
Theory-Aided Model Checking of Concurrent Transition Systems

Guy Katz
Weizmann Institute of Science

guy.katz@weizmann.ac.il

Clark Barrett
New York University
barrett@cs.nyu.edu

David Harel
Weizmann Institute of Science

david.harel@weizmann.ac.il

Abstract—We present a method for the automatic composi-
tional verification of certain classes of concurrent programs. Our
approach is based on the casting of the model checking problem
into a theory of transition systems within CVC4, a DPLL(T)
based SMT solver. Our transition system theory then cooperates
with other theories supported by the solver (e.g., arithmetic,
arrays), which can help accelerate the verification process. More
specifically, our theory solver looks for known patterns within
the input programs and uses them to generate lemmas in the
languages of other theories. When applicable, these lemmas can
often steer the search away from safe parts of the search space,
reducing the number of states to be explored and expediting the
model checking procedure. We demonstrate the potential of our
technique on a number of broad classes of programs.

I. INTRODUCTION

In concurrent programming, the size of the composite pro-
gram is typically exponential in the number of its constituent
threads. This phenomenon, an instance of the state explosion
problem, is a major hindrance to the verification of concurrent
software. In recent decades, a prominent approach to tackling
this difficulty has been that of compositional verification [13]:
properties of threads are derived/verified in isolation, and are
used to deduce global system correctness, without exploring
the entire composite state space. When applicable, compo-
sitional verification can often significantly outperform direct
verification techniques.

A key challenge in compositional verification is how to
automatically come up with “good” thread properties — those
whose verification is considerably cheaper than the verification
of the global property on the one hand, but which are
sufficiently meaningful to imply the desired system properties
on the other. Automatic property generation is essential in
rendering a compositional verification scheme scalable [11].

Since the compositional verification of arbitrary programs is
difficult (and often impossible [9]), one reasonable approach is
to trade generality for effectiveness — i.e., to limit the scope
of programs that a scheme handles, in exchange for better per-
formance on programs that remain within that scope. Here, we
adopt this approach and propose an automatic compositional
verification scheme for certain kinds of concurrent software.

The paper has two main contributions. The first is the rigor-
ous formalization and implementation of a solver for a theory
of transition systems (T S) within the context of CVC4 [1]
— a lazy, DPLL(T) based SMT solver [28]. The T S solver
takes as input formulas describing a program’s concurrent
threads (given as transition systems) and the assertion that
a certain safety property is violated; and it answers UNSAT
if the program is safe, or SAT if it is not. As a standalone

module, the T S solver explores the space of reachable states
in order to determine a system’s safety — an exploration that
is driven by the SMT solver’s underlying SAT engine.

Several existing approaches utilize SMT solvers in model
checking (e.g., Lazy Annotation [26] and PDR [8]), but
typically the process is driven by a model checker that uses
an SMT solver as a black-box tool. In our approach the roles
are reversed, and the SMT engine, via the T S solver, can
be regarded as invoking a model checker. This design allows
other theories within CVC4 to be seamlessly used in analyzing
the input program at hand, determining which parts of the state
space should be explored and which may safely be ignored.
These theories may then influence the search conducted by the
T S solver by asserting lemmas to the underlying DPLL(T)
core, sometimes pruning significant portions of the search
space and greatly improving performance. We term this pro-
cess theory-aided model checking: the T S solver explores the
state space while also looking for opportunities in which other
theories may aid and direct the search.

The second contribution of the paper is in the way other
theories determine which parts of the state space may be
ignored during model checking. We perform this by having
the T S solver analyze the input threads and look for pre-
supplied patterns: structural properties of the threads that
may be expressed as assertions in the languages of other
theories, such as arithmetic or arrays. It is through these
assertions that other theories can “understand” the program
and efficiently discover, e.g., that a certain branch of the search
space cannot lead to a violation. A key fact here is that each
thread/transition system is analyzed separately — and hence
the compositionality of our approach: the analysis complexity
is proportional to the size of the program and not to that of
its state space. We thoroughly describe three of the currently
implemented patterns.

While our proposed technique is compositional and com-
pletely automatic, it is useful only when the input programs
match one of the pre-supplied patterns. This is in line with
our approach of trading generality for effectiveness, and, as
we demonstrate in later sections, our approach is capable of
effectively handling broad classes of programs even with just
a few stored patterns.

The type of software that we target here is a family of
discrete event systems. In particular, we focus on a com-
putational model that has three fundamental concurrency
idioms — requesting events, waiting-for events and blocking
events — which we term the RWB model. The RWB
concurrency idioms are widespread and appear, sometimes



in related forms, in various formalisms such as publish-
subscribe architectures [12], supervisory control [29] and live
sequence charts (LSC) [10]. Together, these three idioms
also form the behavioral programming (BP) model [20].
Thus, by focusing on the RWB model, we hope to make
our technique applicable (with appropriate adjustments) to
a variety of programming formalisms. Further, we believe
that the technique can be extended to cater to additional
concurrency idioms and models.

The rest of the paper is organized as follows. In Section II
we recap the definitions of the DPLL(T) framework for SMT
solvers and of the RWB model. Next, in Section III we
introduce the theory of transition systems (T S) and describe
a theory solver aimed at model checking RWB programs. In
Section IV we demonstrate how the T S solver can cooperate
with other theory solvers in order to expedite model checking.
Subsequently, we apply our technique to two broad classes of
problems: periodic problems in Section V, and programs with
shared arrays in Section VI. Experimental results appear in
Section VII, and we conclude with a discussion and related
work in Section VIII.

