Learning Linear Invariants using Decision Trees

Introduction

- **Inferring invariants** for loops is a fundamental problem in program verification.
- Existing approaches (abstract interpretation, predicate abstraction, etc) are limited or incur a high complexity when it comes to inferring invariants in the form of arbitrary boolean combinations of linear inequalities.
- An invariant separates reachable states from states that lead to an error. Thus, is nothing but a **binary classifier** [Sharma et al. CAV'12].
- Thus, we can use Machine Learning.
- Our contribution: A fast, simple, and elegant learning algorithm based on Decision Trees that successfully learns invariants in the form of arbitrary boolean combinations of linear inequalities.

Preliminaries

A **Program**:

 $x \leftarrow P$; /* precondition */ while $x \in E$ do $x \leftarrow F(x)$; assert $(x \in Q)$; /* postcondition */

Example:

 $\mathbf{x} \leftarrow 9, \mathbf{y} \leftarrow 0;$ while y < 9 do $x \leftarrow x - 1$, $y \leftarrow y + 1$; assert (x == 0)

States: values of variables at loop head.

Good states G are all states reachable from precondition P.

 $G = \{(9,0), (8,1), (7,2), \dots\}$

Bad states B are all states that can reach error state $\neg Q.$

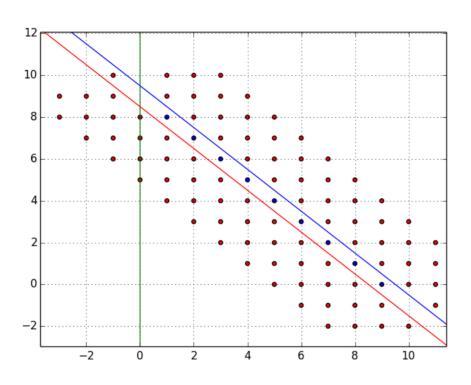
$$B = \{(1,9), (0,8), (-1,9), \dots\}$$

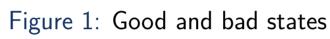
An **invariant** is *I* s.t.:

- Holds at loop entry: $P \subseteq I$
- Maintained by loop: $F(I) \subseteq I$
- Implies postcondition: $I \cap \neg E \subseteq Q$

Thus, $G \subseteq I$ and $I \cap B = \emptyset$. Our example has the invariant (Figure 1):

$$x + y = 9 \land x \ge 0$$





Restrict programs to use *linear operations*. Invariant must be a *boolean combination of linear inequalities*. **Problem:** Given good and bad states as sets of points in \mathbb{Z}^d , find a boolean combination of linear inequalities I that separate them.

Algorithm

- Choose a set of candidate hyperplane slopes $H = \{\vec{w_1}, \vec{w_2}, \dots\}.$
- Process data: new features are: $z_i = \vec{x} \cdot \vec{w_i}$.
- Run a **Decision Tree** on processed data.
- Splitting z_i at t corresponds to the linear inequality: $\vec{x} \cdot \vec{w_i} \leq t.$
- A DT is thus a boolean combination of such linear inequalities.

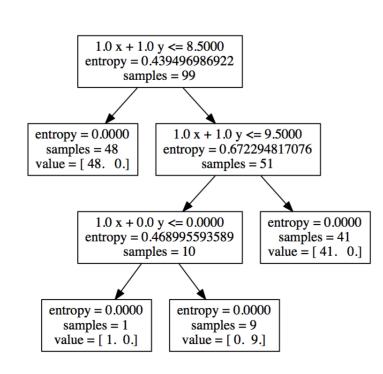


Figure 2: Decision Tree output for example program data from Figure 1. Converting this tree to a formula yields: $x+y > 8.5 \land x+y \le 1$ $9.5 \wedge x \ge 0$

Siddharth Krishna New York University

Problem

Evaluation

- We chose benchmarks that were reported to be challenging to other tools such as ICE, MCMC, CPAchecker, InvGen, and HOLA (Table 1).
- Note: some benchmarks require disjunctions of conjunctions of inequalities, something that other invariant generation tools find hard.
- Sampling:
- Good states: run program on different inputs satisfying precondition.
- Bad states: for all points around good states, check if loop exits and assert fails.
- Candidate hyperplanes: we used the commonly used abstract domain of octagons : hyperplanes of the form $\pm x_i \pm x_j \ge c$.
- Correctness of invariant verified by theorem prover (we used Boogie & $\mathbb{Z}3$).

Results

- Our algorithm was able to successfully find invariants for all the programs that we considered. It also was faster on most benchmarks.
- We can handle larger candidate sets H and sample sets as compared to similar ML based techniques, due to small learning complexity.

Table 1: Comparison of running times in seconds.

Name	ICE	MCMC0	MCMC1	CPA	InvGen	DT
cegar2	4.86	17.30	30.66	1.97	Х	0.01
ex23	Х	0.01	0.02	19.77	0.02	0.12
fig1	0.38	5.13	13.19	1.75	Х	14.95
fig6	0.30	0.00	0.01	1.68	0.01	0.01
fig9	0.33	0.00	0.00	1.73	0.01	0.01
gopan	Х	ТО	ТО	63.85	Х	0.03
hola10	49.21	ТО	ТО	2.03	Х	0.04
hola15	Х	0.04	ТО	Х	0.02	0.52
hola18	TO	68.78	21.93	TO	Х	1.63
hola19	Х	ТО	ТО	Х	Х	0.19
nested2	62.02	0.09	0.15	1.86	0.03	0.04
nested5	60.95	31.28	63.68	2.08	0.03	2.47
popl07	Х	ТО	ТО	110.81	Х	0.04
prog2	0.34	0.00	0.02	4.39	0.01	0.02
prog4	Х	0.13	0.58	Х	Х	2.34
sum1	1.32	39.81	29.04	Х	Х	0.02
test1	0.39	TO	TO	1.71	0.04	0.92

Examples

• Disjunction of conjunctions:

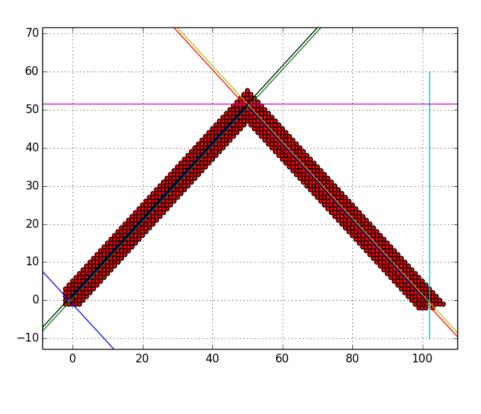


Figure 3: gopan

• Infinite reachable sets:

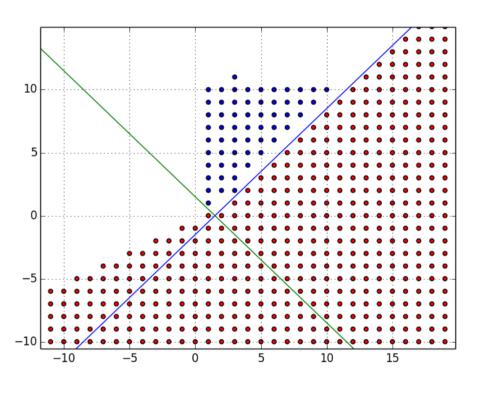


Figure 4: simple2

Ongoing & Future Work

- We have already extended our algorithm to handle non-linear functions such as mod and quadratic functions.
- Future: theoretical guarantees on convergence, make use of implication counter-examples.
- We take a long time on some benchmarks mainly due to our naive sampling.
- Future: combine with static analysis techniques to make more robust.