
Pattern-based Synthesis of Synchronization
for the C++ Memory Model

Yuri Meshman
Technion

Noam Rinetzky
Tel Aviv University

Eran Yahav
Technion

Abstract—We address the problem of synthesizing efficient
and correct synchronization for programs running under the
C++ relaxed memory model. Given a finite-state program P
and a safety property S such that P satisfies S under a
sequentially consistent (SC) memory model, our approach auto-
matically eliminates concurrency errors in P due to the relaxed
memory model, by creating a new program P with additional
synchronization. Our approach works by automatically exploring
the space of programs that can be created from P by adding
synchronization operations. To explore this (vast) space, our
algorithm: (i) explores bounded error traces to detect memory
access patterns that can occur under the C++ memory model but
not under SC, and (ii) eliminates these error traces by adding
appropriate synchronization operations.

We implemented our approach using CDSCHECKER as an
oracle for detecting error traces and Z3 to symbolically explore
the space of possible solutions. Our tool successfully synthesized
synchronization operations for several challenging concurrent
algorithms, including a state of the art Read-Copy-Update (RCU)
algorithm.

I. INTRODUCTION

We address the problem of synthesizing efficient and cor-
rect synchronization for programs running under the C++
relaxed memory model (C++ RMM) [13]. The crucial task
of writing correct and efficient low-level concurrent programs
in C++ under this model is known to be very challenging: the
model’s complexity is such that it eludes even veteran systems
programmers and requires the attention of formal semantics
experts [7], [8], [23], [26].

Under C++ RMM, each operation on an atomic object is
annotated with a memory order. The memory order ranges
from being fully relaxed to being fully sequentially consistent
(for that atomic object), with a few more subtle modes between
these two extremes. To maintain efficiency, the programmer
wants the most relaxed synchronization required to preserve
correctness, and nothing more (even when it simplifies reason-
ing). Unfortunately, manually finding the right synchronization
is extremely difficult, as it requires the programmer to reason
about subtle interactions of the memory model. Our goal is
to assist the programmer by automatically synthesizing the
required synchronization.

A. The Problem
Given a finite-state program P and a safety property S such

that P |= S under a sequentially consistent (SC) memory
model, we aim to automatically synthesize a program P ′,
whose behaviors are a subset of P ’s behaviors, s.t. P ′ |= S
under C++ RMM in bounded executions.

B. Our Approach: Pattern Based Synthesis of Synchronization

Our synthesis algorithm automatically explores the (vast)
space of programs that can be created from P by modifying
memory access synchronization. It does so by: (i) inspecting
P ’s (bounded) error traces to detect memory access patterns
that can occur under C++ RMM but not under SC, and
(ii) eliminating these error traces by preventing the occurrence
of the detected violation patterns using as little synchronization
as possible.

More specifically, our algorithm exhaustively explores the
traces of P under C++ RMM, and looks for error traces—
traces which do not satisfy the specification S. If it finds an
error trace, it searches it for instances of violation patterns,
behaviors that may occur under C++ RMM but not under SC
and that we know how to avoid. (Recall that P satisfies S
under SC. Hence, violations of S must be due to behaviors
introduced by the weak memory model.) The algorithm then
constructs a constraint which encodes all possible avoidance
templates that can be used to eliminate that particular error
trace. (Avoidance templates are strategies to synthesize mem-
ory order annotations of memory instructions such as load,
store, and cas.) The algorithm accumulates the constraints
required to eliminate the error traces and passes them to a
SAT solver in the form of a CNF formula ϕ. Every satisfying
assignment of ϕ represents a different way to synthesize the
desired memory order synchronization.

The algorithm then checks which of the resulting programs
satisfies S. The check is required because our set of violation
patterns and avoidance templates is not complete. (In fact,
we believe that devising a complete set is nontrivial, if at all
possible). This means that a program P ′ with no violation
patterns may still violate the original specification S.

C. Main Contributions

The contributions of this paper are as follows:
• A novel approach for detecting missing synchronization

using violation patterns, patterns of memory accesses that
can occur under C++ RMM but not under SC.