II. DEFINITIONS

The DPLL(T) Framework. DPLL(T) [28] is an extensible
framework used by modern SMT solvers. It employs multiple
specialized theory solvers that interact with a SAT solver.
The SAT solver maintains an input formula F and a partial
assignment M for F . Periodically, a theory solver is asked
whether M is satisfiable in its theory; and, if it is not, the
theory solver generates a conflict clause, the negation of an
unsatisfiable subset of M , that is added to F . The theory
solver may request case splitting by means of the splitting-on-
demand paradigm [2], which allows the solver to add theory
lemmas to F consisting of clauses possibly with literals not
occurring in F .

The RWB Model. In this work we focus on the RWB
model for concurrent discrete event systems. An RWB pro-
gram is comprised of a set of events and set of threads that
communicate via the requesting, waiting-for and blocking of
events. More specifically, the threads repeatedly synchronize
with each other at predetermined synchronization points, and
at each such point they each declare events that they request
and events that they block. Then, an event that is requested by
at least one thread and not blocked is selected for triggering,
and all the threads that requested or waited-for this event
proceed with their execution. Whenever a new synchronization
point is reached, the process is repeated.

The RWB model is not intended to be programmed in
directly. Rather, it is used to describe the underlying tran-
sition systems of threads written in higher level languages,
for the purpose of analysis and verification. Actual pro-
gramming in RWB is performed, e.g., using the behavioral
programming (BP) framework [20], which is implemented
in various high level languages such as C++ or Java (see
http://www.b-prog.org). Thus, while inter-thread communica-
tion in BP is performed solely through the RWB idioms,
threads may internally use any construct provided by the

underlying programming language (e.g., C++). Indeed, the
tool and examples described in this paper were prepared using
a C++ version of BP (termed BPC [16]), and CVC4. It should
further be noted that the RWB definitions as given here
entail global lockstep synchronization between components,
which may cause unwanted overhead. There exist extensions
to RWB that mitigate this difficulty without altering the
model’s semantics [14], and our technique is applicable to
these extensions as well.

Formally, an RWB-thread T over event set E is a tuple
T = 〈Q, δ, q0, R,B〉, where Q is a set of states (one for each
synchronization point), q0 is the initial state, R : Q→ 2E and
B : Q → 2E map states to events requested and blocked at
these states (respectively), and δ : Q×E → 2Q is a transition
function (the definition is adopted from [19]).
RWB programs are created by composing RWB-threads.

The parallel composition of threads T 1 = 〈Q1, δ1, q1
0 , R

1, B1〉
and T 2 = 〈Q2, δ2, q2

0 , R
2, B2〉, both over the same event

set E, yields the RWB-thread defined by T 1 ‖ T 2 =
〈Q1 × Q2, δ, 〈q1

0 , q
2
0〉, R1 ∪ R2, B1 ∪ B2〉, where 〈q̃1, q̃2〉 ∈

δ(〈q1, q2〉, e) iff q̃1 ∈ δ1(q1, e) and q̃2 ∈ δ2(q2, e). The union
of the labeling functions is defined in the natural way, i.e. e ∈
(R1 ∪R2)(〈q1, q2〉) iff e ∈ R1(q1)∪R2(q2). An RWB pro-
gram P comprised of RWB-threads T 1, T 2, . . . , Tn is the
composite thread P = T 1 ‖ . . . ‖ Tn. Denoting P =
〈Q, δ, q0, R,B〉, an execution of P starts from q0, and in
each state q along the run an enabled event is chosen for
triggering, if one exists (i.e., an event e ∈ R(q) − B(q)).
Then, the execution moves to state q̃ ∈ δ(q, e), and so on.
An execution can either be infinite, or finite if it ends in a
state with no successors (a deadlock state). An illustration of
a simple RWB program appears in Fig. 1.
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Figure 1: An RWB program for controlling the water level in a tank with hot and
cold water sources. Each node corresponds to a synchronization point in a thread, labeled
with its requested (R) and blocked (B) events. Waited-for events are not labeled, and are
represented by transitions. If an event that a thread did not wait for is triggered, the thread
does not change states. In the program depicted, the RWB-thread WhenLowAddHot
repeatedly waits for WaterLevelLow events (requested by a sensor thread, not shown)
and requests three times the event Hot. WhenLowAddCold performs a similar action
with the event Cold. In order to keep the water temperature stable, the Alternation
thread enforces the interleaving of Hot and Cold events by using event blocking.

From a software-engineering perspective, the motivation for
using the RWB idioms for inter-thread communication lies
in the model’s strict and simple synchronization mechanism.
Studies show that this form of inter-thread interaction — i.e.,
through repeated synchronization and declaration of requested,
waited-for and blocked events — facilitates incremental, non-
intrusive development, and the resulting systems often have
threads that are aligned with the specification [20].

Verifying RWB Programs. In [19], [22], the authors
demonstrate how the transition systems underlying RWB-



threads can be automatically extracted from high level code
and then, using abstraction techniques, be symbolically tra-
versed in order to verify safety properties. Safety properties
are themselves expressed by marker RWB-threads, marking
that a violation has occurred with a special API call [19].
For simplicity, we assume that marker threads signal that
a violation has occurred by blocking all events, causing a
deadlock. Thus, safety checking is reduced to checking for
deadlock freedom.

The manual compositional verification of RWB programs
is discussed in [15]. There, it is shown how the simple RWB
synchronization mechanism facilitates the generation of in-
dividual thread properties, which are then used for proving
the system property at hand. The beneficial effect that simple
concurrency idioms have on verification is also discussed
in [18]. Indeed, the simplicity of the RWB idioms plays a key
role in the pattern matching algorithm that we discuss later.

