagation across other columns.

C. Discussion

The analysis of this Section indicates that ∆ formulas can
be decomposed in such a way that a procedure for table lookup
assumes part of the workload. BC(T) is particularly suited for
implementing such a combination. BC(T) can easily accom-
modate data-aware propagation (Section V-A) and branching
(Section V-B). Our techniques would be harder to implement
within a DPLL(T)-style solver [16], given that the toplevel
search of DPLL(T) is over the Booleans (and not the integers).
A DPLL(T)-based implementation of our techniques would
essentially require integrating branch-and-bound in DPLL(T),
which is beyond the scope of our work.

The table lookup procedure can be thought of as a small
database engine within the solver. The employed database
engine can be an actual DBMS, storing the concrete part of
tables and possibly bounds on symbolic fields. A DBMS would
provide multiple opportunities for improvements. Equations 7
and 8 essentially describe database aggregation, and thus
provide a starting point for the kinds of queries that apply.
DBMS queries can be over multiple tables at a time, and can
involve conditions other than bounds. As a matter of fact, the
match predicate of Equations 7 and 8 can be strengthened
with any condition on the data that follows from the formula
(e.g., x = y in Example 3), thus computing tighter bounds.
Different kinds of database optimizations apply, e.g., mate-
rializing queries for better incremental behavior and smarter
indexing based on user input.
∃∆ (and its decomposed form) formally characterizes a rel-

evant class of problems that can be solved by a compositional
scheme which employs a database engine. Our scheme may
actually apply to a superset of ∃∆.

VI. APPLICATIONS AND EXPERIMENTS

We have implemented support for databases on top of the
Inez constraint solver.1 Inez is our implementation of the
BC(T) architecture for IMT on top of the SCIP (M)ILP
solver [2]. We refer to the version of Inez that provides
database extensions as InezDB. InezDB supports existential
database constraints by means of the BC(T)-based combina-
tion described in Section V, but also universal quantification
by eager instantiation. InezDB (like Inez) additionally sup-
ports objective functions.

We have produced a collection of InezDB input files that
have the structure we expect in applications. Our benchmark
suite is publicly available and can be used as a starting point
towards a richer benchmark suite of problems that involve
data and constraints.2 We provide a brief overview of the
application areas that inspire our benchmarks.

1https://github.com/vasilisp/inez
2http://www.ccs.neu.edu/home/vpap/fmcad-2014.html

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 176

7

A. How-To Analysis

Research in the general direction of reverse data manage-
ment [12] proposes ways of obtaining the desired results out
of a database query. We outline this class of problems through
an example, which gives rise to some of our benchmarks.

Example 4 (emp join.ml). The management of a company
is surprised to find out that (according to the corporate
database) there is no employee younger than 30 whose yearly
income exceeds $60000. Why not is not obvious, since income
is a complicated function of multiple quantities including a
base salary, benefits based on age, employee level (junior,
middle, or senior), and bonuses.

The management consults the database administrator on
how to [13] ameliorate the seeming injustice. Together, they
explore bonuses that would allow young employees to exceed
the $60000 limit. This amounts to synthesizing tuples for the
table of bonuses. An alternative is to adjust various parameters
in the income computation, i.e., to modify the query instead of
the data [18]. This can be done by replacing constants with
variables, and letting the solver come up with suitable values.

B. Test-Case Generation

Test case generation is relevant for databases [20]. A family
of benchmarks in our collection demonstrate test data genera-
tion by concretizing tables initially containing symbolic data.

Example 5 (emp keys.ml). The problem involves two
tables, named incomes and employees. incomes has an
ID column constrained to reference existing entries in
employees, i.e., there is a foreign key constraint. incomes
contains thousands of tuples with symbolic IDs. A satisfying
assignment corresponds to a generated database that meets the
foreign key constraint, thus serving as meaningful test input.

C. Scientific Applications

Studying big datasets is a key aspect of scientific research
in fields ranging from ornithology [17] to astronomy [5]. To
demonstrate the applicability of our techniques, we provide
benchmarks inspired by queries that ornithologists perform.

Example 6 (birds box.ml). An ornithologist wants to
see a rare species in person, but has not decided on a
good location. She has access to a database of observations.
Each observation describes a bird and the geographic co-
ordinates where it was seen. An area can be described as
a symbolic rectangle B = [longitudemin, longitudemax] ×
[latitudemin, latitudemax]. Our techniques allow the or-
nithologist to simply ask for n observations of the species
of interest that lie in B. The query effectively concretizes B.

D. Portfolio Management

We experimented with the portfolio optimization example
of Section II. Our exact instance (portfolio.ml) encodes
a more complex variant of the formalization in Section II. An
additional table contains stock dividends; dividends are taken
into account in the objective function. We tried a range of
parameters with a timeout of one hour, and obtained a range

 1

 10

 100

 1000

 1 10 100 1000

In
ez

 T
im

e
(s

)

InezDB Time (s)

(a) InezDB versus Inez

 1

 10

 100

 1000

 1 10 100 1000

Z
3

T
im

e
(s

)
InezDB Time (s)

(b) InezDB versus Z3

Fig. 4. Experiments: InezDB versus the eager approach

of solutions. Notably, picking an optimal portfolio of 5 out of
50 stocks took 161 seconds; 5 out of 4000 stocks took 1510
seconds; and 6 out of 2000 stocks took 1172 seconds. Such
table sizes are realistic, given that NYSE lists approximately
2800 companies.

E. Overview of Results

We compare InezDB against an Inez frontend that solves
∆ formulas by eagerly translating them to QFLIA via the
encoding of Theorem 4. Inez in turn solves QFLIA formulas
by reducing them to constraints that SCIP understands. (These
constraints are not strictly ILP, since we utilize specialized
constraint handlers [2].) We refer to this configuration simply
as Inez, since the only addition to Inez is a new frontend. We
also produce SMT-LIB versions of our QFLIA formulas, and
run them against the latest available version of Z3 (4.3.1).

We provide 8 benchmark generators that allow different
modes of operation (e.g., some of them are able to produce
both satisfiable and unsatisfiable benchmarks), and are able
to output benchmarks with different table sizes. Our input
table sizes range from 60 tuples to 640000 tuples. In total,
our parameters give rise to 166 benchmarks. We run all
three solvers with a timeout of 1800 seconds and a memory
limit of 12GB on a machine that provides 2 Intel Xeon
X5677 CPUs of 4 cores each and 96GB of RAM. Figure 4
visualizes our experiments. Inez solves 25 satisfiable and 47
unsatisfiable benchmarks. InezDB solves 74 satisfiable and
81 unsatisfiable benchmarks. Finally, Z3 solves 57 satisfiable

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 177

8

and 58 unsatisfiable benchmarks. Among the failures for Inez
(resp. Z3), 37 (resp. 27) are due to the memory limit. InezDB
runs out of memory only once. If we turn off the memory
limits, the total numbers of failures don’t change much.

Figure 4a indicates that InezDB outperforms Inez by a sig-
nificant margin. This margin can be attributed to two factors.
First, InezDB exploits the structure of database problems (e.g.,
for branching and propagation), while Inez has no knowledge
of this structure. Second, our reduction to QFLIA (in the case
of Inez) produces patterns that SCIP is not optimized for, since
the latter is designed for MILP and not for QFLIA.

Figure 4b compares Inez against a leading solver for QFLIA
(Z3), and thus characterizes the tool’s performance in absolute
terms. There is a cluster of 40 benchmarks for which InezDB
is 2-8 times faster than Z3. (Note that the scale is logarithmic.)
InezDB is at least 8 times faster for 31 of the benchmarks that
both tools solve, and solves many benchmarks for which Z3
times out. All failures for InezDB are failures for Z3. Z3
outperforms InezDB for only 7 out of the 166 benchmarks,
none of which take InezDB more than 4 seconds to solve.

We conclude the evaluation by pointing out that there is
significant room for improvement in InezDB. As is the case
with almost every first implementation of a new decision
procedure, there is room for improvement, e.g., InezDB
can benefit from better preprocessing and more sophisticated
branching. InezDB can also be improved by adopting database
techniques (as we outlined in Section V), or by integrating a
DBMS. Our promising experimental results even without such
optimizations constitute sufficient evidence that ILP Modulo
Data is a viable design for data-enabled reasoning tools.

VII. RELATED WORK

The Constraint Database framework [6] provides a database
perspective on constraint solving. The framework encompasses
relations described by means of constraints, but not relations
comprised of concrete tuples.

“Table constraints” [8, 4], as studied in Constraint Program-
ming, resemble our membership constraints. Such tables are
not meant as database tables. Our work differs in significant
ways, e.g., our setup allows symbolic table contents. Also,
the algorithms presented for table constraints rely on table
contents from small domains (i.e., not the reals or the in-
tegers). This aligns with the overall emphasis of Constraint
Programming, but conflicts with our intended applications.

Veanes et al. describe the Qex technique and tool that uses
Z3 to generate tests for SQL queries [20]. Qex essentially
encodes the relational operators via axioms, which are later
instantiated via E-matching [14]. E-matching is a generic
scheme that is not optimized in any way for database problems.
Qex is geared towards relatively small tables that suffice as test
cases, while our target applications involve bigger tables.

Other approaches tackle constraints arising in database
applications with off-the-shelf generic solvers (via eager re-
ductions). Notably, Khalek et al. use Alloy [7], while Meliou
and Suciou use MILP [13]. In neither of these approaches

does the core of the solver exploit the structure of database
instances, e.g., for branching or propagation.

VIII. CONCLUSIONS AND FUTURE WORK

We introduced the ILP Modulo Data framework for marry-
ing data with symbolic reasoning. To that end, we introduced
the decidable logic ∆. We identified a fragment of ∆ that can
be solved efficiently by instantiating the BC(T) architecture.
We developed a solver for ∆, and evaluated this solver on a
set of benchmarks that we made publicly available.

There are many interesting research directions to be ex-
plored in future work, including: (a) the design and implemen-
tation of solvers that include an actual DBMS, (b) efficiently
handling universal quantification over big tables, say by parti-
tioning input tables and using parallelization, (c) extending our
techniques to allow mixed integer, real arithmetic, and other
first-order theories, and (d) solving interesting business and
scientific applications using the ILP Modulo Data framework.

REFERENCES

[1] Challenges and Opportunities with Big Data, 2012. Computing Com-
munity Consortium White Paper.

[2] Tobias Achterberg. Constraint Integer Programming. PhD thesis,
Technische Universitat Berlin, 2007.

[3] Edgar Codd. A Relational Model of Data for Large Shared Data Banks.
CACM, 13(6):377–387, 1970.

[4] Ian Gent, Chris Jefferson, Ian Miguel, and Peter Nightingale. Data
Structures for Generalised Arc Consistency for Extensional Constraints.
In AAAI, 2007.

[5] Jim Gray, Alex Szalay, Ani Thakar, Peter Kunszt, Christopher
Stoughton, Don Slutz, and Jan vandenBerg. Data Mining the SDSS
SkyServer Database. arXiv preprint cs/0202014, 2002.

[6] Paris Kanellakis, Gabriel Kuper, and Peter Revesz. Constraint Query
Languages (Preliminary Report). In PODS, 1990.

[7] Shadi Abdul Khalek, Bassem Elkarablieh, Yai Laleye, and Sarfraz
Khurshid. Query-Aware Test Generation Using a Relational Constraint
Solver. In ASE, 2008.

[8] Christophe Lecoutre and Radoslaw Szymanek. Generalized Arc Con-
sistency for Positive Table Constraints. In CP, 2006.

[9] Zohar Manna and Calogero Zarba. Combining Decision Procedures. In
10th Anniversary Colloquium of UNU/IIST, 2002.

[10] Panagiotis Manolios and Vasilis Papavasileiou. ILP Modulo Theories.
In CAV, 2013.

[11] Panagiotis Manolios, Vasilis Papavasileiou, and Mirek Riedewald. ILP
Modulo Data. CoRR, abs/1404.5665, 2014.

[12] Alexandra Meliou, Wolfgang Gatterbauer, and Dan Suciu. Reverse Data
Management. In VLDB, 2011.

[13] Alexandra Meliou and Dan Suciu. Tiresias: The Database Oracle for
How-To Queries. In SIGMOD, 2012.

[14] Leonardo De Moura and Nikolaj Bjorner. Efficient E-matching for SMT
solvers. In CADE-21, 2007.

[15] Greg Nelson and Derek C. Oppen. Simplification by Cooperating
Decision Procedures. TOPLAS, 1:245–257, 1979.

[16] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T). JACM, 53(6):937–977, 2006.

[17] Daria Sorokina, Rich Caruana, Mirek Riedewald, Wesley Hochachka,
and Steve Kelling. Detecting and Interpreting Variable Interactions in
Observational Ornithology Data. In DDDM, pages 64–69. IEEE, 2009.

[18] Quoc Trung Tran and Chee-Yong Chan. How to ConQueR Why-Not
Questions. In SIGMOD, 2010.

[19] Moshe Vardi. The Complexity of Relational Query Languages. In STOC,
1982.

[20] Margus Veanes, Nikolai Tillmann, and Peli de Halleux. Qex: Symbolic
SQL Query Explorer. In LPAR-16, 2010.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 178

Turbo-Charging Lemmas on Demand
with Don’t Care Reasoning

Aina Niemetz, Mathias Preiner, and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Abstract—Lemmas on demand is an abstraction/refinement
technique for procedures deciding Satisfiability Modulo Theories
(SMT), which iteratively refines full candidate models of the
formula abstraction until convergence. In this paper, we introduce
a dual propagation-based technique for optimizing lemmas on
demand by extracting partial candidate models via don’t care
reasoning on full candidate models. Further, we compare our
approach to a justification-based approach similar to techniques
employed in the context of model checking. We implemented
both optimizations in our SMT solver Boolector and provide an
extensive experimental evaluation, which shows that by enhanc-
ing lemmas on demand with don’t care reasoning, the number
of lemmas generated, and consequently the solver runtime, is
reduced considerably.

I. INTRODUCTION

Procedures for deciding satisfiability of first order formulas
w.r.t. first order theories, also known as Satisfiability Modulo
Theories (SMT), are usually divided into so-called eager and
lazy approaches. Eager SMT approaches eagerly encode an
SMT formula into an equisatisfiable Boolean formula, which
then serves as input for a SAT solver. Lazy approaches, on
the other hand, are generally based on a tight integration
of a SAT solver and one or more theory solvers. The SAT
solver typically enumerates Boolean truth assignments sat-
isfying a Boolean abstraction of the input formula, whereas
the theory solver(s) not only check if those assignments are
consistent w.r.t. the first order theorie(s), but guide the SAT
solver through its search. The majority of state-of-the-art SMT
solvers employ lazy SMT approaches, where the lemmas on
demand procedure as introduced for the extensional theory of
arrays in [7] is one extreme variant thereof [20]. The core
idea of lemmas on demand is similar to the Counterexample-
Guided Abstraction Refinement (CEGAR) approach intro-
duced in [9] and goes back to [11], while at the same
time, a related technique was proposed in the context of
bounded model checking, where all-different constraints are
lazily encoded over bit vectors (see also [5]). Recently, in [19]
we introduced a generalization of the lemmas on demand
decision procedure in [7] to lazily handle λ terms.

Similar to other lazy SMT approaches, lemmas on demand
as in [7][19] enumerates truth assignments (so-called candi-
date models) of the bit vector abstraction of the (preprocessed)
input formula and iteratively refines those assignments with
lemmas until convergence. Each of these candidate models

This work was funded by the Austrian Science Fund (FWF) under NFN
Grant S11408-N23 (RiSE).

is a full truth assignment of the formula abstraction, which
subsequently needs to be checked for consistency w.r.t. the
theory of bit vectors with arrays. A full candidate model,
however, includes parts of the formula abstraction irrelevant
to its satisfiability under the current assignment and might
therefore be over-determined.

In this paper we aim at exploiting a posteriori observability
don’t cares, i.e., parts of the formula abstraction irrelevant un-
der the current assignment. We show that don’t care reasoning
on full candidate models to extract partial candidate models
subsequently reduces the cost for consistency checking by
focusing on the relevant parts of the formula, only. Motivated
by dual propagation techniques in the context of quantified
boolean formulas (QBF) [15][16], we propose an optimization
of the lemmas on demand procedure in [19] and compare our
approach to a technique based on justification heuristics in
ATPG [18]. We implemented both techniques in our SMT
solver Boolector and analyse the results in comparison to the
version of Boolector that won the QF AUFBV track of the
SMT competition 2012.

Note that in this paper, our justification-based approach
mainly serves as a basis for comparison to our dual
propagation-based approach. In the context of SMT, Barrett
and Donham [3] and De Moura and Bjørner [10] applied
justification-based techniques to prune the search space of
DPLL(T). In the context of model checking, justification-based
techniques have been previously employed to identify a poste-
riori observability don’t cares. Bingham and Hu [6], e.g., prune
the search space of their simulation-based bounded model
checking engine by means of a justification-based general-
ization mechanism (skip cubes) similar to learning and non-
chronological backtracking of conventional SAT procedures.
Eén et al. [13] employ a related approach when generalizing
proof obligations by ternary simulation for property directed
reachability (PDR), whereas Chockler et al. [8] use a variant
of offline dual propagation for SAT. The verification tool
Reveal [2][1], on the other hand, employs a CEGAR approach
for model checking complex hardware designs and generalizes
candidate counter examples by justification techniques similar
to our justification-based method. Their (and our) justification-
based approach, however, is only applicable on structural (non-
clausal) problems. In contrast, our dual propagation-based
approach generalizes full candidate models by exploiting the
duality of the Boolean layer of the input formula and is not
restricted to structural formula abstractions.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 179

DPLOD

Optimization

φ Preprocessing π Formula
Abstraction

α(π)

α(π) ∧ ξ

DPB

unsat

σ(α(π) ∧ ξ)

Partial Model
Extraction

Refinement

Consistency
Check

σp(α(π) ∧ ξ)

sat

ξ = {l} ∧ ξ

un
sa

t

sat

in
co

n-
si

st
en

t

co
ns

is
te

nt

Fig. 1: The workflow of the lemmas on demand decision
procedure DPLODopt in Boolector. The original procedure
DPLOD (indicated by the dashed line) works on full candidate
models, whereas the optimized procedure DPLODopt extracts
partial candidate models prior to consistency checking.

II. LEMMAS ON DEMAND AT A GLANCE

The lemmas on demand decision procedure as implemented
in Boolector is an iterative abstraction/refinement approach
for the quantifier-free theory of fixed-sized bit vectors and
arrays. Figure 1 gives a high-level view of the procedure and
introduces both the original, unoptimized approach DPLOD and
our optimized approach DPLODopt as follows.

Given a formula φ, DPLOD uses a bit vector skeleton of the
preprocessed formula π as formula abstraction α(π). In each
iteration, an underlying decision procedure DPB determines
the satisfiability of the refined formula abstraction Γ ≡ α(π)∧
ξ by encoding Γ to SAT and determining its satisfiability by
means of a SAT solver. Note that initially, formula refinement
ξ is>. As Γ is an overapproximation of φ, DPLOD immediately
concludes with unsat if Γ is unsatisfiable. If Γ is satisfiable,
the current (full) candidate model σ(α(π) ∧ ξ) is checked
for consistency w.r.t. the preprocessed input formula π. If
σ(α(π)∧ξ) is consistent, DPLOD immediately concludes with
sat. Otherwise, σ(α(π)∧ξ) is spurious and a lemma l is added
to formula refinement ξ.

As indicated in Fig. 1, DPLOD iteratively refines α(π) by
consistency checking full candidate models, which usually
include parts of the bit vector skeleton irrelevant to its satisfi-
ability under the current assignment. In the following section,
we will introduce an optimization to extract a partial candidate
model σp(α(π)∧ξ) from the full candidate model σ(α(π)∧ξ)
in order to guide the consistency check towards the relevant
parts of α(π) only.

III. PARTIAL MODEL EXTRACTION

In terms of runtime, abstraction refinement usually is the
most costly part of the lemmas on demand procedure DPLOD,
where cost generally correlates with the number of lemmas

1 procedure consistent (Γ, σ)

2 S ← search initial applies (Γ)

3 w h i l e S 6= ∅
4 f(a0, . . . , an) ← pop (S)

5 consistent ← check consistency (f(a0, . . . , an), σ)

6 i f not consistent r e t u r n ⊥
7 S′ ← search applies for consistency check (f(a0, . . . , an))

8 push (S, s′ ∈ S′)
9 r e t u r n >

Fig. 2: Procedure consistent in pseudo-code.

generated. During refinement, procedure DPB (and conse-
quently the call to the underlying SAT solver) constitutes the
majority of the overall runtime per iteration, which adds up
when a great number of refinement iterations is needed. Hence,
optimizing DPLOD in terms of runtime directly translates to
reducing the number of lemmas generated.

In contrast to other lazy SMT approaches [20], formula
abstraction in DPLOD does not produce a pure Boolean
skeleton, but a bit vector skeleton, where each function
application f(a0, . . . , an) in the preprocessed formula π is
mapped to a fresh bit vector variable. Consequently, con-
sistency checking in DPLOD is performed on all function
applications in the bit vector skeleton (for details see [19]).
A high level view of the consistency checking algorithm
consistent in DPLOD is given in Fig. 2 and proceeds as
follows. Given the refined formula abstraction Γ and the full
candidate model σ, search initial applies collects all function
applications in Γ that need to be checked for consistency
(line 2) and iteratively checks each APPLY f(a0, . . . , an) w.r.t.
the current assignment σ (lines 4-5). If check consistency
encounters an inconsistency, consistent immediately returns
with ⊥. Else, search applies for consistency check instan-
tiates function f with arguments a0, . . . , an, which yields
term t, and subsequently collects all function applications in
formula abstraction α(t) for consistency checking (lines 7-8).
If all applies in S have been checked without inconsistencies,
procedure consistent concludes that current candidate model
σ is consistent and returns >.

Consistency checking all function applications in formula
abstraction Γ corresponds to checking the full candidate
model σ for consistency, with the order in which applies are
checked as the only way to positively influence the number of
refinement iterations (by coincidentally finding lemmas that
shortcut the search, early on). Checking the full candidate
model, however, is often not required, as only a small subset of
the full candidate model is responsible for actually satisfying
the formula abstraction. As a consequence, parts of the formula
abstraction irrelevant to its satisfiability under the current
assignment are checked, which subsequently produces lemmas
that do not necessarily prune the search space and therefore
mainly cost runtime.

Example 1: As a running example, consider the formula

ψ1 ≡ i 6= k ∧ (f(i) = e ∨ f(k) = v) ∧ v = ite(i = j, e, g(j))

as given in Fig. 3. Its initial formula abstraction Γψ1 ≡ α(ψ1)

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 180

apply1

f

var
e apply2

var
v apply3

g

var
j

var
i

var
k

eq eq eq

ite

3
12

or

eq

and eq

and

Fig. 3: DAG representation of formula ψ1 (running example).

and a (possible) initial full candidate model σ(Γψ1) (indicated
in red) is given in Fig. 4. In the following, we assume that
all variables in ψ1 are bit vector variables of size 2 and
Γψ1 is a bit vector skeleton. For the sake of simplicity, we
further assume that functions f and g represent uninterpreted
functions, i.e., we concentrate on consistency checking of
the full versus a partial candidate model (via procedure
search initial applies) and do not bother with details of the
internals of the actual consistency check (for details, see [19]).
Procedure search initial applies initially collects all function
applications in Γψ1 (apply1, apply2, apply3) to be checked for
consistency. During consistency checking, however, no further
applies are identified as required to being checked (procedure
search applies for consistency check) as both f and g do
not make subsequent calls to other functions. Note that given
σ(Γψ1), instead of checking all applies in ψ1, either checking
apply1 or apply2 would be sufficient.

In the following, we consider two techniques for identifying
irrelevant parts of the formula abstraction by extracting partial
candidate models, which subsequently reduces the number of
refinement iterations, and therefore, the overall runtime of the
lemmas on demand procedure.

A. Justification-Based Partial Model Extraction

In the context of ATPG [18], sets of don’t care conditions
are usually divided into observability don’t cares (ODC) and
controllability don’t cares (CDC). The former denotes lines
that do not influence the primary outputs (independent from
the current assignment to the primary inputs), and the latter
identifies line values that can not be justified and are therefore
illegal under any assignment to the primary inputs. Given a
concrete assignment to the primary inputs, however, we can
determine what we call a posteriori observability don’t cares,
i.e., lines that do not influence the output of a gate under its
current assignment. In the context of model checking, such a

α(apply1)

00

var
e

00

α(apply2)

00

var
v

00

α(apply3)

00

var
j

00

var
i

00

var
k

01

eq5> eq4> eq3

ite

3
1

>
2

and3⊥
⊥ ⊥

eq2

00

and2

>

>

eq1 ⊥

and1

> >

>

Fig. 4: Formula abstraction Γψ1 of formula ψ1 with candidate
model σ(Γψ1) indicated in red (running example).

posteriori ODC have already been exploited by Bingham and
Hu [6], Eén et al. [13], and Andraus et al. [2][1].

In this section, we introduce a technique similar to [2][1]
and extract partial candidate models by identifying parts of the
formula abstraction Γ that are irrelevant to its satisfiability un-
der the current assignment σ. As indicated above, this directly
translates to collecting and checking function applications in
relevant parts of Γ only. In the following, we assume that Γ
is represented as a directed acyclic graph (DAG) with exactly
one root, where all Boolean operations are expressed by means
of NOT and (two-input) AND gates. In place of procedure
search initial applies, we introduce search initial appliesjust

(Fig. 5), which collects function applications while traversing
all relevant paths in Γ as follows.

Given Γ and a full candidate model σ, starting from the root,
search initial appliesjust iteratively traverses Γ towards its
primary inputs (bit vector variables and function applications)
in depth first search (DFS) order. That is, initially, root (Γ)
is pushed onto stack X (line 2) and for each node x ∈ X
we determine the paths to be skipped as follows. If a node x
is an AND node and its output is assigned to ⊥, we follow
(one of) its controlling input(s), i.e., one of its inputs with
controlling value (⊥ for an AND) [18], and skip the other
(lines 7-14). Similarly, if x is an IF-THEN-ELSE (ITE) node
and its condition is assigned to > (resp. ⊥), we follow both
its condition and its then (resp. else) branch (lines 15-20). In
any other case where x is not an APPLY node, we follow all
inputs of node x (line 22). However, if x is an APPLY node,
we collect x (line 6) and cut off the traversal, as function
applications are treated as fresh bit vector variables in the
formula abstraction.

Note that in the case that both inputs of an AND node
are controlling, we can skip either one of them (lines 9-
10). Hence, we choose to follow the input with minimum
cost in terms of consistency checking, where the cost of a
node x is defined as the minimum number of (unique) applies
along a path from x to the primary inputs in the preprocessed
formula π. Similar as controllability measures in ATPG [18],

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 181

1 procedure search initial appliesjust (Γ, σ)

2 S ← ∅ , X ← {root (Γ)}
3 w h i l e X 6= ∅
4 x ← pop (X)

5 i f is apply (x)

6 push (S, x)

7 e l i f is and (x) and σ(x) = ⊥
8 l ← left input (x) , r ← right input (x)

9 i f is controlling (l) and is controlling (r)

10 push (X, choose (l, r))

11 e l i f is controlling (l)

12 push (X, l)

13 e l s e
14 push (X, r)

15 e l i f is ite (x)

16 push (x, condition (x))

17 i f σ(condition (x)) = >
18 push (X, then (x))

19 e l s e
20 push (X, else (x))

21 e l s e
22 push (X, i ∈ inputs (x))

23 r e t u r n S

Fig. 5: Procedure search initial appliesjust in pseudo-code.

we recursively define a cost function cost (x) as follows.

cost (x) =

0 if is var (x)

min {cost (i) | i ∈ inputs (x)} if is and (x)

sum {cost (i) | i ∈ inputs (x)}+ 1 if is apply (x)

sum {cost (i) | i ∈ inputs (x)} otherwise

(1)

Given formula π, a bit vector variable is a primary input, hence
its cost is defined as 0. Function applications, on the other
hand, are not primary inputs but define the cost of a path from
input x to the primary inputs. Hence, the cost of an APPLY
is defined as the sum of the costs of its inputs increased by
one. In case of an AND node, we want to choose the input
with minimum cost if both inputs are controlling, hence cost
is defined as the minimum cost of its inputs. In any other case,
all input paths have to be followed and cost (x) is defined as
the sum of the costs of all inputs of x.

Example 2: Consider formula ψ1, formula abstraction
Γψ1 , and a full candidate model σ(Γψ1) as given in
Example 1. Starting from the root (and1), procedure
search initial appliesjust traverses Γψ1 in DFS order while
identifying (and skipping) all paths irrelevant w.r.t. assignment
σ(Γψ1). Note that in Fig. 3 and 4, inverted nodes are indicated
by black dots. In the following, however, we will interpret
an inverted node as two distinct nodes (with resp. distinct
assignments), i.e., ¬and3 with σ(¬and3) = > in Fig. 4,
for example, is treated as a NOT (assigned to >) in front
of an AND (assigned to ⊥). Starting with root and1, which
is assigned to >, neither of its inputs may be skipped and we
first travel down towards eq1, whose inputs are both bit vector
variables. Hence, we immediately continue with and2 (also
assigned to >) and follow its input eq2, where we encounter
an ite with its condition assigned to >. We skip the else
branch, no APPLY is collected, and we continue down the

input path leading to and3, which is assigned to ⊥. Both inputs
of and3 are controlling (i.e., assigned to ⊥), hence we choose
one of them heuristically. The minimum cost for both paths,
however, is 0 (as the body of function f does not contain any
further applies), hence we may choose either. We decide on
the path to apply1 and conclude with S = {apply1}, which
corresponds to the partial model to be subsequently checked
for consistency.

B. Dual Propagation-Based Partial Model Extraction

Exploiting the duality of QBF by propagating a dual set of
values through a QBF φ and its negation ¬φ, also referred to
as dual propagation, has successfully been employed in [15]
to significantly prune, and therefore speed up the search in
circuit-based QBF solvers. The core idea of dual propaga-
tion, however, is neither restricted to circuit-based representa-
tions [16] nor to QBF and is based on the fact that assignments
satisfying an input formula φ (the primal channel), falsify
its negation ¬φ (the dual channel) and vice versa. Given a
Boolean formula ψ2 ≡ (a∧b)∨(c∧d), for example, assignment
{σ(a) = >, σ(b) = >, σ(c) = >, σ(d) = >} satisfies ψ2,
but falsifies its negation ¬ψ2 ≡ (¬a ∨ ¬b) ∧ (¬c ∨ ¬d).

The duality of formula ψ2, however, can be further ex-
ploited. Assume, for example, that given ψ2 and σ(ψ2) as
above, we fix the values of all input variables assigned
in σ(ψ2) by making assumptions {a=>, b=>, c=>, d=>}
to a SAT solver maintaining its negation ¬ψ2. All assumptions
inconsistent with ¬ψ2, also called failed assumptions [14],
identify all input assignments sufficient to falsify ¬ψ2, hence
sufficient to satisfy ψ2. This set of failed assumptions, for
example {a = >, b = >}, therefore represents a partial
model satisfying ψ2. Note that our approach does not re-
quire a structural SAT solver—structural don’t care reason-
ing is simulated via the dual solver, which maintains ¬ψ2

in CNF. Consequently, given a CNF representation of ψ2

(where structural information of ψ2 is essentially lost), we
extract a partial model (disregarding structural don’t cares
w.r.t. assignment σ) that satisfies ψ2 but not necessarily its
encoding to CNF. Consider, for example, the Tseitin encoding
CNF(ψ2) ≡ (¬o ∨ x ∨ y) ∧ (¬x ∨ o) ∧ (¬y ∨ o) ∧ (¬x ∨ a) ∧
(¬x∨ b)∧ (¬a∨¬b∨x)∧ (¬y∨ c)∧ (¬y∨d)∧ (¬c∨¬d∨y).
Our previous partial model {a = >, b = >} satisfies ψ2

(and therefore identifies those parts of ψ2 relevant to its
satisfiability) but does not satisfy all clauses in CNF(ψ2). This
is in contrast to other partial model extraction techniques based
on iterative removal of unnecessary assignments on the CNF
level (e.g. [12]), which do not enable structural don’t care
reasoning and therefore need to satisfy all clauses in CNF(ψ2).

In this section, we lift the approach sketched above to
the word level by means of a dual SMT solver and in-
troduce a technique to extract partial candidate models via
dual propagation-based don’t care reasoning. Given a formula
abstraction Γ ≡ α(π)∧ξ, we use a single dual solver instance
to maintain ¬Γ over all refinement iterations in combination
with the primal (or main) solver. However, since in each
iteration i a new lemma li is added to ξ ≡ l1∧...∧li−1, we set
up the dual solver to maintain ¬Γ ≡ ¬(α(π)∧l1∧...∧li−1∧li)

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 182

1 procedure search initial appliesdp (Γ, σ)

2 S ← ∅ , A ← ∅
3 assume (dual solver, ¬Γ)

4 X ← collect primary inputs (Γ)

5 f o r x ∈ X
6 a ← x = σ(x) , A ← A ∪ a
7 assume (dual solver, a)

8 res ← DPB (dual solver)

9 a s s e r t res = UNSAT

10 f o r a ∈ A
11 x, σ (x) ← a

12 i f is failed (a) and is apply (x)

13 push (S, x)

14 r e t u r n S

Fig. 6: Procedure search initial appliesdp in pseudo-code.
Solver instance dual solver simulates the dual channel and
is maintained globally.

as assumption rather than assertion. As illustrated in Fig. 6,
we introduce search initial appliesdp in place of procedure
search initial applies as follows.

Given Γ and a full candidate model σ, procedure
search initial appliesdp initializes the dual solver by assum-
ing ¬Γ (line 3). The value of all primary inputs in ¬Γ is
then fixed by making assumptions of the form x = σ(x),
where x is either a bit vector variable or an abstracted function
application, and σ(x) is its assignment in the current full
candidate model σ (lines 4-7). Candidate model σ represents
a satisfying assignment for Γ, hence decision procedure DPB
must conclude that assuming σ, ¬Γ is unsatisfiable (lines 8-9).
The resulting set of failed assumptions identifies all relevant
parts of Γ w.r.t. assignment σ, and all function applications
in the set of failed assumptions are subsequently collected for
consistency checking (lines 10-13).

Example 3: Again, consider formula ψ1, its initial for-
mula abstraction Γψ1 ≡ α(ψ1), and a (possible) full can-
didate model σ(ψ1) as given in Example 1. Procedure
search initial appliesdp initializes the dual solver by assuming
¬Γψ1 ≡ ¬(i 6= k ∧ (α(apply1) = e ∨ α(apply2) = v) ∧
v = ite(i = j, e, α(apply3))), and subsequently collects all
bit vector variables i, j, k, e, v and abstracted function
applications α(apply1), α(apply2), α(apply3) in Γψ1 onto
stack X . All primary inputs x ∈ X are then fixed by
making assumptions {i = 00, j = 00, k = 01, e = 00, v =
00, α(apply1) = 00, α(apply2) = 00, α(apply3) = 00} to
the dual SMT solver instance, which concludes that under the
current set of assumptions, ¬Γψ1 is unsatisfiable. Assumption
α(apply1) = 00 is identified as failed assumption and we
conclude with S = {apply1} to be subsequently checked for
consistency.

Note that in a sense, our dual propagation-based approach
as discussed above simulates dual propagation as introduced
in the context of QBF [15][16] rather than literally lifting it
to bit vectors with arrays. Dual propagation as in [15][16]
is done eagerly by means of one single solver instance
maintaining a primal and a dual channel without additional
overhead. Primary inputs are shared between both channels,

Solver Solved TO MO Time [s] DS [s](sat/unsat)

SM
T’

12

Boolectorsc 140 (83/57) 9 0 15882 -
Boolectorba 141 (83/58) 8 0 19312 -
Boolectorju 142 (84/58) 7 0 15709 -
Boolectordp 142 (84/58) 7 0 20992 5045

Se
le

ct
ed

Boolectorsc 116 (72/44) 50 7 85863 -
Boolectorba 121 (76/45) 45 7 76104 -
Boolectorju 130 (85/45) 36 7 63202 -
Boolectordp 130 (85/45) 36 7 66991 4705

TABLE I: Overall results on sets SMT’12 and Selected.

which enables symmetric propagation between the primal and
dual channel and allows to detect partial models early—even
before a full assignment has been generated. In our approach,
however, propagation is not interleaved, but consecutive—
the primal solver generates a full assignment before the dual
solver enables partial model extraction based on the primal full
assignment. Further, primary inputs are not physically shared
as the dual solver discretely maintains ¬φ (while mapping
primary inputs back to the primal solver and vice versa).
Hence we have to simulate shared inputs via fixing input
values by means of assumptions to the dual solver, which
simply acts as “slave” for partial model extraction to the
primal solver. In order to adopt a more eager approach to
enable early partial model extraction while reducing the dual
solver overhead, interleaved execution between the primal
and dual solver similar to “SAT modulo SAT” [4] would be
required. Integrating such an interleaved decision process into
an existing SMT solver has high potential, however, is rather
involved to implement and left to future work.

