
Synchronisation Synthesis for
Concurrent Programs

Thorsten Tarrach (joint work with Pavol Černý, Ashutosh Gupta,
Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk and Roopsha Samanta)

.

...... Introduction: Concurrency bugs

.

......

Concurrency bugs are hard to find and fix
We attempt to fix them automatically using synthesis
Specification:

..Sequentially
correct program

.

Specification:
assertions in

the code

. Our
synthesis

. Correct program
for concurrency

.

add
atomic sections,

wait-notifies;
reorder commands

.

assertions pass
in all schedulings

.

...... Atomic sections example

.

......

This example requires two atomic sections to be fixed
With a linear trace we cannot infer where to place atomic sections

init: x = 0; t1 = F
thread1 thread2
A: l1 = x 1: l2 = x
B: l1++ 2: l2++
C: x = l1 3: x = l2
D: t1 = T 4: assert(¬t1∨x==2)

..l1 = x.

l1++

.

x = l1

.

t1 = T

. l2 = x.

l2++

.

x = l2

.

assert(…)

Using a happens-before relationship we can infer atomic sections after two iterations
An atomic section is denoted by a loop inside a thread (it is created by adding an edge)

..l1 = x.

l1++

.

x = l1

.

t1 = T

. l2 = x.

l2++

.

x = l2

.

assert(…)

..l1 = x.

l1++

.

x = l1

.

t1 = T

. l2 = x.

l2++

.

x = l2

.

assert(…)

..l1 = x.

l1++

.

x = l1

.

t1 = T

. l2 = x.

l2++

.

x = l2

.

assert(…)

.

(a) Iteration 1

..l1 = x.

l1++

.

x = l1

.

t1 = T

. l2 = x.

l2++

.

x = l2

.

assert(…)

. ..l1 = x.

l1++

.

x = l1

.

t1 = T

. l2 = x.

l2++

.

x = l2

.

assert(…)

. ..l1 = x.

l1++

.

x = l1

.

t1 = T

. l2 = x.

l2++

.

x = l2

.

assert(…)

..

(b) Iteration 2

.

...... Reordering example

.

......

init: IntrMask=0; ready=0; handled=0
init_thread intr_thread
M: IntrMask = 1 R: await(IntrMask==1)
N: ready = 1 S: handled = ready

T: assert(handled)

..IM = 1.

ready = 1

. await(IM==1).

handled = ready

.

assert(handled)

We remove edges from the partial order if M; N ≡ N; M
If such an edge is readded to create a cycle it means the two corresponding statements will be swapped in
the program

..IM = 1.

ready = 1

. await(IM==1).

handled = ready

.

assert(handled)

..IM = 1.

ready = 1

. await(IM==1).

handled = ready

.

assert(handled)

.

...... Synthesis algorithm outline

.

......

..Program correct?. Return program.

Find Trace

.

External
model checker

.

most time-
consuming step

.

Learn constraints
(possible fixes)

.

Analyse good trace

..

Represent trace as a
happens-before relation

.

Generalise relation
into partial-order

.

Introduce a cycle into the rela-
tion to eliminate the bad traces

.
no

. yes

.

bad

.

good

.

new
program

.

new
constraints

.

...... Preventing regressions by using good traces

.

......

Reordering can cause
regressions

By analysing a good trace we can
identify possible regressions before
reordering instructions

init: x = 0; y = 0; z = 0
thread1 thread2 thread3
1: await(x==1) A: x=1 n: await(z==1)
2: await(y==1) B: y=1 p: assert(y==1)
3: assert(z==1) C: z=1

..1:await(x==1).

2:await(y==1)

.

3:await(z==1)

. A:x=1.

B:y=1

.

C:z=1

A;B;1;2;3 causes assertion 3 to
fail
2 possible fixes: swap 𝙱 ↔ 𝙲 or
swap 𝙰 ↔ 𝙲
Swapping 𝙱 ↔ 𝙲 can lead to
assertion p failing

..1:await(x==1).

2:await(y==1)

.

3:assert(z==1)

. A:x=1.

B:y=1

.