III. THE THEORY OF TRANSITION SYSTEMS

We now cast the model checking of RWB into a DPLL(T)
setting, by defining a dedicated theory of transition systems
(T S). We assume familiarity with the definitions of many-
sorted first order logic (see, e.g., [3]). The theory is param-
eterized by a set Q̄ = {Q1, . . . , Qn} of state sorts used to
represent the state sets of the program’s constituent threads.
Let Q̄+ denote the composite state sorts obtained by taking
the Cartesian product of one or more elements in Q. Every
element Q ∈ Q̄+ is a sort in T S . Further, every such Q is
also associated with a matching transition system sort, SQ.
Finally, T S has an event sort, E.

For every Q ∈ Q̄+ the signature includes: the predicate
IQ : SQ×Q, indicating initial states; the predicates RQ, BQ :
SQ ×Q× E to indicate whether an event is requested (RQ)
or blocked (BQ) at a given state; and the predicate TrQ :
SQ ×Q× E ×Q to indicate the state transition rules.

In order to reason about composite transition systems, the
signature includes the following functions and predicates.
For every Q1, Q2 ∈ Q̄+ we have the transition system
composition function ‖Q1Q2 : SQ1 × SQ2 → SQ1×Q2 (Re-
call that (Q1 × Q2) is itself a sort in Q̄+); and also the
pairQ1Q2 : Q1 × Q2 → (Q1 × Q2) function for composing
states, which, per the T S semantics, is a bijection. Later we
often omit the Q subscripts when clear from the context.

For each Q1, Q2 ∈ Q̄+, T S has the following axioms
which enforce theRWB composition rules. A composite state
is initial iff its components are initial states:
∀s1 : SQ1 , s2 : SQ2 , s : SQ1×Q2 . s = s1 ‖ s2 =⇒
∀q : Q1 ×Q2. (I(s, q) ⇐⇒
∃q1 : Q1, q2 : Q2. (I(s1, q1) ∧ I(s2, q2) ∧ q = pair(q1, q2))).

Composite transitions are performed component-wise:
∀s1 : SQ1 , s2 : SQ2 , s : SQ1×Q2 . s = s1 ‖ s2 =⇒
∀q, q′ : Q1 ×Q2, e : E. (Tr(s, q, e, q′) ⇐⇒
∃q1, q′1 : Q1, q2, q

′
2 : Q2. (q = pair(q1, q2)∧

q′ = pair(q′1, q
′
2) ∧ Tr(s1, q1, e, q

′
1) ∧ Tr(s2, q2, e, q

′
2))).

Requested and blocked events in a composite state are the
union of those in the component states:

∀s1 : SQ1 , s2 : SQ2 , s : SQ1×Q2 . s = s1 ‖ s2 =⇒
∀q : Q1 ×Q2, e : E.(R(s, q, e) ⇐⇒ ∃q1 : Q1, q2 : Q2.

q = pair(q1, q2) ∧ (R(s1, q1, e) ∨R(s2, q2, e))) ∧
(B(s, q, e) ⇐⇒ ∃q1 : Q1, q2 : Q2.

q = pair(q1, q2) ∧ (B(s1, q1, e) ∨B(s2, q2, e))).

As previously discussed, by encoding safety properties as
threads of the program to be checked, safety is reduced to
deadlock freedom. For each Q ∈ Q̄+, the signature includes
a deadlockQ : SQ ×Q predicate, such that:
∀s : SQ, q : Q. (deadlock(s, q) ⇐⇒
¬∃q′ : Q, e : E. Tr(s, q, e, q′) ∧R(s, q, e) ∧ ¬B(s, q, e)),

and the safe stateQ : SQ ×Q predicate, with:
∀s : SQ, q : Q. ¬safe state(s, q) =⇒ deadlock(s, q) ∨
∃q′ : SQ, e : E. (Tr(s, q, e, q′) ∧R(s, q, e) ∧

¬B(s, q, e) ∧ ¬safe state(s, q′)).

¬safe stateQ(s, q) indicates that state q is unsafe, because it
is (or can lead to) a deadlock state. Finally, for each Q ∈ Q̄+,
safeQ : SQ indicates that a transition system is safe:
∀s : SQ. ¬safe(s) ⇐⇒ ∃q : Q. I(s, q) ∧ ¬safe state(s, q).

The Theory Solver. Inputs for the T S solver start with
a preamble P that contains assertions that describe the pro-
gram’s threads. Specifically, P includes variables s1 . . . , sn,
each of sort SQ for some basic state sort Q ∈ Q̄; and for
every si it includes assertions describing its initial states, its
transitions and its requested and blocked events. After P,
the solver expects an assertion Φ about the system’s safety:
s = s1 ‖ s2 ‖ s3 ‖ . . . ‖ sn ∧ ¬safe(s). The solver then
returns SAT iff s is determined to be unsafe.

Fig. 2 shows derivation rules used to implement a simple
explicit-state model checker.1 Intuitively, T S traverses the
state graph in a DFS-like manner, looking for bad states.
The underlying SAT solver manages the splits by deciding
which successor state to check at every point. The process
ends when a deadlock state is found or when the state space
has been exhausted and no derivation rules apply; an example
appears in Fig. 3. As demonstrated in the next section, this
implementation allows us to seamlessly leverage other theory
solvers in curtailing the state space, which may reduce the
overall runtime. Additional details and proofs of correctness
and termination appear in Section A of the supplementary
material [23].