IV. EXPERIMENTAL EVALUATION

We implemented justification-based and dual propagation-
based partial model extraction in our SMT solver Boolector
and provide a comparison of the following four configurations:
• Boolectorsc: The version that won the QF AUFBV track

of the SMT competition 2012.
• Boolectorba: Our current base version of Boolector, a

slightly optimized version of [19], with partial model
extraction disabled.

• Boolectorju: Our base version of Boolector with
justification-based partial model extraction enabled.

• Boolectordp: Our base version of Boolector with dual
propagation-based partial model extraction enabled.

We compiled two benchmarks sets for our experimental eval-
uation: (1) SMT’12 (149 instances), which consists of all
non-extensional benchmarks used for the SMT competition
2012 and (2) Selected (173 instances), which includes all
non-extensional benchmarks from the QF AUFBV category of
SMT-LIBfor which Boolectorsc required at least 10 seconds
(CPU time) for solving (incl. timeouts and memouts). Note
that we had to exclude extensional benchmarks as Boolectorba
and its optimized versions Boolectorju and Boolectordp do
not yet support extensionality on arrays. Further note that 58
instances of the benchmark set SMT’12 are included in Se-
lected. All experiments were performed on 2.83Ghz Intel Core
2 Quad machines with 8GB of memory using Ubuntu 12.04.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 183

Solver Time [s] Sat [s] DS overhead [s] LOD Array Model Size
Total Avg. Med. Total Avg. Med. Total Avg. Med. Total Avg. Med. Total Avg. Med.

SM
T’

12

Boolectorsc 4129 29 2 3662 26 0 - - - 30741 221 0 184032 2272 20
Boolectorba 8564 61 6 7262 52 1 - - - 33013 237 0 33310 411 20
Boolectorju 6362 45 4 5226 37 0 - - - 23660 170 0 19751 243 13
Boolectordp 10145 72 5 4700 33 0 4109 29 0 33492 240 0 27912 344 12

Se
le

ct
ed

Boolectorsc 15037 133 35 12836 113 34 - - - 104646 926 175 512225 7645 1257
Boolectorba 10001 88 35 8330 73 22 - - - 31752 280 88 136681 2040 212
Boolectorju 8182 72 29 6639 58 19 - - - 28215 249 28 122763 1832 154
Boolectordp 10838 95 30 6164 54 15 3036 26 0 24866 220 29 130440 1946 170

TABLE II: Results for commonly solved instances on sets SMT’12 (139 benchmarks, 82 sat, 57 unsat) and Selected (113
benchmarks, 70 sat, 43 unsat). Commonly solved satisfiable instances for determining array model size were 81 (out of 82)
for SMT’12 and 67 (out of 70) for Selected. Array model size is measured in terms of number of index/value pairs.

The memory and time limits for each solver instance were set
to 7GB and 1200 seconds, respectively.

A. Results Overview

The overall results of all four solver configurations on both
benchmark sets SMT’12 and Selected are shown in Table I,
which summarizes the number of solved instances (Solved),
timeouts (TO), memouts (MO), total CPU time (Time), and
the overhead produced by the dual solver in terms of CPU time
(DS). Note that the overhead introduced by our justification-
based approach is negligible. Further note that in case of a
timeout or memout, a penalty of 1200 seconds was added to
the total CPU time. On the SMT’12 benchmark set, in terms
of solved instances, Boolectorba, Boolectorju, and Boolectordp
perform slightly better than Boolectorsc. In terms of runtime,
however, only Boolectorju shows a significant improvement
(of about 20%), while Boolectordp appears to even perform
worse than Boolectorba, which is mainly due to the runtime
overhead introduced by the dual solver. If we disregard this
overhead, the overall runtime of Boolectordp is competitive
with the runtime of Boolectorju. It is conceivable that an eager
implementation of dual propagation would perform equally
well, i.e., at least as fast as Boolectordp without the overhead.

Interestingly, Boolectorsc clearly outperforms all other three
solver configurations on the benchmark family “platania str-
cmp” (9 instances). Boolectorsc solved these benchmarks in
about 31 seconds, whereas the other solvers required 4416 sec-
onds (Boolectorba), 2308 seconds (Boolectorju), and 4527 sec-
onds (Boolectordp, incl. 2277 seconds dual solver overhead),
respectively. The base version Boolectorba, and consequently
both Boolectorju and Boolectordp, obviously struggle on these
benchmarks, which needs further investigation.

Note that benchmark set SMT’12 is not necessarily represen-
tative for lemmas on demand in Boolector, as 79 (53%) out of
a total of 149 instances are immediately solved by Boolectorsc
without a single refinement iteration. Benchmark set Selected,
on the other hand, has been compiled based on the runtime
performance of the SMT competition 2012 winner Boolectorsc
(incl. timeouts and memouts) and represents a set considered
to be “harder” for Boolector. As indicated in Table I, on set
Selected both Boolectorju and Boolectordp clearly outperform
their base version Boolectorba as well as the competition con-
figuration Boolectorsc. More precisely, both our justification-
based and dual propagation-based optimizations considerably
reduce the overall runtime while solving 14 (9) additional

instances compared to Boolectorsc (Boolectorba), where 13 (9)
out of 14 (9) are satisfiable instances. Again, Boolectordp is
slowed down by the dual solver overhead, but still manages to
solve as many instances as Boolectorju. Disregarding the dual
solver overhead, Boolectordp even outperforms Boolectorju
in terms of runtime. Note that the dual solver overhead in
general correlates with the number of lemmas generated. This
is due to the fact that in each refinement iteration a partial
candidate model is extracted from the full candidate model,
which requires an additional call to the dual solver. On set
Selected, for 10 out of 130 instances, the dual solver overhead
constitutes about 50-70% of the total runtime per instance,
whereas for 83 instances it does not exceed 10%.

B. Results Commonly Solved Instances

Table II summarizes all instances in each benchmark set
that could be solved by all four solver configurations and gives
an overview of the runtime required for solving (Time), the
runtime required by the underlying SAT solver (Sat), the dual
solver overhead (DS), the number of lemmas generated (LOD),
and the size of the array models for satisfiable instances (Array
Model Size). For all four solver configurations, we identified
139 common instances (82 sat, 57 unsat) on benchmark set
SMT’12 and 113 common instances (70 sat, 43 unsat) on
benchmark set Selected. Array model size is measured in terms
of the number of index/value pairs identified by each solver
with model generation enabled. However, unlike Boolectorba
(and consequently Boolectorju and Boolectordp), Boolectorsc
requires additional overhead for model generation, which has
a negative impact on the overall number of solved instances.
As a consequence, Boolectorsc effectively “lost” 1 (resp. 3)
satisfiable instance(s) on set SMT’12 (resp. Selected). We
therefore compiled all columns except column Array Model
Size with model generation disabled.

On the 139 common instances in the SMT’12 benchmark
set, Boolectorsc is still the fastest solver, albeit only due to
the “platania strcmp” benchmarks mentioned above—on those
nine instances, Boolectorba, Boolectorju, and Boolectordp
spent 50%, 35% and 45% of the overall runtime, respec-
tively. A similar picture emerges when comparing the number
of refinement iterations required for these nine instances,
which constitutes 59%, 47%, and 60% of the total num-
ber of lemmas generated by Boolectorba, Boolectorju, and
Boolectordp, respectively. In comparison to the base version
Boolectorba, however, Boolectordp shows the most notable

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 184

 1

 10

 100

 1000

 1 10 100 1000

B
o
o
le

c
to

r d
p
 r

u
n
ti
m

e
 [
s
]

Boolectorsc runtime [s]

(a)

 1

 10

 100

 1000

 1 10 100 1000

Boolectorba runtime [s]

(b)

 1

 10

 100

 1000

 1 10 100 1000

Boolectorju runtime [s]

(c)

Fig. 7: Runtime comparison of Boolectordp vs. Boolectorsc (8a), Boolectordp vs. Boolectorba (8b), and Boolectordp
vs. Boolectorju (8c) on benchmark set Selected with 1200 seconds timeout, dual solver overhead included.

 1

 10

 100

 1000

 1 10 100 1000

B
o
o
le

c
to

r d
p
 r

u
n
ti
m

e
 [
s
]

Boolectorsc runtime [s]

(a)

 1

 10

 100

 1000

 1 10 100 1000

Boolectorba runtime [s]

(b)

 1

 10

 100

 1000

 1 10 100 1000

Boolectorju runtime [s]

(c)

Fig. 8: Runtime comparison of Boolectordp vs. Boolectorsc (8a), Boolectordp vs. Boolectorba (8b), and Boolectordp
vs. Boolectorju (8c) on benchmark set Selected with 1200 seconds timeout, dual solver overhead not included.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

B
o
o
le

c
to

r d
p
 l
e
m

m
a
s
 [
#
]

Boolectorsc lemmas [#]

(a)

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Boolectorba lemmas [#]

(b)

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Boolectorju lemmas [#]

(c)

Fig. 9: Comparison of the number of lemmas generated by Boolectordp vs. Boolectorsc (9a), Boolectordp vs. Boolectorba (9b),
and Boolectordp vs. Boolectorju (9c) on benchmark set Selected.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 185

improvement (about 26%) in terms of runtime required by
the underlying SAT solver on the 139 common instances in
SMT’12. Disregarding the dual solver overhead, Boolectordp
even outperforms Boolectorju in terms of overall runtime.
Interestingly, in terms of the number of lemmas generated,
Boolectordp requires slightly more lemmas than the base
version, which is in stark contrast to Boolectorju. However, in
case of Boolectordp, this can be contributed to a relative small
number of instances. On 14 instances, Boolectordp generates
1.5 to 2.6 times more lemmas than Boolectorba, whereas on
all other instances, Boolectorba requires considerably more
refinement iterations than Boolectordp. This might indicate that
in some cases, Boolectorba coincidentally generates lemmas
that shortcut the search early on. In terms of array model size,
both optimized configurations Boolectorju and Boolectordp
clearly show a reduction in the number of array index/value
pairs compared to the base version Boolectorba.

Note that the considerable difference in array model size
between Boolectorsc and Boolectorba is due to an optimiza-
tion of procedure search applies for consistency check (see
Section III) introduced subsequent to [19]. In essence, given
a function application f(a), this optimization aims at con-
sistency checking APPLY nodes reachable while traversing
in DFS order from f(a) to the primary inputs, only. In
contrast, prior to that optimization it was possible that function
applications irrelevant to consistency checking f(a) were
pulled in. The effect of this optimization is even more notable
on the Selected benchmark set, where Boolectorba clearly
outperforms Boolectorsc in every aspect.

On the 113 common instances in set Selected, Boolectordp
clearly outperforms Boolectorju and Boolectorba not only in
terms of runtime required by the underlying SAT solver, but in
the number of lemmas generated. Disregarding the dual solver
overhead, Boolectordp shows even more improvement in terms
of overall runtime than Boolectorju. Note that without the op-
timization of procedure search applies for consistency check
mentioned above, the difference in terms of overall runtime
between Boolectorba and both optimized versions Boolectorju
and Boolectordp would be even greater, i.e., comparable to the
difference between both optimized versions and Boolectorsc.

C. Results Dual Propagation-Based Optimization
A more detailed overview of the instance-based results of

our dual propagation-based approach Boolectordp on bench-
mark set Selected is given in Fig. 7-9. Figure 7 compares the
overall runtime of Boolectordp (incl. the overhead introduced
by the dual solver) with the runtime of Boolectorsc (7a),
Boolectorba (7b), and Boolectorju (7c). Even though the
dual solver overhead constitutes 31% of the total runtime of
Boolectordp, it still outperforms Boolectorsc and Boolectorba
on a majority of the instances and is even competitive with
Boolectorju. Disregarding the overhead of the dual solver
(Fig. 8), Boolectordp even outperforms Boolectorju on a
majority of the instances (Fig. 8c). In terms of the number of
lemmas generated (Fig. 9), in comparison to all three solver
configurations Boolectorsc, Boolectorba, and Boolectorju, our
dual propagation-based solver Boolectordp clearly shows the
most notable improvement.

V. CONCLUSION

In this paper we introduced a dual propagation-based opti-
mization of the lemmas on demand procedure for bit vectors
with arrays as implemented in Boolector. We compared our
approach with a justification-based approach similar to [2][1].
We showed that don’t care reasoning on full candidate models
improves the performance of lemmas on demand considerably,
Our current simulation of dual propagation is competitive with
our justification-based optimization and clearly outperforms
the winner of the SMT competition 2012, even though the
dual solver introduces a considerable amount of overhead to
the overall runtime. Adopting a more eager dual propagation
approach promises to render the dual solver overhead neg-
ligible, while further improving the overall performance by
enabling partial model extraction even before a full candidate
model has been generated. However, this would require an
interleaved execution between the primal and the dual solver,
which is rather involved to implement and subject of future
work. Further, our current version of dual propagation-based
partial model extraction heavily relies on incremental SAT
solving under assumptions, which can benefit from dedicated
data structures [17]. The integration of such SAT solver level
optimization techniques is also left to future work.
Binaries of Boolector and all log files of our experimental evaluation can be
found at http://fmv.jku.at/dpjust.

REFERENCES

[1] Z. S. Andraus. Automatic Formal Verification of Control Logic in
Hardware Designs. PhD thesis, University of Michigan, 2009.

[2] Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. Reveal: A formal
verification tool for Verilog designs. In LPAR’08, volume 5330 of LNCS.
Springer, 2008.

[3] C. Barrett and J. Donham. Combining sat methods with non-clausal
decision heuristics. ENTCS, 125(3), 2005.

[4] S. Bayless, C. G. Val, T. Ball, H. H. Hoos, and A. J. Hu. Efficient
modular SAT solving for IC3. In FMCAD’13. IEEE, 2013.

[5] A. Biere and R. Brummayer. Consistency checking of all different
constraints over bit-vectors within a SAT solver. In FMCAD’08. IEEE.

[6] J. D. Bingham and A. J. Hu. Semi-formal bounded model checking. In
CAV’02, volume 2404 of LNCS. Springer, 2002.

[7] R. Brummayer and A. Biere. Lemmas on demand for the extensional
theory of arrays. JSAT, 6(1-3), 2009.

[8] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo. Incremental
formal verification of hardware. In FMCAD’11. FMCAD Inc., 2011.

[9] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample
guided abstraction refinement. In CAV’00, volume 1855 of LNCS.
Springer, 2000.

[10] L. de Moura and N. Bjørner. Relevancy propagation. Technical Report
MSR-TR-2007-140, Microsoft Research, 2007.

[11] L. M. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for
bounded model checking over infinite domains. In CADE’02, volume
2392 of LNCS. Springer, 2002.

[12] D. Déharbe, P. Fontaine, D. L. Berre, and B. Mazure. Computing prime
implicants. In FMCAD’13. IEEE, 2013.

[13] N. Eén, A. Mishchenko, and R. K. Brayton. Efficient implementation
of property directed reachability. In FMCAD’11. FMCAD Inc., 2011.

[14] N. Eén and N. Sörensson. An extensible SAT-solver. In SAT’04, volume
2919 of LNCS. Springer, 2004.

[15] A. Goultiaeva and F. Bacchus. Exploiting QBF duality on a circuit
representation. In AAAI’10. AAAI Press, 2010.

[16] A. Goultiaeva, M. Seidl, and A. Biere. Bridging the gap between dual
propagation and CNF-based QBF solving. In DATE’13. ACM, 2013.

[17] J.-M. Lagniez and A. Biere. Factoring out assumptions to speed up
MUS extraction. In SAT’13, volume 7962 of LNCS. Springer, 2013.

[18] Z. Navabi. Digital Sytem Test and Testable Design. Springer, 2011.
[19] M. Preiner, A. Niemetz, and A. Biere. Lemmas on demand for lambdas.

In DIFTS’13, volume 1130 of CEUR Workshop Proceedings, 2013.
[20] R. Sebastiani. Lazy Satisability Modulo Theories. JSAT, 3(3-4), 2007.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 186

Reduction for Compositional Verification of
Multi-Threaded Programs

Corneliu Popeea
Technische Universität München

Andrey Rybalchenko
Microsoft Research Cambridge and

Technische Universität München

Andreas Wilhelm
Technische Universität München

Abstract—Automated verification of multi-threaded programs
requires keeping track of a very large number of possible interac-
tions between the program threads. Different reasoning methods
have been proposed that alleviate the explicit enumeration of
all thread interleavings, e.g., Lipton’s theory of reduction or
Owicki-Gries method for compositional reasoning, however their
synergistic interplay has not yet been fully explored. In this
paper we explore the applicability of the theory of reduction for
pruning of equivalent interleavings for the automated verification
of multi-threaded programs with infinite-state spaces. We propose
proof rules for safety and termination of multi-threaded programs
that integrate into an Owicki-Gries based compositional verifier.
The verification conditions of our method are Horn clauses,
thus facilitating automation by using off-the-shelf Horn clause
solvers. We present preliminary experimental results that show
the advantages of our approach when compared to state-of-the-
art verifiers of C programs.

I. INTRODUCTION

Development of practical verification tools for multi-
threaded programs requires dealing with the explosion of
the number of thread interleavings that need to be taken
into consideration. However, while one can easily construct
a contrived program in which every interleaving leads to a
different outcome, often enough different interleavings pro-
duce equal outcome, and hence can be considered equivalent.
Such an equivalence between interleavings suggests that only
representatives of each equivalence class need to be considered
when verifying a multi-threaded program.

One way to exploit such equivalence is called partial
order reduction (POR) [1]. This technique is used in com-
bination with model checking and amounts to restricting the
successor computation to representative interleavings, which
is performed on-the-fly during the exploration of the model.
Explicit-state [1], [2] as well as symbolic [3], [4] model
checking algorithms can be effectively combined with POR.
Furthermore, recent work shows that POR can also boost
interpolation based verification [5], which makes it applicable
for the verification of programs with infinite-state spaces.

Alternatively, one can exploit equivalence by transforming
a multi-threaded program such that it only produces representa-
tive interleavings, or a sufficiently small superset thereof. Such
transformation summarises and replaces certain sequences of
statements within threads by their composition into so-called
reducible blocks. Following Lipton’s theory of reduction [6],
executing these code blocks without any preemption pro-
duces representative interleaving when their building blocks
commute. Reducible blocks can greatly simplify deductive

verification of multi-threaded programs using proof assistants,
see e.g. [7]. For finite state systems, reducible blocks (also
called transactions in the literature) can be effectively identified
and created on-the-fly during model checking [8], [9], [10].
Unfortunately, this does not benefit automatic verification tools
for multi-threaded programs with infinite-state spaces. In par-
ticular, if reducible blocks contain loops then their invariants
are required to replace reducible blocks by their summaries.

In this paper we explore the applicability of reduction for
pruning of equivalent interleavings for the automated verifi-
cation of multi-threaded programs with infinite-state spaces.
Since reducible blocks rarely contain all statements of a thread,
i.e., there are multiple reducible blocks in each thread as
well as some statements that do not belong to any reducible
block, we integrate compositional reasoning into our explo-
ration as a complementary technique for avoiding the explicit
exploration of all interleavings. That is, our method relies
on reduction whenever possible, while statements outside of
reducible blocks are subject to compositional reasoning.

Technically, our paper makes the following contributions:
1) a Horn constraint based method for identifying commuta-
tivity (mover annotations) of program statements, 2) compo-
sitional proof rules for safety and termination that integrate
reduction and Owicki-Gries reasoning [11], 3) an efficient im-
plementation based on these ingredients. Our design decisions
were directed by the following considerations. Commutativity
inference, the first building block of our approach, serves as
a preliminary step for a final constraint based verification
run. We allow it to be more precise and data dependent
in comparison with type based approaches, e.g. [12]. Even
though being potentially more expensive, the ability to infer
larger transactions at step 1 may lead to dramatic reduction in
verification time when dealing with step 2. Our proof rules
are also inspired by the use of procedure summaries, see
e.g. [13], however instead of being driven by calls/returns
to mark start/finish points of summaries, we use transitions
that enter/exit from reducible blocks. Note that loops can be
part of reducible blocks and summarisation constraints defer
reasoning about them to the final solving step.

In summary, this paper shows that reducible blocks can be
identified without requiring deep and intricate modification of
the underlying verification techniques. Our experimental eval-
uation shows that the conceptual separation of concerns, i.e.,
treatment of equivalence between interleavings via reducible
blocks and keeping track of interleavings using compositional
proof system, compares favourably with state-of-the-art verifi-
cation approaches.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 187

int x=2, y=2, mx=0, my=0;
// Thread-1

int a;
0: acquire(mx);
1: a = x;
2: acquire(my);
3: y = y+a;
4: release(my);
5: a = a+1;
6: acquire(my);
7: y = y+a;
8: release(my);
9: x = 2*x+a;

10: release(mx);
11:

// Thread-2
0: acquire(mx);
1: x = x+2;
2: release(mx);
3:

// Thread-3
0: acquire(my);
1: y = y+2;
2: release(my);
3:

VG = (x,y,mx,my), V1 = (a,pc1), V2 = (pc2), V3 = (pc3)
init(V) = (x = 2 ∧ y = 2 ∧ mx = 0 ∧ my = 0 ∧ pc1 = pc2 = pc3 = `0)
next1(V V ′) = (move1(`0, `1) ∧ mx = 0 ∧ mx′ = 1 ∧ skip(x,y,my,a)) ∨

(move1(`1, `2) ∧ a′ = x ∧ skip(x,y,mx,my)) ∨
(move1(`2, `3) ∧ my = 0 ∧ my′ = 1 ∧ skip(x,y,mx,a)) ∨
(move1(`3, `4) ∧ y′ = y + a ∧ skip(x,mx,my,a)) ∨
(move1(`4, `5) ∧ my′ = 0 ∧ skip(x,y,mx,a)) ∨
(move1(`5, `6) ∧ a′ = a + 1 ∧ skip(x,y,mx,my)) ∨
(move1(`6, `7) ∧ my = 0 ∧ my′ = 1 ∧ skip(x,y,mx,a)) ∨
(move1(`7, `8) ∧ y′ = y + a ∧ skip(x,mx,my,a)) ∨
(move1(`8, `9) ∧ my′ = 0 ∧ skip(x,y,mx,a)) ∨
(move1(`9, `10) ∧ x′ = 2 ∗ x + a ∧ skip(y,mx,my,a)) ∨
(move1(`10, `11) ∧ mx′ = 0 ∧ skip(x,y,my,a))

next2(V, V ′) = (move2(`0, `1) ∧ mx = 0 ∧ mx′ = 1 ∧ skip(x,y,my)) ∨
(move2(`1, `2) ∧ x′ = x + 2 ∧ skip(y,mx,my)) ∨
(move2(`2, `3) ∧ mx′ = 0 ∧ skip(x,y,my))

next3(V, V ′) = (move3(`0, `1) ∧ my = 0 ∧ my′ = 1 ∧ skip(x,y,mx)) ∨
(move3(`1, `2) ∧ y′ = y + 2 ∧ skip(x,mx,my)) ∨
(move3(`2, `3) ∧ my′ = 0 ∧ skip(x,y,mx))

error(V) = (x = 11 ∧ pc1 = `11 ∧ pc2 = `3 ∧ pc3 = `3)

Fig. 1. Program P1-1 and its representation as a transition system. The notation skip(v1, . . . , vk) abbreviates the constraint (v′1 = v1 ∧ · · · ∧ v′k = vk), while
movei(`j , `k) stands for (pci = `j ∧ pc′i = `k).

II. ILLUSTRATION

Our proposed method consists of two steps, inference of
reducible blocks and compositional verification with summa-
rization of the reducible blocks.

We illustrate our verification approach with a multi-
threaded program that uses locks (mx,my) to protect ac-
cesses to the shared variables (x,y). See Figure 1 for the
program P1-1. The program state is given by a valuation
of program variables V = (VG, V1, V2, V3), where VG are
global (shared) variables and Vi are thread-local variables
for a thread i ∈ {1, 2, 3}. Each thread has a thread-local
program counter variable pci ∈ Vi that holds location values
`p for a program line labeled p. We denote by PC i the
set of locations from thread i, i.e., PC 1 = {`0, . . . , `11},
PC 2 = {`0, . . . , `3} and PC 3 = {`0, . . . , `3}. The assertion
init(V) gives the initial states of the program. We model the
effect of program statements using a thread transition relation
next i(V, V ′) corresponding to thread i. The primed version V ′
of the program variables are the next state valuations of V .

Our example uses a thread-synchronization model based
on locks, acquire and release statements. We assume that a
lock is initially not taken, e.g., mx = 0 and my = 0, and that
the acquire(mx) statement waits until the lock is released
(mx = 0) and then assigns the value 1 to mx. The release
statement sets the lock value back to 0.

Reducible block boundaries The objective of the infer-
ence of reducible blocks is to minimize the number of explored
interleavings during verification. For this illustration, we only

show how reducible blocks are encoded in our approach. (See
Section V for a formal description of a constraint based method
for identifying commutativity of program statements and its
application on the P1-1 example.)

Since global variables are consistently accessed while
holding a corresponding lock, the statements between acquire
and release for both thread-2 and thread-3 correspond
to a reducible block. For thread-1, our inference obtains
two reducible blocks, the first one from location `0 to `5 and
the second one from `6 to `10. Informally, we shall refer to
the four reducible blocks with labels (a), (b), (c) and (d).

(a) thread-1 {`0 − `5} (b) thread-1 {`6 − `10}
(c) thread-2 {`0 − `2} (d) thread-3 {`0 − `2}

Formally, the result of reduction is encoded using a parti-
tioning of the transition relation of each thread into four cat-
egories: next out out i(V, V ′) describes transitions of thread
i having both pci and pc′i set to locations outside reducible
blocks, next in ini(V, V ′) and next out ini(V, V ′) describe
transitions with target location pc′i inside a reducible block,
while next in out i(V, V ′) describes transitions having pci
set to a location inside a reducible block and target pc′i outside
a reducible block. We also make sure that transitions that target
error locations are not part of reducible blocks.

Compositional proof rule with reduction The crux of our
verification approach is a proof rule that uses both reduction
and compositional reasoning. The proof rule lists conditions
over three kinds of auxiliary assertions (or program invariants):

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 188

IRi(V) describes reachable states outside reducible blocks
that should be accounted for interference by different threads;
LStepi(VG, Vi, V ′G, V

′
i) is a binary relation representing steps

inside the same reducible block that are visible only to thread
i; IStepi(V, V ′) represents steps of thread i that are visible
to other threads including steps outside reducible blocks and
summaries of reducible blocks.

Let us consider an interleaving of program statements that
starts with those statements from the reducible block (c).
Verification based on our proof rule continues exploring non-
deterministically reducible blocks from either thread-1 or
thread-3, i.e., c−a−b−d or c−a−d−b or c−d−a−b. Few
interleavings are effectively explored due to the coarse-grained
nature of reducible blocks. Overall, the following list contains
possible block-interleavings that are explored for P1-1.

(I1) a− b− c− d (I7) c− a− b− d
(I2) a− b− d− c (I8) c− a− d− b
(I3) a− c− b− d (I9) c− d− a− b
(I4) a− c− d− b (I10) d− a− b− c
(I5) a− d− b− c (I11) d− a− c− b
(I6) a− d− c− b (I12) d− c− a− b

The effect of all these interleavings is captured by the auxiliary
assertions from our proof rule.

For illustration, we aim to prove that the value of the
variable x is not equal to 11 at the end location. (The
variable x could have value 11 at the end of the program
only following the interleaving a − c − b − d. However, as
the reader may observe, this interleaving corresponds to an
infeasible execution.) For safety, we require that the auxiliary
assertions corresponding to the reachable states do not intersect
error states. The proof rule has premises over the auxiliary
assertions that are expressed as universally quantified Horn
clauses. (See Section IV for the formal details.) We compute
solutions for the auxiliary assertions using a Horn solver based
on abstraction refinement and interpolation over the linear
arithmetic domain [14].

For the illustration example, the solution for the reachable
state assertion is computed as follows.

pc1 = `0 ∧ mx = 0 ∧
(pc2 = `0 ∧ pc3 ∈ {`0, `3} ∧ x = 2 ∨
pc2 = `3 ∧ pc3 ∈ {`0, `3} ∧ 4 ≤ x ≤ 7) ∨

pc1 = `6 ∧ mx = 1 ∧
(pc2 ∈ {`0, `3} ∧ pc3 ∈ {`0, `3} ∧ x = 2 ∧ 2x + a = 7 ∨
pc2 ∈ {`0, `3} ∧ pc3 ∈ {`0, `3} ∧ 4≤x≤7 ∧ 2x+a≥13) ∨

pc1 = `11 ∧ mx = 0 ∧
(pc2 = `0 ∧ pc3 ∈ {`0, `3} ∧ x ≤ 7 ∨
pc2 = `3 ∧ pc3 ∈ {`0, `3} ∧ x ≤ 9 ∨
pc2 = `3 ∧ pc3 ∈ {`0, `3} ∧ x ≥ 13 ∧ 2x + a ≥ 13)

All the states have the location of thread-1, pc1 ∈
{`0, `6, `11}. The lock mx is held only at `6, otherwise it is
available. The different cases for each program location result
from varied interleavings of thread-1 and thread-2,
since statements of thread-3 have no influence on the value
of x. At states with pc1 = `11, we observe three possibilities:
thread-2 has not yet started (x ≤ 7), thread-2 may have
been executed after thread-1 (x ≤ 9), or thread-2 may
have been executed before thread-1 (x ≥ 13). Note that
our method over-approximates the set of reachable states, e.g.,
constraints on value of y are not present in the above solution.

III. PRELIMINARIES

Multi-threaded programs A multi-threaded program P
consists of N ≥ 1 threads. We assume that the program vari-
ables V = (VG, V1, . . . , VN) are partitioned into global vari-
ables VG shared by all threads and local variables V1, . . . , VN ,
which are only accessible by the respective threads.

The set of global states G consists of the valuations
of global variables, and the sets of local states L1, . . . , LN
consist of the valuations of the local variables of respective
threads. A program state is a valuation of the global variables
and the local variables of all threads. We represent sets of
program states using assertions over program variables. Binary
relations between sets of program states are represented using
assertions over unprimed and primed variables. The set of
initial program states is denoted symbolically by init(V) .
For each thread i we have a finite set of transitions. Each
transition is a binary relation between sets of program states.
Furthermore, each transition can only change the values of
the global variables and the local variables of the thread i
(local variables of other threads do not change). This fact is
captured in constraint form using the abbreviation next=

i :=∧
j∈1..N\{i}

V ′j = Vj . We write next i(V, V ′) for the union of

the transitions of the thread i . The transition relation of the
program is next(V, V ′) = next1(V, V ′)∧next=

1 (V, V ′)∨· · ·∨
nextN (V, V ′)∧next=

N (V, V ′) . In the subsequent sections, we
abbreviate next i(V, V ′) ∧ next=

i (V, V ′) to next i(V, V ′).

We distinguish two special types of variables, program
counter variables and lock variables. Firstly, each thread has
a program counter pci that is a local variable with values in
the set PC i. As a convention, we use labels `0, `1, .. to denote
some elements from the previous set. Secondly, some global
variables are used for thread synchronization via acquire (acq)
and release (rel) primitives. The set of lock variables is denoted
by Locks , we have Locks ⊆ VG and we use m,mx,my to
denote some elements from the set of locks.

Computations Let |= denote the satisfaction relation be-
tween (pairs) of states and assertions over program variables
(and their primed versions). A computation of P is a sequence
of program states s1, s2, . . . such that s1 is an initial state, i.e.,
s1 |= init , and each pair of consecutive states si and si+1 in
the sequence is connected by a transition ρ of some program
thread, i.e., (si, si+1) |= ρ . A path is a sequence of transitions.

A program state is reachable if it appears in some com-
putation. Let ϕreach be the symbolic representation of the set
of all reachable states. The set of error states of a program is
denoted using error(V). The program is safe if none of its
error states is reachable, i.e., ϕreach(V)∧ error(V)→ false .
The program is terminating if it does not have any infinite
computations.

Constraints and queries Let T be a first-order theory in a
given signature and |=T be the entailment relation with respect
to T . We refer to formulas in the given signature as constraints,
and let c(v) denote a constraint over the variables v. For
example, let x, y, and z be variables. Then, v = (x, y) and
w = (y, z) are tuples of variables. x ≤ 2, y ≤ 1∧x−y ≤ 0 are
example constraints in the theory T of linear inequalities over
rationals/reals. The entailment y ≤ 1 ∧ x − y ≤ 0 |=T x ≤ 2
is valid.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 189

For assertions IRi, LStepi and IStepi ,

(S1) init(V) → IRi(V)
(S2) IRi(V) ∧ next out ini(V, V ′) → LStepi(VG, Vi, V ′G, V

′
i)

(S3) LStepi(VG, Vi, V ′G, V
′
i) ∧ next in ini(V ′, V ′′) → LStepi(VG, Vi, V ′′G , V

′′
i)

(S4) IRi(V) ∧ LStepi(VG, Vi, V ′G, V
′
i) ∧ next=

i (V, V ′) ∧ next in out i(V ′, V ′′)→ IStepi(V, V ′′) ∧ IRi(V ′′)
(S5) IRi(V) ∧ next out out i(V, V ′) → IStepi(V, V ′) ∧ IRi(V ′)
(S6) IRi(V) ∧ (

∨
j∈1..N\{i} IStepj(V, V ′)) → IRi(V ′)

(S7) (
∧N
i=1 IRi(V)) ∧ error(V) → false

multi-threaded program P is safe

Fig. 2. Proof rule RULESAFETY.

We assume a set of uninterpreted predicate symbols Q that
we refer to as query symbols. The arity of a query symbol is
assumed to be encoded in its name. We write q to denote a
query symbol. Given q of a non-zero arity n and a tuple of
variables v of length n, we define q(v) to be a query. For
example, let Q = {r, s} be query symbols of arity one and
two, respectively. Then, r(x) and s(x, y) are queries.

Horn-like clauses Let h(v) range over queries and con-
straints with variables in v. We define a Horn-like clause to be
an implication c(v0)∧ q1(v1)∧ · · · ∧ qn(vn)→ h(v). The left-
hand side of the implication is called the body and the right-
hand side is called the head. To support efficient verification,
our Horn-like clauses slightly deviate from the standard notion
of Horn clauses since constraints occurring in our clauses can
contain disjunctions and conjunctions.

Solving Horn-like clauses We use a solver for Horn
clauses over a first-order theory T that is invoked as follows.

Σ := HSF(HC ,Q,Preds)

The solver takes as input a set of clauses HC over queries
Q with optional predicates Preds . The function Preds assigns
a finite set of predicates to each query symbol q from Q and
defines the abstract domain of a data-flow analysis or predicate
abstraction. The solver returns a solution function Σ that maps
each query from Q to a constraint from T .

IV. PROOF RULES

In this section we present proof rules that combine reduc-
tion and compositional reasoning.

A. Proof rule for safety

See Figure 2 for our proof rule RULESAFETY that lists
conditions for program safety over the following assertions.

• IRi(V): interfering state assertions that represent state
reachability information outside reducible blocks for
thread i ∈ 1..N .

• LStepi(VG, Vi, V ′G, V
′
i): non-interfering step asser-

tions that represent steps of thread i that are only
locally-visible for thread i ∈ 1..N .

• IStepi(V, V ′): interfering step assertions that repre-
sent steps of thread i that are visible to other threads
(interfering steps) for thread i ∈ 1..N .

The clauses (S1) to (S6) are replicated for each thread i.
The clause (S1) considers that initial states are reachable states.
The clauses (S2) and (S3) do thread-modular reasoning inside
reducible blocks - (S2) initiates relations with target locations
inside reducible blocks and (S3) transitively extends these
relations. The clause (S4) makes the effect of a reducible block
visible to other threads, as well as in the interfering reachable
states. The clauses (S5) and (S6) perform compositional rea-
soning outside reducible blocks by using single transitions and
reducible block relations, respectively. The last clause (S7)
checks that states reachable outside reducible blocks do not
intersect the error states.

Theorem 1. The proof rule RULESAFETY is sound, i.e., if
an error state is reachable the constraint system consisting of
clauses (S1) to (S7) has no solution.