• A technique for synthesizing synchronization by elimi-
nating violation patterns using avoidance patterns, a set
of predefined synchronization strategies.

• An algorithm which, given a program P and a specifi-
cation S, synthesizes synchronization to ensure that P
satisfies S in bounded executions.

• An implementation of our approach and an empirical
evaluation in which we successfully synthesized synchro-
nizations for several challenging concurrent programs,
including a program using a state of the art Read-Copy-
Update (RCU) algorithm.

II. OVERVIEW

In this section, we provide an informal overview of our ap-
proach using our running example, Dekker’s mutual exclusion
algorithm for two threads [12].

A. Running example

Fig. 1 shows one of the many variants of Dekker’s al-
gorithm. The load (read) and store (write) commands are
subscripted with memory order annotations. For now, these
annotations can be ignored. The algorithm is comprised of: an
entry section (lines 1–7) and an exit section (lines 9–10). The
critical section itself (line 8) is irrelevant, and thus elided. The
algorithm enforces mutual exclusion using variables flag[0]
and flag[1], and ensures deadlock and starvation freedom
using variable turn.

To enter the critical section, thread i, where i is either 0
or 1, needs to execute its entry section: First, it sets the value
of variable flag[i] to 1 (line 1), thus signaling its intentions
to the other thread. Then, it inspects the value of flag[1−i]
to check whether the other thread is also trying to enter the
critical section or is already in it (line 2). If not, it proceeds to
the critical section. Otherwise, it sets its own flag to 0 (line 4),
thus letting the other thread proceed, and waits for its turn to
enter the critical section (line 5). Upon leaving the critical
section, thread i executes the exit section, where it gallantly
gives precedence to the other thread by setting turn to 1− i
and signals that it left the critical section by setting the value
of its flag to 0.

It is important to note that: (i) as long as a thread executes
the critical section, its flag is set to 1; and (ii) a thread enters
the critical section only after it ensures that the other thread’s
flag is set to 0 while its own flag is set to 1. The above
observation suffices to ensure mutual exclusion under SC,
since, in this memory model, there is a total order between
all the load and store commands and reading the value of
a variable x returns the last value written to x. Thus, if two
threads compete on entering the critical section, at least one
must notice in line 2 that the flag of the other is set to 1.

Unfortunately, under C++ RMM this is no longer the case.
The reason for this unintuitive behavior can be understood
from the following simple program involving only two store

and two load commands.
Example 1: Consider the following program and assume

that both flag[0] and flag[1] are initialized to 0, that r0 and
r1 are initialized to 2, and that r0 and r1 are each local to
the respective thread.

storeW (flag[0], 1); r0 = loadX(flag[1]) ‖
storeY (flag[1], 1); r1 = loadZ(flag[0]) .

Under SC, at the end of the program the only possible
values of r0 and r1 are 0 and 1. Furthermore, at most one

of them can be 0. Under C++ RMM, r0 and r1 can be 0
simultaneously, for certain memory order annotations W,X, Y,
and Z. This is because under C++ RMM a store operation
can behave as if it writes its value to a thread-local store
buffer, leaving the other threads to read the value stored in the
global memory.(C++ RMM exhibits x86-TSO behaviors).

The above example shows that mutual exclusion can only
be ensured by adding synchronization to the program. One
way to do it in C++ RMM is to explicitly annotate the load

and store operations with the required synchronization type.
Using strong synchronization primitives (e.g., requiring all
load and store operations to be sequentially consistent) is
expensive. Using synchronization primitives that are too weak,
however, leads to unexpected behaviors. Thus, determining
correct and efficient annotations is challenging. In contrast, our
tool was able to determine that the program shown in Fig. 1
is safe if the memory operations in lines 1, 2, 3, and 9 are
sequentially consistent, and the store in line 10 is memory
order release 1. (See Section III.)