IV. AUTOMATIC ANALYSIS OF TRANSITION SYSTEMS

The calculus in Section III captures the basic proof strategy
of our theory solver: a forward reachability search. We next
enrich this basic strategy with additional derivation rules,
aimed at narrowing down the state space that needs to be ex-
plored. The idea is to include within the T S solver a database
of structural patterns that characterize common/useful threads
and alongside each pattern also to keep lemmas that describe
these threads’ behavior in the language of some other theory

1While we do not assume the system is finite-state, we do assume that the
initial states and the successors for each state are finite and decidable.



START
Γ[¬safe(s)]

Γ,¬safe state(s, q1) . . . Γ,¬safe state(s, qn)
IF

Γ �TS q1, . . . , qn ARE THE INITIAL STATES OF s
AND ∀1≤i≤n. ¬safe state(s, qi) /∈ Γ

DECIDE
Γ[¬safe state(s, q)]

Γ,¬safe state(s, q1) . . . Γ,¬safe state(s, qn)
IF

Γ �TS q1, . . . , qn ARE THE SUCCESSORS OF q (n ≥ 1)
AND ¬deadlock(s, q) /∈ Γ

UNSAT
Γ[¬safe state(s, q)]

⊥
IF ∀q′. ¬safe state(s, q′) ∈ Γ =⇒ ¬deadlock(s, q′) ∈ Γ

DEADLOCK-LEMMA : P ∧ Φ =⇒ ¬deadlock(s, q) IF q HAS A SUCCESSOR IN s

Figure 2: Γ represents an arbitrary set of assertions that the solver has gathered at a given state, and Γ[φ] indicates that φ appears in Γ. The Start rule starts the traversal of
the graph: the solver initiates a forward reachability search for bad states by nondeterministically guessing an initial state that is unsafe. When a state with unvisited successors is
asserted to be unsafe, the Decide rule is used to nondeterministically assert that one of its successors is unsafe. Splitting is handled through the splitting-on-demand feature of the
DPLL(T) framework. The UNSAT rule closes branches that fail to reach a deadlock state. If all branches terminate with ⊥, UNSAT is returned; otherwise, if a branch terminates
with a state other than ⊥ where no rule is applicable, we return SAT. The last rule, Deadlock-Lemma, is a lemma generation rule: the resulting lemma is theory-valid, i.e. does not
depend on the context in which it was generated. These lemmas mark that a non-deadlock state has been visited, and that it does not need to be revisited in the future. As part of
the proof strategy, the T S solver invokes the lemma generation rule for (s, q) immediately after the Decide rule is invoked for ¬safe state(s, q), and only then (provided that q
is not a deadlock state). This strategy, together with the side-conditions on the derivation rules, ensures that no state is visited more than once. See Section A of the supplementary
material [23] for more details.

q0 q1 q2q3

Figure 3: The depicted program has a reachable deadlock state, q3. After reading the
preamble, the solver uses the Start rule to assert ¬safe state(s, q0). Then, it invokes
the Decide rule for state q0, nondeterministically asserting ¬safe state(s, q1). This
invocation of Decide is followed by the generation of the lemma ¬deadlock(s, q0).
Next, Decide is invoked for state q1, generating the assertion ¬safe state(s, q2)
— followed by the lemma ¬deadlock(s, q1). Decide is then invoked for state q2,
generating ¬safe state(s, q1) and the lemma ¬deadlock(s, q2). At this point,
the conditions for the UNSAT rule are met, and the solver closes this branch of the
tree. The solver backtracks to the last nondeterministic split and generates the assertion
¬safe state(s, q3). State q3 is deadlocked, and so the Deadlock-Lemma rule is not
invoked. No additional derivation rules apply, and so the process terminates with a SAT
result, indicating that the system is unsafe.

in CVC4. As the T S solver traverses the state space, it also
repeatedly checks to see if any of the patterns apply to the
threads at hand. When a match is found, the solver asserts the
matching lemmas to the SMT framework. Sometimes, these
lemmas may be contradictory to the assertion that the safety
property is violated along the current search path, and another
theory solver will raise a conflict: this will cause the T S solver
to backtrack and check other areas of the state space.

We demonstrate the method on a simple example, adopted
from [15]. Observe an RWB program over event set E =
{0, 1} that generates the event sequence (05 · (0 + 1))ω . The
program has three threads, depicted in Fig. 4. The safety
property to be verified is that event 1 is never triggered (and
so, the program is unsafe). Observe that direct model checking
of this system requires visiting 6 composite states.

0 1
0

0, 1

R = {0}
B = {1}

R = {0, 1}
B = ∅

Thread 1

0 1 2
0 0

0, 1

R = {0}
B = {1}

R = {0}
B = {1}

R = {0, 1}
B = ∅

Thread 2

0 1
1

0

R = ∅
B = ∅

R = ∅
B = {0, 1}

Thread 3

Figure 4: An RWB program adopted from [15]. Thread 1 counts the number of
events triggered so far, modulo 2. Every second event it requests both events 0 and 1;
otherwise, it requests 0 but blocks 1. Thread 2 does the same, but counts modulo 3.
Thread 3 is a bad marker: it waits for a violation to occur, i.e. for 1 to be triggered, and
then goes into a “bad” state that blocks all the events, forcing a deadlock. This RWB
program can have 0 triggered at every index, and can have 1 triggered precisely every
6 events. Consequently, it is unsafe.