A correctness argument of the proof rule is omitted for
space constraints. (A soundness proof for a rule based on
reduction and compositional reasoning is included in the thesis
of one of the authors [15, (Section 3.5)].)

Example 1. The first clause from the proof rule states that
all initial states are included in the IRi(V) assertions. For
the example from Section II a solution of the reachable-states
assertion will include at least the initial states:

(pc1 = `0 ∧ pc2 = `0 ∧ pc3 = `0 ∧
x = 2 ∧ y = 2 ∧ mx = 0 ∧ my = 0)

Clause (S2) initiates a binary relation LStepi for a thread
i whenever a transition next out ini(V, V ′) targeting a lo-
cation from a reducible block is enabled. Once inside a
reducible block, the clause (S3) uses relational composition
to include relations in LStepi as long as further transitions
next in ini(V, V ′) are enabled. We illustrate the applica-
tion of these clauses using the transitions corresponding to
thread-2 that start from the previously computed initial
states.

move2(`0, `1) ∧ mx = 0 ∧ mx′ = 1 ∧ skip(x,y,my) ∨
move2(`0, `2) ∧ mx = 0 ∧ mx′ = 1 ∧ x′ = x + 2 ∧ skip(y,my)

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 190

For assertions IRi, LStepi and IStepi satisfying (S1), . . . ,(S6)
and assertions LRound i, IRound ,

(T1) (
∧N
i=1 IRi(V)) ∧ LStepi(VG, Vi, V ′G, V

′
i) ∧ next in ini(V ′, V ′′))→ LRound i(V ′G, V

′
i , V

′′
G , V

′′
i)

(T2) well -founded(LRound i)

(T3) (
∧N
i=1 IRi(V)) ∧ (

∨N
j=1 IStepj(V, V ′))→ IRound(V, V ′)

(T4) well -founded(IRound)

multi-threaded program P terminates

Fig. 3. Proof rule RULETERMINATION.

Clause (S4) generates a summary relation for the reducible
block of thread-2 from the previous relation and the asser-
tion next in out2(V, V ′):

move2(`0, `3) ∧ mx = 0 ∧ mx′ = 0 ∧ x′ = x + 2 ∧ skip(y,my)

Besides clause (S1), the clauses (S4) and (S5) generate
reachable states IRi(V) by applying enabled reducible block
relations or transitions outside reducible blocks, respectively.
For our example, the following formula represents additional
reachable states generated from these clauses.

(pc1 = `0 ∧ pc2 = `0 ∧ pc3 = `0 ∧
x = 2 ∧ y = 2 ∧ mx = 0 ∧ my = 0) ∨

(pc1 = `0 ∧ pc2 = `3 ∧ pc3 = `0 ∧
x = 4 ∧ y = 2 ∧ mx = 0 ∧ my = 0)

B. Proof rule for termination

See Figure 3 for our proof rule RULETERMINATION that
lists conditions to ensure that a program is terminating. The
conditions are over assertions IRi, LStepi, IStepi that satisfy
the clauses from the rule RULESAFETY and the following
additional assertions:

• LRound i: binary relation assertions that represent
thread-modular transition relations inside reducible
blocks for i ∈ 1..N .

• IRound : binary relation assertion that represents tran-
sition relations outside of reducible blocks together
with summary relations of reducible blocks.

For each thread i the clause (T1) together with clause
(T2) guarantees that there is no infinite computation executing
within some reducible block. Clause (T3) together with clause
(T4) guarantees that there is no infinite computation that keeps
alternating between reducible blocks of the program infinitely
often.

Theorem 2. The proof rule RULETERMINATION is sound,
i.e., the constraint system consisting of clauses (S1)..(S6) and
(T1)..(T4) has a solution only if the program is terminating.

The premises of RULETERMINATION can be solved using
the Horn solver HSF [14], since the premises can be rep-
resented as Horn clauses with disjunctive well-foundedness
constraints. We write well -founded(ϕ(v, v′)) if ϕ(v, v′) is
a well-founded relation, i.e., there is no infinite sequence
s1, s2, . . . such that ϕ(si, si+1) for all i > 1. A relation

ϕ(v, v′) is disjunctively well-founded if it is included in a finite
union of well-founded relations, i.e., there exist well-founded
ϕ1(v, v′), . . . , ϕn(v, v′) such that ϕ(v, v′)→ ϕ1(v, v′)∨ · · · ∨
ϕn(v, v′) is a valid implication.

Example 2. We extend thread-1 from Figure 1 with a loop
that spans over newly inserted locations `1b and `8b.

// Thread-1
...
1: a = x;
1b: while a<=4
...
8: release(my);
8b: endwhile
9: x = 2*x+a;
...

Since this change does not introduce any additional non-mover
transitions, the reducible block boundaries of thread-1
remain the same, i.e., {`0 − `5} and {`6 − `10}.

The check corresponding to clause (T2) succeeds immedi-
ately, since the example does not contain looping executions
in a reducible block. For (T3), consider the following formula
that is computed by the Horn solver for the body of the clause.(N∧
i=1

IRi(V)
)∧((move1(`0, `6) ∧ a ≤ 4 ∧ ..) ∨(

move1(`6, `6) ∧ a ≤ 4 ∧ a′ = a + 1 ∧ ..) ∨(
move1(`6, `11) ∧ a > 4 ∧ ..) ∨(
move2(`0, `3) ∧ ..) ∨(
move3(`0, `3) ∧ ..))

The only disjunct that could potentially permit infinite state
sequences corresponds to move1(`6, `6). The HSF solver
concludes that this relation is well-founded, since variable a
is incremented and has an upper bound, and thus the example
program is proven terminating.

V. INFERENCE OF REDUCIBLE BLOCKS

This section depicts the computation steps for obtaining
reducible block boundaries. We consistently use a constraint-
based approach to solve the data-flow problems for every step.
Our formalization is based on the theory of reduction [6]
and follows the approach used to infer transactions for finite-
state model checking [9]. We illustrate our method using the
program from Figure 1.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 191

A. Locks-held and mover information

Reducible block inference requires for each reachable
program transition specific mover information which highly
depends on the held locks. We use data-flow analysis to
compute lhi(`), an approximation of the set of locks held by a
thread i ∈ 1..N at location ` ∈ PC i. The following set of Horn
clauses over queries Q1 := {LR1(V), . . .LRN (V)} allows us
to obtain reachable states of thread i without considering any
thread context switches.

HC 1 := { init(V)→ LRi(V),
LRi(V) ∧ next i(V, V ′)→ LRi(V ′) | i ∈ 1..N}

The abstract domain of the static analysis is defined by a pred-
icate function. It is initialized with predicates over program
counter and lock variables as follows.

Preds1(LRi(V)) := {pci = `i | `i ∈ PC i} ∪
{m = 0,m = 1 | m ∈ Locks}

We invoke the HSF solver: Σ1 := HSF(HC 1,Q1,Preds1).
Note that without a clause involving error states, the solver
computes only one over-approximation of the reachable states,
i.e. no abstraction refinement is performed in this phase. lhi(`)
contains the set of held locks for location ` by utilizing Σ1.

lhi(`) := {m ∈ Locks | ∀V :Σ1(LRi(V))∧pci = `→ m = 1}
Example 3. The solution corresponding to the first thread from
Figure 1, Σ1(LR1(V)), follows.

(pc1 ∈ {`0, `11} ∧mx = 0 ∧my = 0) ∨
(pc1 ∈ {`1, `2, `5, `6, `9, `10} ∧mx = 1 ∧my = 0) ∨
(pc1 ∈ {`3, `4, `7, `8} ∧mx = 1 ∧my = 1)

The locks-held information derived at location `3 is lh1(`3) :=
{mx,my} .

We represent transition-mover information using four
boolean functions defined over pairs of program locations:
rmi(pci, pc′i), lmi(pci, pc′i), nmi(pci, pc′i), bmi(pci, pc′i) .
Following the theory of reduction [6], an acquire transition
is a right-mover (i.e., it commutes to the right with every
transition from other threads) and a release transition is a
left-mover (i.e., it commutes to the left with every transition
from other threads). A transition ρi(pci, pc′i) is a non-mover if
there exists a transition from another thread ρj(pcj , pc′j) that
accesses some common global variable (at least one thread
performing a write access) and the intersection of the sets of
locks held by thread i at pci and those held by thread j at pcj
is empty. Transitions that are neither left-movers, right-movers
nor non-movers are both-movers.

Example 4. For the first thread we obtain:

rm1 := {(`0, `1), (`2, `3), (`6, `7)}
lm1 := {(`4, `5), (`8, `9), (`10, `11)}
nm1 := ∅
bm1 := {(`1, `2), (`3, `4), (`5, `6), (`7, `8), (`9, `10)}

B. In-Out information

Let n,m ∈ Z+, i ∈ 1..n, and j ∈ 1..m. A re-
ducible block is a non-empty sequence of transition relations
a1, . . . , an, [c], b1, . . . , bm where each ai (bj) is a right-mover
(left-mover) and c is an optional non-mover. We use the

transition-mover information from Section V-A to group pro-
gram locations into two phases; a pre-commit-phase and a post-
commit-phase. The former phase contains target locations of
right-mover (ai) or initial locations. The latter phase contains
target locations of all other transitions (c, bj).

We utilize Horn clauses over the following set of queries:
Q2 := {Ph1(V, p), . . . ,PhN (V, p)} representing reachable
state queries extended by a boolean phase variable p that
indicates either the pre-commit-phase (p has value 1) or the
post-commit-phase (p has value 0). The set HC 2 contains the
following clauses replicated for i ∈ 1..N .

init(V)∧p = 1 → Phi(V, p)
Phi(V, p)∧next i(V, V ′)∧rmi(pci, pc′i)∧p′=1→ Phi(V ′, p′)
Phi(V, p)∧next i(V, V ′)∧

(lmi(pci, pc′i) ∨ nmi(pci, pc′i))∧p′ = 0 → Phi(V ′, p′)
Phi(V, p)∧next i(V, V ′)∧bmi(pci, pc′i)∧p′=p→ Phi(V ′, p′)

To define the abstract domain of the data-flow analysis, we
initialize the predicate function with predicates over program
counter and phase variables.

Preds2(Phi(V, p)) := {pci = `i | `i ∈ PC i} ∪ {p=0, p=1}
We invoke the HSF solver: Σ2 := HSF(HC 2,Q2,Preds2) .
Reducible block information is extracted from the solution
Σ2 and represented using boolean functions defined over
program locations. Ini(pci) holds when pci is a location inside
a reducible block, while Out i(pci) holds when pci is a location
outside any reducible block. A location is inside a reducible
block if it is contained in the pre-commit-phase or if every
enabled transition left-commutes with transitions from other
threads. Otherwise, a location is outside any reducible block.

Ini(pci) := Σ2(Phi(V, p)) ∧ ¬init(V) ∧ (p = 1 ∨ p = 0 ∧
∀pc′i : lmi(pci, pc′i) ∨ bmi(pci, pc′i))

Out i(pci) := ¬Ini(pci)
Example 5. The solution corresponding to the first thread
follows.

Σ2(Ph1(V, p)) := (pc1 ∈ {`0, `1, `2, `3, `4} ∧ p = 1 ∨
pc1 ∈ {`5} ∧ p = 0 ∨
pc1 ∈ {`6, `7, `8} ∧ p = 1 ∨
pc1 ∈ {`9, `10, `11} ∧ p = 0)

We obtain the following results for the first thread: Out1 :=
{`0, `6, `11} and In1 := PC 1 \ Out1 . The results for the
second and third thread are computed similarly: Out2 :=
{`0, `3}, In2 = {`1, `2} and Out3 := {`0, `3}, In3 =
{`1, `2} .

Given the in-out information, we partition the transi-
tion relation of a thread depending on whether the tar-
get of a transition is a state in/outside a reducible block.
We also make sure that transitions that target error loca-
tions are not part of reducible blocks. We obtain the fol-
lowing four relations corresponding to next in ini(V, V ′),
next out ini(V, V ′), next in out i(V, V ′) and respectively
to next out out i(V, V ′).

next i(V, V ′) ∧ Ini(pci) ∧ Ini(pc′i) ∧ ¬error(V ′)
next i(V, V ′) ∧Out i(pci) ∧ Ini(pc′i) ∧ ¬error(V ′)
next i(V, V ′) ∧ Ini(pci) ∧ (Out i(pc′i) ∨ error(V ′))
next i(V, V ′) ∧Out i(pci) ∧ (Out i(pc′i) ∨ error(V ′))

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 192

TABLE I. RESULTS FOR VERIFICATION OF SAFETY PROPERTIES. A X-MARK (×-MARK) INDICATES A SAFE (UNSAFE) PROGRAM. EXPERIMENTS WERE
RUN ON AN INTEL XEON MACHINE, CLOCKED AT 3.47GHZ WITH 8 GB RAM. A T/O-MARK REPRESENTS A TIME-OUT AFTER 5400S.

Program LOC Threads Safe Impara Threader Comp RedComp
P1-1 48 3 X 1s 6s 7s 2s
P1-5 64 3 X 110s 281s 101s 32s
P1-10 84 3 X T/O T/O 840s 64s
P1-50 244 3 X T/O T/O T/O 2400s
P2-5 65 3 X 83s 617s 270s 140s
P2-10 85 3 X T/O T/O 1020s 220s
P2-50 245 3 X T/O T/O T/O 3778s
stack-safe-5 50 3 X 115s 5s 96s 17s
stack-safe-10 50 3 X 635s 127s 224s 75s
stack-unsafe-5 48 3 × 2s 1s 9s 2s
stack-unsafe-10 48 3 × 62s 2s 9s 3s
pbzip2-safe 283 4 X T/O T/O T/O 840s
twostage-3-unsafe 129 4 × T/O 843s T/O 17s

VI. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

The implementation of our approach consists of three con-
ceptual modules. The first module is a frontend implemented in
the OCaml language that relies on the CIL library. It translates
C programs to corresponding transition systems in Horn clause
form. Our frontend relies on a number of static analyses:
thread-scope inference for dynamic thread creation, a pointer
analysis that is context-sensitive and malloc-sensitive, optional
array expansion for bounded arrays and restricted quantified
invariants for unbounded arrays.

A second module that infers reducible block boundaries
following the approach from Section V can be automated using
HSF, but is not yet integrated in our implementation. The lock
analysis can be realised through solving the clauses HC1 from
Section 5.1, while identification of left/right-movers reduces
to solving the clauses HC2 from Section 5.2.

The third module is a model checker implemented using
the HSF approach [14]. This module is given as input a proof
rule written as Horn clauses and the program generated by
our frontend with thread transition relations partitioned as
next in in , next in out , next out in and next out out .

A. Evaluation

In this section, we give details on an experimental evalu-
ation of our approach. We compare results from our imple-
mentation with two state-of-the-art verifiers: Threader [16],
the winner in the Concurrency category of SV-COMP 2013
and Impara [5], a verifier that combines partial-order-reduction
and interpolation [17]. Binaries and test programs used for
evaluation are made publicly available [18].

In general, our method benefits from the datarace-free
nature of statements to infer coarse-grained reducible blocks.
For evaluation purposes, we test how our verifier works on
programs with race conditions on shared variables. Consider
P2-1, a variation of P1-1 from Figure 1 such that thread-3
has an additional statement that accesses the shared variable y
without holding the lock my. For this modified program, our
reducible block inference computes more reducible blocks for
thread-1 and thread-3 than it is the case for the original
program P1-1. However, the reduction phase still significantly
reduces the number of interleavings to be explored.

See Table I for verification results of safety properties. We
report on variations of four programs. P1-1 and P2-1 were
described in the previous sections of the paper, stack-safe-5 is

part of SV-COMP 2013 and is challenging to the partial-order
reduction method implemented in Impara [5] and stack-unsafe-
5 is the modified stack example that does not satisfy its safety
assertion. As variations, P1-x, P2-x have “x” statements in each
of their reducible blocks. For stack-safe-x and stack-unsafe-x,
we vary the number of elements stored in the stack. Lastly,
we include two benchmarks that are challenging to Impara and
Threader, twostage-3-unsafe from SV-COMP and pbzip2-safe,
a multi-threaded implementation of a compression algorithm.

For each test program from Table I, we report the number
of lines of C code in Column 2, the expected verification
result in Column 4 and statistics on four verification methods.
Column 5 presents results from Impara [5], while Column 6
presents timings from the best performing compositional proof
rule implemented in Threader. Column 7 presents results from
our implementation based on a rule that uses compositional
reasoning but not reduction. Column 8 presents timings for our
new verification method (REDCOMP stands for the Reduction-
Compositional verification).

For the same implementation, we observe that reduction
improves the performance of a compositional reasoning veri-
fier, i.e., REDCOMP in Column 7 versus Comp in Column 6.
When comparing our synthesis-driven implementation Comp
with THREADER, a verifier optimized for the same proof
rule, we observe some overhead for test programs that are
less favorable for reduction, i.e., P1-1, stack-safe-5 and stack-
unsafe-5. However, for the variations of these programs that
are more favorable for reduction, we observe reduction in
verification time for our proposed method REDCOMP.

See Table II for results on verification of termination
properties. The program fig2-tacas12 has a complex termina-
tion proof based on disjunctive well-founded transition invari-
ant [19]. sync01-safe is a benchmark from SV-COMP 2014
that is marked as safe for assertion violations and suffers from
a non-termination bug. One thread may block waiting for a
signal on a condition variable, a bug that is uncovered using
REDCOMP. Finally, we include a C program modeling the
dining philosophers problem.

Due to the not-yet integrated block inference, we present in
this section only a limited experimental evaluation on selected
examples that are challenging for Impara and Threader. In
principle our current approach (reduction + compositional rea-
soning) subsumes the compositional algorithms from Threader.
For the most imprecise inference of reducible blocks, i.e., with
Ini = ∅ and Outi = PCi, the proof rule from Figure 2

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 193

TABLE II. RESULTS FOR VERIFICATION OF TERMINATION
PROPERTIES.

Program LOC Terminates Comp RedComp
fig2-tacas12 24 X 2s 3s
sync01-safe-fixed 62 X 308s 4s
dining-philo 108 X T/O 7s

reduces immediately to the Owicki-Gries rule automated in
Threader. (Threader already delivers conclusive results for
most of the other “Concurrency” benchmarks from SV-COMP.)

VII. RELATED WORK

The reduction principle, as formulated by Lipton [6],
has been used in program analysis for checking or inferring
whether a method is atomic, i.e., whether the body of the
method corresponds to a reducible block. These program
analyses were formalized either using a type system [12],
[20], or as a dynamic analysis [21]. Going one step further
and using the result of atomicity analysis for verification has
been proposed only in the context of finite-state verification
algorithms [8], [9] where the algorithms that benefit from
reduction are quite different than approaches like ours based on
interpolation-based verification. Reduction can greatly simplify
deductive verification of multi-threaded programs using proof
assistants [7]. Our current work can be viewed as a step
towards an integration of reduction in interpolation-based
verification.

Apart from works based directly on Lipton’s theory of
reduction, there have been other verification methods aiming
to avoid exploring interleavings that are equivalent.

One approach stems from compositional reasoning proof
rules, i.e., the Owicki-Gries method [11] or rely-guarantee
reasoning [22]. These compositional proof methods have
been automated for verification of finite-state models [23]
and infinite-state models [24] using counter-example guided
abstraction refinement [25]. Since compositional reasoning
avoids exploring many equivalent interleavings, Threader [16],
an implementation of the previous algorithms, has been able
to compete with success in the Concurrency category of the
verification competition held at TACAS [26]. Our current work
can be viewed as an extension of Threader’s algorithms with a
reduction-based static analysis that avoids exploring even more
redundant interleavings.

Another approach to the state explosion problem is partial
order reduction [1] that has been used for finite-state verifica-
tion, e.g., [2]. Recent work shows that POR can also boost
interpolation based verification [5], which makes it applicable
for the verification of programs with infinite-state spaces. This
approach has been implemented in a tool called Impara.

We emphasize the connection between procedure sum-
marization [13] and our approach. Rather than summarizing
procedures in sequential programs, our current work sum-
marizes reducible blocks in the context of multi-threaded
program verification. Our approach has been inspired by a
work on summarization of concurrent programs [9], with
the distinguishing feature that our work is applicable for
infinite-state spaces. While procedure summarization allowed
software analysis tools like SLAM and SATURN to perform
composable analysis of large code bases, our work aims to

use summarization of reducible blocks to allow verification to
scale to large multi-threaded programs.

ACKNOWLEDGMENTS

We thank Klaus von Gleissenthall for comments and sug-
gestions. This research was supported in part by the ERC
project 308125.

REFERENCES

[1] P. Godefroid, “Partial-order methods for the verification of concurrent
systems - an approach to the state-explosion problem,” Ph.D. disserta-
tion, University of Liege, Computer Science Department, 1994.

[2] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in POPL, 2005.

[3] F. Lerda, N. Sinha, and M. Theobald, “Symbolic model checking of
software,” Electr. Notes Theor. Comput. Sci., vol. 89, no. 3, pp. 480–
498, 2003.

[4] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani,
“Partial-order reduction in symbolic state space exploration,” in CAV,
1997.

[5] B. Wachter, D. Kroening, and J. Ouaknine, “Verifying multi-threaded
software with Impact,” in FMCAD, 2013.

[6] R. J. Lipton, “Reduction: A method of proving properties of parallel
programs,” Commun. ACM, vol. 18, no. 12, pp. 717–721, 1975.

[7] T. Elmas, S. Qadeer, and S. Tasiran, “A calculus of atomic actions,” in
POPL, 2009.

[8] C. Flanagan and S. Qadeer, “Transactions for software model checking,”
Electr. Notes Theor. Comput. Sci., vol. 89, no. 3, pp. 518–539, 2003.

[9] S. Qadeer, S. K. Rajamani, and J. Rehof, “Summarizing procedures in
concurrent programs,” in POPL, 2004.

[10] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie, “Zing:
A model checker for concurrent software,” in CAV, 2004.

[11] S. S. Owicki and D. Gries, “An axiomatic proof technique for parallel
programs I,” Acta Inf., vol. 6, 1976.

[12] C. Flanagan and S. Qadeer, “Types for atomicity,” in TLDI, 2003.
[13] T. W. Reps, S. Horwitz, and S. Sagiv, “Precise interprocedural dataflow

analysis via graph reachability,” in POPL, 1995.
[14] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko,

“Synthesizing software verifiers from proof rules,” in PLDI, 2012.
[15] A. Wilhelm, “Efficient verification of multi-threaded programs,” Mas-

ter’s thesis, 2013, available from http://www.model.in.tum.de/∼popeea/
research/wilhelm.msc13.pdf/.

[16] A. Gupta, C. Popeea, and A. Rybalchenko, “Threader: A constraint-
based verifier for multi-threaded programs,” in CAV, 2011.

[17] K. L. McMillan, “Lazy abstraction with interpolants,” in CAV, 2006.
[18] C. Popeea, “Redcomp webpage,” http://www.model.in.tum.de/∼popeea/

research/redcomp, accessed: 09-Feb-2014.
[19] C. Popeea and A. Rybalchenko, “Compositional termination proofs for

multi-threaded programs,” in TACAS, 2012.
[20] C. Flanagan and S. Qadeer, “A type and effect system for atomicity,”

in PLDI, 2003.
[21] C. Flanagan and S. N. Freund, “Atomizer: a dynamic atomicity checker

for multithreaded programs,” in POPL, 2004.
[22] C. B. Jones, “Tentative steps toward a development method for interfer-

ing programs,” ACM Trans. Program. Lang. Syst., vol. 5, no. 4, 1983.
[23] A. Cohen and K. S. Namjoshi, “Local proofs for global safety proper-

ties,” in CAV, 2007.
[24] A. Gupta, C. Popeea, and A. Rybalchenko, “Predicate abstraction and

refinement for verifying multi-threaded programs,” in POPL, 2011.
[25] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,

“Counterexample-guided abstraction refinement,” in CAV, 2000.
[26] D. Beyer, “Second competition on software verification - (summary of

SV-COMP 2013),” in TACAS, 2013.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 194

Finding Conflicting Instances
of Quantified Formulas in SMT

Andrew Reynolds
The University of Iowa

Cesare Tinelli
The University of Iowa

Leonardo de Moura
Microsoft Research

Abstract—In the past decade, Satisfiability Modulo Theories
(SMT) solvers have been used successfully in a variety of
applications including verification, automated theorem proving,
and synthesis. While such solvers are highly adept at handling
ground constraints in several decidable background theories, they
primarily rely on heuristic quantifier instantiation methods such
as E-matching to process quantified formulas. The success of these
methods is often hindered by an overproduction of instantiations
which makes ground level reasoning difficult. We introduce a new
technique that alleviates this shortcoming by first discovering
instantiations that are in conflict with the current state of the
solver. The solver only resorts to traditional heuristic methods
when such instantiations cannot be found, thus decreasing its
dependence upon E-matching. Our experimental results show that
our technique significantly reduces the number of instantiations
required by an SMT solver to answer “unsatisfiable” for several
benchmark libraries, and consequently leads to improvements
over state-of-the-art implementations.

I. INTRODUCTION

Many recent formal methods applications rely heavily on
Satisfiability Modulo Theories (SMT) solvers for answering
logical queries required to solve complex tasks. These sys-
tems typically are composed of multiple cooperating decision
procedures, or theory solvers, each specialized on sets of
ground constraints over some background theory. Thanks to
the widespread success and applicability of SMT solvers, there
has been a push to use them to handle queries based on
richer encodings that include quantified formulas. Handling
such formulas in a general way has been an ongoing challenge
in the SMT community.

To date, E-matching, first described in [13], is the most
popular and successful method used by SMT solvers for
handling quantified formulas. In this method, instances of a
quantified formula are generated by matching selected terms
in the formula (called matching patterns) with ground terms
in the rest of the problem. While solvers based on E-matching
have had widespread success over many applications, their
power is often difficult to wield. One reason is that E-matching
often produces a very large number of instances, which may
exhaust a solver’s memory or generally cause its performance
to degrade. The problem is often compounded by instances that
introduce new ground terms, which subsequently trigger even
more instantiations. This can lead to non-terminating matching
loops in the worst case, in which a repeating pattern of terms
causes an infinite chain of instantiation steps.

It is thus important to limit the number of instances
produced as a result of E-matching. Past research has ad-
dressed this issue in various ways, including the use of user-
provided matching patterns (or triggers) [7], and methods for

recognizing or avoiding matching loops [9]. We present a new
quantifier instantiation procedure that aims at decreasing the
number of produced instances by decreasing the dependency
of SMT solvers on E-matching. This is done by looking
for instantiations that lead directly to ground conflicts or to
relevant new constraints. In this scheme, the solver resorts
to E-matching only when it cannot perform instantiations of
this sort. Our goal is to enable the sub-module that handles
quantified formulas in a SMT solver to behave more like an
efficient theory solver for ground constraints. In particular,
our method enables the quantifier module to influence the
search performed by the main engine by reporting conflicts and
propagating relevant ground constraints, as typically done by
efficient theory solvers based on the DPLL(T) [14] framework.

The instantiation procedure described in this paper applies
to arbitrary SMT inputs containing quantified formulas. How-
ever, it is not intended to be a comprehensive solution for
handling such formulas. Instead, it is meant to supplement
existing instantiation techniques in a principled manner, so that
those, such as E-matching, which are currently cumbersome
and expensive, are invoked as little as possible.

1) Contributions: This paper presents a new technique
for quantifier instantiation in DPLL(T)-based SMT solvers
that on average significantly reduces the number of instan-
tiations required to prove a formula unsatisfiable. We give
a formal argument for various properties of the technique
and the instances it produces. We describe an optimized
implementation that is efficient in practice. Finally, we provide
detailed evidence that our implementation leads to significant
improvements, according to several metrics, over state-of-the-
art SMT solvers handling quantified formulas.

2) Related Work: Various works have focused on methods
for discovering the unsatisfiability of quantified formulas in
SMT. The first implementation of E-matching was given in
the solver Simplify [7], which included various techniques
such as mod-time and pattern-element optimization. These
techniques were used by the SMT solver Z3 [6] and enhanced
further, as described in [5]. Quantifier instantiation in DPLL(T)
as implemented in the SMT solver CVC3 [3] is described
in [9]. Specifying decision procedures with quantified formulas
through the use of triggers is described in [8]. Techniques also
exist for discovering the satisfiability of quantified formulas
in SMT, including reasoning in local theory extensions [11],
complete instantiation [10] and finite model finding [15].

II. FORMAL PRELIMINARIES

We assume the usual notions from many-sorted first-order
logic with equality (denoted by ≈). We fix a set S of sort

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 195

symbols and for every S ∈ S an infinite set of XS of variables
of sort S. We assume the sets XS are pairwise disjoint and
let X be their union. A signature Σ consists of a set Σs ⊆
S of sort symbols and a set Σf of (sorted) function symbols
fS1···SnS , where n ≥ 0 and S1, . . . , Sn, S ∈ Σs. We drop
the sort superscript from function symbols when it is clear
from context or unimportant. We assume that signatures always
include a Boolean sort Bool and constants > and ⊥ of that
sort (respectively, for true and false).

Given a many-sorted signature Σ, well-sorted terms, atoms,
literals, clauses, and formulas with variables in X are defined
as usual and referred to respectively as Σ-terms, Σ-atoms and
so on.1 A ground term/formula is a Σ-term/formula with no
variables. When x = (x1, . . . , xn) is a tuple of variables
and Q is either ∀ or ∃, we write Qxϕ as an abbreviation
of Qx1 · · ·Qxn ϕ. If e is a Σ-term or formula and x has
no repeated variables, we write e[x] to denote that e’s free
variables are from x; if s = (s1, . . . , sn) and t = (t1, . . . , tn)
are term tuples, we write e[t] for the term or formula obtained
from e by simultaneously replacing each occurrence of xi in
e by ti; we write s ≈ t for the set {s1 ≈ t1, . . . , sn ≈ tn}.

A Σ-interpretation I maps: each S ∈ Σs to a non-empty set
SI , the domain of S in I, with BoolI = {>,⊥}; each x ∈ X
of sort S to an element xI ∈ IS ; and each fS1···SnS ∈ Σf

to a total function fI : SI1 × · · · × SIn → SI . A satisfiability
relation between Σ-interpretations and Σ-formulas is defined
inductively as usual.

A theory is a pair T = (Σ, I) where Σ is a signature and I
is a class of Σ-interpretations, the models of T , that is closed
under variable reassignment (i.e., every Σ-interpretation that
differs from one in I only for how it interprets the variables is
also in I) and isomorphism. A Σ-formula ϕ[x] is T -satisfiable
(resp., T -unsatisfiable) if it is satisfied by some (resp., no)
interpretation in I. A set Γ of formulas T -entails a Σ-formula
ϕ, written Γ |=T ϕ, if every interpretation in I that satisfies
all formulas in Γ satisfies ϕ as well. The set Γ is T -satisfiable
if Γ 6|=T ⊥. For a given signature Σ the theory of equality
(with uninterpreted functions) or E, consists of the set of all
Σ-interpretations. Informally, we refer to the sort and function
symbols in this theory as uninterpreted.

A substitution σ is a mapping from variables to terms of
the same sort, such that the set {x | σ(x) 6= x}, the domain of
σ, is finite. We say that σ is a grounding substitution for a tuple
x = (x1, . . . , xn) of variables if σ maps each element of x to
a ground term. If t = (t1, . . . , tn), we write x 7→ t to denote
the substitution σ = {x1 7→ t1, . . . , xn 7→ tn}; for a term or
formula e[x], we write eσ to denote the expression e[t]. This
notation extends to sets of formulas/terms as expected.

III. FINDING CONFLICTS FOR QUANTIFIED FORMULAS

To handle quantified formulas, DPLL(T) solvers typically
divide the input set of formulas into a set Q of quantified
formulas and a set G of ground ones. To determine if Q ∪G
is unsatisfiable in the background theory T , they heuristically
add to G selected ground instances of formulas from Q, and

1In this formalization all atoms have the form s ≈ t with s and t of the
same sort. Having ≈ as the only predicate symbol causes no loss of generality
as other predicate symbols can be modeled as function symbols with return
sort Bool.

succeed when they have added enough instances to make G
T -unsatisfiable. When G is T -satisfiable, they build a truth
assignment for the atoms in G that satisfies all the formulas in
G and is consistent with T . The truth assignment is represented
as a set M of all the ground literals it satisfies, which we will
call a context. In this case, a possible quantifier instantiation
heuristic is to add, when possible, ground instances ϕ of
formulas from Q that are in conflict with the current context
M , in the sense that M ∪{ϕ} is T -unsatisfiable. Adding such
an instance to G will effectively force the solver to discard M
and look for another context, if one exists.

This section presents a new quantifier instantiation pro-
cedure that, as described above, searches for instances of
universally quantified formulas that are in conflict with the
context maintained by the solver. For simplicity, we describe
only a basic version of the procedure here. A more practical
implementation is discussed in the next section.

For the rest of the section we fix a theory T of signature Σ,
a Σ-formula ∀xψ ∈ Q with ψ[x] quantifier-free, and a context
M consisting of a T -satisfiable set of ground Σ-literals. We
will use TM to denote the set of all terms occurring in M .

A. Conflict Finding Instantiation Procedure

Our instantiation procedure tries to construct grounding
substitutions σ for x such that M |=T ¬ψσ. We refer to σ as
a conflicting substitution for (M,ψ). Conflicting substitutions
are of interest since they suffice to show that there is no model
of T that satisfies both M and ∀xψ.

Example 1: If M is {f(a) 6≈ g(b), b ≈ h(a)}, then {x 7→
a} is a conflicting substitution for (M,f(x) ≈ g(h(x))). 2

To simplify its presentation, we assume our procedure is
run on the flat form of quantified formulas ∀xψ, defined as
follows.

Definition 1: A flat form of a quantified formula ∀xψ is
an equivalent formula ∀x,y (µ⇒ ϕ) where

• µ is a conjunction of equalities x0 ≈ f(x1, . . . , xn),
which we will call the matching constraints, where n ≥
0 and x0, . . . , xn are variables from x,y;

• ϕ is a quantifier-free formula, which we will call
the flattened body, whose non-ground atoms are all
equalities between variables from x,y.

A flat form of ∀xψ can be computed by starting with µ =
> and ϕ = ψ and repeatedly replacing selected terms t in
µ⇒ ϕ by a fresh variable xt and adding the equation xt ≈ t to
µ until all non-ground terms have the form x or f(x1, . . . , xn).

Definition 2: Let z be a tuple of variables. An assignment
over z is a set of equations of the form z ≈ t with z in z and
t ∈ TM . A constrained assignment over z is a set E∪C where
E is an assignment over z and C is a set of equalities and
disequalities over z. A constrained assignment A is M -feasible
if M ∪A is T -satisfiable.

Given the context M and a flat form ∀x,y (µ ⇒ ϕ) of
∀xψ, our instantiation procedure will attempt to construct a
constrained assignment A over the variables x,y that summa-
rizes the conditions under which one can build a conflicting

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 196

proc falsify(ϕ0, b0)
if ϕ0 is ground

if M |=T ϕ0 ⇔ b̄0 then {∅} else ∅
else if ϕ0 is x1 ≈ x2

if b0 is > then {{x1 6≈ x2}} else {{x1 ≈ x2}}
else if ϕ0 is ¬ϕ1 then

falsify(ϕ1, b̄0)
else if ϕ0 is ϕ1 ∨ ϕ2

if b0 is > then
{A1 ∪A2 | A1 ∈ falsify(ϕ1, b0), A2 ∈ falsify(ϕ2, b0)}

else
falsify(ϕ1, b0) ∪ falsify(ϕ2, b0)

Fig. 1. The falsify procedure. It returns a set A of constrained assignments
such that M ∪ A |=T (ϕ0 ⇔ b̄0) for each A ∈ A, where b̄0 denotes the
complement of b0.

proc match(S0)
if S0 is {y ≈ f(z)} ∪ S1 then
{A ∪ {y ≈ f(t)} ∪ z ≈ t | A ∈ match(S1), f(t) ∈ TM}

else
{∅}

Fig. 2. The match procedure. It returns a set A of constrained assignments
such that M ∪A |=T S0 for each A ∈ A.

substitution for (M,ψ). When it succeeds in building A, the
procedure is also able to return one such substitution.