Note 1: The load in line 5 is not synchronized (i.e., it is
annotated with RLX). However, as we show in Section V, our
result is still verified by our underlying model checker.

B. Synthesizing synchronization

Our approach rests on the insight that we can turn a
program that is safe under SC into one that is safe under a
weak memory model (C++ RMM in our case) by removing
behaviors that cannot occur under SC. We face three main
challenges in implementing this approach: (i) detecting such
behaviors, (ii) determining a (cheap) way to remove them, and
(iii) verifying that the resulting program is safe.

Addressing the first challenge We overcome the first challenge
by exhaustively searching the program state space for an
error trace, developing all the concrete traces possible under
C++ RMM. We allow safety properties to be specified as:
(a) assertions on the final state, (b) properties of thread-
local variables, and (c) races on non-atomic locations (see
Section III). The search is guaranteed to terminate because
we only follow bounded traces of finite state programs.

Addressing the second challenge If we find an error trace,
we look for instances of violation patterns, memory behaviors
involving a small number of load and store actions possible
under C++ RMM but not under SC and which we know
how to prevent. Once we discover such an instance, we add
synchronization annotations to the relevant memory operations
using a predefined avoidance template that blocks the violation
pattern, thus eliminating the error trace.

We describe the inferred synchronization annotations using
a propositional formula and ask a SAT solver to find the sets
of minimal satisfying assignments. (Note that a trace might
contain several instances of violation patterns and thus can
be eliminated using different avoidance patterns.) From each
assignment, we generate a program and repeat the process

1To the best of our knowledge, our solution is the only one to use memory
order synchronizations and not fences.

i.1 storeSC(flag[0], 0);

i.2 storeSC(flag[1], 0);

i.3 storeSC(turn, 0);

Thread 0: Thread 1:
1 storeSC(flag[0], 1);
2 while(loadSC(flag[1])==1){
3 if(loadSC(turn)==1){
4 storeRLX(flag[0], 0);
5 while(loadRLX(turn)==1)yield();
6 storeRLX(flag[0], 1);
7 } }
8 ... // critical section
9 storeSC(turn, 1);

10 storeREL(flag[0], 0);

1 storeSC(flag[1], 1);
2 while(loadSC(flag[0])==1){
3 if(loadSC(turn)==0){
4 storeRLX(flag[1], 0);
5 while(loadRLX(turn)==0)yield();
6 storeRLX(flag[1], 1);
7 } }
8 ... // critical section
9 storeSC(turn, 0);

10 storeREL(flag[1], 0);

Fig. 1. Dekker’s mutual exclusion algorithm. Variables flag[0], flag[1] and turn are declared as atomic locations and initialized to 0. The subscripts
indicate the synchronization (consistency) annotations synthesized by our tool.

until no bad trace is found. We use the verified solutions as a
starting point in a new round of synthesis in which we raise
the bound on the explored traces.

The algorithm is guaranteed to terminate because we con-
sider only finite state programs, the number of memory anno-
tations is finite, and every change only increases the degree of
synchronization (see Section III).

Example 2: Fig. 2 shows a trace of the Dekker algorithm
that violates mutual exclusion. The trace contains two violation
patterns, store buffering (SB) and load buffering (LB). The
former, which we discussed in Example 1, is manifested here
by the initialization store actions in lines 1 and 2, and the
load actions in lines 5 and 8. (An rf -annotated arrow from a
store action to a load action indicates that the latter read the
value written by the former.) This instance of the SB pattern is
blocked by synthesizing a SC annotation to the corresponding
memory operations in the algorithms (lines i.1, i.2, 1, and 2
in Fig. 1.)

Note 2: The list of violation patterns and their corresponding
synchronization templates is given as an input to the algorithm.
Our algorithm is parametric in that list. The specific patterns
and templates that we use in our implementation are given in
Section IV-B.
Addressing the third challenge Our set of violation patterns
and avoidance templates is not complete. Thus, after synthe-
sizing the programs, we simply explore the state space again.
The synthesis procedure terminates if the offered solution
contains only sequentially consistent memory accesses and
is thus correct by our assumption, or when no error trace
is found. This ensures that the program satisfies the desired
properties in executions in which every thread performs no
more instructions than the explored bound.