For this program as input, the T S solver performs the
following automatic compositional proof. First, it compares
the transition systems to its pattern bank, and recognizes that
they match the looped thread mold — a thread whose state is

determined uniquely by the step index in the run (assuming
a violation has not occurred). This is a structural property of
each thread, that is checked locally and in isolation from its
siblings. After determining that all threads are looped, the
solver finds all individual thread states in which 1 is not
blocked. In our case, this is state 1 for thread 1, state 2 for
thread 2, and state 0 for thread 3. Denoting composite states
as triplets, this is state 〈1, 2, 0〉. Finally, the solver uses the
gathered information to generate the following lemma in order
to curtail the state space:

P ∧ Φ =⇒ ((¬safe state(s, 〈0, 0, 0〉) =⇒
¬safe state(s, 〈1, 2, 0〉)) ∧ ∃t : N.
(t ≡ 1 (mod 2)) ∧ (t ≡ 2 (mod 3)) ∧ (t ≡ 0 (mod 1))).

This lemma connects the safety of the initial state 〈0, 0, 0〉
with that of the only state in which 1 is not blocked, state
〈1, 2, 0〉 — provided that there exists an integer t for which
t ≡ 1 (mod 2), t ≡ 2 (mod 3) and t ≡ 0 (mod 1). Because,
in looped threads, the step index determines the state, this last
part captures the fact that state 〈1, 2, 0〉 is reachable.

Upon generation of this lemma, CVC4 asserts the lemma’s
arithmetical clauses to the arithmetic solver. If the latter
determines that there is no solution for t, CVC4 answers
UNSAT on the entire query. This signifies that the system
is safe, which is indeed the case if state 〈1, 2, 0〉 cannot be
reached. However, if the arithmetic solver manages to solve
for t, as is the case here, the T S solver continues exploring
the successors of state 〈1, 2, 0〉 and discovers that it has a bad
successor. Then, SAT is returned for the query.

The key observation is that through the automatically gen-
erated lemma, the 4 intermediate states between state 〈0, 0, 0〉
and 〈1, 2, 0〉 did not need to be explored. Because the threads
matched the looped pattern, CVC4 was able to deduce that
these intermediate states would be safe iff state 〈1, 2, 0〉 was
safe. Further, because the arithmetic solver can solve for t
more quickly than the intermediate states can be traversed
(especially when generalizing to (0n · (0+1))ω for a large n),
the solver’s performance is improved.

Pattern Matching. The T S solver’s pattern database con-
sists of pattern matchers. A pattern matcher P is comprised
of a family of recognizer predicates {Rn}n≥1, where Rn
is defined over n transition system variables s1, . . . , sn, and



a lemma generating function f (described later). For input
system s = s1 ‖ . . . ‖ sn, we say that pattern P applies to
s if Rn(s1, . . . , sn) evaluates to true. The Rn predicates can
encode various facts about the transition systems: e.g., that
threads always or never block certain events, that they have a
certain state that must always be revisited, that certain events
always send threads into a deadlock state, etc. For example,
in the previously discussed looped pattern, Rn evaluates to
true iff each of the threads’ states has precisely one successor
state.

In our proof-of-concept C++ implementation, recognizer
predicates are coded as Boolean methods that take as input a
list (of arbitrary length) of transition systems. Upon receiving
a query, the T S solver passes the input program’s threads to
the recognizer predicates of each of the patterns, to determine
which patterns apply in this case. Recognizer implementations
may traverse the given transition systems, compute strongly
connected components, etc. The only restriction, needed for
the method to be efficient, is that recognizers do not compute
the composite transition systems of the system; they are
restricted to (polynomial) operations on the individual threads.
Thus, the complexity of pattern matching is polynomial in
the size of the individual threads — and because these
threads are typically exponentially smaller than the composite
program [17], we can quickly test multiple patterns.

The second component in a pattern matcher is the lemma
generating function, f . When pattern P applies to an input
program, its lemma generating function is invoked repeatedly
during state space traversal, in order to allow P to generate
lemmas that affect the search. Specifically, f is invoked
whenever T S visits a new state q (i.e., after the Decide
rule generates the assertion ¬safe state(s, q)), and returns a
(possibly empty) list of lemmas concerning the safety of state
q. The T S solver then asserts these lemmas to the underlying
SAT engine, and other theories may use them in trimming the
search space. In practice, the generated lemmas may depend
on parameters extracted from the input threads by the pattern
recognizers. For example, in the looped pattern, the size of
the loop is extracted by the recognizer and is then used in
generated lemmas.

Limitations. The above example demonstrates our
method’s potential advantages, but also raises a question re-
garding its generality: can the pattern database be sufficiently
extensive, i.e. apply to a sufficient range of programs, so as
to make our approach worthwhile? Indeed, if one needed to
“teach” the solver new patterns for every new input program,
the method would boil down to a manual compositional proof.

We believe that the answer to this question is affirmative:
our findings show that even a small set of patterns included
within the T S solver may already apply to broad classes of
interesting programs. We demonstrate two such cases, periodic
programs and programs with arrays, in Sections V and VI.
Still, adding new patterns is not a trivial task, and so we store
them in a central repository — amortizing the cost of adding
additional patterns over future applications.

The T S Solver vs. Model Checking. In the simple
example given above, our theory-aided approach could also

be implemented by a more standard design: a model checker
that issues queries to a black-box SMT solver. Our motivation
for conducting model checking within the T S solver is in
handling more elaborate examples, in which SMT theories
partake in directing the state space traversal (see, e.g., Sec-
tion V). While such cases can still be accommodated by
a model checker that is “running the show” and an SMT
solver that exposes proper callbacks, we feel that a DPLL(T)-
based solution is cleaner, and also more extensible and robust.
By encoding the state traversal engine as a few axioms and
lemma generation rules, and by having the pattern match-
ing mechanism likewise generate lemmas, the complexity of
integrating and synchronizing the two is automatically and
seamlessly handled by CVC4’s DPLL(T) core — simplifying
the implementation of the T S solver. Further, this enables
the T S solver to be plugged into any other SMT solver that
adheres to the DPLL(T) framework.