1) Quantifier Instantiation Procedure: A basic, unopti-
mized version of the procedure consists of three steps. The first
step returns constrained assignments A which by construction
falsify the flattened body ϕ; more precisely, constrained assign-
ments A such that M ∪ A |=T ¬ϕ. The second step returns
constrained assignments A′ which by construction entail the
matching constraints µ, that is, M ∪ A′ |=T µ. The third
step considers unions of the constrained assignments A ∪ A′
constructed in steps one and two, and tries to extract from
A ∪ A′ a grounding substitution x 7→ s ∪ y 7→ t such that
M, x ≈ s, y ≈ t |=T A ∪ A′. If such a substitution exists,
the procedure returns x 7→ s as a conflicting substitution for
(M,ψ); otherwise, it fails. We discuss these three steps in
more detail in the following.

a) Step 1: Construct constrained assignments conflict-
ing with the flattened body ϕ: This step is executed by the
recursive subprocedure falsify shown in Figure 1 (where for
brevity we assume that the only Boolean connectives in ϕ are
¬ and ∨), which takes as input a subformula ϕ0 of the flattened
body ϕ, and a Boolean constant b0 ∈ {>,⊥} indicating
the polarity of ϕ0 in ϕ, and returns a set of constrained
assignments computed according to that polarity.2 Its initial
inputs are (ϕ,>).

b) Step 2: Construct constrained assignments that entail
the matching constraints µ: This step constructs a set A of
constrained assignments each of which entails µ. It does so
by using the subprocedure match shown in Figure 2, which
is called on the set of all the constraints Sµ in µ. For each
matching constraint z ≈ f(z1, . . . , zn) ∈ Sµ, the subprocedure
considers all terms of the form f(t1, . . . , tn) ∈ TM , and adds
to A the constraints z ≈ f(t1, . . . , tn), z1 ≈ t1, . . . , zn ≈ tn.

2Formula ϕ0 has positive polarity in ϕ (indicated by >) if and only if it
occurs below an even number of ¬ symbols.

c) Step 3: Extract a conflicting substitution from con-
strained assignment: This step tries to generate a conflicting
substitution for (M,ϕ), if there exists one. To do so, it con-
siders all M -feasible constrained assignments A′ = A′f ∪A′m,
where A′f ∈ falsify(ϕ,>) and A′m ∈ match(Sµ). It partitions
A′ into two sets B′ and C ′ such that the equivalence closure
of B′ contains at most one ground term per equivalence class.
Using B′, the procedure constructs a grounding substitution
σ = (x 7→ s ∪ y 7→ t), which we call a completion of A′, by
computing the equivalence closure of B′, and then mapping
every variable in the same equivalence class to the ground term
in that class if there is one, or to an arbitrary one from TM

otherwise. If it succeeds in constructing a completion σ such
that M |= C ′σ, the procedure ends, returning the substitution
x 7→ s. Otherwise, it tries to extract a conflicting substitution
from a different constrained assignment in A′.

Example 2: To see how substitutions like σ above are
computed, suppose T is E, the theory of equality, M =
{f(a) 6≈ f(b)}, B′ = {x ≈ y, z ≈ a, z ≈ w}, and
C ′ = {x 6≈ w}. Note that A′ = B′ ∪ C ′ is an M -feasible
constrained assignment. The set B′ induces the equivalence
relation {{x, y}, {w, z, a}}. Adding b to the equivalence class
of x leads to the grounding substitution σ = {x 7→ b, y 7→
b, z 7→ a, w 7→ a} which is such that M |=E C

′σ. 2

We remark that, in our experience, guessing ground terms
to add to the equivalence classes in the equivalence closure
of B′ in the third step of the procedure is rarely needed. The
reason is that B′ typically contains a grounding equation z ≈ t
(with t ∈ TM) for each variable z in it. When this is not the
case, it is because either z does not occur as an argument of
a function symbol in the flattened form ∀x,y (µ ⇒ ϕ), or it
is not relevant to the falsification of that formula.

We illustrate our procedure as a whole with a simple
example where T is again the theory E of equality.

Example 3: Say M is {f(a) 6≈ g(b), b ≈ h(a)} and
consider the formula ∀xψ where ψ is f(x) ≈ g(h(x)). A
flattened form of ∀xψ is

∀x, y1, y2, y3 (y1 ≈ f(x) ∧ y2 ≈ h(x) ∧ y3 ≈ g(y2))︸ ︷︷ ︸
µ

⇒ y1 ≈ y3︸ ︷︷ ︸
ϕ

If we run our procedure on this formula, falsify(y1 ≈ y3,>)
returns the set of constrained assignments {{y1 6≈ y3}}. The
procedure then invokes match(Sµ) where Sµ is {y1 ≈
f(x), y2 ≈ h(x), y3 ≈ g(y2)}. The recursive calls of match
when processing each equality in Sµ are as follows:

equation output
{∅}

y3 ≈ g(y2) {{y3 ≈ g(b), y2 ≈ b}}
y2 ≈ h(x) {{y3 ≈ g(b), y2 ≈ b, y2 ≈ h(a), x ≈ a}}
y1 ≈ f(x) {{y3 ≈ g(b), y2 ≈ b, y2 ≈ h(a), x ≈ a, y1 ≈ f(a)}}

Let A′ be the union of the (single) constrained assignments
produced by falsify and match. Notice that A′ is M -feasible.
Splitting A′ into B′ = {x ≈ a, y1 ≈ f(a), y2 ≈ h(a), y3 ≈
g(b)} and C ′ = {y2 ≈ b, y1 6≈ y3}, say, the procedure
can generate (in this case only) the substitution σ = {x 7→
a, y1 7→ f(a), y2 7→ h(a), y3 7→ g(b)}. Since M |=E C ′σ,
the procedure returns the substitution {x 7→ a}. Note that
M |=E f(a) 6≈ g(h(a)), that is, M |=E ¬ψ[a], which shows
that the returned substitution is indeed conflicting. 2

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 197

One can show by structural induction that the subproce-
dures falsify and match have the following properties.

Lemma 1: For all A ∈ falsify(ϕ,>) and A′ ∈ match(Sµ),
M,A |=T ¬ϕ, and M,A′ |=T µ.

Lemma 2: Let ∀x,y (µ⇒ ϕ) be the flat form of ∀xψ[x].
Let A′f ∈ falsify(ϕ,>), A′m ∈ match(Sµ), A′[x,y] = A′f ∪
A′m, and σ = x 7→ s∪y 7→ t. If M,x ≈ s,y ≈ t |=T C, then
M,ψ[s] |=T ¬(A′ \ C)[s, t].

Proof: Let σ,A′f , A
′
m and A′ be as above. By Lemma 1,

M,A′f |=T ¬ϕ and M,A′m |=T µ. Thus, we have that
M,A′ |=T µ ∧ ¬ϕ or, equivalently, M,A′ |=T ¬(µ ⇒ ϕ).
By our assumption, we have that M,x ≈ s,y ≈ t |=T C.
Hence, M,x ≈ s,y ≈ t, (A′ \ C) |=T ¬(µ ⇒ ϕ) which
implies that M, (µ ⇒ ϕ)[s, t] |=T ¬(A′ \ C)[s, t]. The claim
then follows by the equivalence of (µ⇒ ϕ)[s, t] and ψ[s].

This justifies the correctness result for our procedure.

Proposition 1: Every substitution returned by the instanti-
ation procedure is conflicting for (M,ψ).

Proof: Let σ, A′f , A′m and A′ be as in Lemma 2. Recall
our instantiation procedure in Step 3 partitions A′ into B′ ∪
C ′. We have that M |=T B′σ due to our construction of σ.
Furthermore, by assumption the procedure returns σ only such
that M |=T C ′σ. Hence, M,x ≈ s,y ≈ t |=T A′, and by
Lemma 2 with C = A′, we have that M,ψ[s] |=T ¬(A′ \
A′)[s, t], thus, M,ψ[s] |=T ⊥.

2) Constraint-Inducing Substitutions: Even when no con-
flicting substitutions exist for (M,ψ), it may be useful to
find other substitutions that help the solver deduce useful
information about the terms in M . This can be done by
relaxing one of the requirements on the substitutions returned
by our instantiation procedure. Let σ = x 7→ s ∪ y 7→ t and
A′ = B′ ∪ C ′ be as in Step 3 of the procedure, except that
M |=T Dσ does not hold for a non-empty subset D ⊆ C ′.
Since the proof of Lemma 2 does not rely on that entailment,
we still have M ∪ ψ[s] |=T ¬D[s, t], even though σ is no
longer conflicting for (M,ψ). We refer to σ as a constraint-
inducing substitution for (M,ψ). If D is a conjunction of
disequalities, we refer to σ as an equality-inducing substitution
for (M,ψ). Observe that since each predicate symbol in D is
applied to variables, and s and t are tuples of terms from TM ,
the entailed formula ¬D[s, t] is a disjunction of constraints
over terms in TM . As a consequence, it may be beneficial to
generate the instance ψ[s] anyway since it causes the solver to
deduce constraints over terms from TM . This contrasts with
instantiations produced by E-matching, which often introduce
constraints over fresh terms.

Example 4: Consider the quantified formula ∀xψ[x] from
Example 3, and say M is {f(a) ≈ c, d ≈ g(b), b ≈ h(a)}.
Our procedure produces the same constrained assignment A′
as in that example. In this case too, A′ is M -feasible. However,
the completion σ = {x 7→ a, y1 7→ f(a), y2 7→ h(a), y3 7→
g(b)}, corresponding to the partition B′ ∪C ′ of A′ with C ′ =
{y2 ≈ b, y1 6≈ y3}, is not such that M |=E (y1 6≈ y3)σ. In fact,
it is not difficult to see there are no conflicting substitutions for
ψ. However, M together with the instance ψ[a], i.e. f(a) ≈
g(h(a)), allows the solver to deduce that the terms f(a) and
g(b) from TM are equal. 2

3) An Instantiation Strategy: A strategy can be used that
produces both conflicting and constraint-inducing substitutions
for a given context M and set of quantified formulas Q. First,
if a conflicting substitution can be found for one quantified
formula in Q, add the corresponding instance to the set of
ground clauses G. This will cause the solver to backtrack
some decision in M . Otherwise, if no conflicting substitution
can be found, add instances corresponding to every constraint-
inducing substitution found for each quantified formulas in Q.

IV. PRACTICAL IMPLEMENTATION

For greater clarity, the description of the instantiation
procedure given in Section III favors simplicity over efficiency.
Our actual implementation relies on one major restriction and
numerous enhancements, briefly discussed in the following.

A. Restriction to the Theory of Equality

In our current implementation, the instantiation procedure
does not reason modulo the actual background theory T
but only modulo the theory E of equality. Concretely, this
means that all function symbols in M and ∀xψ (includ-
ing arithmetic symbols) are treated as uninterpreted. This
is done both for uniformity and efficiency since checking
T -entailment/satisfiability is generally expensive for theories
other than E. Since every theory T is a refinement of E (in
the sense that it allows less interpretations), this restriction
is sound: any conflicting substitution with respect to E is
also conflicting with respect to a stronger theory. The obvious
downside of this naı̈ve approach is that for stronger theories
the procedure returns only a coarse under-approximation of the
set of conflicting substitutions for (M,ϕ).

Example 5: Let M = {f(a) ≈ b, (g(a) ≥ b+1) ≈ >} and
let ∀xψ be ∀x f(x) ≈ g(x) where f, g, a, b are uninterpreted
symbols and ≥,+, 1 are from the theory A of integer arith-
metic. In this case, the background theory T is the union of E
and A. Consider the following flat form of ∀x f(x) ≈ g(x):

∀x, y1, y2 (y1 ≈ f(x) ∧ y2 ≈ g(x))⇒ y1 ≈ y2 .
By treating the arithmetic symbols as symbols of E, our
procedure will not discover any conflicting substitutions in
this example. To see this, note that equating y1 to f(a) and
y2 to g(a) in match (the only possibility) would produce
the M -feasible constrained assignment {y1 6≈ y2, y1 ≈
f(a), y2 ≈ g(a), x ≈ a}. The corresponding substitution
σ = {y1 7→ f(a), y2 7→ g(a), x 7→ a} is not conflicting for
(M,ψ) in E because M 6|=E (f(x) 6≈ g(x))σ, so our current
implementation of the procedure will return no substitutions in
this case. In contrast, M |=E∪A (f(x) 6≈ g(x))σ when ≥,+, 1
are treated as symbols of A. Hence, if our procedure did so
and were able to determine the latter entailment it would be
able to return the substitution {x 7→ a}. 2

We point out that reasoning modulo the actual background
theory instead of E is not enough in general to return all possi-
ble conflicting substitutions, since the match sub-procedure is
in fact incomplete for general theories T . To see this, observe
that in A, an assignment containing y ≈ x + y1, y1 ≈ 2 will
match with the term 3+2, but fail to match with the equivalent
term 2 + 3. That said, for our purposes, using incomplete yet
efficient theory matching and entailment tests may lead to the

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 198

proc falsifyi(ϕ0, b0, A, S)
if ϕ0 is ground

if M |=T ϕ0 ⇔ b̄0 then {(A,S)} else ∅
else if ϕ0 is x1 ≈ x2

if b0 is > then
matchi(S |{x1,x2}, A ∪ {x1 6≈ x2}, S \ S |{x1,x2})

else
matchi(S |{x1,x2}, A ∪ {x1 ≈ x2}, S \ S |{x1,x2})

else if ϕ0 is ¬ϕ1 then
falsifyi(ϕ1, b̄0, A, S)

else if ϕ0 is ϕ1 ∨ ϕ2

if b0 is > then⋃
(A′,S′)∈falsifyi(ϕ1,b0,A,S) falsifyi(ϕ2, b0, A

′, S′)
else

falsifyi(ϕ1, b0, A, S) ∪ falsifyi(ϕ2, b0, A, S)
proc matchi(S0, A, S)

if S0 is {y ≈ f(z)} ∪ S1 then
S′0 := S1 ∪ S |z; S′ := S \ S |z;⋃
f(t)∈TM

matchi(S′0, A ∪ {y ≈ f(t)} ∪ z ≈ t, S′)
else
{(A,S)}

Fig. 3. The falsifyi and matchi procedures. We have that M,A |=T ¬((S0\
S)⇒ ϕ0) for each (A,S) ∈ falsifyi(ϕ0,>, ∅, S0). S |V denotes the set of
matching constraints from S whose left hand side is in V .

best performance, where conflicting substitutions are found
only when it is reasonably easy for the procedure to do so.

B. Enhancements to the Basic Procedure

The most important enhancement with respect to the basic
procedure described in Section III is that its three main steps
are interleaved, as demonstrated in Figure 3. With respect to
the basic procedure, falsifyi and matchi take two additional
arguments: a constrained assignment A and a set of matching
constraints S. Intuitively, A is the current constrained assign-
ment we are building, and S is the matching constraints that
are left to process. When considering a quantified formula with
flat form ∀x. µ ⇒ ϕ, we initially call falsifyi with arguments
(ϕ,>, ∅, Sµ), where Sµ is the set of matching constraints from
µ. This builds a set of pairs A, such that for each (A,S) ∈ A,
we have M,A |=T ¬((Sµ \ S) ⇒ ϕ). It can be shown that
when S 6= ∅, the matching constraints in S do not need to be
entailed when constructing a completion for A.

This procedure has several important advantages over the
basic one. First, constrained assignments are built incremen-
tally, which (although not shown here) allows us to discard a
constrained assignment A as soon as it becomes M -infeasible.
Second, matching constraints are processed for a variable x as
soon as any constraint involving x is added to A, as in the
second branch of falsifyi and in matchi, allowing us to eagerly
determine cases where the current constrained assignment will
not lead to a conflicting substitution. Third, we compute the
set A = falsifyi(ϕ,>, ∅, Sµ) lazily, which allows us to check
whether there exists a conflicting substitution for a returned
constrained assignment before producing the entire set A.

C. Implementation Details

The ground theory solver maintains an equivalence relation
≡M over the terms in TM induced by the constraints in

M (whereby s ≡M t only if M |=E s ≈ t). For each
t ∈ TM , let [t]M denote the equivalence class of t in ≡M
and let [t]M denote ([t1]M , . . . , [tn]M) if t = (t1, . . . , tn).3
For every function symbol f of arity n in the input for-
mula, we build an index If containing entries of the form
[t]M 7→ f(t), mapping an n-tuple [t]M of equivalence classes
to some term f(t) ∈ TM . The index is functional, that is, if
f(s), f(t) ∈ TM with s ≡M t at most one of f(s) and f(t)
is in If . This data structure is used by the falsify procedure
when checking entailment of ground equalities thanks to the
following invariant maintained within the solver:

M |=E f(t) ≈ g(s) iff

[t]M 7→ f(u) ∈ If ,
[s]M 7→ g(v) ∈ Ig, and
[f(u)]M = [g(v)]M .

To process matching constraints we build an extended
index Jf with entries of the form ([f(t)]M , [t]M) 7→ f(t) for
terms f(t) ∈ TM . When considering a matching constraint
x ≈ f(x1, . . . , xn), the match procedure enumerates, modulo
≡M , the terms in TM with top symbol f by traversing the
index Jf — and backtracking whenever it determines that the
constrained assignment it is constructing is not M -feasible.

Constrained assignments are represented as a pair (U,C),
where U is a partial map from variables x,y to a term they are
equated to (either a representative term from TM or another
variable), and C is a set of flat constraints over x∪y. Finally,
formulas ∀xψ are not actually flattened. Instead of replacing
a term t in ψ with a fresh variable y, we treat t itself as y
when needed.

V. RESULTS

We implemented our instantiation procedure with the re-
strictions and enhancements mentioned in Section IV within
the SMT solver CVC4 [1] (version 1.3). In this section,
we compare the performance of our implementation against
various state-of-the-art SMT solvers.4

We considered three different configurations of CVC4 that
vary on the instantiation strategy they use. All of them apply
quantifier instantiation lazily, that is, after the solver produces
a T -satisfiable context M that propositionally satisfies the set
G of current ground formulas. Given a set of active quantified
formulas Q, each configuration of CVC4 runs one or more of
the following steps in succession until a ground instance is
added to G.

1) Add the instance ψ[t] if there exists a conflicting
substitution x 7→ t for (M,ψ) for some ∀xψ ∈ Q.

2) Add the instances ψ[t] for a subset of the equality-
inducing substitutions x 7→ t for (M,ψ), for each
∀xψ ∈ Q.

3) Add all instances based on E-matching for (M,Q).

The first configuration, which we will refer to as cvc4,
performs Step 3 only. The second configuration, cvc4+c, per-
forms Step 1 and Step 3. The third, cvc4+ci, performs all three
steps. In Step 2, configuration cvc4+ci considers at most one
equality-inducing substitution for each constrained assignment

3In the implementation, [t]M is represented by a distinguished term in it.
4Details can be found at http://cvc4.cs.nyu.edu/papers/FMCAD2014-qcf/.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 199

TABLE I. NUMBER OF SOLVED UNSATISFIABLE BENCHMARKS.

Set Class cvc3 z3 cvc4 cvc4+c cvc4+ci
TPTP EPR 596 840 809 768 769

NEQ 910 1,406 1,346 1,374 1,373
PEQ 641 656 668 690 824
SEQ 3,087 3,366 3,277 3,581 3,650
Sub-Total 5,234 6,268 6,100 6,413 6,616

Isabelle ArrowOrder 321 178 307 339 371
FFT 296 277 288 291 288
FTA 1,124 917 990 1,012 1,018
Hoare 607 549 563 579 621
NS Shared 105 108 117 140 143
QEpres 297 325 360 361 362
StrongNorm 207 241 242 251 253
TwoSquares 643 620 708 712 719
TypeSafe 227 291 283 298 307
Sub-Total 3,827 3,506 3,858 3,983 4,082

SMT- boogie 653 741 678 692 706
LIB simplify 2,070 2,478 2,334 2,358 2,360

why 380 385 369 371 373
other 304 379 299 300 308
Sub-Total 3407 3,983 3,680 3,721 3,747
Total 12,468 13,757 13,638 14,117 14,445

produced by the first two steps of our instantiation procedure;
that is, it does not add instances for multiple completions of
the same constrained assignment. Configurations cvc4+c and
cvc4+ci use the naı̈ve approach for handling interpreted theory
symbols described in Section IV-A. A single run of these steps
we will refer to as an instantiation round.

A. Comparison with SMT solvers

We compared these three configurations of CVC4 with the
SMT solvers Z3 (version 4.3.2) [6] and CVC3 [3], both of
which rely on quantifier instantiation to reason about quanti-
fied formulas. We report results on unsatisfiable benchmarks
from various collections from the verification and automated
theorem proving communities: the TPTP library (version
6.0.0) [17]; a set of benchmarks produced as proof obligations
from Isabelle [4]; and SMT-LIB [2]. We considered 12,406
unsatisfiable benchmarks from TPTP which contain primarily
quantified formulas and are all over the theory of equality.5
We considered 13,041 Isabelle benchmarks (many of whom
are classified as satisfiable or unknown) which also primarily
contain quantified formulas, but also include both integer and
real arithmetic constraints. Many of the SMT-LIB benchmarks
represent software verification conditions, and make heavy use
of symbols over several theories. We considered all 26,320
benchmarks from SMT-LIB that contained quantified formulas
but no non-linear arithmetic constraints, which CVC4 does
not yet support. Of all of these SMT-LIB benchmarks, we
report results only for the 4,633 that were non-trivial, which
we define here as taking more than 0.1 seconds to solve
for at least one configuration of one solver. We ran all the
experiments with a 300 second timeout per benchmark and
analyzed the results according to two metrics: the performance
of all solvers in terms of time and number of (unsatisfiable)
benchmarks solved, and their efficiency in terms of the number
of instantiations needed to answer unsatisfiable.

1) Problems Solved: Table I reports the number of bench-
marks solved by the solvers for the three benchmark sets.
For TPTP benchmarks, cvc4+ci is the overall winner, solving

5We did not consider TPTP benchmarks having TFF syntax (which includes
theory constraints), since Z3 and CVC3 do not have a parser for this format,
and no translator from this format was available.

 1

 10

 100

 300

1 10 100 300

c
v
c
4
+
c
i

cvc4

(a) Runtime (in seconds).

 10

 100

 1000

1e+4

1e+5

1e+6

1e+7

10 100 1000 1e+4 1e+5 1e+6 1e+7

c
v
c
4
+
c
i

cvc4

(b) Reported number of instances.

Fig. 4. cvc4+ci vs cvc4 over all benchmarks. Data shown on a log-log scale.

6,616 within the time limit. This is 347 more than z3 and 516
more than cvc4. At least one configuration of CVC4 solves
34 unsatisfiable problems from TPTP with current rating 1.0,
which is given to benchmarks that no ATP system can solve.
In particular, 15 of these problems were solved using the new
techniques (configurations cvc4+c and cvc4+ci) only. For Is-
abelle benchmarks, cvc4+ci is again the overall winner, solving
noticeably more problems than the other solvers (4,082 vs.
3,858 for cvc4, 3,827 for cvc3, and 3,506 for z3). This shows
that our techniques are quite effective on problems with mostly
uninterpreted symbols. For SMT-LIB benchmarks, z3 is the
clear winner, with 3,983 solved problems. The new techniques
yield a small improvement in performance, as cvc4+ci solves
67 more problems than cvc4. However, their performance still
trails z3’s significantly, by 236 benchmarks. We conjecture
that this is partially due to the fact that our procedure handles
interpreted symbols naı̈vely, although several implementation
differences exist between CVC4 and Z3.6

Overall, over the three benchmark sets, cvc4+ci solves
more problems than any other configuration. In particular, it
consistently outperforms cvc4+c (14,445 vs. 14,117), solving
404 problems that cvc4+c cannot, while cvc4+c only solves
76 that cvc4+ci cannot. This shows that computing constraint-
inducing substitutions in addition to conflicting substitutions
is beneficial. The scatter plot in Figure 4(a) shows that the
new instantiation techniques (cvc4+ci) typically improve the
runtime performance of CVC4—although there are several
cases where they do not. Over the benchmarks they both
solve, cvc4+ci solves 4,419 benchmarks at least 20% faster
than cvc4, whereas cvc4 solves 1,845 benchmarks at least
20% percent faster than cvc4+ci. We believe the improvement
in performance is due to the reduction in the number of
instances produced by cvc4+ci, as discussed later. Over all

6In particular, CVC4 does not use eager quantifier instantiation, clause
deletion, or relevancy (see Section 7 of [5]) for SMT-LIB benchmarks.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 200

TABLE II. NUMBER OF REPORTED INSTANTIATIONS FOR SOLVED
UNSATISFIABLE BENCHMARKS.

TPTP Isabelle SMT-LIB
Solved Inst Solved Inst Solved Inst

cvc3 5,245 627.0M 3,827 186.9M 3,407 42.3M
z3 6,269 613.5M 3,506 67.0M 3,983 6.4M
cvc4 6,100 879.0M 3,858 119.0M 3,680 60.7M
cvc4+c 6,413 190.8M 3,983 54.0M 3,721 41.0M
cvc4+ci 6,616 150.9M 4,082 28.2M 3,747 32.4M

benchmark sets, cvc4 solves 235 that cvc4+ci cannot solve,
while cvc4+ci solves 1,042 benchmarks that cvc4 cannot. At
least one configuration of either cvc4+ci or cvc4+c solves 359
benchmarks that no implementation of E-matching (either Z3,
CVC3, CVC4) can solve, indicating that our techniques can be
used to improve the precision of SMT solvers for unsatisfiable
problems containing quantified formulas.

2) Instances Generated: Table II gives the cumulative
number of generated instances reported by each solver for the
three benchmarks sets. For both the TPTP and the Isabelle
set, in addition to solving the most benchmarks, configuration
cvc4+ci requires by far the least number of instantiations
to do so. For TPTP, cvc4+ci produces about 151 million
instances to solve 6,616 problems, which is 5.8 times fewer
than what cvc4 requires for solving 6,100 problems. Similarly
for Isabelle, cvc4+ci requires 28M instantiations to solve 4,082
problems, which is 4.2 times fewer than what cvc4 requires for
solving 3,858 problems. For SMT-LIB, z3 is by far the most
efficient solver, solving 3,983 problems while requiring only
6.4M instantiations. The new techniques in CVC4 reduce the
instantiations by approximately half, which is less dramatic
than the improvements seen on TPTP and Isabelle. This is
again likely due to the prevalence of theory symbols in the
encodings used by SMT-LIB benchmarks.

The scatter plot in Figure 4(b) compares the reported num-
ber of instances produced by configurations cvc4 and cvc4+ci
on the benchmarks they both solve. The plot clearly shows
that cvc4+ci consistently requires many fewer instantiations,
confirming that the instances it produces are generally effective
at contributing towards finding refutations.

Figure 5 shows the cumulative number of instances re-
ported by each of the solvers on the benchmarks they solve.
For benchmarks with low theory content (from the TPTP and
Isabelle libraries), the configuration cvc4+ci consistently pro-
duces fewer instances while solving more benchmarks than the
other solvers and configurations. For SMT-LIB benchmarks,
the plot shows that the configuration cvc4+ci uses considerably
fewer instances than z3 to solve its first 1,750 benchmarks.
However, cvc4+ci requires more instantiations overall to solve
fewer benchmarks than z3. This suggests that our techniques
are highly effective at handling a subset of the SMT-LIB
benchmarks, but require further enhancements to account for
the encodings used by these benchmarks.

Table III shows a detailed view of the instances produced
by the three configurations of CVC4. The first column (IR)
gives the cumulative number of instantiation rounds each con-
figuration requires for the benchmarks it solves. The remaining
six columns give the percentage of instantiation rounds where
they produce instances based respectively on E-matching,
conflicting substitutions, and constraint-inducing substitutions;
and the total number of instances produced for each of

(a) On TPTP and Isabelle benchmarks.

(b) On SMT-LIB benchmarks.

Fig. 5. Cactus plot showing the cumulative number of instantiations reported
by all solvers on the benchmarks they solve.

TABLE III. DETAILS ON INSTANCES PRODUCED BY THREE
CONFIGURATIONS OF CVC4.

E-matching Conflicting Sub. C-Inducing Sub.
IR %IR # Inst %IR # Inst %IR # Inst

TPTP
cvc4 71.6K 100.0 879.0M
cvc4+c 202.0K 21.7 190.6M 78.3 158.2K
cvc4+ci 209.0K 20.3 150.4M 76.4 159.7K 3.3 415.8K
Isabelle
cvc4 7.0K 100.0 119.0M
cvc4+c 18.2K 28.9 54.0M 71.1 12.9K
cvc4+ci 21.8K 22.4 28.2M 64.0 13.9K 13.6 130.9K
SMT-LIB
cvc4 14.0K 100.0 60.7M
cvc4+c 51.7K 24.3 41.0M 75.7 39.1K
cvc4+ci 58.0K 20.0 32.3M 71.6 41.5K 8.4 51.5K

these types. We can see that while configurations cvc4+c and
cvc4+ci require significantly more instantiation rounds on av-
erage to answer unsatisfiable on each benchmark library, they
require much fewer instances overall. Overall, a conflicting
substitution was found on 77.3% of the instantiations rounds
performed by cvc4+c and on 74.5% of the instantiation rounds
performed by cvc4+ci. These percentages are fairly consistent
across the three benchmark classes, indicating that a majority
of satisfying assignments found at the ground level can be
ruled out by an instance from a conflicting substitution. For
cvc4+ci, a conflicting substitution was found on 78.5% of the
instantiation rounds where a constraint-inducing substitution
was not produced, which is slightly higher than the percentage
found by cvc4+c alone (77.3%). This suggests that constraint-
inducing substitutions help the solver find conflicting substi-
tutions. In total, E-matching was called 1.57 fewer times by
cvc4+ci than by cvc4, which led to a factor of 5 fewer instances
produced as a result of such calls.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 201

Overall, 12,165 of the 14,445 benchmarks that cvc4+ci
solved required at least one instantiation round by all con-
figurations of CVC4, and 2,520 of these 12,216 benchmarks
(20.7%) could be solved by cvc4+ci using only instances re-
sulting from conflicting and constraint-inducing substitutions.
In other words, for 20.7% of the benchmarks it solves, cvc4+ci
did not rely on E-matching at all to answer unsatisfiable.
Moreover, 94 of these 2,251 benchmarks could not be solved
by cvc4 within the timeout, showing that difficult benchmarks
can be solved solely by the techniques mentioned in this paper.

B. Comparison with Automated Theorem Provers

We do not give a detailed comparison with automated
theorem provers, which are capable of handling benchmarks
from the TPTP library, but do so using entirely different
methods than SMT solvers. For a brief and informal overview,
a recent (multi-strategy) run script for iProver [12] solves
6,508 unsatisfiable benchmarks from the TPTP library, while
a recent run script for E [16] solves 9,751. A version of both
of these scripts as well as the systems themselves were used
in CASC 24, the latest competition for automated theorem
provers. Using a run script devised for a similar purpose, which
incorporates several configurations of E-matching as well as
the techniques described here, CVC4 solves 7,227 unsatisfiable
TPTP benchmarks, making CVC4 highly competitive with a
state-of-the-art instantiation-based prover like iProver.

VI. CONCLUSION

We have presented a technique for quantifier instantiation
in SMT that increases the ability of an SMT solver to detect
unsatisfiable problems containing quantified formulas. The
method relies on a more principled heuristic for choosing
instances, focusing on those that communicate conflicts or
relevant constraints to the ground-level sub-solver. It handles
any set of quantified formulas by treating theory symbols (at
worst) as uninterpreted. Our experiments show that the number
of instantiations necessary to solve unsatisfiable benchmarks is
on average decreased by almost an order of magnitude when
compared to implementations using E-matching only. As a
result, our implementation shows a noticeable improvement in
performance in terms of average runtime and overall number
of unsatisfiable benchmarks solved.

In future work, we plan to implement a more incremental
version of our instantiation procedure to recognize conflicts
while the SMT is reasoning at the ground level, which has
been shown to lead to performance improvements in other
implementations of quantifier instantiation in SMT [5], [9]. We
also plan to extend the procedure beyond its naı̈ve treatment
of interpreted symbols to increase the number of conflicting
substitution found for formulas containing such symbols. As
discussed in Section IV-A, doing so requires devising fast,
if incomplete, T -satisfiability tests for theories other than
equality. Finally, we would like to identify language fragments
and investigate extensions of our techniques that are complete,
that is, guaranteeing the existence of a model for the input
set when they fail to produce additional instances. A main
challenge for this will be to ensure that the extension is also
as efficient (or better) than competitive implementations of E-
matching when the input problem is unsatisfiable.

ACKNOWLEDGEMENTS

We would like to thank Tim King for implementing pre-
liminary infrastructure in CVC4 for extending these techniques
to quantified formulas containing linear arithmetic.

REFERENCES

[1] C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli. CVC4. In Proceedings of CAV’11, volume
6806 of LNCS, pages 171–177. Springer, 2011.

[2] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2010.

[3] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns,
editors, Proceedings of the 19th International Conference on Com-
puter Aided Verification (CAV ’07), volume 4590 of Lecture Notes in
Computer Science, pages 298–302. Springer-Verlag, July 2007. Berlin,
Germany.

[4] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgeham-
mer with SMT solvers. In N. Børner and V. Sofronie-Stokkermans,
editors, Automated Deduction, volume 6803 of Lecture Notes in Com-
puter Science, pages 116–130. Springer, 2011.

[5] L. de Moura and N. Bjørner. Efficient E-Matching for SMT solvers. In
Automated Deduction - CADE-21, 21st International Conference on Au-
tomated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings,
volume 4603 of Lecture Notes in Computer Science, pages 183–198.
Springer, 2007.

[6] L. De Moura and N. Bjørner. Z3: an efficient SMT solver. In
Proceedings of the Theory and practice of software, 14th international
conference on Tools and algorithms for the construction and analysis
of systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[7] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for
program checking. Technical report, J. ACM, 2003.

[8] C. Dross, S. Conchon, J. Kanig, and A. Paskevich. Reasoning with
triggers. In P. Fontaine and A. Goel, editors, SMT 2012, volume 20 of
EPiC Series, pages 22–31. EasyChair, 2013.

[9] Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification
conditions using satisfiability modulo theories. In F. Pfenning, editor,
Proceedings of the 21st International Conference on Automated Deduc-
tion (CADE-21), Bremen, Germany, volume 4603 of Lecture Notes in
Computer Science, pages 167–182. Springer, 2007.

[10] Y. Ge and L. de Moura. Complete instantiation for quantified formulas
in satisfiability modulo theories. In Proceedings of CAV’09, volume
5643 of LNCS, pages 306–320. Springer, 2009.

[11] C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local
reasoning in verification. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 265–281. Springer, 2008.

[12] K. Korovin. iprover–an instantiation-based theorem prover for first-
order logic (system description). In Automated Reasoning, pages 292–
298. Springer Berlin Heidelberg, 2008.

[13] C. G. Nelson. Techniques for Program Verification. PhD thesis,
Stanford, CA, USA, 1980. AAI8011683.

[14] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT
Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland
Procedure to DPLL(T). Journal of the ACM, 53(6):937–977, Nov. 2006.

[15] A. Reynolds, C. Tinelli, A. Goel, and S. Krstić. Finite model finding
in SMT. In N. Sharygina and H. Veith, editors, Computer Aided
Verification, volume 8044 of Lecture Notes in Computer Science, pages
640–655. Springer Berlin Heidelberg, 2013.

[16] S. Schulz. E-a brainiac theorem prover. Ai Communications, 15(2):111–
126, 2002.

[17] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure:
The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning,
43(4):337–362, 2009.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 202

Using Interval Constraint Propagation for
Pseudo-Boolean Constraint Solving

Karsten Scheibler and Bernd Becker
University of Freiburg, Georges Koehler Allee 51, 79110 Freiburg, Germany

{scheibler,becker}@informatik.uni-freiburg.de

Abstract—This work is motivated by (1) a practical application
which automatically generates test patterns for integrated circuits
and (2) the observation that off-the-shelf state-of-the-art pseudo-
Boolean solvers have difficulties in solving instances with huge
pseudo-Boolean constraints as created by our application.

Derived from the SMT solver iSAT3 we present the solver
iSAT3p that on the one hand allows the efficient handling of huge
pseudo-Boolean constraints with several thousand summands and
large integer coefficients. On the other hand, experimental results
demonstrate that at the same time iSAT3p is competitive or even
superior to other solvers on standard pseudo-Boolean benchmark
families.

I. INTRODUCTION

Boolean satisfiability (SAT) and extensions thereof have
gained increased importance also in the area of digital circuit
testing – in particular since they allow the generation of so-called
high quality tests [1], [2], [3]. On the other hand, it turns out that
the test pattern generation for more complex physical defects
demands for abilities going beyond the boolean level. In this
paper we deal with pseudo-Boolean constraints (PB constraints)
arising among others in this context and corresponding solution
methods. Before going into solver details, we want to give a
short introduction to our test pattern generation application. More
details on the general context can be found e.g. in [4]. Some
more specific information on the application considered here are
provided in [5].