C:z=1

.
n:await(z==1)

.

p:assert(y==1)

We analyse good trace A;B;C;1;2;3;n;p
Blue edges indicate data-flow dependencies of
awaits, red of asserts
We learn not to reorder B;C and n;p to protect
the data-flow into assertion p

After good trace analysis only the correct fix 𝙰 ↔ 𝙲 remains
.
...... Conclusion.

......

We consider reorderings as fixes
We generalise the counter-example trace to capture the cause of the error
We pervent regressions by analysing good traces

.

...... Recent: Better trace generalisation

.

......

Trace generalisation is crucial to the success of the synthesis
Trace generalisation should capture the core of the bug
Idea: Represent traces as a Boolean formula over happens-before constraints

global: x, withdrawal, deposit, balance, deposited, withdrawn
init: x = balance; deposited = 0; withdrawn = 0

𝜋:
thread_withdraw:
localvars: temp
𝚆𝟷: temp = balance
𝚆𝟸: balance = temp - withdrawal
𝚆𝟹: withdrawn = 1

thread_deposit:
localvars: temp
𝙳𝟷: temp = balance
𝙳𝟸: balance = temp + deposit
𝙳𝟹: deposited = 1

thread_checkresult:
𝙲𝟷: assume (deposited == 1 ∧ withdrawn == 1)
𝙲𝟸: assert (balance == x + deposit - withdrawal)

Original Trace: 𝜋 = 𝚆𝟷, 𝙳𝟷, 𝚆𝟸, 𝚆𝟹, 𝙳𝟸, 𝙳𝟹, 𝙲𝟷, 𝙲𝟸
Representation of bad interleavings of 𝜋:
𝒩b

𝜋 = hb(𝚆𝟷, 𝙳𝟸) ∧ hb(𝙳𝟷, 𝚆𝟸)
Representation of good interleavings of 𝜋:
𝒩g

𝜋 = hb(𝙳𝟸, 𝚆𝟷) ∨ hb(𝚆𝟸, 𝙳𝟷)

We introduce rewrite rules on 𝒩g
𝜋 for synthesis, e.g.

hb(𝚇𝚓, 𝚈𝚔) ∨ hb(𝚈ℓ, 𝚇𝚒) ∨ 𝜓 𝚒 ≤ 𝚓 𝚔 ≤ ℓ
𝚕𝚘𝚌𝚔𝚇[𝚒,𝚓], 𝚈[𝚔,ℓ]࡞ ∨ 𝜓 add.lock

The add.lock rewriting rule yields 𝚕𝚘𝚌𝚔𝚆[𝟷,𝟸], 𝙳[𝟷,𝟸]࡞
.
...... References.

......

[1] A. Griesmayer, R. Bloem, and B. Cook. Repair of Boolean
Programs with an Application to C. In CAV, 2006.

[2] A. Gupta, T. Henzinger, A. Radhakrishna, S. Roopsha, and
T. Tarrach. Succinct Representation of Concurrent Trace Sets.
In POPL, 2015.

[3] B. Jobstmann, A. Griesmayer, and R. Bloem. Program Repair
as a Game. In CAV, 2005.

[4] R. Samanta, J. Deshmukh, and A. Emerson. Automatic
Generation of Local Repairs for Boolean Programs. In
FMCAD, 2008.

[5] A. Solar-Lezama, C. Jones, and R. Bodík. Sketching
concurrent data structures. In PLDI, 2008.

[6] M. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided
synthesis of synchronization. In POPL, 2010.

[7] P. Černý, K. Chatterjee, T. Henzinger, A. Radhakrishna, and
R. Singh. Quantitative synthesis for concurrent programs. In
CAV, 2011.

[8] P. Černý, T. Henzinger, A. Radhakrishna, L. Ryzhyk, and
T. Tarrach. Efficient Synthesis for Concurrency by
Semantics-Preserving Transformations. In CAV, 2013.

[9] P. Černý, T. Henzinger, A. Radhakrishna, L. Ryzhyk, and
T. Tarrach. Regression-free Synthesis for Concurrency. In
CAV, 2014.