V. VERIFYING PERIODIC PROGRAMS

In this section, we discuss the theory-aided verification
of periodic programs [25] — a class of single processor
scheduling problems that have been widely studied over the
last decades. A periodic program consists of a finite set of
tasks T1, . . . , Tn, which are processes that repeatedly need to
be scheduled for execution on a single processor. Each task
Ti is characterized by its period time Pi and an execution
time Ci (for simplicity, we ignore here other parameters such
as relative deadlines and initial offsets). From task Ti’s point
of view, the execution of the program is divided into time
cycles of length Pi each, and in each such cycle the task must
be alloted Ci time slots on the processor. The least common
multiple of the tasks’ period times is called the program’s
hyper-period. Tasks may have priorities: a task with a higher
priority will preempt another if both need to be scheduled
at a specific point in time. A periodic program is said to
be schedulable if there exists a task scheduling in which no
deadlines are violated. See Section C of the supplementary
material [23] for an example.

Here, we study the verification of safety properties in
periodic programs: we assume that the input program is
schedulable, and check whether it can violate a given property.
This is typically done by transforming the periodic program
into an equivalent sequential program and then verifying it
using standard model checking [7]. Our approach is similar,
but we seek to leverage the program’s special structure in
order to explore only a portion of its state space.

In RWB, periodic programs may be programmed by ex-
pressing each task as a thread that requests an event whenever
the task needs to be scheduled [15]. Priorities are expressed
using blocking: a thread (task) may block events belonging
to other threads with lesser priorities. Fig. 5 illustrates the
structure of task threads and describes their pattern matcher.

Whenever all input threads are identified as tasks, the
pattern recognizer reports that the program is periodic. This
causes the pattern’s lemma generation function to be repeat-
edly invoked during state space traversal, so that it may gener-
ate lemmas aimed at curtailing the search space. For this pur-



Figure 5: An RWB implementation of a task thread with period time P = 5 and
execution time C = 2. The thread’s underlying transition system can be regarded as a
(C + 1)×P matrix, where the columns represent the time passed since the beginning
of the period and the rows represent the number of times the task has been scheduled
so far. Green edges in the figure represent the task being successfully scheduled (i.e.,
its requested event was triggered) and red edges represent the task not being scheduled
(an event requested by some other task was triggered). Thus, with every time unit the
state moves to the right, and if the task was scheduled it also moves one row down.
If the task’s deadline is violated, it enters a deadlock state (the rightmost state in the
figure). The task pattern matcher traverses the state graph of each input thread and
checks whether it has these structural properties. If so, it also extracts the task’s P and
C parameters and its sequence of requested events (not illustrated). If blocking is used
to prioritize tasks, the matcher also extracts the prioritization hierarchy.

pose, we extend the signature of T S to include a sort Z+ for
non-negative integers, and the predicate deadlockQ : SQ×Z+.
Intuitively, deadlockQ(s, t) indicates that a deadlock state in s
is reachable in t steps from an initial state. Further, we extend
T S to support backward reachability analysis, in addition to
the forward reachability analysis afforded by the safe state
predicate. To this end, we add the reachableQ : SQ × Q
predicate, with the following semantics:
∀s : SQ, q : Q.reachable(s, q) =⇒ I(s, q) ∨ ∃q′ : SQ, e : E.

(Tr(s, q′, e, q) ∧R(s, q′, e) ∧ ¬B(s, q′, e) ∧ reachable(s, q′))

Intuitively, a state is reachable if it is initial or has a
reachable predecessor. For more details, see Section B of the
supplementary material [23].

The lemmas generated by the pattern matcher assert that
there must be a time t within the hyper-period in which
a violation occurs. They also limit the possible values of t
based on the information gathered about the individual tasks.
Specifically, the pattern matcher generates the lemma:

P ∧ Φ =⇒ ∃t : Z+. deadlock(s, t) ∧Ψt

where Ψt describes constraints on t that are deduced from the
structure of the task threads. If the arithmetic solver finds a
solution t0 for Ψt it assigns it to t, and the T S solver then
translates it, by analyzing the task threads’ possible locations
in time t, into candidate reachable bad states q1, . . . , q`:

P ∧ Φ ∧ deadlock(s, t0) =⇒ ∨`
i=1reachable(s, qi)

T S then performs backward reachability checks on candidates
q1, . . . , q`. If a path to an initial state is found, the system is
unsafe and we are done. Otherwise, the contradiction forces
the arithmetic solver to propose another solution t = t1,
which corresponds to additional candidate bad states. The
process is repeated until the system is proven unsafe, or until
all possible solutions are exhausted. Other bad states, which
do not correspond to any of the proposed values of t, are
guaranteed to be unreachable and are ignored.

In order to generate the constraints in Ψt, the pattern
matcher identifies tasks participating in the violation: these
are the threads whose requested events are part of a violating
sequence. Then, it uses information about these threads, and
about threads with higher priority, to put constraints on t.

We demonstrate this on a schedulable periodic program
with 4 tasks: task T1 with parameters P1 = 5, C1 = 1; T2

with P2 = 6, C2 = 1; T3 with P3 = 9, C3 = 3; and task
T4 with parameters P4 = 11, C4 = 2. Task 1 has the highest
priority, task 2 has the second highest priority, and tasks 3
and 4 both share the lowest priority. The safety property in
question is that it is impossible for task T4 to be scheduled
for three consecutive time slots. Here, direct model checking
requires visiting 55000 states in the composite program.