Assume the design of an integrated circuit (IC) is given and
should now go into production. When manufacturing ICs, many
things may go wrong. Thus, at the end of the production process it
is necessary to test if the produced ICs behave according to their
specification. I.e. one applies input patterns to an IC and compares
the output with an expected result. If there is a difference, the IC
is faulty. Obviously, the major aim is to recognize (hopefully
all) faulty circuits from a given set of freshly produced ICs.
Furthermore, the test procedure for one IC should be very fast
in order to be able to test many circuits in a short period of
time. Therefore, testing all possible input patterns is infeasible
for circuits with a reasonable number of inputs.

To be able to generate a small set of test patterns, it is
necessary to make assumptions about what can go wrong during
the production process. Usually, the visible effects of a specific
physical defect are described in a so-called fault model. Of course
there exists a bunch of different fault models – each focussing
on different aspects. The stuck-at fault model [6] assumes that a
faulty line on a chip always carries a logical zero or one. Although
it is one of the oldest models it is still widely-used, because
of its simplicity. Nonetheless, due to to latest nanoelectronic
technology [7], more complex fault models have become more
and more important recently – in particular the open fault model.
The open fault model looks at broken lines on a chip. Here, it is
assumed that the voltage of the disconnected part is determined

by the voltages of the surrounding lines. This voltage is then
mapped to a logical value. In our application we focus on the
generation of test patterns for this kind of fault.

When generating test patterns for a circuit one starts with a set
of all possible faults regarding the underlying fault model. Then a
fault is taken from this set and it is tried to generate a test pattern
for it. Regarding the open fault model a set of boolean and PB
constraints is created. The basic idea is to encode a fault-free and
a faulty version of the circuit and demanding a difference at at
least one output. In the faulty version additional PB constraints
are used to describe the influence of the surrounding lines1 (as
given by the layout of the circuit) which induce faulty values
to the disconnected part. If this set of constraints is satisfiable,
the values of the variables representing the inputs of the circuit
constitute a test pattern which discovers the considered fault.

One way to solve a set of PB constraints is to translate them
into a SAT instance and to employ a SAT solver to solve it.
The PB constraints generated within our application may contain
up to several thousand summands. As our results show, such PB
constraints pose a hard problem for solvers solely relying on SAT
translation techniques. Therefore, we decided to utilize the SMT
solver iSAT3, which is able to handle PB constraints directly
in the solver. iSAT3 supports boolean, integer- and real-valued
variables and uses interval constraint propagation (ICP) to handle
boolean combinations of linear and non-linear constraints.

Compared to other solvers iSAT3 performs superior on our
benchmark class. On the other hand one could expect that this is
not the case for other benchmark classes as well, because ICP is
a general deduction mechanism not tailored for PB constraints.
In order to create a solver performing superior on all benchmark
classes, we decided to develop a hybrid approach which (1) uses
all the merits provided by SAT translation techniques and (2)
exploits the abilities of ICP to do reasoning on the arithmetic
level – in particular by introducing a preprocessing technique
which is not applicable on the boolean level.

The paper is structured as follows. After giving some prelim-
inaries in Section II, we present the extensions done to the solver
in Section III. In Section IV we discuss the experimental results
and conclude with a summary and outlook in Section V.

II. PRELIMINARIES

Most modern SAT solvers operate on a conjunctive normal
form (CNF). A CNF consists of a conjunction of clauses with
each clause being a disjunction of literals and a literal being a
boolean variable x or its negation x. One core component of
a SAT solver is the boolean constraint propagation (BCP) [8]
which is used to detect implied assignments. Everytime a clause

1 Each summand in the PB constraint (consisting of a large integer coefficient
and a boolean variable) represents the logic value of a surrounding line (boolean
variable) and its influence on the disconnected part (large integer coefficient).

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 203

with n literals contains n − 1 literals being already assigned to
false, the remaining literal has to be true in order to retain a
chance to satisfy the formula. Furthermore, today’s SAT solvers
add conflict clauses to the CNF to prune the search space even
further – so-called conflict-driven clause learning (CDCL) [9].

In SAT Modulo Theory (SMT) the CDCL working principle
is lifted to a higher level. The CNF is just a boolean abstraction
of the real problem to be solved. Each literal may now represent
a theory atom, e.g. (x+ y < 10). The SAT solver works on this
boolean abstraction and assigns true or false to the literals –
and thus also to the theory atoms. If the SAT solver does not find
a solution the underlying SMT problem is unsatisfiable – but if
it finds a satisfying assignment a theory solver has to be used to
check if the conjunction of theory atoms satisfying the clauses
is indeed satisfiable within the theory. If this is not the case,
the boolean abstraction is refined with a conflict clause which
forbids the conflicting theory atoms. This is the classical scheme
for handling SMT formulas. It is also abbreviated as DPLL(T)
or CDCL(T) – with T being the theory used within the atoms.

iSAT3 [10] is the third implementation of the iSAT algo-
rithm [11], [12] and uses interval constraint propagation (ICP,
see e.g. [13]) to check the consistency of the theory atoms.
But unlike classical SMT, the iSAT algorithm does not separate
the consistency check of the theory atoms from the search
for a satisfying assignment in the boolean abstraction. Instead,
ICP is tightly integrated into the CDCL framework. The iSAT
algorithm allows theory atoms to contain linear and non-linear
arithmetic as well as transcendental functions, e.g. (x2+y2 = z2),
(|v − w| < min(v, w)) or (3

√
x + sin y < ez). Three variable

types are natively supported: boolean, integer- and real-valued
variables. Furthermore, ICP demands each integer- and real-
valued variable to be declared with an initial interval.

iSAT3 uses an abstract syntax graph (ASG) to preprocess
the given formula. In contrast to an abstract syntax tree (AST)
an ASG-node may have multiple parent nodes. This allows
structural hashing to natively share sub-expressions. The Tseitin-
transformation [14] is used to convert the input formula to a CNF.
Additionally, arithmetic constraints are decomposed into sub-
expressions and simple bounds (a simple bound is a comparison
between an integer- or real-valued variable and a constant). The
solver core of iSAT3 is a SAT solver – extended in two directions:
(1) it is able to create new literals on-the-fly during the solving
process in order to map every newly deduced simple bound to a
literal, (2) it executes ICP in addition to BCP. For more details
refer to [10].

In the context of this paper we concentrate on constraints with
pseudo-Boolean arithmetic. The linear form of such constraints
has the form:

∑
i cixi ∼ C where ci and C are integer coef-

ficients, xi boolean variables and ∼ a relational operator with
∼∈ {<,≤,≥, >}. Non-linear PB constraints additionally allow
variables to be multiplied:

∑
i(ciΠjxj) ∼ C. The PB constraint

2x1 + 4x2 + x3 < 5 is an example for the linear form, while
3x1x4 + 3x2 + x3x5 < 5 represents a non-linear PB constraint.

Especially when translating PB constraints to SAT it is desired
that the resulting CNF enables BCP to infer all the implications
present in the original PB constraint – also denoted as maintaining
generalized arc consistency (maintaining GAC). This means if a
constraint C implies literal l under the partial assignment A then
the constraint encoded in CNF CCNF should allow BCP do the
same: C ∧A � l ⇔ CCNF ∧A `BCP l.

In [15] BDDs, sorting networks and adder circuits were
utilized to translate PB constraints into CNF. The proposed BDD-
based encoding creates a BDD which describes the set of satis-

fying assignments of the PB constraint. Then each inner BDD-
node is translated into CNF as an if-then-else (ITE) gate. While
the BDD-based CNF encoding maintains GAC, sorting networks
and adder circuits do not – this means possible implications are
not recognized as early as possible which leads in most cases to
a worse SAT solver performance. On the other hand the latter
two encodings are compact, whereas BDD representations could
have exponential size in worst case [16]. The authors of [17]
proposed a different encoding which is also able to maintain
GAC but stays polynomial in size. A PB constraint with n
variables and the maximum integer coefficient cmax is encoded
with O(n2log(n)log(cmax)) variables in O(n3log(n)log(cmax))
clauses. For PB constraints containing several hundreds or even
thousands of variables this encoding method would generate bil-
lions of clauses and is therefore not applicable for PB constraints
originating from our application. Additionally, BDDs are able
to represent certain PB constraint types in linear size, while the
encoding proposed in [17] stays in O(n3log(n)log(cmax)).

ICP operates on interval valuations and is used in iSAT3
to reason about linear and non-linear arithmetic constraints.
Basically, ICP checks if a constraint is still consistent under
the current (partial) assignment and tries to shrink the interval
valuations of the variables occuring in the constraint if possible.
In the following we illustrate the basic steps done by ICP when
evaluating the PB constraint C : 4x1 + 2x2 + 7x3 < 10 under
the partial assignment A : x1 = 1. With A these interval
valuations are examined: I1 = 4x1 = [4,4], I2 = 2x2 = [0,2],
I3 = 7x3 = [0,7], I4 = [0,10). According to the current interval
valuations C looks like this: [4,4] + [0,2] + [0,7] = [0,10).
C is consistent under A, because there are still values in the
intervals I2 and I3 such that the intersection between I1 +I2 +I3
and I4 is not empty. Furthermore, ICP is able deduce a new
upper bound for I3 (because of I1). In order to prune definitive
non-solutions I3 is shrunk from [0,7] down to [0,6). In a next
step the new upper bound for I3 is propagated to x3. With
I3 = 7x3 ∧ I3 = [0,6) ∧ x3 ∈ B we can deduce x3 = 0. The
sum of the lower (upper) bounds of the left-hand side exceeds
(falls below) the upper (lower) bound of the right-hand side,
whenever the constraint is inconsistent under a partial assignment.
Furthermore, the sum of the upper (lower) bound of interval Ii
and the lower (upper) bounds of intervals Ij 6=i exceeds (falls
below) the upper (lower) bound of the right-hand side, whenever
xi = 0 (xi = 1). Therefore, ICP is able to maintain GAC. In
fact this is not surprising, because ICP does reasoning on the
arithmetic level. On the other hand ICP is a general deduction
mechanism and not optimized for PB constraints. Especially PB
constraints like x1 + x2 + x3 ≥ 1 are handled more efficently if
their CNF translation is used – in this extreme case this would be
just one clause: (x1 ∨ x2 ∨ x3). Therefore we combine ICP and
BDD-based CNF translations as described in the next section.

III. ISAT3P = ISAT3 + PB EXTENSIONS

iSAT3p1: This variant is nearly identical to the underlying
SMT solver iSAT3. We just extended the rewrite rules in the
ASG formula preprocessing in order to normalize PB constraints
to have positive coefficients on the left-hand side (−cixi ∼ C
can be rewritten to cixi ∼ C + ci with ∼∈ {<,≤,≥, >}).

iSAT3p2: We extend iSAT3p1 by adding the ability to
represent PB constraints as BDDs similar to [15]. The boolean
variables are ordered according to their coefficients – from the
largest to the smallest. This also determines the static variable
order of the BDD. The variable with the largest coefficient will
be the top level variable. We use the ASG already present in
iSAT3 to store the BDD as a directed acyclic graph of ITE-

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 204

nodes. These ITE-nodes are then converted to a CNF – which
is handled efficiently by iSAT3p, because of its SAT solver
core. A heuristic collects some statistics during BDD creation
(i.e. number of created ITE-nodes, number of reused ITE-nodes
because of structural hashing), estimates the expected size and
decides whether the BDD creation should be aborted. If this is
the case the PB constraint will be kept in its arithmetic form. The
solver core will then use ICP as deduction mechanism.

iSAT3p3: On the one hand ICP is not as efficient as CNF
translations for certain kinds of PB constraints. On the other hand
ICP operates on the arithmetic level and therefore allows us to
apply preprocessing techniques which are not applicable for CNF
translations. We build on iSAT3p2 and extend it with symbolic
gaussian elimination (SGE). The basic idea behind SGE is to
generate helpful lemmas and add them to the formula before
solving in order to strengthen ICP. The generated lemmas are
not limited to PB constraints. In fact it does not matter, whether
the variables occuring in a constraint are boolean, integer- or
real-valued. We illustrate the idea with a small example with two
constraints C1, C2 in the R2 space: (y ≥ 2.00001·x+0.25)∧(y ≤
2 · x), the initial intervals are: x, y ∈ [0,1000000]. Within the
initial intervals C1 and C2 have no intersection. Therefore, the
formula is unsatisfiable. ICP will continously shrink the intervals
of x and y and may need millions of deductions until it finally
discovers the conflict and deduces contradicting bounds for one
variable. Geometrically, ICP constructs wrapping boxes around
each constraint and calculates the intersection of those boxes.
These boxes are parallel to the coordinate axes. Here, the idea
is to generate an additional lemma which enables ICP to use an
alternate coordinate axis for its wrapping box. A good choice for
such an alternate axis is one of the constraints itself.

To generate such lemmas we re-use the auxiliary variables
introduced during the decomposition of the original constraints
into sub-expressions and simple bounds. Regarding our example
the original constraints would be decomposed as follows.

C1 ; (h1 = y − 2.00001 · x) ∧ (h1 ≥ 0.25)
C2 ; (h2 = y − 2 · x) ∧ (h2 ≤ 0)

Clearly, the following two equations are tautological and could
be added to the formula without harm, because they just rephrase
the equations above:

y − 2.00001 · x− h1 = 0
y − 2 · x− h2 = 0

In a system of equations, gaussian elimination replaces the
problem variables step-by-step. We apply the same principle to
the two tautolgies above. Assume we replace y in the second
tautology with 2.00001 ·x+h1. This yields the following lemma:
0.00001 · x + h1 − h2 = 0. If we add it to the formula, ICP
is able to deduce the conflict in a few steps: assume there is
an additional auxiliary variable (h4 = −h2) and we rewrite the
lemma to (0.00001 · x + h1 + h4 = 0). Because of (h2 ≤ 0) it
directly follows that (h4 ≥ 0). With (h1 ≥ 0.25)∧(h4 ≥ 0) a new
upper bound for x is deduced: (x ≤ −25000). This contradicts
with the initial lower bound (x ≥ 0).

So in general SGE creates for every constraint a tautology
containing the left-hand side of the constraint and the auxiliary
variable introduced during Tseitin-transformation. Then, one of
these tautologies is selected and redirected to a problem variable
in order to replace this variable in all remaining tautologies. This
process is repeated until no further replacements are possible. The
current implementation processes the tautologies in the order of
their creation in the ASG. Depending on the structure of the
constraints this may result in one or more lemmas. On the one

hand SGE needs enough constraints to construct useful lemmas,
but on the other hand with increasing size and number of the
constraints, SGE could become expensive. Therefore, a heuristic
is used to decide if SGE should be aborted.

If the auxiliary variable representing the left-hand side of a
constraint is used in a lemma, then this constraint will be kept –
even if a BDD representation for this constraint is created later
on. This allows ICP and BCP to reason about the same constraint
simultaneously.

IV. EXPERIMENTAL RESULTS

Solver DBL DSL DSN OF10
∑

(14) (355) (30) (321)
SAT 8 136 - 8

Minisatp UNS 1 93 - 0
S+U 9 229 - 8 243
SAT 9 129 [5] 221

SAT4JPB UNS 0 90 [5] 12
S+U 9 219 [10] 233 461 [471]
SAT 5 138 [8] 275

Clasp UNS 0 96 [5] 12
S+U 5 234 [13] 287 526 [539]
SAT 2 92 [15] 301

iSAT3p1 UNS 0 63 [5] 12
S+U 2 155 [20] 313 470 [490]
SAT 13 118 [15] 307

iSAT3p2 UNS 1 90 [5] 8
S+U 14 208 [20] 315 537 [557]
SAT 13 116 [15] 307

iSAT3p3 UNS 1 122 [5] 8
S+U 14 238 [20] 315 567 [587]

DEC-BIGINT-LIN=DBL, DEC-SMALLINT-LIN=DSL,
DEC-SMALLINT-NLC=DSN, OPENFAULTS-DIV10=OF10

Figure 1. Comparing Minisatp, Clasp and three variants of iSAT3p over a set
of four benchmark families. The experiments were conducted on an Intel Xeon
with 3.3 GHz with a timeout of 900 seconds and a memory limit of 8 GB.

We compared all three variants of iSAT3p against Min-
isatp [15] (git d91742bcd1), SAT4JPB [18] (version 2.3.5) and
Clasp [19] (version 2.1.4). All three solvers were among the best
solvers in the pseudo-Boolean competition 2012. Minisatp relies
on the SAT solver Minisat (git 37dc6c67e2) and translates all PB
constraints into SAT – either via BDD representations, sorting
networks or adder circuits. SAT4JPB utilizes dedicated deduction
mechanisms for PB constraints. Clasp is an answer set solver for
(extended) normal logic programs.

From the pseudo-Boolean competition 2012 we selected
those benchmark families containing satisfiability problems,
namely: DEC-BIGINT-LIN (with 14 benchmark instances), DEC-
SMALLINT-LIN (with 355 instances) and DEC-SMALLINT-
NLC (with 30 instances). The first two families contain linear PB
constraints, while the third contains non-linear ones. Additionally,
we created a fourth benchmark family OPENFAULTS-DIV10
with 321 converted instances originating from our application.
During test pattern generation we directly created the instance to
be solved with ASG-nodes via the library interface of iSAT3p.
In order to obtain a conjunction of PB constraints, we introduced
additional auxiliary variables when needed. Furthermore, for PB
constraints containing large numbers we had to divide all integer
constants in the constraint by 10 – otherwise Clasp was unable
to parse the benchmarks.

To compare the solvers we used an Intel Xeon with 3.3
GHz. The results are shown in Figure 1. For each benchmark
family and for each solver the table shows the number of solved
satisfiable (SAT) and unsatisfiable (UNS) instances as well as
the sum of both (S+U). The best numbers in each category are

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 205

marked bold. Minisatp did not handle benchmarks with non-linear
PB constraints properly and immediately returned UNKNOWN
for those benchmarks. Therefore, we list the numbers for the
benchmark family DEC-SMALLINT-NLC for SAT4JPB, Clasp
and iSAT3p in square brackets.

The results show that the baseline solver iSAT3p1 already out-
performs Minisatp, SAT4JPB and Clasp on the benchmark fami-
lies DEC-SMALLINT-NLC and OPENFAULTS-DIV10, but falls
somewhat behind for DEC-BIGINT-LIN and DEC-SMALLINT-
LIN. To a large extent this is due to the fact that the ICP routines
borrowed from iSAT3 were written to handle generic linear and
non-linear arithmetic constraints and are not optimized for PB
constraints. iSAT3p2 is able to close the gap for DEC-BIGINT-
LIN and DEC-SMALLINT-LIN. For these two benchmark fam-
ilies iSAT3p2 performs equally well as SAT4JPB with its ded-
icated PB deduction routines. Regarding OPENFAULTS-DIV10
and DEC-SMALLINT-NLC iSAT3p2 has significant lower run-
times compared to iSAT3p1. Finally, iSAT3p3 with SGE is able
to outperform the other solvers on all benchmark families. As
mentioned earlier, SGE needs on the one hand enough constraints
to create useful lemmas, but on the other hand may become too
expensive with increasing size and number of the constraints.
Therefore, SGE is only applicable to a subset of the benchmark
instances – in particular those in DEC-SMALLINT-LIN. The
benchmark instances in DEC-BIGINT-LIN contain between 50-
100 variables, but only two constraints. OPENFAULTS-DIV10
contains constraints with several hundred variables, so SGE will
be too expensive and is aborted. DEC-SMALLINT-NLC contains
non-linear PB constraints and is therefore not suitable for SGE.

The results for OPENFAULTS-DIV10 emphasize that solvers
solely reying on a translation into SAT are not competitive for
applications which require PB constraints with many summands
and large integer coefficients. While Minisatp solves only 8
instances, SAT4JPB and Clasp solve 233 and 287 instances. All
variants of iSAT3p solve almost all of the 321 instances.

To sum up: the results approve the efficacy of the exten-
sions made to iSAT3. Resorting to BDD representations, the
performance especially for the two benchmark families DEC-
BIGINT-LIN and DEC-SMALLINT-LIN is improved. Here we
see that a BDD-based CNF translation allows more efficient
deductions. Additionally, SGE strengthens ICP and improves the
overall performance further such that iSAT3p3 shows superior
performance on all benchmark families.

V. CONCLUSION AND OUTLOOK

We presented an approach for solving PB constraints with
interval constraint propagation – and when possible with BDD
representations of the constraints. The experimental results con-
firmed the efficiency of our approach. Over the complete bench-
mark set iSAT3p3 was able to solve 587 instances – compared
to the second best solver Clasp, this is a gain of 48 instances
or 8.9%. The gain is even higher if iSAT3p3 is compared to
SAT4JPB and Minisatp, namely 27.3% and 133% more bench-
mark instances are solved compared to these two solvers. Fur-
thermore, we observed that methods only relying on a translation
to SAT fail for our benchmark class. Therefore, it is clearly
beneficial to keep the ability to handle constraints in an arithmetic
way.

The fact that iSAT3p has a SAT solver in its core enables us
to use all the merits of a BDD-based SAT translation. At the same
time, the tight integration of ICP in iSAT3p allows us to opt out
for BDD creation individually for each constraint. Additionally,
we presented a preprocessing technique which generates lemmas

to strengthen ICP reasoning. It improves the overall performance
of the solver and is therefore a good starting point for future
work in this direction. Furthermore, going beyond satisfiability
checking and adding the capability to optimize solutions is a
challenging task we want to address as well.

ACKNOWLEDGEMENTS

The authors thank Leonore Winterer and Felix Neubauer
as well as Dominik Erb and Linus Feiten for supporting
this work. This work has been partially supported by the
German Research Foundation (DFG) as part of the Transre-
gional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (DFG, SFB/TR 14 AVACS,
http://www.avacs.org/) and by the Cluster of Excellence
BrainLinks-BrainTools (DFG, grant number EXC 1086)

REFERENCES

[1] M. Sauer, A. Czutro, I. Polian, and B. Becker, “Small-delay-fault atpg with
waveform accuracy,” in ICCAD. IEEE, 2012, pp. 30–36.

[2] D. Erb, M. A. Kochte, M. Sauer, S. Hillebrecht, T. Schubert, H.-J.
Wunderlich, and B. Becker, “Exact logic and fault simulation in presence
of unknowns,” Accepted for publication in ACM Transactions on Design
Automation of Electronic Systems (TODAES), 2014.

[3] S. Eggersglüß, R. Wille, and R. Drechsler, “Improved sat-based atpg: more
constraints, better compaction,” in ICCAD, J. Henkel, Ed. IEEE/ACM,
2013, pp. 85–90.

[4] N. K. Jha and S. K. Gupta, Testing of Digital Systems. Cambridge
University Press, 2003.

[5] D. Erb, K. Scheibler, M. Sauer, and B. Becker, “Efficient smt-based atpg
for interconnect open defects,” in DATE, 2014, pp. 125:1–125:6.

[6] R. D. Eldred, “Test routines based on symbolic logical statements,” Journal
of the ACM, vol. 6, no. 1, pp. 33–36, 1959.

[7] V. H. Champac, R. Rodríguez-Montañés, J. A. Segura, J. Figueras, and
J. A. Rubio, “Fault modelling of gate oxide short, floating gate and bridging
failures in CMOS circuits,” in European Test Conf., 1991, pp. 143–148.

[8] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem proving,” Communications of the ACM, vol. 5, pp. 394–397, 1962.

[9] J. P. M. Silva and K. A. Sakallah, “Grasp - a new search algorithm for
satisfiability,” in ICCAD, 1996, pp. 220–227.

[10] K. Scheibler, S. Kupferschmid, and B. Becker, “Recent improvements in
the smt solver isat,” in MBMV, C. Haubelt and D. Timmermann, Eds.
Institut für Angewandte Mikroelektronik und Datentechnik, Fakultät für
Informatik und Elektrotechnik, Universität Rostock, 2013, pp. 231–241.

[11] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure,” Journal on Satisfiability, Boolean Modeling, and Com-
putation, vol. 1, no. 3-4, pp. 209–236, 2007.

[12] C. Herde, “Efficient solving of large arithmetic constraint systems with
complex boolean structure: proof engines for the analysis of hybrid
discrete-continuous systems,” Ph.D. dissertation, 2011.

[13] F. Benhamou and L. Granvilliers, “Continuous and Interval Constraints,”
in Handbook of Constraint Programming, ser. Foundations of Artificial
Intelligence, 2006, pp. 571–603.

[14] G. S. Tseitin, “On the complexity of derivations in propositional calcu-
lus,” in Studies in Constructive Mathematics and Mathematical Logics,
A. Slisenko, Ed., 1968.

[15] N. Eén and N. Sörensson, “Translating pseudo-boolean constraints into
sat,” JSAT, vol. 2, no. 1-4, pp. 1–26, 2006.

[16] I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and
V. Mayer-Eichberger, “A new look at bdds for pseudo-boolean
constraints,” J. Artif. Int. Res., vol. 45, no. 1, pp. 443–480, Sep. 2012.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2444851.2444862

[17] O. Bailleux, Y. Boufkhad, and O. Roussel, “New encodings of pseudo-
boolean constraints into cnf,” in SAT, ser. Lecture Notes in Computer
Science, O. Kullmann, Ed., vol. 5584. Springer, 2009, pp. 181–194.

[18] D. L. Berre and A. Parrain, “The sat4j library, release 2.2,” JSAT, vol. 7,
no. 2-3, pp. 59–6, 2010.

[19] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “clasp : A conflict-
driven answer set solver,” in LPNMR, ser. Lecture Notes in Computer
Science, C. Baral, G. Brewka, and J. S. Schlipf, Eds., vol. 4483. Springer,
2007, pp. 260–265.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 206

Patient-Specific Models from Inter-Patient Biological
Models and Clinical Records

E. Tronci∗, T. Mancini∗, I. Salvo∗, S. Sinisi∗, F. Mari∗, I. Melatti∗, A. Massini∗, F. Davı̀∗,
T. Dierkes†, R. Ehrig†, S. Röblitz†, B. Leeners‡, T.H.C. Krüger§, M. Egli¶, F. Ille¶

∗Computer Science Department Sapienza University of Rome
†Computational Systems Biology Group Zuse Institute Berlin

‡Division of Reproductive Endocrinology University Hospital Zurich
§Dpt. of Psychiatry, Social Psychiatry and Psychotherapy Hannover Medical School
¶CC Aerospace Biomedical Science & Tech. Luzern Univ. of Appl. Sciences & Arts

Abstract—One of the main goals of systems biology models
in a health-care context is to individualise models in order to
compute patient-specific predictions for the time evolution of
species (e.g., hormones) concentrations. In this paper we present
a statistical model checking based approach that, given an inter-
patient model and a few clinical measurements, computes a value
for the model parameter vector (model individualisation) that,
with high confidence, is a global minimum for the function
evaluating the mismatch between the model predictions and
the available measurements. We evaluate effectiveness of the
proposed approach by presenting experimental results on using
the GynCycle model (describing the feedback mechanisms regu-
lating a number of reproductive hormones) to compute patient-
specific predictions for the time evolution of blood concentrations
of E2 (Estradiol), P4 (Progesterone), FSH (Follicle-Stimulating
Hormone) and LH (Luteinizing Hormone) after a certain number
of clinical measurements.

I. INTRODUCTION

Systems biology models aim at providing quantitative
information about time evolution of biological species. De-
pending on the system at hand, many modelling approaches
are currently investigated. For example, see [21], [19] for
an overview on discrete as well as continuous modelling
approaches, and [43] for a survey on stochastic modelling
approaches. In this paper we focus on biological networks
modelled with a system of Ordinary Differential Equations
(ODEs) depending on a set of parameters as in, e.g., [33],
[44], [36].

A. Motivations
One of the main goals of systems biology models in

a health-care context is to individualise models in order to
compute patient-specific predictions (see, e.g., [23]) for the
time evolution of species of interest (e.g., hormones). In our
setting, this can be done by assigning suitable values to the
model parameters.

Biological models typically depend on many (easily hun-
dreds of) parameters, whose values cannot be chosen arbitrarily
because of inter-dependency constraints among them (see, e.g.,
[25]). If model parameter values are chosen ignoring such
constraints, then the resulting model behaviour is biologically
meaningless. Unfortunately, such constraints are usually not
explicitly known and thus are not modelled.

Model identification (see, e.g., [26]) techniques are typi-
cally used to estimate model parameters by minimising mis-
match with respect to experimental data. In our setting, model
identification is typically accomplished by computing a value
for the model parameter vector (parameter estimation) so that
a suitable error function measuring mismatch between model

predictions and experimental data is minimised. If such a value
exists and is unique the model (as well as its parameter vector
univocally defining the model [26]) is said identifiable.

Model identification techniques require availability of
many measurements (see, e.g., [7]). This is difficult to achieve
in a scientific trial, let alone in a clinical setting. For example,
model identification for our GynCycle case study has been
done in [36] (with the approach described in [9]) using a
Pfizer database comprising 20–25 measures for each of the
4 observed hormones for 12 healthy women. This amounts to
more than 1000 overall measurements. This is a typical state
of affairs: in order to gather enough experimental data, model
identification is carried out using measurements from several
patients. This leads to the computation of a value (default
value) for the model parameters that averages among the
behaviours of many patients (see, e.g., [7], [36]). As a result,
although in principle model identification techniques could be
used to compute patient-specific model parameters, in practice,
because of the large amount of measurements needed, they are
typically used to compute inter-patient model parameters.

In a clinical setting, for each patient, only a few (say, 3)
measurements are available, since measurements can be costly,
invasive and time-consuming. This is far from the hundreds
of measurements used in model identification. Furthermore,
a fast response time is needed, since decisions resting upon
our patient-specific predictions must be taken within a time
compatible with the health problem being addressed.

The above considerations motivate investigation on meth-
ods and tools that can support model individualisation in a
clinical setting where measurements are at a premium and a
fast response time is needed.

B. Main contributions
We present a statistical model checking based approach

that given an ODE based model for a biological system and a
few clinical measurements for a patient, computes a patient-
specific model. This enables patient-specific predictions for the
time evolution of each species of interest.

As discussed in Section I-A, the above cannot be done
using model identification approaches, since we do not have
enough measurements available to attain identifiability. Pa-
rameter estimation approaches cannot be used either, since
with such a few data they would not take into due considera-
tion inter-dependencies among model parameters [25], thereby
leading to biologically meaningless model behaviours.

We overcome such an obstacle as well as that of getting
a fast on-line response time, by splitting our computation
into two phases. First, an off-line phase that accounts for

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 207

parameter inter-dependencies [25] and narrows our search
space to vectors of parameter values leading to biologically
meaningful model behaviours. Second, an on-line phase that
computes a patient-specific model by selecting a vector of
parameter values in our search space. Our contributions can
be summarised as follows.

Formalisation of biological admissibility: In general, to
decide if time evolution of species concentration is biologically
meaningful takes a domain expert. However, our goal is to
build a general purpose tool that can automatically search
through millions of model parameter values. Thus, we need
a criterion to automatically filter out (most of) the parameter
values leading to time evolutions that are not biologically
meaningful. We provide such a criterion by defining, as
Biologically Admissible (BA) parameter values, those entailing
time evolution with a second order statistics close enough to
that of the model default parameter values.

Off-line computation of all Biologically Admissible (BA)
parameters: Our goal is to compute a set of BA values for
the model parameters that encompasses as many biologically
meaningful behaviours as possible, but at the same time is not
too large, in order to speed up our on-line computation. Thus,
taking into account that differences in values below a certain
threshold are meaningless from a biological point of view, we
discretise the range of values for each model parameter. In
such a framework, we present a statistical model checking
based algorithm that computes a set S containing only and
(with arbitrarily high confidence) all BA values for our model
parameters. Note that such an algorithm does not depend on
patient-specific data. Thus it can be run once and for all off-line
and its output (the set S) can be stored for further processing.

On-line computation of patient-specific predictions: Given
the set S computed by our off-line algorithm above and patient-
specific clinical measurements, we compute a parameter λ∗
that globally minimises the mismatch between species concen-
trations computed using parameter λ∗ and those actually mea-
sured from the patient. Simulating our model with parameter
λ∗ yields the patient-specific predictions we are looking for.
Note that, by looking at such predictions, a domain expert can
easily disregard them (and thus λ∗) if they are not biologically
meaningful. Thus, returning BA parameter values that do not
yield biologically meaningful time evolutions is harmless, but
returning too many of them makes our tool useless. Thanks to
the off-line pre-computation of the set S, our on-line algorithm
has a fast response time and allows us to compute a patient-
specific model from very few (say, 3) patient measurements.

Experimental evaluation: We evaluate effectiveness of our
approach by presenting experimental results on using it on the
GynCycle model in [36]. The computation time of our off-
line algorithm (computing set S above) ranges from about a
week to more than a month, depending on the thresholds used
to check biological admissibility of model parameters and on
the degree of confidence required (0.999 in our case). Starting
from the set S above and from clinical measurements for E2,
P4, FSH and LH, our on-line algorithm computes in a matter
of minutes patient-specific predictions for the concentrations
of all 33 species in the model (that is, also for those for
which no clinical measurements are available). Our results
show that: 1) most patient-specific predictions stemming from
our computed BA model parameters in S are biologically
meaningful (soundness); 2) most of the measurements in our
data sets (from Pfizer database logs, [36]) can be reproduced
by selecting a suitable parameter in S (completeness); 3) the

average error of our patient-specific predictions with respect to
experimental data is smaller that the one yielded by predictions
based on the default model parameter.

C. Overview of the paper

Biological systems as dynamical systems: We model (Sec-
tion II) a biological system with a system of ODEs defining
a dynamical system (see, e.g., [37]) whose state variables
comprise species concentration and whose outputs are the
species that we can actually measure. Our approach is black-
box. Accordingly we use a solver (namely, Limex [11]) to
compute a solution to the ODEs modelling our system.

Biologically Admissible (BA) model parameters: Sec-
tion III gives our notion of biological admissibility. First, we
note that a biological model is equipped with a default value λ0

for the (vector of the) model parameters. Such a default value is
provided by the model authors and summarises the biological
behaviour of many patients (inter-patient model). We say that
a model parameter λ is BA if the model behaviours that λ
entails are highly correlated (in a signal processing sense,
[41]) to the model behaviours entailed by the model default
parameter λ0. Our approach can be easily generalised to
account for models which define multiple different admissible
behaviours (modelling, e.g., both healthy patients and patients
with different pathologies) by providing a set Λ0 of default
parameters (one per behaviour class) and by considering as
BA any λ entailing a model behaviour highly correlated to the
behaviour entailed by at least one default parameter λ0 ∈ Λ0.
In this paper, for simplicity of presentation, we focus on
models equipped with a single default parameter (as it happens
in the GynCycle model).

Patient Logs and Parameter Fitness: Section IV describes
how we model patient data (clinical records or just logs) and
our measure of fitness. Given a patient log L and a model
parameter λ, we define the error η(L, λ) as the mismatch
between the species concentrations computed from our model
using parameter λ and those in log L.

Off-line computation of the set of BA parameters: Along
the lines of [16], we use statistical hypothesis testing to
compute off-line, with high statistical confidence, the set S of
BA values for the model parameters. To this end, Section V
first defines our sampling space and our sampling strategy.
Our sampling space is the set Λ̂ of discretised values for the
model parameters. Our off-line algorithm initialises S to the
singleton set {λ0} containing only the default parameter, and
then samples Λ̂ adding all found BA parameter values to S
until S stays stable for long enough. Upon termination, we
are guaranteed that, with high statistical confidence, all BA
parameter values are in S.

Individualising a Biological Model: Section VI gives our
main algorithm that computes, with arbitrarily high statistical
confidence, a BA parameter value λ∗ which globally minimises
error η(L, λ) when λ is constrained to take BA values. Our
algorithm consists of two phases: an off-line phase computing,
as outlined above, the set S of BA parameter values, followed
by an on-line phase, computing a value λ∗ such that η(L, λ∗)
attains its global minimum in S. The off-line phase is compu-
tationally quite heavy. However it has to be run only once and
does not depend on the patient-specific data in L. The on-line
phase is our fast response time algorithm (since S is usually
quite small) to be deployed in a clinical setting.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 208

Experimental results: Section VII describes our case study,
namely the GynCycle model described in [36], and presents
experimental results evaluating effectiveness of our approach.

D. Related work

The input to our off-line algorithm consists of a system
model along with the default value for its parameters. The
GynCycle model considered in our case study has been
presented in [36] and the default value for its parameters has
been computed in [9] using model identification (often referred
to as parameter identification in our setting) techniques [26].