III. C++ RELAXED MEMORY MODEL IN A NUTSHELL

A memory model defines the possible behaviors of instruc-
tions such as load and store in the program. Arguably, the
most intuitive (and restrictive) memory model is Sequential
Consistency (SC) [19], in which there is a total order on the
load and store instructions, and every load from location
l reads the last value stored in l. (For simplicity, we treat

1. init.store
SC

flag[0], 0 1. init.storeSC flag[0], 0

2. init.storeSC flag[1], 0 2. init.storeSC flag[1], 0

3. init.storeSC turn, 0 3. init.storeSC turn, 0

4. T0.storeRLX flag[0], 1 4. T0.storeRLX flag[0], 1

5. 0← T0.loadRLX flag[1] 5. 0← T0.loadRLX flag[1]

6. // T0 enters CS 6. // T0 enters CS

7. T1.storeRLX flag[1], 1 7. T1.storeRLX flag[1], 1

8. 0← T1.loadRLX flag[0] 8. 0← T1.loadRLX flag[0]

9. // T1 enters CS 9. // T1 enters CS

10. // T0 exits CS 10. // T0 exits CS

11. T0.storeRLX turn, 1 11. T0.storeRLX turn, 1

12. T0.storeRLX flag[0], 0 12. T0.storeRLX flag[0], 0

13. // T1 exits CS 13. // T1 exits CS

14. T1.storeRLX turn, 0 14. T1.storeRLX turn, 0

15. T1.storeRLX flag[1], 0 15. T1.storeRLX flag[1], 0

(a) (b)

rf

rf

rfrf

Fig. 2. An error trace containing two violation patterns: (a) store buffering
(SB) and (b) load buffering (LB). These patterns were detected by our tool
when analyzing Dekker’s algorithm.

the initial state as if it were produced by explicit store

operations.)
The C++ Relaxed Memory Model is relational: (i) without

relations no order of executing instructions is guaranteed; and
(ii) a load can read from arbitrary stores. In addition, the model
distinguishes between atomic locations, where racy accesses
are allowed, and non-atomic locations, where the behavior
of races is undefined. The locations we discuss next will be
atomic. Below, we provide a (greatly simplified) overview of
the part of C++ RMM relevant to our work.

We shall use Fig. 3(SB) as a C++ Relaxed Memory execu-
tion trace example, though it was not intended as such and in
Section IV-B will be referenced in a different context. Assume
a two-threaded program where: variables x and y are initialized
to zero; one thread sets the value of x to 1 and another sets
the value of y to 1; finally, each thread reads the variable set
by the other thread.

The first relation we consider is read from (rf), denoted
by →rf , which relates store instructions to load instruc-
tions reading from them. The next relation we consider is
happens before (hb), denoted by →hb . For our purpose it is a
transitively-closed union of the following relations (in general,

in C++RMM, hb can be non-transitive): (i) sequence before
(sb), denoted by →sb , which places an irreflexive total order
on the actions executed by the same thread; (ii) additionally
synchronized with (asw), which relates instructions executed
before thread creation to those executed by the thread, denoted
by a dotted line separation; (iii) synchronized with(sw), which
indicates instruction synchronizaion.

The model ensures that the only possible executions are
ones in which these relations satisfy certain constraints. First,
hb must be acyclic. Second, rf and hb should not contradict
each other: a load cannot read from a store that (i) depends
on it, i.e., follows it in the hb relation, or (ii) is masked
by another write, i.e., there exists a store2 operation such
that store →hb store2 →hb load. Third, the hb induced
instruction order should not contradict the modification order,
which defines a total order on all store operations to the same
location.

Note 3: Note that in Fig. 3(SB) the aforementioned restric-
tions do not prevent reading values from initialization.