By intersecting the violating event sequence with the events
requested by each thread, the pattern matcher determines
that T4 is the only participating task. By the information
extracted regarding task priorities, it deduces that tasks T1

and T2 supersede it. Then, it generates the Ψt constraint
as follows. One conjunct in Ψt is 0 ≤ t ≤ 990, as the
hyper-period is lcm(5, 6, 9, 11) = 990. Another conjunct is
((t ≥ 3 (mod 5))∧ (t ≥ 3 (mod 6))): if it did not hold, T1 or
T2 would preempt T4, preventing it from being scheduled 3
consecutive times. Yet another conjunct is (t ≤ 1 (mod 11));
it holds because in order for T4 to be scheduled 3 consecutive
times (with execution time C4 = 2), a fresh period must start
at time t or t−1. A few additional conjuncts are omitted. The
complete lemma reduces the number of possible values for t
from 990 to just 15, and the query as a whole entails exploring
only 700 states out of 55000 reachable states in order to prove
the system’s safety.

VI. VERIFYING PROGRAMS WITH SHARED ARRAYS

Next we demonstrate the theory-aided verification of pro-
grams with shared arrays — a widespread construct in concur-
rent programming. In the RWB model, a shared m-ary array
with n cells may be implemented using n b-threads, each of
size m. Each thread represents a single array cell and has a
clique-like structure, where each state si is associated with
a write event wi and a read event ri. Intuitively, each state
si corresponds to a value vi that is stored in the array cell.
Whenever event wi is triggered, the thread moves to state si;
and whenever not in state si, the thread blocks ri. Thus, other
threads can request ri in order to check if the thread is in state
si (i.e., to check if the array cell has value vi). See Fig. 6 for
an illustration. Note that this implementation is only needed
for shared arrays; internally, threads may use any construct
available in the underlying programming language.

0

1

write(1, 1)write(1, 0)

R = ∅
B = read(1, 1)

R = ∅
B = read(1, 0)

Cell #1

0

1

write(n, 1)write(n, 0)

R = ∅
B = read(n, 1)

R = ∅
B = read(n, 0)

Cell #n

. . .

Figure 6: An RWB implementation of a binary array with n cells. Each cell is
represented by a thread with two states, signifying the stored value in that cell, 0 or 1.
Each thread/cell is associated with two write events, for 0 and 1; when they occur,
the thread changes states to indicate the new stored value. Other threads in the program
may read from a cell by requesting the two read events associated with it, one for 0
and one for 1; the read event that does not match the value in the cell will be blocked
by the cell thread, and so only the “correct” read event may be triggered.

The T S solver has a pattern matcher that looks for threads
that match this array cell pattern. If an array is found, the
pattern matcher checks whether deadlocks are possible only
in certain array configurations (e.g., when certain array cells



hold certain values; an example appears later in this section).
If such constraints are found, it generates a lemma that
conditions the system’s unsafety on the array threads reaching
an unsafe configuration.

We demonstrate with an example. Observe a program with a
shared array of size n and an initial state q0. The array pattern
matcher creates an array expression arrq0 whose value at each
index i is set to some fresh constant ci. This expression is used
to represent the value of the array in various states of the
program. The matcher also creates a target array, arr target,
and asserts constraints on arr target signifying the state that
the array has to be in for a violation to occur. Then, it
generates the lemma P ∧ Φ =⇒ (arrq0 = arr target).

The bulk of the work is then performed as T S traverses
the state space. Whenever a new state q is visited, the
pattern matcher analyzes the threads (each of them separately),
looking for array entries that have become fixed. This can
be determined, e.g., when additional write events to a cell
are never requested or are always blocked. Suppose that it
is discovered that the first cell’s value has been fixed to e0;
then the lemma P ∧ Φ ∧ ¬safe state(s, q) =⇒ (c0 = e0)
is generated. If this is consistent with the earlier assertion
arrq0 = arr target, the solver continues traversing the suc-
cessors of q; otherwise, the array theory solver will raise a
conflict, resulting in q’s successor states not being traversed.

A more detailed example and an evaluation of applying
the shared array pattern to a web-server application appears
in Section VII. An additional detailed example regarding the
verification of an RWB application for playing Tic-Tac-Toe
appears in Section D of the supplementary material [23].

VII. EXPERIMENTAL RESULTS

We evaluated our proof-of-concept tool, implemented as an
extension to CVC4, by comparing it to BPMC — a symbolic
model checker specifically designed for RWB programs [19],
[22] (the tool and experiments are available online [23]). Our
tool uses a portfolio approach: if the input program does not
match any of the known patterns, the tool simply invokes
BPMC (or any other model checker, for that matter). The
decision of whether or not to invoke BPMC is made within
seconds, rendering the performance of both tools effectively
the same in these cases. Hence, for the remainder of this
section we focus on inputs in which a pattern did apply and
theory-aided model checking was indeed attempted.

We first compared the tools using a benchmark suite of
over 120 hand-crafted RWB programs — some periodic,
and some containing shared arrays. The benchmarks’ sizes
ranged from a few hundred to over 10 million reachable states,
and contained both SAT and UNSAT instances. The results are
depicted and disucssed in Fig. 7.

Next, we set out to test our tool’s applicability to a large,
real-world system by using it to verify safety properties on a
web-server (implementing TCP and HTTP stacks) written in
BPC [16]. We were very curious to see whether our pattern
recognition mechanism would pick up any matching threads.