A key feature of parameter identification approaches is
their ability to give information about parameter identifiability
(see, e.g., [7] and citations thereof). For example, the param-
eter identification approach in [9] provides information about
parameter identifiability. Gradient-based methods, as, e.g., the
classical one in [24], provide a local optimum solution to
the parameter estimation problem, without giving any infor-
mation about parameter identifiability. Global methods, such
as [27], provide a global optimum solution without any in-
formation about parameter identifiability. Heuristic approaches
as evolutionary algorithms (see, e.g., [5], [40]), provide near-
global optimal solutions without information about parameter
identifiability. When observations are scarce, parameters usu-
ally become non-identifiable. Studying the correlation among
system parameters can reduce the number of data needed
for identifiability (see, e.g., [34], [25]). Our goal here is to
support model individualisation from clinical measurements.
This means that we need to compute model parameters from
a few (say, 3) observations about a small subset (4 in our case
study) of the species occurring in the model (33 in our case).
Unfortunately, as discussed in Section I-A, because of scarcity
of measurements, neither model identification approaches nor
parameter estimation approaches can be used in our setting.

Model checking based parameter estimation approaches
have been investigated for example in [18], [10], [35], [20].
Such approaches differ from ours, since they do not address the
problem of automatically restricting the search to parameters
leading to biologically meaningful model trajectories. This is
a fundamental step in complex models as ours.

The works closest to ours are those in [38], [6] and citations
thereof, where the problem of computing all (discretised)
model parameter values meeting given LTL properties has
been investigated. We extend such works in two directions.
First, the above mentioned papers focus on piecewise affine
ODE systems, whereas we can handle any (possibly) non-
linear ODE system (as is the case for our GynCycle model
[36]). Second, the above mentioned papers aim at computing
a maximal set of parameters satisfying a given LTL property
describing the typical behaviour for the biological system at
hand. Thus, when the model changes, a new LTL property has
to be provided by domain experts. Our approach infers such a
system property by the default value for the model parameters
using the notion of biological admissibility of Section III. This
decreases the amount of input needed from domain experts,
thereby alleviating one of the main problems in such a frame-
work: formalising the properties that biologically meaningful
system trajectories must satisfy.

We note that computing the set of all model parameter
values that satisfy a given property is closely related to that
of computing all control strategies satisfying a given property.
In a discrete time setting this problem has been addressed, for

piecewise affine systems and safety properties, in [30], [2], [1],
[31], [4], [3], [32], [8].

Model checking techniques have been widely used in
systems biology, in order to verify time behaviours. Examples
are in [22], [17], [12], [14], [33]. Such approaches focus on
verifying a given property for the model trajectories, whereas
our main problem here is to compute all biologically plausible
values for the model parameters.

II. PARAMETRIC DYNAMICAL SYSTEMS

We model biological systems using dynamical systems
(see, e.g., [37]). In this section we give the formal background
on which our approach rests. Throughout the paper, we denote
with [n] the set {1, 2, . . . , n} of the first n natural numbers
and with R+, R≥0 and R the sets of, respectively, positive,
non-negative and all real numbers. We also denote with
(R≥0 × R≥0)∗ the set of pairs (a, b) ∈ R≥0 × R≥0 such that
a ≥ b.

Definition 1 (Parametric Dynamical System): A Paramet-
ric Dynamical System (or, simply, a Dynamical System) S is
a tuple (X ,Y,Λ, ϕ, ψ), where:

• X = X1 × . . .×Xn is a non-empty set of states, called
the state space of S;

• Y = Y1 × . . .× Yp is a non-empty set of outputs, called
the output value space;

• Λ is a non-empty set of parameters, called the parameter
value space;

• ψ : R≥0 ×X → Y is the observation function of S;
• ϕ : (R≥0 × R≥0)∗ × X × Λ → X is the transition map

of S. Intuitively, ϕ(t2, t1, x, λ) is the state reached by the
system (with parameter values λ) at time t2 starting from
the state x ∈ X at time t1 ≤ t2. Function ϕ must satisfy
the following properties:

◦ semigroup: for each t1, t2, t3 ∈ R≥0 such that t1 <
t2 < t3, for each λ ∈ Λ, we have that ϕ(t3, t1, x, λ) =
ϕ(t3, t2, ϕ(t2, t1, x, λ), λ);

◦ consistency: for each t ∈ R≥0, x ∈ X and λ ∈ Λ, we
have ϕ(t, t, x, λ) = x.

Remark 1: Usually, a dynamical system comes equipped
with a function space U that models both controllable in-
puts (e.g., treatments) as well as uncontrollable inputs (dis-
turbances). In this paper, we do not address treatments or
disturbances. Accordingly, for sake of simplicity, we omit
inputs from Definition 1.

Remark 2: To simplify notation, unless otherwise stated,
we assume that the set of parameters Λ has the form X × Γ
(where Γ is a non-empty set). Therefore, a parameter λ =
(x0, γ) ∈ Λ embodies information about the initial state x0 of a
system trajectory. Such a system trajectory is a function of time
x(λ)(t), which, for each t ∈ R≥0, evaluates to ϕ(t, 0, x0, γ).
In the following, abusing notation as usual, we write x(λ, t)
instead of x(λ)(t). Analogously, we write xi(λ, t) [yi(λ, t)] for
the time evolution xi(λ)(t) [yi(λ)(t)] of the ith state [output]
component with parameters γ starting in x0 from time 0.

Example 1: Dynamical systems whose dynamics is de-
scribed by a system of Ordinary Differential Equations (ODEs)
depending on parameters are currently of great interest as a
mathematical model for biological networks (see, e.g., [13],
[36]). In this paper, we will use as a case study the Gyn-
Cycle model presented in [36]. It is a differential equation

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 209

model for the feedback mechanisms between Gonadotropin-
Releasing Hormone (GnRH), Follicle-Stimulating Hormone
(FSH), Luteinizing Hormone (LH), development of follicles
and corpus luteum, and the production of Estradiol (E2),
Progesterone (P4), Inhibin A (IhA), and Inhibin B (IhB) during
the female menstrual cycle. The model aims at predicting
blood concentrations of LH, FSH, E2, and P4 during different
stages of the menstrual cycle. The model is intended as a tool
to help in preparing and monitoring clinical trials with new
drugs that affect GnRH receptors (quantitative and systems
pharmacology). To get simulations of hormone concentrations,
the system of differential equations is solved numerically.

In our black-box approach, the system transition map
models our call to a solver (namely, Limex [11]) computing
a solution to the ODEs defining dynamical systems in our
context. This is along the lines of simulation based system
level formal verification as in [42], [28], [29].

III. BIOLOGICAL ADMISSIBILITY

In general, given a value λ for the (vector of) model
parameters, it takes a domain expert to decide if it holds that
for each species xi in the model, the time evolution xi(λ, t)
is biologically meaningful. This stems from the fact that many
parameter values lead to time evolutions for the model species
that are not compatible with the laws of biology. However,
our goal is to build a general purpose tool that automatically
searches through millions of model parameter values. Thus,
we need a criterion to automatically filter out parameter values
leading to time evolutions that are not biologically meaningful.
We provide such a criterion by asking that the time evolution
of x(λ, t) is similar enough (modulo bounded stretch and/or
time-shifts) to that of x(λ0, t), that is the one entailed by the
model default parameter value λ0. To this end, in the following
definition, we consider three measures of how similar two
trajectories are (modulo bounded stretch and/or time-shift).

Given a function f from R to R and α, τ ∈ R, we denote
with fα,τ the function defined by fα,τ (t) = f(α(t + τ))
for all t. Here, α and τ are used to model, respectively, a
stretch and a shift of f . Given two functions f and g from R
to R, the cross-correlation (see, e.g., [41]) 〈f, g〉(ξ) between
f and g is a function of ξ (where ξ ∈ R is the time lag)
defined as: 〈f, g〉(ξ) =

∫ +∞
−∞ f(t)g(t + ξ)dt. We consider the

normalised zero-lag cross-correlation function ρf,g , defined as
ρf,g = 〈f,g〉(0)

‖f‖‖g‖ , where ‖f‖ and ‖g‖ are the L2 norms of f and
g, i.e.,

√〈f, f〉(0) and
√〈g, g〉(0). The higher ρf,g the more

similar are f and g (e.g., f and g have the same peaks). In
particular, ρf,g is 1 if f is equal to g up to an amplification
factor.

Given a dynamical system S with n state variables, two
parameter values λ, λ0 for S, and a finite horizon h ∈ R≥0,
let xi(λ0, t) and xi(λ, t) be the time evolutions of species xi
(for each i ∈ [n]) under parameters λ0 and λ respectively.
Being time evolutions, both xi(λ0, t) and xi(λ, t) are defined
for 0 ≤ t ≤ h. Anyway, to easily match the above general
definition of cross-correlation, we define such functions on the
whole set of real numbers, as being 0 for any t < 0 or t > h.

In order to model biological admissibility, we define the
following three functions (i ranges over [n], α, τ ∈ R):

1) normalised zero-lag cross-correlation:

ρλ0,λ,i(α, τ) = ρxi(λ0),xα,τi (λ)

2) normalised average differences:

µλ0,λ,i(α, τ) =

∣∣∣∣∣
∫ h

0
(xi(λ0, t)− xα,τi (λ, t))dt∫ h

0
xi(λ0, t)dt

∣∣∣∣∣
3) normalised squared norm differences:

χλ0,λ,i(α) =
∣∣(‖xi(λ0)‖2 − ‖xα,τi (λ)‖2)

∣∣ / ‖xi(λ0)‖2.

The normalised zero-lag cross-correlation ρλ0,λ,i(α, τ)
measures the similarity of the trajectories xi(λ0, t) and xi(λ, t)
as for qualitative aspects (for example, if they have the same
peaks), when xi(λ, t) is subject to stretch α and time-shift τ .
Analogously, the normalised average differences µλ0,λ,i(α, τ)
and the normalised squared norm differences χλ0,λ,i(α, τ) are
two measures of the average distance between xi(λ0, t) and
xi(λ, t), when xi(λ, t) is subject to stretch α and time-shift τ .

In the following, we use these functions to formalise the
notion of Biologically Admissible (BA) parameter λ with
respect to a default parameter λ0. Intuitively, Definition 2
considers λ as BA if the three measures above are all above
or below certain thresholds.

Definition 2 (Biologically Admissible parameter): Let λ0,
λ ∈ X × Λ be two parameters. Let A ⊆ R+, B ⊆ R be two
sets of real numbers such that 1 ∈ A and 0 ∈ B. Given a
tuple Θ = (θ1, θ2, θ3) of positive real numbers, we say that
λ is Θ-biologically admissible with respect to λ0, notation
admA,B(λ0, λ,Θ), if there exist α ∈ A and τ ∈ B such that,
for all i ∈ [n]: (ρλ0,λ,i(α, τ) ≥ θ1) ∧ (µλ0,λ,i(α, τ) ≤ θ2) ∧
(χλ0,λ,i(α, τ) ≤ θ3).

IV. PATIENT LOGS AND PARAMETER FITNESS

In order to evaluate model predictions with respect to
clinical records, we first formally define the notion of system
log. System logs model experimental results that we get by
taking system measurements. A system log consists of a
sequence of time instants for each output under consideration,
and, for each time instant, the corresponding measured value.
This definition is motivated by the fact that, in clinical practice,
different species may be measured in different time instants.

Definition 3 (System log): Let S be a dynamical system as
in Definition 1, and Y = Y1 × . . . × Yp be its p-component
output value space.

An output time set T for S is the Cartesian product T1 ×
. . .× Tp, where each Ti is a finite subset (possibly empty) of
R≥0. A T -output log is a map from T to Y .

A system log L for S is a pair (T, z), where T is an output
time set for S, and z is a T -output log.

Example 2: As an example of system log, here we briefly
describe a typical patient log for monitoring women menstrual
cycle (see Example 1) that we use in our case study. Logs
from 12 women from a Pfizer database considered in [36]
contain measurements regarding only four hormones: Estradiol
(E2), Progesterone (P4), Follicle-Stimulating Hormone (FSH),
and Luteinizing Hormone (LH). These hormone concentrations
are measured mostly every day from day 5 to day 28 of the
menstrual cycle. In such a case, we have TE2 = TP4 =
TFSH = TLH = {5, 6, 7, . . . , 28} (time here is in days). In
everyday clinical practice, even a smaller set of measurements
is taken. For example, in clinical treatments of fertility, only
three to five blood samples (measurements) are performed
during a cycle and some hormone concentrations are measured
only twice. As an instance, the output time set for Estradiol
could be TE2 = {1, 7, 9, 12, 23} and the output time set for
Progesterone could be TP4 = {1, 6}.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 210

To evaluate how well a model prediction fits a system log,
we consider an error function η(S,L, λ), which is a real-
valued map that measures to what extent predictions computed
with the model S with parameter λ differ from measurements
in the patient log L. When the system S under consideration
is clear from the context, we will write just η(L, λ) for
η(S,L, λ).

In our case study, we consider the GynCycle model as in
Example 1 and a system log L = (T, z) as in Example 2.
Our error function is defined as the average (over the p = 4
measured species) of the average error of model predictions
[yi(λ, t)] with respect to all measurements in the patient log
[zi(t)]: η(L, λ) = 1

p

∑
i∈[p]

1
|Ti|
∑
t∈Ti

|yi(λ,t)−zi(t)|
max{|zi(t)|,ζ} . Note

that, as we need to average the errors for different species,
we need normalised error functions. To this end, we consider
the log observations as reference values (relative error), and to
avoid abnormal situations, if an observation is 0, we normalise
it with respect to a given small positive constant ζ. An
alternative option would have been to normalise the error with
respect to the length of the range of legal values for each
species. Unfortunately, this option is unviable in our context,
as the range of legal values for many (unobservable) species
is unknown.

V. COMPUTATION OF ADMISSIBLE PARAMETERS

The first phase of our procedure finds the set S of (with
high confidence) all Biologically Admissible (BA) parameter
values with respect to a default parameter λ0 validated by
the model designer as biologically meaningful. The set S
is computed by checking parameter values in a finite (grid-
shaped) subset Λ̂ of Λ (discretised parameter space). This
approach is justified by the fact that small differences in values
are meaningless from a biological point of view.

Since the number of parameters to identify is large (75 in
our case study), the discretised parameter space is huge (1075

if we consider 10 possible values for each parameter), thus
making an exhaustive search on the discretised parameter space
Λ̂ unfeasible. To overcome such an obstruction, we follow an
approach inspired by statistical model checking [16], [15].

A. Algorithm Outline
Algorithm 1 incrementally computes the set S of Biologi-

cally Admissible (BA) parameter values trying to find at each
iteration of the repeat loop (lines 5–13) new BA parameter
values. To do so, Algorithm 1 iteratively selects a random
parameter value λ ∈ Λ̂ (line 8), tests if it is BA (i.e., if
admA,B(λ0, λ,Θ) holds) and, if this is the case, adds it to the
set S of already computed BA parameter values (lines 10–11).

To check admA,B(λ0, λ,Θ) we compute the functions de-
fined in Section III by numerical integration over a finite
number of points. To do this, we invoke the simulator just once
for any parameter value λ: given the requested output time set
T and the sets A and B for the allowed stretch and time-
shift factors, function simulate(S, TA,B, λ) in line 9 simulates
the system S computing points (t, x(λ, t)) of the system
trajectory for all time points in TA,B. Set TA,B (line 4) contains
all time instants for which function admA,B needs species
values in order to evaluate whether parameter λ satisfies
Definition 2. Function simulate(S, TA,B, λ) returns as a result
a finite domain function L, such that, for any time instant
t ∈ TA,B, Li(t) is the value of species xi at time t.

Our sampling strategy selects a parameter value λ from
Λ̂\S with probability PrS [λ] > 0. To speed up our procedure,

we give a higher probability to parameter values “close” to
those already in S (see Section V-C).

Algorithm 1 Computing the set S of BA parameters

Input: A dynamical system S = (X ,Y,Λ, ϕ, ψ), a finite subset Λ̂
of Λ, a default parameter λ0, two real numbers ε, δ ∈ (0, 1), a
tuple Θ of BA thresholds, two finite sets of real numbers A and
B (with 1 ∈ A and 0 ∈ B), and an output time set T

function bioAdmPars(S, Λ̂, λ0, ε, δ,Θ,A,B, T)
1. N ← dln(δ)/ ln(1− ε)e
2. S′ = {λ0}
3. L0 ←simulate(S, T, λ0)
4. TA,B ← T ∪ {t′ | t′ = α(t+ τ), t ∈ T, α ∈ A, τ ∈ B}
5. repeat
6. S ← S′

7. for i← 1 to N do
8. λ←chooseNextParameter(Λ̂, S)
9. L←simulate(S, TA,B, λ)

10. if admA,B(L,L0,Θ) ∧ λ 6∈ S then
11. S′ ← S′ ∪ {λ}
12. break
13. until S′ = S
14. return S

We use Statistical Hypothesis Testing to compute S, much
along the lines of [16]. Let δ and ε be two real numbers in
(0, 1) and N = d ln(δ)

ln(1−ε)e. The algorithm stops when N at-
tempts fail to find a BA parameter. Our null hypothesis H0(S)
states that the probability of selecting a BA parameter value
outside S is greater than ε. In other words, H0(S) states that S
does not contain all BA parameter values. Upon termination,
the algorithm rejects H0 with statistical confidence 1−δ. This
means that the probability of a Type-I error (i.e., to reject H0

when it holds) is less than 1− δ. Rejecting H0 means that the
probability of selecting a BA parameter value outside S ⊆ Λ̂
is less than ε.

B. Algorithm Correctness
The above considerations are the key argument to prove

the following.
Theorem 1: Given a dynamical system S as in Defini-

tion 1, a finite subset Λ̂ of Λ, a value λ0 ∈ Λ̂, a tuple Θ
of biological admissibility thresholds, two real numbers ε and
δ in (0, 1), and two finite sets of real numbers A and B (with
1 ∈ A and 0 ∈ B), Algorithm 1 is such that:

1) it terminates in O(N |Λ̂|) steps, where N = d ln δ
ln(1−ε)e;

2) upon termination, it computes a set S ⊆ Λ̂ of Θ-
Biologically Admissible parameter values;

3) set S is such that, with confidence 1 − δ: PrS [{λ ∈
Λ̂ \ S | admA,B(λ0, λ,Θ)}] < ε.

The computational complexity of Algorithm 1 depends on
the fact that, in order to find a BA parameter, we make at
worst N attempts and, in principle, all discretised parameter
values can be BA. As a consequence, the worst running time
of Algorithm 1 is worse than an exhaustive search over Λ̂. We
remark, however, that the average running time is, in general,
much better than that of an exhaustive search, since the set
of BA parameters is very small compared with the size of
the whole discretised parameter space. As a matter of fact, the
algorithm stops with high probability in a reasonable time (see
Section VII-B) by failing to find a new BA parameter value.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 211

C. Parameter Probability Space
The probability distribution that we consider over the

parameter space Λ̂ is parametric to the set S of BA parameter
values computed so far, and it is defined in such a way that
parameter values that are close to values in S are most likely
to be chosen. This speeds up (with respect to, e.g., uniform
sampling) the finding of new BA parameter values.

Given a set S, we choose the next value λ to examine as
follows:

1) We randomly choose λ′ ∈ S uniformly at random.
2) We randomly choose the maximum number h of com-

ponents in which λ will differ from λ′. In this case, the
set [n] is considered distributed as a power-law of the form
Pr[h] = ah−b, with b > 1 and a being a normalisation
constant. This implies that, with high probability, λ will differ
from λ′ in a small number of components.

3) We randomly choose a subset of h different components
in [n], assuming a uniform distribution over the set of subsets
of cardinality h, Ph([n]), that is {X ⊆ [n] | |X| = h}.

4) For each component i, we choose a value λi ∈ Λ̂i
uniformly at random.

This sampling technique defines a probability
space (Λ̂,P(Λ̂),PrS) parametric with respect to
a set S ⊆ Λ̂. By multiplying the (conditional)
probabilities of steps 1)–4) above, we have: PrS [λ] =
1
|S|
∑
λ′∈S a |d(λ, λ′)|−b(n

|d(λ,λ′)|
)−1∏

i∈d(λ,λ′)
1
|Λ̂i| , where

d(λ, λ′) is the set of the components on which λ and λ′

differ. Note that PrS [λ] is non-zero for all λ.

VI. COMPUTATION OF PATIENT-SPECIFIC PARAMETERS

Once the set S of (almost) all Biologically Admissible
(BA) parameters has been computed by the off-line procedure
described in Section V, patient-specific parameters can be
efficiently computed. Given a patient log L, the patient-specific
parameter for L is the parameter λ∗ that minimises η(L, λ),
that is the parameter that minimises model prediction errors
with respect to the patient measurements in L.

Since S contains with arbitrary high confidence all BA pa-
rameters, we just compute the value λ∗ =argminλ∈Sη(S,L, λ)
to get, with the same confidence, a BA parameter value λ∗ that
minimises η(λ,L) over Λ̂. This procedure is intended to be an
on-line computation to be used in everyday clinical practice.

Theorem 2: Let S be the set of BA parameters computed
by Algorithm 1 taking as input a dynamical system S, a tuple
Θ of biological admissibility thresholds, a finite subset Λ̂ of
the parameter space Λ, a default parameter value λ0 ∈ Λ̂, a
probability threshold ε, a confidence level δ, and finite sets A
and B. Given a patient log L = (T, z), the parameter value
λ∗ =argminλ∈Sη(S,L, λ) is such that, with confidence (1−δ),
PrS [{λ ∈ Λ̂ \ S | η(L, λ) < η(L, λ∗)}] < ε.

Remark 3: Once the off-line set S of (almost) all BA
parameters has been computed (once and for all), the com-
putation of λ∗ =argminλ∈Sη(L, λ) is linear in the size of S,
which in turn is very small with respect to Λ̂.

VII. EXPERIMENTAL RESULTS

The effectiveness of our approach has been evaluated on the
GynCycle model in [36]. Such a model has 114 parameters,
75 of which are patient-specific (at least for our purposes),

and consists of 41 differential equations defining the time
evolution of 33 species. We implemented our tool in the C
programming language and connected it with the Limex solver
[11] integrating the Ordinary Differential Equations (ODEs)
defining our model.

A. Experimental setting
All experiments have been carried out on a cluster of Linux

machines each one equipped with two Intel(R) Xeon(R) CPU
@ 2.27GHz and 24GB of RAM.

We set the probability threshold ε and the confidence level
δ to 10−3. Set A (see Definition 2 in Section III) comprises
all stretch factors α multiple of 0.1, from 0.9 to 1.1. Set B
(see Definition 2 in Section III) comprises all time-shifts τ
multiple of 2 hours, from −5 days to +5 days. We set constant
ζ (see Section IV) to 10−4 to avoid division by zero during
normalisation. The discretisation Λ̂ of Λ has been obtained
by uniformly discretising the range of each parameter into 10
or 3 values. Cross-correlations, averages and L2 norms are
computed on a discretisation of the time evolutions with values
every 15 minutes. As for the individualisation of our model we
used the very same Pfizer data in [36] about 12 women.

B. Experimental results
1) Off-line computation of admissible parameters: Table I

shows the computation time and the size of the set S of
computed Biologically Admissible (BA) parameters for dif-
ferent runs of our off-line algorithm, using different config-
urations for biological admissibility thresholds θ1, θ2, θ3 (see
Section III).

run id θ1 θ2 θ3 discr. steps |S| CPU time

r1 0.6 0.5 0.5 10 3940 ∼ 31 days
r2 0.6 0.4 0.4 10 3504 ∼ 29 days
r3 0.5 0.7 0.7 10 6989 ∼ 147 days
r4 0.5 0.5 0.5 10 6406 ∼ 167 day
r5 0.7 0.3 0.3 3 126 ∼ 6 days

TABLE I: Off-line: Size of the set of BA parameters and
computation time.

Parts of such runs have been executed with a parallel
version of our algorithm, which is still under development.
Other parts have been executed with our stable sequential algo-
rithm. In order to allow comparisons, we ensure homogeneity
by reporting in Table I all times as if we were running our
sequential algorithm. Data in Table I should be read with some
caution since, being generated by a probabilistic algorithm
implementing the sampling process described in Section V,
different runs may yield different results as for computation
time and size of set S.

As we can see from Table I, the off-line computation may
take several days of intensive computation. On the other hand,
it only has to be run once, since it does not depend on the
patient log being considered. The RAM usage is negligible and
the disk storage requirements are perfectly reasonable (tens of
GB) for today standards.

2) On-line computation of patient-specific parameters: To
evaluate the improvement that we obtain in species predictions,
we consider patient p2 in the Pfizer data set and its associated
log L2. The average error η(λ0,L2) obtained by using the
default parameter λ0 is 61.9%.

Table II shows results when only three observations (at
days 8, 11, and 15 of the patient menstrual cycle) are used to
compute our predictions for patient p2.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 212

pg
/m

L

days

(a)

ng
/m

L

days

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30

Species #24 - E2: estradiol

patient-specific prediction
default

log

pg
/m

L

days

(c)

(∗)

IU
/L

days

(d)

IU
/L

days

(e)

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

Species #7 - FSH_blood: FSH in the blood

patient-specific prediction
default

log

IU
/L

days

(f)

Fig. 1: (a), (b), (d), (e): all system trajectories under admissible parameters, as computed in run r3 for, respectively, E2, P4,
FSH, LH (dark blue curves denote trajectories under default parameter). (c), (f): patient-specific prediction (green curves) for
patient p2 vs. default prediction (blue curves) for, respectively, E2 and FSH.

run id CPU time avg. error error red. error red.% biol. meaningful

r1 8m35s 56.0% 5.9 9.5% yes
r2 5m06s 55.7% 6.1 9.9% yes
r3 39m20s 55.0% 6.9 11.2% yes
r4 36m5s 55.4% 6.5 10.5% yes
r5 0m23s 61.9% 0.0 0.0% yes

TABLE II: On-line: Error reduction using λ∗ for patient p2.

The table shows CPU time and effectiveness of our on-
line algorithm, when run with the same configurations for
biological admissibility thresholds θ1, θ2, θ3 as in Table I.
Column “average error” gives the minimum value of η(λ,L2)
for λ ∈ S, where S is the set of BA parameters computed
by the off-line algorithm (as shown in the corresponding
rows of Table I). Column “error reduction” shows the value
of (η(λ0,L2)− η(λ,L2)) /η(λ0,L2). Column “biologically
meaningful” shows always “yes”, as all trajectories we found
are biologically meaningful, even though we cannot ensure a
priori that all BA parameters will yield biologically meaningful
trajectories.

Results show that the on-line computation completes within
minutes, thereby yielding a fast on-line response time as re-
quired in a clinical setting. Runs r3 and r4 have been executed
on a machine with an external storage device: their longer
computation times are due to slower I/O. RAM requirements
are negligible.

C. Discussion
1) Experimental soundness and completeness of biologi-

cal admissibility: We experimentally evaluate soundness and
completeness of our notion of biological admissibility, using
reference values from the literature (e.g., [39]). To this end,
Figures 1a, 1b, 1d and 1e show the trajectories for hormones
E2, P4, FSH and LH (for which measurements are available
in our Pfizer data-set) obtained by running the GynCycle
model on all parameter values computed by our off-line
algorithm in run r3. We see that most of such trajectories

are biologically meaningful, being in agreement with the
trajectories in [39]. This shows (experimentally) soundness
of our biological admissibility notion. Furthermore, most of
our Pfizer measurement data (red crosses in Figures 1a, 1b,
1d and 1e) lie within the region covered by our trajectories.
This shows (experimentally) completeness of our biological
admissibility notion.

An example of biologically not meaningful trajectory is
denoted with (∗) in Figure 1d. Also, Figure 1a shows that not
all Pfizer data are covered by our trajectories. This state of
affairs is to be expected, since both biological admissibility
and our off-line algorithm are based on statistical notions
(signal second order statistics and statistical model checking,
respectively), and clinical measurements might be noisy.

2) Error reduction in patient-specific predictions: The er-
ror reductions reported in Table II show that our proposed
approach enables effective patient-specific predictions even in
a clinical setting, where the measurements are at a premium
(we used only three observations). Figures 1c and 1f give
an example of the predictions of, respectively, E2 (Estradiol)
and FSH for patient p2, and compare them with the default
predictions and actual measurements in the patient log. The
achieved error reduction is of about 10%. This value has a
relevant impact from a clinical standpoint, as it can move
hormone peaks (which are among the main fertility/infertility
indicators) by several days (see Figures 1a, 1b, 1d and 1e).

The lack of error reduction shown in the single case where
the minimum cross-correlation is 0.7 is due to the fact that the
only BA parameters found by our off-line algorithm are very
close to the default parameter. On the other hand, the first row
of Table I is more liberal in considering parameters as BA. As
a result, that process was able to find more parameter values
in less time (possibly including model parameters leading to
model behaviours which are not biologically meaningful).

VIII. CONCLUSIONS

We have presented a method to effectively compute patient-
specific predictions from an ODE-based biological model and

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 213

clinical records. We overcome the main obstacles in our
clinical setting (scarcity of measurements and fast response
time) with an approach resting on three main pillars: first,
a formalisation of the notion of biological admissibility that
allows us to automatically filter out most parameter values
that do not lead to biologically meaningful system trajecto-
ries; second, a statistical model checking algorithm that, with
arbitrarily high confidence, computes off-line the set S of all
(discretised) Biologically Admissible parameter values; third,
an on-line algorithm that computes from S the best prediction
with the available data. We are currently developing a parallel
version for the presented algorithms.

ACKNOWLEDGMENTS

This work has been partially supported by the EC FP7
project PAEON (Model Driven Computation of Treatments for
Infertility Related Endocrinological Diseases, 600773). We are
grateful to the anonymous reviewers for their comments.

REFERENCES
[1] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci. Automatic

control software synthesis for quantized discrete time hybrid systems.
In Proc. of 51th CDC, pages 6120–6125. IEEE, 2012.

[2] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci. On
model based synthesis of embedded control software. In Proc. of 12th
EMSOFT, pages 227–236. ACM, 2012.

[3] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci. A map-
reduce parallel approach to automatic synthesis of control software. In
Proc. of SPIN, volume 7976 of LNCS, pages 43–60, 2013.

[4] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci. On-the-fly
control software synthesis. In Proc. of SPIN, volume 7976 of LNCS,
pages 61–80, 2013.

[5] E. Balsa-Canto, M. Peifer, J. R. Banga, J. Timmer, and C. Fleck. Hybrid
optimization method with general switching strategy for parameter
estimation. BMC Systems Biology, 2:26, 2008.

[6] J. Barnat, L. Brim, D. Šafránek, and M. Vejnár. Parameter Scanning
by Parallel Model Checking with Applications in Systems Biology. In
Proc. of HiBi/PDMC, pages 95–104. IEEE, 2010.

[7] O-T. Chis, J. R. Banga, and E. Balsa-Canto. Structural identifiability
of systems biology models: A critical comparison of methods. PLoS
ONE, 6(11), 2011.

[8] G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli. Syn-
chronized regular expressions. Acta Inf., 39(1):31–70, 2003.

[9] T. Dierkes, S. Röblitz, M. Wade, and P. Deuflhard. Parameter identifi-
cation in large kinetic networks with bioparkin. CoRR, abs, 2013.

[10] R. Donaldson and D. Gilbert. A model checking approach to the
parameter estimation of biochemical pathways. In Proc. of 6th CMSB
2008, volume 5307 of LNCS, 2008.

[11] R. Ehrig, U. Nowak, L. Oeverdieck, and P. Deuflhard. Advanced
extrapolation methods for large scale differential algebraic problems.
In High Performance Scient. and Eng. Comp., LNCSE, 1999.

[12] H. Gong, P. Zuliani, A. Komuravelli, J. R. Faeder, and E. M. Clarke.
Analysis and verification of the hmgb1 signaling pathway. BMC
Bioinformatics, 11(S-7):S10, 2010.

[13] H. Gong, P. Zuliani, A. Komuravelli, J. R. Faeder, and E. M. Clarke.
Computational modeling and verification of signaling pathways in
cancer. In Proc. of 4th ANB, volume 6479, pages 117–135, 2010.

[14] H. Gong, P. Zuliani, Q. Wang, and E. M. Clarke. Formal analysis
for logical models of pancreatic cancer. In Proc. of 50th CDC, pages
4855–4860. IEEE, 2011.

[15] R. Grosu and S. A. Smolka. Quantitative model checking. In
Preliminary Proc. of ISoLA, pages 165–174, 2004.

[16] R. Grosu and S. A. Smolka. Monte carlo model checking. In Proc. of
TACAS, pages 271–286, 2005.

[17] J. Heath, M. Z. Kwiatkowska, G. Norman, D. Parker, and O. Tym-
chyshyn. Probabilistic model checking of complex biological pathways.
Theor. Comput. Sci., 391(3):239–257, 2008.

[18] F. Hussain, R. G. Dutta, S. K. Jha, C. J. Langmead, and S. Jha.
Parameter discovery for stochastic biological models against temporal
behavioral specifications using an sprt based metric for simulated
annealing. In Proc. of 2nd ICCABS, pages 1–6. IEEE, 2012.

[19] B. Ingalls and P. Iglesias. Control Theory and Systems Biology. MIT
Press, 2009.

[20] S. Jha, A. Donze, R. Khandpur, J. Dutta-Moscato, Q. Mi, Y. Vodovotz,
G. Clermont, and C. Langmead. Parameter estimation and synthesis for
systems biology: New algorithms for nonlinear and stochastic models.
Journal of Critical Care, 26(2), 2011.

[21] H. De Jong. Modeling and simulation of genetic regulatory systems: A
literature review. Journal of Computational Biology, 9:67–103, 2002.

[22] M. Kwiatkowska, G. Norman, and D. Parker. Using probabilistic
model checking in systems biology. ACM SIGMETRICS Performance
Evaluation Review, 35(4):14–21, 2008.

[23] C. J. Langmead. Generalized queries and bayesian statistical model
checking in dynamic bayesian networks: Application to personalized
medicine. In Proc. of CSB, pages 201–212, 2009.

[24] K. Levenberg. A method for the solution of certain non-linear problems
in least squares. The Quarterly of Applied Math, 2:164–168, 1944.

[25] Pu Li and Quoc D. Vu. Identification of parameter correlations for
parameter estimation in dynamic biological models. BMC Systems
Biology, 7(1):91+, 2013.

[26] Lennart Ljung. System Identification (2Nd Ed.): Theory for the User.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[27] S. Stahl M. Brusco. Branch-and-Bound Applications in Combinatorial
Data Analysis. Statistics and Computing. Springer, 2005.

[28] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci.
System level formal verification via model checking driven simulation.
In Proc. 25th CAV, volume 8044 of LNCS, pages 296–312, 2013.

[29] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci. System
level formal verification via distributed multi-core hardware in the loop
simulation. In Proc. of PDP, 2014.

[30] F. Mari, I. Melatti, I. Salvo, and E. Tronci. Synthesis of quantized
feedback control software for discrete time linear hybrid systems. In
Proc. of 23rd CAV, volume 6174 of LNCS, pages 180–195, 2010.

[31] F. Mari, I. Melatti, I. Salvo, and E. Tronci. Undecidability of quantized
state feedback control for discrete time linear hybrid systems. In Proc.
of ICTAC, volume 7521 of LNCS, pages 243–258, 2012.

[32] F. Mari, I. Melatti, I. Salvo, and E. Tronci. Model based synthesis of
control software from system level formal specifications. ACM TOSEM,
23(1):6:1–6:42, 2014.

[33] N. Miskov-Zivanov, P. Zuliani, E. M. Clarke, and J. R. Faeder. Studies
of biological networks with statistical model checking: Application to
immune system cells. In Proc. of BCB, pages 728–729. ACM, 2007.

[34] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling,
U. Klingmüller, and J. Timmer. Structural and practical identifiability
analysis of partially observed dynamical models by exploiting the
profile likelihood. Bioinformatics, 25(15):1923–1929, August 2009.

[35] A. Rizk, G. Batt, F. Fages, and S. Soliman. On a continuous degree
of satisfaction of temporal logic formulae with applications to systems
biology. In Proc. of 6th CMSB, pages 251–268, 2008.

[36] S. Röblitz, C. Stötzel, P. Deuflhard, H. M. Jones, D.-O. Azulay,
P. van der Graaf, and S. W. Martin. A mathematical model of the human
menstrual cycle for the administration of gnrh analogues. Journal of
Theoretical Biology, 321:8–27, 2013.

[37] Eduardo D. Sontag. Mathematical Control Theory: Deterministic Finite
Dimensional Systems. (2nd Edition). Springer, New York, 1998.