In addition, the hb relation should not contradict the memory
order annotation. Every memory operation is annotated with
a memory order annotation that specifies its consistency level:
the level of synchronization and the ordering it requires. We
consider three types of annotations:

(i) SC, whereby memory actions must be totally ordered;
(ii) ACQ/REL whereby a loadACQ that gets its value from

a storeREL imposes additional synchronization, and
(iii) RLX, whereby operations do not place additional restric-

tions on the hb relation.
Note 4: For item (ii) above, these annotations induce a sw

relation, and for item (i) sc (total order) relation is induced.

IV. SYNTHESIS OF SYNCHRONIZATION

In this section we describe our synthesis algorithm (Sec-
tion IV-A) and review the violation patterns and respective
avoidance templates (Section IV-B) that we implemented and
experimented with. We also present two abstract violation
patterns that go beyond concrete litmus tests: we identify
patterns involving a small number of memory operations on
a single location, and describe how to block them by placing
a chain of dependencies going through an unbounded number
of accesses to (possibly) different locations (Section IV-C).

A. Atomic memory access synchronization synthesis

Our synthesis procedure is comprised of two nested loops.
The inner one synthesizes synchronization for a given program
and the outer one keeps refining the set of solutions by
gradually increasing the bound on the length of the explored
traces.

Algorithm 1 implements the inner loop of the synthesis
procedure. It takes as input a program P and a specification
S, and produces a set of programs P ′ which satisfy S under
C++ RMM using different forms of synchronization.

The algorithm first checks whether P satisfies S, and if so
returns it (line 2). Otherwise, it goes over the set of traces
which violate the specification (line 5) and looks for violation

1 Procedure SynSync(P , S)
2 if P |= S then return {P}
3 ϕ = true

4 P = ∅
5 foreach e ∈ errorTraces(P,S) do
6 β = blockOccurr(e, AcqRelFix())
7 if β then continue

8 β = blockOccurr(e, SCFix())

9 if ¬β then return allSC(P)
10 ϕ = ϕ ∧ β

11 ϕ = ϕ ∧
∧
impliedSync(ϕ)

12 avoidance = SAT(ϕ)

13 foreach annotation ∈ avoidance do
14 P ′ = addSync(P,annotation)

15 P = P ∪ SynSync(P ′, S)

16 return P
17 blockOccurr(e,patterns)
18 β = false

19 foreach (p,c) ∈ patterns do
20 foreach i ∈ occurrence(p, e) do
21 β = β ∨ blockPattern(i,c)

22 return β

23 impliedSync(ϕ) = {a→ b | a, b ∈ vars(ϕ)
24 ∧ (SC ∈ annot(a))
25 ∧ (REL ∈ annot(b)∨ACQ ∈ annot(b))
26 ∧ (instr(a) == instr(b))}

Algorithm 1: The inner loop of the synthesis procedure.

1 Procedure PSynSync(P , S, N)
2 Cinit, C0, . . . , Cm = getCmds(P)

3 P1 = SynSync(Cinit ; (C0 ‖ . . . ‖ Cm) , S)
4 for n = 2 to N do
5 Pn = ∅
6 foreach P ′ ∈ Pn−1 do
7 Cinit, C0, . . . , Cm = getCmds(P ′)

8 Loop0 = “for i0 = 1 . . . n do C0”

9 · · ·
10 Loopm = “for im = 1 . . . n do Cm”

11 P ′′ = “Cinit; (Loop0 ‖ . . . ‖ Loopm)”

12 Pn = Pn ∪ SynSync(P ′′, S)
13 return PN

Algorithm 2: The synthesis procedure. Program P is com-
prised of an initialization command Cinit followed by a
parallel composition of m+1 threads, where thread i executes
command Ci for N times.

patterns in each trace. First, it searches for patterns which can
be prevented using Acquire-Release synchronization (line 6);
and only if no such patterns are found in the trace does
it search for patterns that can be prevented using the more
expensive Sequential Consistency synchronization (line 8).