As it turns out, the shared array pattern proved useful in
verifying this application. Per the TCP protocol, the web-

server only accepts TCP push segments on active connections.
Slightly simplified, a connection to a client is active if the
client sent a syn segment but not a fin segment. This func-
tionality is implemented using blocking: for every connection,
a dedicated thread, named EnsureActiveConnection, blocks
push events while the connection is inactive. This blocking is
removed when a syn segment is received, and is restored when
a fin segment is received. Thus, the EnsureActiveConnection
threads were picked up as shared array cells by our tool:
they each had two states, labeled active and inactive, with
respective read events push and reject and write events syn
and fin. Interestingly, the programmers of the web-server did
not seem to have had this design pattern in mind [16].

We tested 10 safety properties on the web-server
(see Fig. 8). These properties included the proper re-
jection of messages on inactive connections, proper us-
age of allotted sequence numbers for outgoing segments,
and the detection and blocking of unstable clients, who
quickly and repeatedly opened and closed connections.

Figure 8: Experiments on the web-server.

The theory-aided approach
did better on 7 of 10 in-
stances (4 SATs and 3 UN-
SATs), demonstrating an
average speedup of 16%
over all instances. BPMC
did better on 2 SAT and
1 UNSAT instances, where
the property in question
and the discovered patterns
were disparate (e.g., prop-
erties involving proper usage of sequence numbers, that had
nothing to do with the EnsureActiveConnection threads).

These initial results are encouraging. We conclude that
(i) the theory-aided approach is viable, in the sense that the
stored patterns apply to real programs, sometimes significantly
reducing verification times; and (ii) that performance may be
further improved by enhancing the portfolio approach; i.e., if
we were able to more accurately characterize cases in which,
despite matching a stored pattern, a thread does not affect the
property in question, we could delegate those cases to BPMC
and achieve faster running times. This is left for future work.

VIII. RELATED WORK AND DISCUSSION

In this work, we proposed a framework for the automated
compositional verification of concurrent software. Our tech-
nique was based on casting the model checking problem into
the DPLL(T) framework used by the CVC4 SMT solver, and
then utilizing other theory solvers to prune the search space
in order to improve performance. Other theories were able to
affect the search through lemmas in their respective languages
that were generated by matching the input program’s threads
to presupplied patterns.

SMT solving has been used for various verification-related
tasks such as lemma dispatching [8], [26], reachability anal-
ysis [4] and model-checking concurrent programs [6], [27].
Our technique shares some of these aspects, but differs in
that the state exploration is driven by an SMT solver and



# Instances Avg. # States Explored Avg. Time (milliseconds)
CVC4 BPMC Change CVC4 BPMC Change

Periodic SAT 11 9994 9236 +8% 18791 15894 +18%
Programs UNSAT 50 35299 184388 -80% 10247 15041 -31%

UNSAT† 6 59816 8195666 N/A 170673 809946 N/A
Timeout 2

Shared SAT 35 24416 293525 -91% 24882 168755 -85%
Arrays UNSAT 15 121133 511292 -76% 124911 292779 -57%

UNSAT† 6 267000 1989666 N/A 359324 1510028 N/A

Total 111 190842 998441 -80% 178831 492469 -63%

Figure 7: Experiments on a benchmark suite, conducted using an X230 Lenovo laptop with 16GB memory. The suite contained SAT and UNSAT instances of periodic RWB
programs and programs with shared arrays. The table compares our tool (CVC4 columns) to the BPMC tool, measuring the average number of explored states and average solving
time for each category. The Change columns measure the effectiveness of CVC4 in comparison to BPMC. The UNSAT† row indicates UNSAT instances on which CVC4 answered
correctly but on which BPMC ran out of space (but listing the number of states it was able to explore). The Timeout row indicates instances on which both tools ran out of space/time.
We did not encounter examples on which BPMC returned and CVC4 did not. The table reveals that for SAT queries on periodic programs, BPMC was able to outperform CVC4.
This is not surprising; indeed, the pattern for periodic programs is designed to quickly show that bad states are unreachable, which is not the case for SAT instances. In all other
categories, i.e. UNSAT queries on periodic programs and both types of queries on programs with shared arrays, CVC4 typically outperformed BPMC. Instances where BPMC did
better were either very small (the cost of thread analysis and pattern matching exceeded the cost of the actual model checking), or instances where the property in question had
nothing to do with the recognized patterns, making it impossible for our tool to trim the search space. The UNSAT† instances had too many states for BPMC to cover, but with the
theory-aided approach we were able to trim the search space down to a manageable size. Finally, the Timeout instances were too large to handle, even with theory-aided pruning.
The Total row sums up the instances solved by both tools, demonstrating an encouraging average speedup of 63%; these 111 instances are also the ones described in the graph.

in that lemmas are derived using stored patterns. A related
approach for circuit verification appears in [5], where the
input is analyzed to find unreachable states in advance. Our
framework follows a similar spirit, but extends the technique
to concurrent software and utilizies a modern SMT solver.

In [30], the authors extend the Z3 solver with an automaton
sort for symbolic automata over infinite alphabets. It would
be interesting to combine this technique with ours, enabling
it to reason about RWB programs with infinite event sets.

We evaluated our technique on two broad classes of RWB
programs: periodic programs and programs with shared arrays.
Specifically, we showed how the T S solver may leverage
CVC4’s arithmetic and array theory solvers in order to ex-
pedite the model checking process. Others have explored
SMT-based techniques for similar models; e.g., the validation
of guessed invariants in Lustre programs [21]. We consider
this as encouragement that applying SMT-based techniques to
synchronous, discrete event models may prove fruitful, and
intend to extend our technique to Lustre as well.

We find our initial results encouraging, and plan to continue
extending our pattern database. One direction that we are
presently pursuing is the addition of a new pattern matcher
that leverages CVC4’s string theory solver [24], by translating
constraints imposed by certain types of input threads into
regular expressions. Indeed, a prototype implementation we
have created shows interesting potential.
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