[38] A. Streck, A. Krejci, L. Brim, J. Barnat, D. Safranek, M. Vejnar, and
T. Vejpustek. On parameter synthesis by parallel model checking.
IEEE/ACM Trans. on Comput. Biology and Bioinf., 9(3):693–705, 2012.

[39] R. Stricker, R. Eberhart, M.C. Chevailler, F. A. Quinn, P. Bischof, and
R. Stricker. Establishment of detailed reference values for luteinizing
hormone, follicle stimulating hormone, estradiol, and progesterone
during different phases of the menstrual cycle on the abbott architect
analyzer. Clin. Chem. Lab. Med., 44(7):883–887, 2006.

[40] J. Sun, J. M. Garibaldi, and C. Hodgman. Parameter estimation using
metaheuristics in systems biology: A comprehensive review. IEEE/ACM
Trans. Comput. Biology Bioinform., 9(1):185–202, 2012.

[41] Saeed V. Vaseghi. Advanced Digital Signal Processing and Noise
Reductio. John Wiley & Sons, 2006.

[42] G. Verzino, F. Cavaliere, F. Mari, I. Melatti, G. Minei, I. Salvo,
Y. Yushtein, and E. Tronci. Model checking driven simulation of sat
procedures. In Proc. of 12th SpaceOps, 2012.

[43] D. J. Wilkinson. Stochastic Modelling for Systems Biology. Chapman
and Hall/CRC, 1 edition, April 2006.

[44] P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian statistical model
checking with application to stateflow/simulink verification. Formal
Methods in System Design, 43(2):338–367, 2013.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 214

Reducing CTL-live Model Checking to
First-Order Logic Validity Checking

Amirhossein Vakili and Nancy A. Day
Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1
{avakili,nday}@uwaterloo.ca

Abstract—Temporal logic model checking of infinite state
systems without the use of iteration or abstraction is usually
considered beyond the realm of first-order logic (FOL) reasoners
because of the need for a fixpoint computation. In this paper,
we show that it is possible to reduce model checking of a
finite or infinite Kripke structure that is expressed in FOL to
a validity problem in FOL for a fragment of computational
tree logic (CTL), which we call CTL-live. CTL-live includes the
CTL connectives that are traditionally used to express liveness
properties. Our reduction can form the basis for methods that use
FOL reasoning techniques directly to accomplish model checking
of CTL-live properties without the need for fixpoint operators,
transitive closure, abstraction, or induction.

I. INTRODUCTION

Model checking is the problem of checking whether a
Kripke structure satisfies a temporal logic formula [1]. Model
checking has been used extensively to verify and find bugs
in finite state systems. To deal with the growing complexity
of software and hardware systems, we need methods that can
analyze more abstract models so that we can discover errors
earlier in the development process. The progress in SMT
(satisfiability modulo theories) solvers [2] has turned first-
order reasoners into powerful, efficient verification tools. In
this paper, we examine the challenge of using first-order logic
(FOL) to express the temporal logic model checking problem
for models described in FOL.

Existing model checking methods that use first-order rea-
soners can be divided into two major categories: 1) bounded
model checking (e.g., [3], [4]) and 2) unbounded model
checking (e.g., [5], [6]). Bounded methods check whether a
property holds for a certain length of execution path by cre-
ating a formula consisting of the transition relation expanded
to the desired bound. Since the bound is finite, the problem
can be expressed in FOL, therefore, FOL reasoners can be
used to solve the entire bounded (and therefore incomplete)
model checking problem at one time. Unbounded methods
call a FOL reasoner multiple times iteratively to traverse the
reachable state space. This iteration can result in parts of
the reasoning being redone multiple times. These methods
are mostly used for safety properties; for infinite systems,
termination (without approximation) is guaranteed only in the
case where the property is violated. FOL reasoners, such as
SMT solvers, have not been used to solve an entire unbounded
model checking problem in one call because model checking

is a question of reachability within a graph (in this case
a Kripke structure), and the reachability relation (transitive
closure) is not expressible in FOL. Therefore, temporal logic
model checking for infinite state systems without the use of
iteration or abstraction is usually considered beyond the realm
of FOL reasoners.

Our contribution is to show that model checking an inter-
esting fragment of computational tree logic (CTL) [7], which
we call CTL-live, is reducible to validity checking in FOL; in
other words, model checking a CTL-live property of a Kripke
structure can be done completely using deductive techniques
of FOL. Thus, some reachability queries can be answered
using a FOL reasoner even though the reachability relation
itself is not expressible in FOL. CTL-live includes the CTL
connectives that are often used to express liveness properties
(e.g., AF, AU, etc.). Our result holds for any Kripke structure
expressible symbolically in FOL. Since FOL validity checking
is recursively enumerable (r.e.) [8], if a Kripke structure
satisfies a CTL-live property our reduction can be used to
generate a proof automatically. This is the opposite of iterative
unbounded methods, such as [6], which guarantee termination
only if the property is not satisfied.

Model checking a CTL formula ϕ requires checking
whether the set of initial states of a Kripke structure is included
in the set of states that satisfy ϕ. Validity in FOL is defined
using a universal quantifier over interpretations, which is not a
first-order quantifier. The key insight in our approach is to use
this implicit higher-order quantifier to quantify over sets that
include every state that satisfies ϕ and possibly more; these
sets along with this higher-order quantifier are sufficient to
solve the model checking problem for a CTL-live formula.

Our result can form the basis for using first-order reasoners
directly for model checking CTL-live properties of infinite
Kripke structures expressed symbolically in FOL. By avoiding
external iteration, we allow the reasoning tool to work at
its maximum efficiency with respect to reusing parts of the
deduction. By avoiding manual abstraction, we have removed
a large burden on the user to justify the validity of the
abstraction.

II. PRELIMINARIES

We use standard first-order logic with equality (FOL) [8].
The syntax and semantics of FOL is defined using the concepts

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 215

of signatures and interpretations. A signature is a set of
functional and relational symbols where each symbol has a
corresponding arity, which is a natural number. For a given
signature, an interpretation consists of a domain (a non-empty
set), and a mapping, which determines the content of each
functional and relational symbol in the signature. We use the
notation XI to denote the value that the symbol X is mapped
to under the interpretation I.

We denote the satisfiability relation for FOL by , where
I Φ means that the interpretation I satisfies the FOL
formula Φ, and I 6 Φ denotes otherwise. If Γ is a set of
FOL formulae and I is an interpretation, the notation I Γ
means that I satisfies every formula in Γ. Validity (or semantic
entailment) in FOL is denoted by Γ |= Φ.

The subset relation symbol (⊆) is overloaded in this paper:
suppose X and Y are relational symbols with arity 1; the
formula X ⊆ Y is a short form for ∀s : X(s)→ Y (s).

Computational tree logic (CTL) is a temporal logic to
specify properties over time [7]. A temporal connective of
CTL consists of two parts: a path and a state quantifier.
A path quantifier is either E (there exists a path) or A
(for all paths). The state quantifiers are X (next state), F
(eventually), G (globally), and U (strong until). The semantics
of CTL formulae is defined using Kripke structures. A Kripke
structure is a four tuple, K = 〈S,S0,N ,P〉, where: S is a set
of states; S0, the set of initial states, is a non-empty subset of
S; N , the next-state relation, is a total binary relation over S;
P is a finite set of unary predicates over states. Predicates
represent the local properties of the states, and are called
labelling predicates.

The notation K, s c ϕ denotes that the state s of the Kripke
structure K satisfies the CTL formula ϕ and K, s 6c ϕ denotes
otherwise. We use the standard semantics of CTL [1].

The set of states of a Kripke structure K that satisfies a
CTL formula ϕ is denoted by [ϕ]K:

[ϕ]K = {s ∈ S | K, s c ϕ}
The Kripke structure K satisfies the CTL formula ϕ, denoted
by K c ϕ, iff for all s ∈ S0 we have K, s c ϕ:

K c ϕ ⇐⇒ S0 ⊆ [ϕ]K

III. OVERVIEW

The goal of this work is to reduce the model checking
problem (c) to validity checking in FOL (|=). The first
step is to represent a Kripke structure symbolically in FOL.
For a Kripke structure K = 〈S,S0,N ,P〉, its symbolic
representation (symbolic(K)) is a set of FOL formulae over
the signature K = {S0, N, P1, .., Pn} where relational symbol
N has arity 2 and every other symbol has arity 1.

Since symbolic(K) is a set of FOL formulae, it can have
multiple satisfying interpretations (each of which is a Kripke
structure) that are not isomorphic because it may use uninter-
preted functions and relations, and it may underconstrain the
model.

Reduction Procedure:
INPUT:

symbolic(K) :symbolic representation of a Kripke structure.
ϕ : a CTL-live formula.

OUTPUT:
symbolic(K)

⋃
CTLL2FOL(ϕ) |= S0 ⊆ dϕe

Fig. 1. Reduction Procedure

We define symbolic(K) |=c ϕ to mean that every satisfying
interpretation K of symbolic(K) satisfies the CTL formula ϕ:

symbolic(K) |=c ϕ⇐⇒ ∀K : K symbolic(K) =⇒ K c ϕ

If symbolic(K) has only one satisfying interpretation up to
isomorphism, then symbolic(K) |=c ϕ is equivalent to K c
ϕ. However, we do not require symbolic(K) to have only one
satisfying interpretation up to isomorphism.

Our main contribution is to identify a fragment of CTL such
that its model checking problem for a symbolic representation
of a Kripke structure is reducible to validity checking in FOL.
We call this fragment CTL-live. We show that there exists a
Γ (set of FOL formulae) and Φ (FOL formula) such that:

symbolic(K) |=c ϕ ⇐⇒ Γ |= Φ

for ϕ in CTL-live. We present a function CTLL2FOL that
takes a CTL-live ϕ formula as input and generates a finite
set of FOL formulae that represent the satisfiability of ϕ. The
function CTLL2FOL introduces a new relational symbol with
arity 1 for every sub-formula of ϕ including ϕ itself. We use
the notation dϕe to refer to the relational symbol introduced
by CTLL2FOL for the formula ϕ. The formulae generated by
CTLL2FOL are constraints over these new relational symbols.
Figure 1 is an overview of our reduction. The input of the
reduction is a symbolic representation of a Kripke structure(s)
(symbolic(K)) and a CTL-live formula (ϕ). The reduction
procedure asserts whether the union of symbolic(K) with the
formulae generated by CTLL2FOL(ϕ) entails S0 ⊆ dϕe.

IV. REDUCING CTL-LIVE MODEL CHECKING TO FOL

In this section, first, we present the intuition behind reducing
model checking to FOL validity checking. Then, we define
CTL-live and CTLL2FOL(ϕ).

Suppose symbolic(K) is a symbolic representation with a
unique satisfying Kripke structure K, and P ∈ P is a labelling
predicate. We are interested in checking whether K satisfies
EF P . From the semantics of CTL and its encoding in the
mu-calculus [1], we know that the set of states that satisfy
EF P , [EF P]K, is the smallest set, dEF P e, such that the
following two FOL formulae hold:

A1) P ⊆ dEF P e
A2) ∀s, s′ :

(
N(s, s′) ∧ dEF P e(s′))→ dEF P e(s) (1)

Formula A1 states that every state that satisfies P also satisfies
EF P , and Formula A2 states that if a state s has a next state
that satisfies EF P , then s also satisfies EF P . We use the
symbol dEF P e rather than [EF P] because there are multiple

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 216

S

[EF P]K

dEF P eK′0

dEF P eK′1 dEF P eK′3
dEF P eK′2

Fig. 2. Possible values for dEF P e

sets that satisfy formulae A1 and A2. Any Kripke structure K′
that is a satisfying interpretation of symbolic(K)

⋃{A1, A2}
is equal to K plus it can map dEF P e to a set that includes
[EF P]K, but is potentially larger, i.e., dEF P e may be an
overapproximation of [EF P]K. This property is depicted in
Figure 2, where dEF P eK′

i means the value of relational
symbol dEF P e under the interpretation/Kripke structure K′i.

Since [EF P]K equals the smallest amongst the dEF P eK′
s

satisfying symbolic(K)
⋃{A1, A2}, checking whether S0 is a

subset of [EF P]K is equivalent to checking whether S0 is a
subset of dEF P eK′

for every K′:

S0 ⊆ [EF P]K ⇐⇒
∀K′ symbolic(K)

⋃
{A1, A2} : S0 ⊆ dEF P eK′

(2)

The universal quantifier in Equation 2 is over interpretations,
which is not available in FOL, but it is implicitly used in the
definition of validity: recall that Γ |= Φ iff every satisfying
interpretation of Γ satisfies Φ; therefore:

K c EF P ⇐⇒ S0 ⊆ [EF P]K ⇐⇒
symbolic(K)

⋃
{A1, A2} |= S0 ⊆ dEF P e

We reduce model checking of EF to validity checking in
FOL by using the higher-order quantifier in the meta-language
of FOL. What we have shown here is that even though the
constraints on dEF P e in Equation 1 do not precisely express
the set of states that satisfy EF P , they express a set that
includes every state that satisfies EF P (and possibly more).
Since in model checking, it is important to see whether the
set of initial states is included in the set of states that satisfy
EF P , these constraints along with the definition of validity
in FOL, which implicitly uses a universal quantifier over
interpretations, can be used to express the model checking
problem for the CTL connective EF.

The key idea behind this result is that the CTL connec-
tive EF can be expressed as the smallest set that satisfies
some FOL formulae. We can generalize this result for other
CTL connectives that have the same property: AF, EU, and
AU. We can also include the propositional connectives ∧ and

Temporal part
ϕ ::= π | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

::= EXϕ | AXϕ | EFϕ | AFϕ
::= ϕ1EUϕ2 | ϕ1AUϕ2

Propositional part
π ::= P | ¬π | π1 ∨ π2

where P is a labelling predicate.

Fig. 3. CTL-live

∨ since their corresponding set operations (intersection and
union) are monotonic with respect to set inclusion.

Figure 3 presents the fragment of CTL for which the model
checking problem can be expressed in FOL. We call this
fragment CTL-live, since it contains the CTL connectives that
are usually used to express liveness properties. CTL-live’s
grammar has two parts: temporal and propositional. CTL-live
disallows a temporal connective to be within the scope of
negation (¬); e.g., the CTL formula ¬(AF P) is not part of
CTL-live, but AF (¬P) is.

To check if symbolic(K) |=c ϕ where ϕ is a CTL-live
formula, we use a function called CTLL2FOL, shown in
Figure 4, to create a set of FOL formulae expressing the
meaning of these connectives. In Figure 4, dϕe is a new
relational symbol that is introduced by CTLL2FOL for the
formula ϕ; for a labelling predicate P , dP e is equal to P .
The complexity of CTLL2FOL is linear with respect to the
size of ϕ.

Theorem 1 presents our main contribution: model checking
a symbolic representation of a Kripke structure(s) (|=c) for
a CTL-live formula is reducible to validity checking in FOL
(|=). Complete proofs can be found in Vakili and Day [9].

Theorem 1: Let symbolic(K) be a set of FOL formulae that
specifies a Kripke structure(s); we have:

symbolic(K) |=c ϕ ⇐⇒
symbolic(K)

⋃
CTLL2FOL(ϕ) |= S0 ⊆ dϕe

V. RELATED WORK

Based on [10], we reduced model checking of CTL with
fairness constraints for finite symbolic Kripke structures to
validity checking in FOL(TC) and used Alloy for model
checking [11]. Since transitive closure for an infinite system
is not expressible in FOL, this encoding cannot be used with
a FOL reasoner.

K-induction is a technique for unbounded model checking
of safety properties [5]. This technique extends bounded model
checking by proving that bounded model checking for bound
K is sufficient. The number K is dominated by the diameter of
a Kripke structure. The diameter is computed iteratively using
a SAT solver to check the equivalence of two formulae: the
equivalence holds iff no new state can be reached by taking
more than K steps. In [5], termination is guaranteed due to
the finiteness of the Kripke structures under study.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 217

CTLL2FOL(ϕ):
case ϕ of

1) P -> {} where P is a labelling predicate
2) ¬ψ -> { ∀s : dϕe(s)↔ ¬dψe(s) } ⋃ CTLL2FOL(ψ)
3) ψ1 ∨ ψ2 -> { ∀s : dϕe(s)↔ dψ1e(s) ∨ dψ2e(s) }

⋃
CTLL2FOL(ψ1)

⋃
CTLL2FOL(ψ2)

4) ψ1 ∧ ψ2 -> { ∀s : dϕe(s)↔ dψ1e(s) ∧ dψ2e(s) }
⋃

CTLL2FOL(ψ1)
⋃

CTLL2FOL(ψ2)
5) EXψ -> { ∀s :

(∃s′ : N(s, s′) ∧ dψe(s′))→ dϕe(s) } ⋃ CTLL2FOL(ψ)
6) AXψ -> { ∀s :

(∀s′ : N(s, s′)→ dψe(s′))→ dϕe(s) } ⋃ CTLL2FOL(ψ)
7) EFψ -> { dψe ⊆ dϕe , ∀s :

(∃s′ : N(s, s′) ∧ dϕe(s′))→ dϕe(s) } ⋃ CTLL2FOL(ψ)
8) AFψ -> { dψe ⊆ dϕe , ∀s :

(∀s′ : N(s, s′)→ dϕe(s′))→ dϕe(s) } ⋃ CTLL2FOL(ψ)
9) ψ1EUψ2 -> { dψ2e ⊆ dϕe , ∀s : dψ1e(s) ∧

(∃s′ : N(s, s′) ∧ dϕe(s′))→ dϕe(s) } ⋃
CTLL2FOL(ψ1)

⋃
CTLL2FOL(ψ2)

10) ψ1AUψ2 -> { dψ2e ⊆ dϕe , ∀s : dψ1e(s) ∧
(∀s′ : N(s, s′)→ dϕe(s′))→ dϕe(s) } ⋃

CTLL2FOL(ψ1)
⋃

CTLL2FOL(ψ2)

Fig. 4. Definition of CTLL2FOL. ϕ is a CTL-live formula.

Bultan, Gerber, and Pugh used Presburger formulae to
represent infinite sets of states symbolically [6]. Their model
checking approach requires a fixpoint calculation, and termi-
nation is achieved by using conservative approximation. This
approach allows false negatives.

Kesten and Pnueli presented a sound and relatively complete
(oracle based) deductive system for CTL* [12] to provide
proof-like evidence for a model that satisfies a property.
CTL-live is less expressive than CTL* but based on the
completeness of FOL, CTL-live has a sound and complete
deductive system.

Beyene, Popeea, and Rybalchenko encoded CTL model
checking of infinite state systems into forall-exists quantified
Horn clauses (which we call ExQH) [13]. The contribution of
[13] is to develop a solver for ExQH and demonstrate its use
for model checking CTL properties. Their method requires the
models and the model checking constraints to be expressed
in ExQH and to satisfy some well-foundedness conditions,
whereas our results hold for any set of FOL constraints, which
may describe multiple Kripke structures. Termination of their
method is not guaranteed.

VI. CONCLUSION

We presented a fragment of CTL, called CTL-live, whose
model checking problem is reducible to validity checking in
FOL. Our reduction shows that FOL deductive techniques are
sufficient for model checking CTL-live formulae, without the
need for iteration, abstraction, or induction. The key insight
in our approach is to use the implicit higher-order quantifier
in the definition of validity to require that all initial states of
a Kripke structure are within all the sets of states that satisfy
an overapproximation of a CTL-live temporal operator, and
thereby, reducing model checking to validity in FOL. Validity
checking for FOL is r.e.; as a result, this reduction ensures
that a proof can be automatically generated when a CTL-
live formula is satisfied by a model. We have also proved
that CTL-live is maximal in the sense that it is the largest

fragment of CTL such that its model checking is reducible to
FOL validity [9].

Our theory provides the basis for using first-order reasoners
directly for model checking CTL-live properties of abstract
and infinite Kripke structures expressed symbolically in FOL.
By avoiding iteration, the tool can reuse its internal deductions
to increase productivity. The rapid improvements in the effi-
ciency of SMT solvers, FOL automated theorem proving, etc.
have a direct effect on the practical application of our results.
We are currently studying the use of SMT solvers for model
checking CTL-live formulae [14].

REFERENCES

[1] E. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT Press,
1999.

[2] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, Satisfiability Modulo
Theories, ser. Frontiers in Artificial Intelligence and Applications. IOS
Press, February 2009, vol. 185, ch. 26, pp. 825–885.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model Checking
without BDDs,” in TACAS, ser. LNCS. Springer, 1999, pp. 193–207.

[4] T. Schüle and K. Schneider, “Bounded model checking of infinite state
systems,” Formal Methods in System Design, pp. 51–81, 2007.

[5] M. Sheeran, S. Singh, and G. Stålmarck, “Checking Safety Properties
Using Induction and a SAT-Solver,” in FMCAD, ser. LNCS. Springer,
2000, vol. 1954, pp. 127–144.

[6] T. Bultan, R. Gerber, and W. Pugh, “Symbolic Model Checking of
Infinite State Systems Using Presburger Arithmetic,” in CAV, ser. LNCS,
O. Grumberg, Ed. Springer, 1997, vol. 1254, pp. 400–411.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications,”
ACM TOPLS, pp. 244–263, 1986.

[8] J. Harrison, Handbook of Practical Logic and Automated Reasoning.
Cambridge University Press, 2009.

[9] A. Vakili and N. A. Day, “Reducing CTL-live Model Checking to
Semantic Entailment in First-Order Logic (Version 1),” Cheriton School
of Comp. Sci., University of Waterloo, Tech. Rep. CS-2014-05, 2014.

[10] N. Immerman and M. Vardi, “Model Checking and Transitive-Closure
Logic,” in CAV, ser. LNCS. Springer, 1997, vol. 1254, pp. 291–302.

[11] A. Vakili and N. Day, “Temporal Logic Model Checking in Alloy,” in
ABZ, ser. LNCS. Springer, 2012, vol. 7316, pp. 150–163.

[12] Y. Kesten and A. Pnueli, “A compositional approach to CTL∗ verifica-
tion,” Theoretical Computer Science, pp. 397 – 428, 2005.

[13] T. A. Beyene, C. Popeea, and A. Rybalchenko, “Solving existentially
quantified horn clauses,” ser. CAV. Springer, 2013, pp. 869–882.

[14] A. Vakili and N. A. Day, “Verifying CTL-live Properties of Infinite State
Models using an SMT Solver,” in FSE’14, Oct 2014, To appear.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 218

Predicate Abstraction for Reactive Synthesis
Adam Walker§ Leonid Ryzhyk§¶
§ NICTA and UNSW, Sydney, Australia

¶ University of Toronto

Abstract—We present a predicate-based abstraction refinement
algorithm for solving reactive games. We develop solutions to
the key problems involved in implementing efficient predicate
abstraction, which previously have not been addressed in game
settings: (1) keeping abstractions concise by identifying relevant
predicates only, (2) solving abstract games efficiently, and (3)
computing and solving abstractions symbolically. We imple-
mented the algorithm as part of an automatic device driver syn-
thesis toolkit and evaluated it by synthesising drivers for several
real-world I/O devices. This involved solving game instances that
could not be feasibly solved without using abstraction or using
simpler forms of abstraction.

I. INTRODUCTION

Two-player games are a useful formalism for synthesis of
reactive systems [17]. Many problems in electronic design
automation [3], industrial automation [5], device driver devel-
opment [19], etc., can be formalised as games. The resulting
games often have very large state spaces and can not be
efficiently solved using existing techniques.

Abstraction offers an effective approach to mitigating the
state explosion. For example, in the model checking domain
abstraction proved instrumental in enabling automatic verifi-
cation of complex hardware and software systems [6], [7],
[15]. The reactive synthesis community has also identified
the key role of abstraction in tackling real-world synthesis
problems; however most research in this area has so far been
of theoretical nature [10], [14].

In this paper we present the first practical abstraction-
refinement algorithm for solving games. Our algorithm is
based on predicate abstraction, which proved to be particularly
successful in model checking [13]. Predicate abstraction parti-
tions the state space of the game based on a set of predicates,
which capture essential properties of the system. States inside
a partition are indistinguishable to the abstraction, which limits
the maximal precision of solving the game achievable within
the given abstraction. The abstraction is iteratively refined by
introducing new predicates.

The key difficulty in applying predicate abstraction to games
is to efficiently solve the abstract game arising at every
iteration of the abstraction refinement loop. This requires com-
puting the abstract controllable predecessor operator, which
maps a set of abstract states, winning for one of the players,
into the set of states from which the player can force the game
into the winning set in one round of the game. This involves

NICTA is funded by the Australian Government through the Department of
Communications and the Australian Research Council through the ICT Centre
of Excellence Program.

This research is supported by a grant from Intel Corporation.

enumerating concrete moves available to both players in each
abstract state, which can be prohibitively expensive.

We address the problem by further approximating the ex-
pensive controllable predecessor computation and refining the
approximation when necessary. To this end, we introduce ad-
ditional predicates that partition the set of actions available to
the players into abstract actions. The controllable predecessor
computation then consists of two steps: (1) computing abstract
actions available in each abstract state, and (2) evaluating
controllable predecessor over abstract states and actions.

The first step involves potentially expensive analysis of
concrete transitions of the system and is therefore computed
approximately. More specifically, solving the abstract game
requires overapproximating moves available to one of the
players, while underapproximating moves available to the
other [14]. The former is achieved by allowing an abstract
action in an abstract state if it is available in at least one
corresponding concrete state, the latter allows an action only if
it is available in all corresponding concrete states. We compute
the overapproximation by initially allowing all actions in all
states and gradually refining the abstraction by eliminating
spurious actions. Conversely, we start with an empty underap-
proximation and add available actions as necessary.

We incorporated our predicate abstraction algorithm in
the three-valued abstraction refinement framework of de Al-
faro and Roy [10]. However, it can be readily adapted for
use with other abstraction refinement methods, such as the
counterexample-guided framework of Henzinger et al [14].

This paper makes three contributions:

1) We propose the first practical predicate-based abstraction
refinement algorithm for two-player games.

2) We introduce a new type of refinement, which increases
the precision of controllable predecessor computation
without refining the abstract state space of the game.
This approach avoids costly operations involved in solv-
ing the abstract game, approximating them with a se-
quence of light-weight operations performed on demand,
leading to dramatically improved scalability.

3) We evaluate the algorithm by implementing it as part of
the Termite driver synthesis toolkit [19] and using it to
synthesise drivers for complex real-world devices. Our
algorithm efficiently solves games with very large state
spaces, which is impossible without using abstraction or
using simpler forms of abstraction.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 219

II. RELATED WORK

Predicate abstraction has been extensively explored in au-
tomatic verification [13], including hardware [6] and soft-
ware [7], [15] verification. In verification, given a set of
abstract error states, we would like to overapproximate the set
of predecessor states, from which the system may transition
to one of the error states. To this end, one constructs an
overapproximation of the abstract transition relation of the
system, which relates a pair of abstract states if there exists
a matching concrete transition between these two states [1].
De Alfaro et al. [9] pointed out that similar approach is not
applicable to solving abstract games. In game settings, given
a set of abstract goal states, we would like to compute its
abstract controllable predecessor, i.e., the set of abstract states
from which one of the players can force the game into the
goal in one round. This fundamentally cannot be encoded
as a relation over pairs of abstract states as, although the
player may not be able to force the game into an individual
abstract state, it may be able to force it into a subset of
goal states. Therefore, instead of approximating the abstract
transition relation of the game, we approximate its abstract
controllable predecessor operator.

The three-valued abstraction refinement technique was first
proposed as a method for CTL model checking [20] and
was later adapted to games [9]. It was further developed by
de Alfaro and Roy [10] into a form amenable to fully symbolic
implementation. They present an instantiation of their method
for a particular type of abstraction—variable abstraction. In
the present paper, we combine their method with the more
flexible predicate abstraction.

Counterexample-guided abstraction refinement
(CEGAR) [8] is another method of constructing abstractions
automatically. Henzinger et al. [14] present an adaptation of
CEGAR to games. Similar to the three-valued abstraction
framework of de Alfaro and Roy, their technique can be
instantiated for different forms of abstraction. Dimitrova
and Finkbeiner present an instantiation based on predicate
abstraction [11], [12]. They focus on partial information and
timed games, as opposed to perfect-information games with
large state spaces, as we do in the present work. They report
solving games with up to 2000 abstract states, whereas our
case studies reported in Section VII required abstractions
with up to 233 abstract states.

III. PRELIMINARY DEFINITIONS

A two-player game structure G = 〈S,L, I, τ1, τ2, δ〉 con-
sists of a set of states S, a set of transition labels L, a set
I ⊆ 2S of initial states, a partitioning of S into player-1 states
τ1 and player-2 states τ2 (τ1∩τ2 = ∅, τ1∪τ2 = S), a transition
function δ : (S,L) → S associating with a state s ∈ S and a
label l ∈ L a successor state δ(s, l). We refer to the opponent
of player i as i (1 = 2, 2 = 1).

The game proceeds in an infinite sequence of rounds,
starting from an initial state. In each round, in state s ∈ τi,
player i chooses a label l and the game transitions to state
s′ = δ(s, l). We do not require the game to be strictly

alternating, i.e., s′ ∈ τi is not generally true. The infinite
sequence of states visited (s0, s1, . . .) ∈ Sω is called a path.

An objective Φ ⊆ Sω is a subset of state sequences of G.
In this paper we are concerned with ω-regular objectives, i.e.,
objectives characterised by ω-regular languages. Two special
cases of ω-regular objectives are reachability objectives that
consist of all paths s0, s1, . . . that visit a target set T at least
once: ∃i.si ∈ T and safety objectives that consist of paths that
stay in a safe set T forever: ∀i.si ∈ T .

A strategy for player i is a function πi : S∗ × τi → L that,
in any player i state, associates the history of the game with a
label to play. The set of initial states I and a player i strategy
πi determines a set Outcomesi(I, πi) of paths s0, s1, s2, ...
such that s0 ∈ I and sk+1 = δ(sk, πi(s0, ..., sk)) when sk ∈
τi and sk+1 = δ(sk, l) for some l when sk ∈ τi. Given an
objective Φ ∈ Sω we say that state s ∈ S is winning for player
i if there is a strategy πi such that Outcomesi(s, πi) ⊆ Φ.

A. Symbolic games
We deal with symbolic games defined over a finite set of

state variables X and a finite set of label variables Y in some
theory. Each state s ∈ S represents a valuation of variables
X , each label l ∈ L represents a valuation of variables Y .
For a set Z of variables, we denote by F(Z) the set of
propositional formulas in the underlying theory constructed
from the variables in Z. Sets of states and transition relations
of a symbolic game are represented by their characteristic
formulas. In particular I, τ1, τ2 are given as formulas in F(X).
The transition relation is specified as δ ∈ F(X ∪ Y ∪ X ′),
where X ′ = {x′ | x ∈ X} is the set of next-state variables. We
refer to sets and their characteristic formulas interchangeably.

Example. We introduce our running example, where we aim
to synthesise a software driver for an artificially trivial I/O
device. The device contains 32 bits of non-volatile memory,
which can be accessed from software via the data register.
The task of the driver is to transfer a data value from the
main memory to the device memory.

We set up a game between the driver (player 1) and the
device (player 2). Device and driver internal state is modelled
using state variables (Figure 1a). The player who makes the
next move is determined by the value of the bsy flag inside
the device. When the flag is set to 0, the device remains
idle and the driver performs a write to the data register. The
argument of the write is modelled by the val label variable.
The write operation flips the bsy flag to 1. This triggers a
device transition at the next round of the game, which copies
the value in the data register to memory. The objective of
the game on behalf of player 1 is to reach the target set
T = (req = mem), i.e., the device memory must store the
requested value req (Figure 1c). We require that the game
is winnable from any initial state, hence I = >. The winning
strategy for player 1 in this example is to write the value of req
in the first transition (by setting val = req), thus forcing the
device to copy this value to memory at the second transition.

Figure 1b specifies the transition relation δ of the game in
the form of variable update functions x′ = tx(X, Y), one for

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 220

var type description
state vars (X)

mem int32 device memory
dat int32 data register
bsy bool device busy bit
req int32 value to write to mem

label vars (Y)
val int32 value to write to dat

(a) Game variables

τ1 = (bsy = false) τ2 = (bsy = true) I = > T = (req = mem)

(b) Turn functions, initial and target sets

dat
′

=

{
val, if ¬bsy
dat, otherwise

bsy
′

=

{
true, if ¬bsy
false, if bsy

mem
′

=

{
dat, if bsy
mem, otherwise

req
′

= req

(c) Variable update functions

a.var predicate
state predicates

σ1 req = dat
σ2 req = mem

untracked predicates
ω1 bsy = false
ω2 req = 5

label predicates
λ1 val = req
λ2 val = 5

(d) Abstract variables and cor-
responding predicates

Fig. 1: A driver synthesis problem encoded as a game

each variable x ∈ X. Consider the update function for bsy as
an example. The variable switches between values true and
false on each transition, thus enabling player 1 and player 2
in a round robin fashion.

B. Controllable predecessor

Omega-regular games are often solved using the control-
lable predecessor operator. Player i controllable predecessor
of set φ ⊆ S consists of all states from which i can force the
game into φ in one transition. It is a union of player i states
where there exists a winning transition to φ and player i states
where all outgoing transitions terminate in φ.

Cprei(φ) =τi ∧ ∃Y,X ′. δ ∧ φ′ ∨
τi ∧ ∀Y,X ′. δ → φ′

(1)

where φ′ denotes the formula obtained from φ by replacing
every x ∈ X with x′.

We can compute the winning set of a reachability game
by iterating the controllable predecessor operator starting
from the target set T of the game. Using fix-point notation:
REACH(T,Cpre) = µX.Cpre(X) ∨ T , We pass the con-
trollable predecessor operator as an argument to the REACH
function, so that it can be used with multiple different versions
of Cpre introduced below.

C. Abstraction

An abstraction of a game structure G is a tuple 〈V, ↓〉,
where V is a finite set of abstract states and ↓ : V → 2S

is the concretisation function, which takes an abstract state
and returns the possibly empty set of concrete states that the
abstract state corresponds to. We require that

⋃
v∈V v↓ = S

and v1↓ ∩ v2↓ = ∅ for any v1 and v2, v1 6= v2. In the case
when v↓ = ∅ the abstract state v is said to be inconsistent. We
extend the ↓ operator to sets of abstract states. For U ⊆ V :
U↓ =

⋃
u∈U u↓.

Algorithm 1 Three-valued abstraction refinement for games.

Input: A game structure G = 〈S,L, I, τ1, τ2, δ〉, a set of target states T ⊆ S,
and an initial abstraction α = 〈V, ↓, Cprem+

1 , CpreM−
1 〉 that is precise for

T , I , and τi.
Output: Yes if I ⊆ REACH(T,Cpre1), and No otherwise.

1: loop
2: WM ← REACH(T↑M , CpreM−

1)
3: Wm ← REACH(T↑m, Cprem+

1)
4: if I↑M ⊆ WM return Yes
5: else if I↑M * Wm return No
6: else
7: refined← REFINECPRE(WM)
8: if (¬refined) REFINEABSTRACTION(WM) endif
9: end if

10: end loop

IV. THREE-VALUED ABSTRACTION REFINEMENT

In this section we present a modified version of the three-
valued abstraction refinement technique of de Alfaro and
Roy [10]. To simplify the presentation, we focus on solving
reachability games. De Alfaro and Roy present an extension
of their method to arbitrary ω-regular games. This extension
is directly applicable to the version of the algorithm presented
here.

We start with defining two versions of the abstraction opera-
tor: the may-abstraction ↑m and the must-abstraction ↑M . For
a set of concrete states T ⊆ S: T↑m = {v ∈ V | v↓∩T 6= ∅},
T↑M = {v ∈ V | v↓ ⊆ T}. We say that abstraction is precise
for a set T ⊆ S if (T↑m)↓ = (T↑M)↓.

Next, we define may and must versions of the abstract
controllable predecessor operator:

Cprem
i (U) = Cprei(U↓)↑m, CpreM

i (U) = Cprei(U↓)↑M (2)

These operators have the property: CpreMi (U)↓ ⊆
Cprei(U↓) ⊆ Cpremi (U)↓, and hence
REACH(T↑M , CpreMi)↓ ⊆ REACH(T,Cprei) ⊆
REACH(T↑m, Cpremi)↓.

The abstract Cpremi and CpreMi operators are defined
in terms of the concrete controllable predecessor Cpre. As
these may not be possible to compute efficiently in practice,
we introduce approximate versions, Cprem+

i and CpreM−i ,
such that for all U ⊆ V : Cpremi (U)↓ ⊆ Cprem+

i (U)↓ and
CpreM−i (U)↓ ⊆ CpreMi (U)↓. The definition of Cprem+

i and
CpreM−i is determined by each particular instantiation of the
abstraction refinement scheme. We present our version of these
operators in Section V-A.