The search for instances of violation patterns and the
corresponding avoidance template is done by the auxiliary
procedure blockOccur(·) (Lines 19, 20). If there is an
instance i of a pattern p in trace e, then the avoidance template

is instantiated according to the instance i and recorded in β as
one way to eliminate trace e (line 21). Technically, an instance
of an avoidance-template is a conjunction of pairs (instr,
annot), where instr is a load or a store in P and annot
is the suggested synchronization for that instruction: either SC,
REL, or ACQ. The conjunction records the memory order
annotations pertaining to the actions forming the detected
instance i, which suffice to prevent it. Formula β is constructed
as a disjunction of ways to eliminate the trace e. The blocking
formulae pertaining to all the error traces are accumulated as
a conjunctive formula ϕ (line 10.)

Finally, we record in ϕ that every constraint enforced
by a REL or ACQ synchronization is also enforced by an
SC synchronization by adding the corresponding implications
(line 11), thus increasing the set of possible solutions.

Every satisfying assignment to the program correction for-
mula generates a different program, P ′, which has more
restrictive synchronization than P (line 13). We determine
whether P ′ complies with the specification S, or requires
further synchronization, by calling SynSync recursively.

If blockOccur(·) does not find a way to eliminate an
error trace, we annotate all memory operations as SC (line 9).

Algorithm 2 implements the outer loop of the synthesis
procedure. For simplicity, we assume that the input program
is comprised of an initialization command C0 followed by a
parallel composition of m + 1 loops, where loop i repeats
executing a sequential command Ci N times.

The algorithm takes the original program P , a specification
S, and the loop bound N , and generates a set of programs
PN that restrict the synchronization in P so that it satisfies
S. Because the number of behaviors rapidly grows as loop
iteration is increased, we take an incremental approach: we
iteratively construct a sequence of sets of programs Pn, which
satisfy the specification S when each loop performs only n
iterations (lines 3 and 12). The programs in Pn are used as a
starting point in synthesizing programs with n + 1 iterations
(line 6). Upon termination we return a set of different programs
that refine P using different memory order synchronization
such that P is compliant with S.

B. Patterns of weak memory behavior.

As mentioned previously, C++ RMM allows certain behav-
iors for a load that are not possible under SC. Below, we
list some patterns of such behaviors and explain how they can
be prevented using appropriate memory order annotations [7],
[8]. The patterns can be seen in Fig. 3. We intuited the patterns
from what are often referred to as litmus tests [8].

Store Buffering (SB): This is the pattern from Fig. 2(a).
In this pattern, two threads first write to two different locations
and then try to determine the value of the location written by
the other one. It is possible that each thread will not observe
the store executed by the other. This behavior can occur
when the stores of one thread are not immediately visible to
the other.
Pattern prevention. This pattern can be prevented only by
making all the load and store instructions SC.

store x, 1

store x, 2

load x(1)

rf

R

R

load y(1)

store y, 1

rf

R

(RD_1) (RD_2)
Fig. 4. Abstract patterns of behaviors possible under C++ RMM but not
under SC.

Independent Reads of Independent Writes (IRIW):
Here two threads write to two different locations and the other
two threads see those writes in different orders.
Pattern prevention. The above pattern can be prevented only
by making all the load and store instructions SC.

Load Buffering (LB): This is the pattern from Fig. 2(b).
This pattern indicates that every thread can see later (according
to the sb relation) writes of the other threads. Note that as the
store might actually be dependent on the load, this pattern
indicates that each thread can “magically” satisfy the needs of
the other. Hence, this pattern is also called satisfaction cycles
or reading values out-of-thin-air.
Pattern prevention. Adding one of the rf edges to hb would
prevent this pattern. This can be done by annotating the
store and load instructions of that edge with REL and ACQ,
respectively.

Message Passing (MP): Here, one thread writes to two
different locations, and the other thread sees the value written
by the second store (to y), but misses the first store (to x).
Pattern prevention. Annotating the store to y with REL and
the load from y with ACQ would add the rf edge to the hb
relation and prevent the pattern.