Figure 2 illustrates the main idea of our approach, which
is presented in algorithm 1. At every iteration, the algorithm
computes the must-winning set WM that underapproximates,
and the may-winning set Wm that overapproximates the true
winning set (lines 2–3). The algorithm terminates if the must-
winning set contains the entire initial set or the may-winning
set has shrunk beyond the initial set (lines 4–5). Otherwise,
the algorithm refines the abstraction in a way that expands the
must-winning set.

The key observation behind the refinement procedure is that
candidate winning states can be found at the may-must bound-
ary of the game, i.e., the set Cprem+

1 (WM)\WM , of all may-
predecessors of the must-winning set. The boundary consists

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 221

WM=Cpre1
M-(WM) ∪ T

Cpre1
M(WM)

Cpre1
m(WM)Cpre1

m+(WM)

REFINECPRE REFINEABSTRACTION REFINECPRE
T

Cpre1
M-(WM)

Fig. 2: Refining the may-must boundary. Arrows indicate how the
two refinement functions change the boundary region.

of three regions shown in Figure 2: (1) CpreM1 (WM) \WM ,
(2) Cprem1 (WM) \ CpreM1 (WM), and (3) Cprem+

1 (WM) \
Cprem1 (WM). The first and the third regions can be shrunk
by increasing the precision of the CpreM− and Cprem+

operators respectively. The second region can only be shrunk
by refining the abstraction itself, i.e., partitioning abstract
states into smaller regions.

These two types of refinement are performed in lines 7
and 8 of the algorithm. The REFINECPRE function computes
a more precise version of the controllable predecessor op-
erators. It returns false iff no such refinement is possible,
i.e., CpreM (WM) = CpreM−(WM) and Cprem+(WM) =
Cprem(WM). The REFINEABSTRACTION function refines
the abstract state space in a way that expands the set
CpreM (WM) with at least one new abstract state.

Algorithm 1 differs from [10] in that it uses an additional
type of refinement which refines the controllable predecessor
operators without changing the abstract state space.

V. PREDICATE ABSTRACTION

We instantiate the three-valued abstraction refinement
scheme for predicate abstraction. Consider a symbolic game
G = 〈S,L, I, τ1, τ2, δ〉 defined over state variables X and
label variables Y . Let Σ ⊆ F(X) be a finite set of boolean
predicates over state variables. We refer to Σ as state pred-
icates. We introduce boolean variables ~σ = (σ1 . . . σn) to
represent values of predicates Σ. Given a boolean variable
σ, ‖σ‖ denotes its corresponding state or label predicate. ‖~σ‖
denotes the vector of all state predicates in Σ.

The state space V of the abstract game is defined as V =
Bn, where each abstract boolean state vector v ∈ V represents
a truth assignment of variables ~σ. The concretisation function ↓
from Section III-C can be expressed as: v↓ = (

∧
i=1..n ‖σi‖ =

vi), which maps an abstract state v into the set of concrete
states such that each predicate in Σ evaluates to true or false
depending on the value of the corresponding element of v.

Example. Consider an abstraction of the running example
game induced by abstract variables σ1, σ2 and corresponding
predicates: ‖σ1‖ = (req = dat), ‖σ2‖ = (req = mem).
Consider an abstract state v = (true, false). We compute
v↓ = ((req = dat) = true ∧ (req = mem) = false)
or equivalently v↓ = (req = dat ∧ req 6= mem). Hence
v represents the set of all concrete states where conditions
(req = dat) and (req 6= mem) hold for concrete state
variables mem, req, and dat.

We obtain the initial abstraction by extracting atomic predi-
cates from expressions T , I , and τi, which guarantees that the

} concrete state

Fig. 3: Concrete state space partitioned into abstract states (solid
lines) and untracked sub-states (dashed lines).

abstraction is precise for T , I , and τi. While this property is
not essential for our approach, we will rely on it to simplify
the presentation of the algorithm.

A. Abstract controllable predecessors

Following the three-valued algorithm presented in Sec-
tion IV, we would like to find an efficient way to compute
over- and under-approximations Cprem+ and CpreM− of
the abstract controllable predecessor operators. Recall that
computing Cprem and CpreM precisely is expensive, as
it requires applying the controllable predecessor operator to
the concrete transition relation δ. We approximate this costly
computation by computing the controllable predecessor over
the abstract transition relation instead. The abstract transition
relation of the game is defined over boolean predicate variables
and therefore can be manipulated much more efficiently than
the concrete one.

We construct the abstract transition relation via efficient
syntactic analysis of the concrete transition relation δ. We
present the construction assuming that δ is given in the variable
update form, as in Figure 1c. A similar construction is possible
for specifications written in real-world hardware and software
description languages.

For each state predicate in Σ, we compute the update
function by replacing concrete variables in the predicate with
their corresponding update functions. We then transform the
resulting formula into a boolean combination of atomic pred-
icates over concrete state and label variables.

Example. Let us compute the update function for abstract
variable σ1 (Figure 1d). Using update functions for req and
dat variables (Figure 1c), we obtain: σ′1 = (req′ = dat′) =(¬(bsy = false)∧ (req = dat)∨ (bsy = false)∧ (val =
req)

)
. This equation contains three atomic predicates: in addi-

tion to the existing predicate σ1 ↔ (req = dat), it introduces
new predicates (bsy = false) and (val = req).

In the general case, the syntactically computed update func-
tion for a predicate may depend on existing state predicates
in Σ as well as new predicates that are not yet part of
the abstraction. The new predicates are partitioned into un-
tracked predicates defined over concrete state variables (e.g.,
bsy = false in the above example) and label predicates that
involve at least one concrete label variable (e.g., val = req).
The term “untracked predicate” indicates that these predicates
are not part of the abstract state space of the game. Untracked
predicates can be seen as partitioning abstract states in V into
smaller untracked sub-states, as illustrated in Figure 3.

By substituting untracked and label predicates with fresh

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 222

boolean variables, ~ω and ~λ respectively, we obtain the abstract
transition relation ∆ in the form:

~σ′ = ∆(~σ, ~ω,~λ)

This syntactically computed transition relation contains two
sources of imprecision. First, untracked variables ~ω are not
part of the abstract state space Σ and are therefore treated as
external inputs. Second, not all abstract labels are available in
all abstract states and hence not all transitions in ∆ correspond
to a feasible concrete transition. For example, given the set
of predicates shown in Figure 1d, the abstract label λ1 =
true, λ2 = true is only available in concrete states that satisfy
the condition req = 5. In general, given a state-untracked-label
tuple 〈v, u, l〉, the abstract label l may be available in all, some,
or none of the concrete states consistent with v and u.

We formalise this by introducing consistency relations Cm

and CM that over- and under-approximate available abstract
labels. A state-untracked-label tuple 〈v, u, l〉 is may-consistent
if the abstract label l is available in at least one concrete state
consistent with v and u:

Cm(v, u, l) = ∃X,Y.‖~σ‖ = v ∧ ‖~ω‖ = u ∧ ‖~λ‖ = l. (3)

The tuple 〈v, u, l〉 is must-consistent if l is available in any
concrete state consistent with v and u:

CM (v, u, l) = ∀X.((‖~σ‖ = v ∧ ‖~ω‖ = u)→ ∃Y.‖~λ‖ = l) (4)

Computing Cm and CM can be prohibitively expensive.
Therefore we use approximations Cm+ and CM− such that
Cm ⊆ Cm+ and CM− ⊆ CM . Initially we assign Cm+ = >
and CM− = ⊥. Approximations are refined lazily as part of
the abstraction refinement process, as explained below.

We compute over- and under-approximations of the con-
trollable predecessor operator by resolving the two sources of
imprecision in favour of one of the players. In particular, we
compute Cprem+

i by (1) allowing player i to pick assignments
to untracked predicates, (2) over-approximating consistent
labels available to i, and (3) under-approximating consistent
labels available to the opponent player i:

Cprem+
i (φ) = ∃~ω. τi↑M ∧ ∃~λ, ~σ′.((Cm+ ∧∆) ∧ φ′) ∨

τi↑M ∧ ∀~λ, ~σ′.((CM− ∧∆)→ φ′)
(5)

This formula has a similar structure to the definition of the
concrete controllable predecessor operator (1). It replaces the
concrete transition relation δ with the abstract transition rela-
tion ∆ restricted with consistency relations (Cm+ and CM−).
In addition, it existentially quantifies untracked variables ~ω,
i.e., an abstract state v is a may-predecessor of φ if at least
one of its untracked sub-states is a may-predecessor of φ.

Dually, we compute CpreM−i by (1) allowing the opponent
player i to pick values of untracked predicates, (2) under-
approximating labels available to i and (3) over-approximating
labels available to i:

CpreM−
i (φ) = ∀~ω. τi↑M ∧ ∃~λ, ~σ′.((CM− ∧∆) ∧ φ′) ∨

τi↑M ∧ ∀~λ, ~σ′.((Cm+ ∧∆)→ φ′)
(6)

Equations (5) and (6) suggest two possible abstraction
refinement tactics, which correspond to the two types of
refinement used in Algorithm 1. First, we can refine Cm+ and
CM− by removing spurious transitions from Cm+ or adding
new consistent transitions to CM−. Such a refinement in-
creases the precision of controllable predecessor computation
without introducing new state predicates, which corresponds
to the REFINECPRE operation in the algorithm. Second, we
can add some of the untracked predicates to the set of state
predicates Σ, thus reducing the imprecision introduced by
treating them as external inputs. This refinement increases
the precision of the abstraction, which corresponds to the
REFINEABSTRACTION function in the algorithm.

In summary, we solve the abstract game by decomposing
potentially expensive computations into three types of light-
weight operations performed on demand, as required to im-
prove the precision of the abstraction:

• Computing the abstract transition relation ∆ via light-
weight syntactic analysis of the concrete game

• Computing consistency relations Cm+ and CM− by
iteratively identifying spurious and consistent transitions

• Solving the abstract game using abstract controllable
predecessor operators (5) and (6)

The computational bottleneck in this method can arise either
from having to perform an excessive number of refinements
or if abstractions generated by the algorithm are too complex.
Our refinement procedures, described below, are designed to
avoid such situations by heuristically picking refinements that
are likely to speed up the convergence of the algorithm.

B. REFINECPRE

Figure 4 illustrates the main idea of the consistency refine-
ment algorithm. It shows an abstract state v (Figure 4a) at the
may-must boundary whose untracked substates u1, u2, and
u3 have Cm+-consistent transitions to the must-winning set
WM , but none of these transitions is consistent with CM−.
The REFINECPRE algorithm attempts to precisely categorise
these substates as must-winning or must-losing. In Figure 4b,
the algorithm identifies the abstract transition 〈v, u1, l1〉 as
spurious and eliminates it from Cm+, thus making the u1

sub-state must-losing. Alternatively, it may detect that abstract
transition 〈v, u2, l2〉 is available in all concrete states in u2 and
thus add this transition to CM−, making the u2 sub-state must-
winning (Figure 4c). Finally, it may determine that abstract
transition 〈v, u3, l3〉 is available in some, but not all, concrete
states in u3, i.e., 〈v, u3, l3〉 ∈ Cm \CM . It then partitions u3

into two or more subsets, exactly one of which has a CM−-
consistent transition to WM , by introducing new untracked
predicates (Figure 4d).

Algorithm 2 shows the pseudocode of REFINECPRE.
Lines 3–6 compute the set of candidate tuples 〈v, u, l〉 ∈
Cm \ CM . Note that for player i states we consider may-
consistent transition to WM , whereas for player i states we
consider spoiling transitions to V \WM . Line 9 picks a single
refinement candidate 〈v, u, l〉 from the set. By construction we

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 223

WM WM WM WM

(a) before refinement (b) eliminating spurious
 transition <v,u1,l1>

(c) adding transition
 <v,u2,l2> to CM-

(d) sub-partitioning u3

}

Fig. 4: Different types of consistency refinements. White, grey, and
black background is used to mark respectively must-losing, may-
winning, and must-winning untracked substates. Dashed and solid
arrows show Cm+ and CM−-consistent abstract transitions.

Algorithm 2 Pseudocode of the REFINECPRE function

1: function REFINECPRE(WM)
2: . player i may-winning transitions
3: Ti ← τi↑M ∧ Cm+ ∧ CM− ∧ ∀~σ′.(∆→ (WM)′)
4: . player i may-spoiling transitions
5: Ti ← τi↑M ∧ Cm+ ∧ CM− ∧ ∃~σ′.(∆ ∧ (WM)′)
6: T ← Ti ∨ Ti
7: if T = ⊥ then return false . no refinement is possible
8: else
9: choose 〈v, u, l〉 ∈ T

10: F ← (‖~σ‖ = v ∧ ‖~ω‖ = u ∧ ‖~λ‖ = l)
11: if SATISFIABLE(F) then
12: A← ELIMINATEQUANTIFIERS(∃Y.‖~λ‖ = l)
13: Â← replace atomic predicates in A with boolean

vars, introducing fresh vars when necessary
14: CM− ← CM− ∨ (Â ∧ ~λ = l)
15: else
16: Cm+ ← Cm+ ∧ UNSATCORE(F)
17: end if
18: return true
19: end if
20: end function

know that 〈v, u, l〉 ∈ Cm+. Since Cm+ is an overapproxima-
tion of Cm, we check whether 〈v, u, l〉 ∈ Cm, i.e., whether v,
u, and l satisfy equation (3). To this end, in line 11 we invoke
a decision procedure for the underlying theory to check satis-
fiability of the formula: (‖~σ‖ = v∧‖~ω‖ = u∧‖~λ‖ = l). If the
formula is unsatisfiable, then 〈v, u, l〉 is a spurious transition
that must be eliminated from Cm+. Furthermore, by extracting
an unsatisfiable core of the formula, we obtain an inconsistent
subset of its conjuncts (

∧ ‖αi‖ = ci), αi ∈ ~σ ∪ ~ω ∪ ~λ, which
represents a potentially large set of similar spurious transitions.
We eliminate all of these transitions from Cm+ in line 16.

If, on the other hand, the formula is satisfiable, then there
exists a concrete state-label pair consistent with 〈v, u, l〉. In
this case we want to precisely characterise the set of states
where label l is available, so that we can either add 〈v, u, l〉 to
CM− (as in Figure 4c) or refine it with additional untracked
predicates (as in Figure 4d).

Line 12 computes the set of concrete states where abstract
label l is available by performing quantifier elimination from
formula (∃Y.‖~λ‖ = l), resulting in a quantifier-free formula A
over concrete state variables X . We assume that the underlying
theory supports quantifier elimination, which is the case for
many practically relevant theories, including the theory of
fixed-size bit vectors supported by our tool. In line 13, the
resulting formula A is decomposed into atomic predicates
possibly introducing new untracked and label predicates.
By replacing all atomic predicates in A with corresponding
boolean variables, we obtain a formula Â that describes the set

Algorithm 3 Pseudocode of REFINEABSTRACTION

1: function REFINEABSTRACTION(WM)
2: UM ← CpreUM−

1 (WM) ∧WM

3: toPromote← ~ω ∩ SUPPORT(SHORTPRIME(UM))
4: PROMOTE(toPromote)
5: end function

of all state-untracked pairs must-consistent with the abstract
label l. Line 14 refines CM− with the set of newly discovered
must-consistent transitions.

Example. Assume that in line 9 the algorithm picks a tuple
〈v, u, l〉 where l = (true, true). Line 12 performs quantifier
elimination from the formula ∃val.(‖λ1‖ = true ∧ ‖λ2‖ =
true) = ∃val.(val = req ∧ val = 5) = (req = 5). We
have discovered a new predicate req = 5 that must hold in
states where abstract label l is available. We introduce a new
untracked variable ω2, ‖ω2‖ = (req = 5) and refine CM− with
a new consistent transition: CM− ← CM− ∨ (ω2 ∧ λ1 ∧ λ2).

The accompanying technical report presents an important
optimisation of the REFINECPRE function [22, Appendix].

C. REFINEABSTRACTION

The REFINEABSTRACTION function is invoked by the ab-
straction refinement algorithm when no further consistency
refinements are possible. At this point, every untracked sub-
state of the boundary region is either must-winning or must-
losing, i.e., can be coloured white or black using notation
of Figure 4. REFINEABSTRACTION promotes a subset of
untracked predicates making sure that the winning region WM

expands after re-solving the game in line 2 of Algorithm 1.
Algorithm 3 shows the pseudocode of REFINEABSTRAC-

TION. Line 2 computes all untracked boundary substates that
are must-predecessors of WM . Here, CpreUM− is the same
as CpreM− (Equation (6)), but without untracked variable
quantification:

CpreUM−
i (φ) =τi↑M ∧ ∃~λ, ~σ′.((CM− ∧∆) ∧ φ′) ∨

τi↑M ∧ ∀~λ, ~σ′.((Cm+ ∧∆)→ φ′)

We aim to grow WM by promoting as few untracked
predicates as possible. To this end, we extract a short prime
implicant from UM and promote the untracked variables in
the support of the prime implicant (line 3). This has the effect
of adding a large cube over state and untracked predicates to
WM . The PROMOTE function invoked in line 4 moves the
selected untracked predicates to the set of state predicates Σ
and recomputes the abstraction transition relation ∆ for the
new state predicates. This can lead to the introduction of new
untracked and label predicates, which can serve as refinement
candidates in the future.

D. Correctness

The correctness and termination theorems of [10] hold for
Algorithm 1 with REFINECPRE and REFINEABSTRACTION
functions defined above.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 224

Theorem 1. If Algorithm 1 terminates, it returns the correct
answer.

Proof. By construction, Cprem+
i and CpreM−i over-

and under-approximate abstract controllable predecessor
operators, i.e., Cpremi (φ)↓ ⊆ Cprem+

i (φ)↓ and
CpreM−i (φ)↓ ⊆ CpreMi (φ)↓, for any set φ. Hence,
winning sets Wm = REACH(T↑m, Cprem+

1) and
WM = REACH(T↑M , CpreM−1) computed using these
operators over- and under-approximate the winning set W of
the concrete game: WM↓ ⊆W ⊆Wm↓.

If the algorithm returns Yes then the initial set of the game
is a subset of the must-winning region (I ⊆WM↓) and hence
I ⊆W . Likewise, if the algorithm returns No then I 6⊆Wm↓
and hence I 6⊆W . In both cases the answer produced by the
algorithm is correct.

Theorem 2. If there exists a finite region algebra A such that
all abstractions 〈V, ↓〉 produced by Algorithm 1 are contained
in A then the algorithm terminates.

Proof outline. Let WM and ŴM be must-winning sets com-
puted at two subsequent iterations of Algorithm 1.

We first show that refinement procedures REFINECPRE and
REFINEABSTRACTION guarantee that the must-winning set
computed at every iteration of the refinement loop grows
monotonically, i.e., WM↓ ⊆ ŴM↓. This follows from the
soundness of the refinement procedures, which improve the
precision of CpreM−i at every iteration.

Next we show that the algorithm is guaranteed to make
forward progress, i.e., after a finite number of refinements
it either terminates or discovers new must-winning states
(WM↓ ⊂ ŴM↓). Consider the consistency refinement pro-
cedure REFINECPRE first. Every invocation of this procedure
classifies some of the untracked substates at the may/must
boundary as either must-winning or must-losing (see Figure 4).
Eventually, it will either classify all boundary states as must-
losing, in which case Wm↓ = W = WM↓, and the algorithm
terminates, or find at least one must-winning sub-state (as in
Figures 4c and 4d). In the latter case, a subsequent invocation
of the abstraction refinement procedure REFINEABSTRACTION
is guaranteed to partition one of the boundary states so that
one of the resulting abstract states is must-winning. This state
will be discovered at the next run of the reachability algorithm,
thus expanding the must-winning set.

Since, by the assumption of the theorem, all must-winning
sets WM generated by the algorithm belong to a finite region
algebra, the algorithm is guaranteed to terminate after a finite
number of iterations.

The theory of fixed-size bit vectors supported by our current
implementation satisfies the premise of Theorem 2, which
guarantees the termination of the algorithm.

VI. IMPLEMENTATION

We implemented our abstraction refinement algorithm in the
Termite [19] driver synthesis toolkit. Termite takes a model of
an I/O device and a specification of the service that the driver

must provide to the operating system, and synthesises a driver
implementation in C. Termite provides powerful debugging
facilities such as tools for analysis of synthesis failures based
on counterexample strategies, interactive exploration of syn-
thesised strategies and user-guided interactive code generation.

Our current implementation handles games with Gener-
alised Reactivity-1 (GR(1)) [16] objectives. GR(1) games are
sufficiently expressive to formalise many real-world problems,
including the driver synthesis problem. They strike a balance
between expressiveness and computational difficulty. We ex-
tended our abstraction refinement algorithm to handle GR(1)
games as outlined by de Alfaro and Roy [10].

Termite currently supports input specifications over the con-
crete domain of fixed-size bit vectors and arrays. We use the
Z3 SMT solver to check satisfiability and retrieve unsatisfiable
cores of formulas over concrete variables (lines 11 and 16 of
Algorithm 2). Quantifier elimination (line 12) over bit vector
formulas is performed using our custom implementation of
the decision procedure for bit vectors by Barrett et al. [2].
Termite interacts with the theory solver through a well-defined
interface and hence can be readily extended with additional
theories. All computations over the abstract domain are per-
formed symbolically using the CUDD BDD package.

In addition to the techniques described in the paper we
implemented a number of performance optimisations. First, we
relax the requirement of Algorithm 1 that the initial abstraction
must be precise for initial set I and instead overapproximate
it and refine the approximation lazily whenever the algorithm
discovers a spurious losing initial state. Second, we take ad-
vantage of the natural conjunctive partitioning of the transition
relation and perform early quantification [4] when computing
the controllable predecessor. Third, we avoid re-solving the
game from scratch by reusing results of previous computa-
tions. For example, when computing the must-winning set
WM in Algorithm 1, we use the must-winning set WM from
the previous abstraction-refinement iteration as the starting
value of the fixed point computation. Finally, we use BDD-
specific optimisations supported by CUDD, including dynamic
variable reordering [18] and variable grouping.

In addition to the predicate-based abstraction refinement
algorithm, we implemented the original algorithm by de Alfaro
and Roy, based on variable abstraction, which enables direct
comparison of the two techniques.

Termite consists of 30,000 lines of Haskell code, with the
core abstraction refinement algorithm accounting for 1,800
lines, and took approximately 10 person-years to develop.

VII. EVALUATION

We evaluate Termite by synthesising drivers for several real-
world I/O devices, including an IDE hard disk, a real-time
clock, two versions of UART serial controller, two versions
of I2C bus controller, an SPI bus controller, and a UVC
webcam. We developed corresponding device and OS models
using the Termite Specification Language (TSL) by following
the common methodology used by hardware developers in
building high-level device models. We refer the reader to

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 225

Statistic Case study
IDE RTC UART-1 UART-2 I2C-1 I2C-2 SPI UVC simple SPI simple I2C

1 concrete state vars (bits) 83 (952) 64 (624) 61 (335) 65(896) 64 (458) 50(222) 66(644) 95 (75908) 7 (46) 11 (64)
2 concrete label vars (bits) 27 (389) 24 (199) 20 (86) 15(289) 25 (199) 15(81) 24(384) 33 (49657) 9 (58) 14 (42)
3 consistency refinements 11 9 42 4 12 4 6 22 0 23
4 state refinements 18 16 18 50 15 17 26 25 11 9
5 state predicates 31 25 33 58 24 24 31 30 14 17
6 label predicates 57 41 40 53 36 32 28 130 19 36
7 untracked predicates 7 4 35 2 5 1 6 32 0 0
8 run time (s) 71 74 309 603 39 43 14 190 1 10
9 peak BDD size 864612 515088 907536 1142596 440482 688828 324996 785918 87892 242214

Performance of the de Alfaro and Roy algorithm [10]
10 run time (s) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 865 1151
11 peak BDD size - - - - - - - - 400624 4088000

TABLE I: Summary of experimental case studies.

an accompanying paper for a more detailed description of
the TSL language and the modelling methodology [19]. The
source code of the case studies is available as part of the
Termite distribution [21].

Table I summarises our experiments. The first two rows
characterise the complexity of the input models in terms of
the number of variables and the total number of bits used in
the concrete specification of the game. Concrete state variables
model internal device state, as well as the state of the driver-
OS interface; label variables model commands and responses
exchanged by the driver, the device, and the OS.

Rows 3 and 4 show the number of iterations of the ab-
straction refinement loop required to solve the game. Rows 5
through 7 show the size of the abstract game at the final
iteration, when a winning strategy for the driver was obtained,
in terms of the number of state, label, and untracked pred-
icates. These results demonstrate the dramatic reduction of
the problem dimension achieved by our abstraction refinement
method. The resulting abstract games are still too complex
to solve using explicit state enumeration, hence the use of
symbolic techniques is essential. In all case studies, Termite
was able to find the winning strategy within 11 minutes
running on a 2.9GHz Intel Core i7 laptop (row 8), with peak
BDD size under one million nodes (row 9).

The two final rows show the performance of the original
three-valued abstraction refinement algorithm of de Alfaro and
Roy on our benchmarks. As expected, the algorithm does
not terminate on any of the real-world driver benchmarks
within a two-hour time limit. We therefore developed sim-
plified versions of two of the benchmarks (SPI and I2C-2)
with significantly reduced state spaces. As shown in the last
two columns of the table, the de Alfaro and Roy algorithm
terminates on these benchmarks; however it takes several
orders of magnitude longer than our new algorithm, which
uses predicate abstraction. These results show that predicate
abstraction is essential to solving complex real-world games.

VIII. CONCLUSION

We presented and evaluated a practical predicate-based
abstraction refinement algorithm for solving games. To the best
of our knowledge, this is the first such algorithm described
in the literature. We addressed key performance bottlenecks
involved in applying predicate abstraction in game settings and
demonstrated that our algorithm performs well on real-world

reactive synthesis benchmarks.
REFERENCES

[1] T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining approximations
in software predicate abstraction. In TACAS, pages 388–403, Barcelona,
Spain, Mar. 2004.

[2] C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for bit-
vector arithmetic. In DAC, pages 522–527, San Francisco, California,
USA, June 1998.

[3] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Specify, compile, run: Hardware from PSL. ENTCS,
190(4):3–16, Nov. 2007.

[4] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking
with partitioned transition relations. pages 49–58. North-Holland, 1991.

[5] F. Cassez, J. J. Jessen, K. G. Larsen, J.-F. Raskin, and P.-A. Reynier.
Automatic synthesis of robust and optimal controllers - an industrial
case study. In HSCC, pages 90–104, San Francisco, CA, USA, Apr.
2009.

[6] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In CAV, pages 154–169, Chicago, IL,
USA, July 2000.

[7] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate
abstraction of ANSI-C programs using SAT. Formal Methods in System
Design, 25(2-3):105–127, 2004.

[8] S. Das and D. Dill. Successive approximation of abstract transition
relations. In LICS, pages 51–58, Boston, MA, USA, June 2001.

[9] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions
of games: uncertainty, but with precision. In LICS, pages 170–179,
Turku, Finland, July 2004.

[10] L. de Alfaro and P. Roy. Solving games via three-valued abstraction
refinement. In CONCUR, pages 74–89, Lisboa, Portugal, Sept. 2007.

[11] R. Dimitrova and B. Finkbeiner. Abstraction refinement for games with
incomplete information. In FSTTCS, Bangalore, India, Dec. 2008.

[12] R. Dimitrova and B. Finkbeiner. Counterexample-guided synthesis of
observation predicates. In FORMATS, pages 107–122, London, UK,
Sept. 2012.

[13] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS.
In CAV, pages 72–83, Haifa, Israel, June 1997.

[14] T. A. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided
control. In ICALP, pages 886–902, Eindhoven, The Netherlands, July
2003.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In POPL, pages 58–70, Portland, Oregon, Jan. 2002.

[16] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of Reactive(1) designs.
pages 364–380, Charleston, SC, USA, Jan. 2006.

[17] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
POPL, pages 179–190, Austin, Texas, USA, Jan. 1989.

[18] R. Rudell. Dynamic variable ordering for ordered binary decision
diagrams. In ICCAD, pages 42–47, Santa Clara, CA, USA, 1993.

[19] L. Ryzhyk, A. Walker, J. Keys, A. Legg, A. Raghunath, M. Stumm, and
M. Vij. User-guided device driver synthesis. In OSDI, Broomfield, CO,
USA, Oct. 2014.

[20] S. Shoham and O. Grumberg. A game-based framework for CTL
counterexamples and 3-valued abstraction-refinement. In CAV, pages
275–287, Boulder, Colorado, USA, July 2003.

[21] Termite 2 driver synthesis tool. http://www.termite2.org.
[22] A. Walker and L. Ryzhyk. Predicate abstraction for reactive synthesis.

Technical Report NRL-8281, NICTA, Aug. 2014.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 226

Author Index

Abraham, Erika 59
Außerlechner, Simon 35

Barrett, Clark 7, 139
Becker, Bernd 203
Belov, Anton 115
Biere, Armin 3, 107, 179
Bingham, Brad 15
Bittner, Benjamin 23
Bloem, Roderick 31, 35
Bozzano, Marco 23

Cabodi, Gianpiero 43
Chaki, Sagar 51
Chen, Xin 59
Cimatti, Alessandro 23
Cook, Byron 67, 75

Davi, Francesco 207
Day, Nancy A. 215
De Moura, Leonardo 195
Deters, Morgan 7
Dierkes, Thomas 207
Dutertre, Bruno 83

Egli, Marcel 207
Egly, Uwe 31
Ehrig, Rainald 207

Fuhs, Carsten 67

Gario, Marco 23
Gascon, Adria 83
Ghosh, Soumava 91
Goel, Shilpi 91
Greenstreet, Mark 15
Griggio, Alberto 23
Gurfinkel, Arie 51, 99, 115

Hanna, Ziyad 1
Henzinger, Thomas A. 11

227

Heule, Marijn 107
Hofferek, Georg 35
Hunt, Warren 91

Ille, Fabian 207
Ivrii, Alexander 115

Jancik, Pavel 123
Jovanovic, Dejan 83

Kaiss, Daher 131
Kalechstain, Jonathan 131
Kaufmann, Matt 91
Khlaaf, Heidy 75
Kinder, Johannes 5
King, Tim 7, 139
Klampfl, Patrick 31
Koenighofer, Robert 31
Kofron, Jan 123
Kruger, Tillmann 207
Könighofer, Bettina 35
Könighofer, Robert 35

Lal, Akash 147
Leeners, Brigitte 207
Leroy, Xavier 9
Liu, Peizun 155
Lonsing, Florian 31

Majumdar, Rupak 163
Malik, Sharad 83
Mancini, Toni 207
Manolios, Panagiotis 171
Mari, Federico 207
Massini, Annalisa 207
Melatti, Igor 207

Niemetz, Aina 179
Nimkar, Kaustubh 67

O’Hearn, Peter 67

Palena, Marco 43
Papavasileiou, Vasilis 171
Pasini, Paolo 43
Piskac, Ruzica 13

228

Piterman, Nir 75
Popeea, Corneliu 187
Preiner, Mathias 179

Qadeer, Shaz 147

Reynolds, Andrew 7, 195
Riedewald, Mirek 171
Rollini, Simone Fulvio 125
Rybalchenko, Andrey 187
Ryzhyk, Leonid 219
Röblitz, Susanna 207

Salvo, Ivano 207
Sankaranarayanan, Sriram 59
Scheibler, Karsten 203
Seidl, Martina 107
Sharygina, Natasha 125
Sinha, Nishant 51
Sinisi, Stefano 207
Spörk, Raphael 35
Subramanyan, Pramod 83

Tetali, Sai Deep 163
Tinelli, Cesare 7, 139, 195
Tiwari, Ashish 83
Tronci, Enrico 207

Vakili, Amirhossein 215
Vizel, Yakir 99

Wahl, Thomas 155
Walker, Adam 219
Wang, Zilong 163
Wilhelm, Andreas 187

229

FMCAD 2014 SPONSORS

	Challenging Problems in Industrial Formal Verification -- Ziyad Hanna
	Challenges in Bit-Precise Reasoning -- Armin Biere
	Efficient symbolic execution for software testing -- Johannes Kinder
	A Tour of CVC4: How it works, and how to use it -- Morgan Deters, Andrew Reynolds, Tim King, Clark Barrett and Cesare Tinelli
	Compiler verification for fun and profit -- Xavier Leroy
	Computer-Aided Verification Technology for Biology -- Thomas A. Henzinger
	Student Forum -- Ruzica Piskac
	Response property checking via distributed state space exploration -- Brad Bingham and Mark Greenstreet
	Towards Pareto-Optimal Parameter Synthesis for Monotonic Cost Functions -- Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, Marco Gario and Alberto Griggio
	SAT-Based Methods for Circuit Synthesis -- Roderick Bloem, Uwe Egly, Patrick Klampfl, Robert Koenighofer and Florian Lonsing
	Synthesis of Synchronization using Uninterpreted Functions -- Roderick Bloem, Georg Hofferek, Bettina Könighofer, Robert Könighofer, Simon Außerlechner and Raphael Spörk
	Interpolation with Guided Refinement: revisiting incrementality in SAT-based Unbounded Model Checking -- Gianpiero Cabodi, Marco Palena and Paolo Pasini
	Efficient Verification of Periodic Programs using Sequential Consistency and Snapshots -- Sagar Chaki, Arie Gurfinkel and Nishant Sinha
	Under-approximate Flowpipes for Non-linear Continuous Systems -- Xin Chen, Sriram Sankaranarayanan and Erika Abraham
	Disproving termination with overapproximation -- Byron Cook, Carsten Fuhs, Kaustubh Nimkar and Peter O'Hearn
	Faster Temporal Reasoning for Infinite-State Programs -- Byron Cook, Heidy Khlaaf and Nir Piterman
	Template-based Circuit Understanding -- Adria Gascon, Ashish Tiwari, Bruno Dutertre, Pramod Subramanyan, Sharad Malik and Dejan Jovanovic
	Simulation and Formal Verification of x86 Machine-Code Programs that make System Calls -- Shilpi Goel, Warren Hunt, Matt Kaufmann and Soumava Ghosh
	DRUPing for Interpolants -- Arie Gurfinkel and Yakir Vizel
	Efficient Extraction of Skolem Functions from QRAT Proofs -- Marijn Heule, Martina Seidl and Armin Biere
	Small Inductive Safe Invariants -- Alexander Ivrii, Arie Gurfinkel and Anton Belov
	On Interpolants and Variable Assignments -- Pavel Jancik, Jan Kofron, Simone Fulvio Rollini and Natasha Sharygina
	Post-silicon Timing Diagnosis Made Simple using Formal Technology -- Daher Kaiss and Jonathan Kalechstain
	Leveraging Linear and Mixed Integer Programming for SMT -- Timothy King, Clark Barrett and Cesare Tinelli
	A Program Transformation for Faster Goal-Directed Search -- Akash Lal and Shaz Qadeer
	Infinite-State Backward Exploration of Boolean Broadcast Programs -- Peizun Liu and Thomas Wahl
	Kuai: A Model Checker for Software-defined Networks -- Rupak Majumdar, Sai Deep Tetali and Zilong Wang
	ILP Modulo Data -- Panagiotis Manolios, Vasilis Papavasileiou and Mirek Riedewald
	Turbo-Charging Lemmas on Demand with Don't Care Reasoning -- Aina Niemetz, Mathias Preiner and Armin Biere
	Reduction for Compositional Verification of Multi-Threaded Programs -- Corneliu Popeea, Andrey Rybalchenko and Andreas Wilhelm
	Finding Conflicting Instances of Quantified Formulas in SMT -- Andrew Reynolds, Cesare Tinelli and Leonardo De Moura
	Using Interval Constraint Propagation for Pseudo-Boolean Constraint Solving -- Karsten Scheibler and Bernd Becker
	Patient-Specific Models from Inter-Patient Biological Models and Clinical Records -- Enrico Tronci, Toni Mancini, Ivano Salvo, Stefano Sinisi, Federico Mari, Igor Melatti, Annalisa Massini, Francesco Davi, Thomas Dierkes, Rainald Ehrig, Susanna Röblitz, Brigitte Leeners, Tillmann Kruger, Marcel Egli and Fabian Ille
	Reducing CTL-live Model Checking to First-Order Logic Validity Checking -- Amirhossein Vakili and Nancy A. Day
	Predicate Abstraction for Reactive Synthesis -- Adam Walker and Leonid Ryzhyk
	Author Index