Write-to-Read Causality (WRC): This pattern is similar
to the message passing pattern, but involves three threads.
Here, the value written to x by the first thread is read by the
second thread, which then, according to the sb order, writes
a value to y. The third thread sees the value written by the
second thread but not by the first.
Pattern prevention. Annotating the load and store with REL
and ACQ respectively would prevent this pattern.

C. Abstracting the patterns

The presented pattern list captures several behaviors of
C++RMM. Instances of those patterns were observed in almost
all of our benchmarks but there are still C++RMM behaviors
not captured by the previous list. What’s more, the patterns
share some similarities. In an attempt to bring us closer to
completeness, we drew on that resemblance and extracted the
commonalities into abstract patterns.

Using the RD property in (RD_1, RD_2): The
following patterns are motivated by the RD property defined in
[7]. The relation R can be instantiated in two different ways:
first as a transitive closure of rf and hb relations, and second

store x, 0 store y, 0

store x, 1 store y, 1

load y(0) load x(0)

rf

rf
sb sb

store x, 0

store x, 1 load y(1)

store y, 1 load x(0)

rf

sb sb
rf

store x, 0

store x, 1 load x(1) load y(1)

store y, 1 load x(0)

rf

rf
sb

rf
sb

(SB) (MP) (WRC)

load x(1) load y(2)

store y, 2 store x, 1

sb rf sb
rf

store y, 0 store x, 0

store y, 1 store x, 1 load x(1) load y(1)

load y(0) load x(0)

sb sb
rf

rf

rf

rf

(LB) (IRIW)
Fig. 3. Patterns of behaviors possible under C++ RMM but not under SC. Every column depicts the actions of one thread. We denote by store x, 1 a write
of value 1 to location x and by load x(1) a read of value 1 from x. We assume that the initial value of x and y is 0.

as a possible total order on the involved instructions.
For the first instantiation, the relation R is the transitive

closure of rf ∪ hb. Making all load instructions ACQ and all
store instructions REL across the path will add all the rf
edges along the path in R to hb, forming a sequence violating
the RD property in [7] and preventing that behavior.

When we cannot find such instantiation of the relation R
in the error trace, we try to instantiate it as a possible total
order of instructions, and prevent the error trace using SC.
In our implementation we chose to attempt instantiation of
R as the scheduler choice made by CDSCHECKER. One such
scheduling choice, exemplified in Fig. 2(a) as the index of
instructions 1-15, is a possible total order which the SB pattern
violates. Forcing total order of instructions involved in the
pattern (making the memory order access SC) will cause the
load to violate the RD property.

The following points should also be noted: 1) RD_1 with R
as rf ∪ hb transitive closure is an abstraction of the message
passing(MP) pattern. 2) RD_2 with R as rf ∪ hb transitive
closure is an abstraction of the load buffering (LB) pattern.
3) RD_1 with R as a possible instruction total order is an
abstraction of the store buffering (SB) pattern. 4) RD_2 with
R as a possible instruction total order is a read from future
C++ relaxed behavior.

V. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

We implemented our approach in a tool called PSYNSYN,
which is based on CDSCHECKER [20]. Our tool computes a
symbolic formula that captures possible fixes, and uses Z3
to find minimal satisfying assignments. Then, we thoroughly
evaluated the tool on a number of challenging concurrent
algorithms. For all benchmarks our tool found a nontrivial
solution with non-SC memory accesses. All experiments were
conducted on an AMD Opteron Processor 6376 with 128GB

RAM and 64 cores, but using only a single thread per
benchmark execution. The synthesized solutions and visual
tools that explain our work are available at [1].

The results of the experimental evaluation are summarized
in Table V. Most table columns are self-explanatory, but we
elaborate on the following:
• The N column shows the maximal number of iterations

we attempted for each thread.
• The patterns observed column shows for each algorithm

the instances of patterns described in Section IV-B and
C.

• The # solutions column shows the number of solutions
we found for the benchmark. Unless otherwise specified,
the solutions are for maximal N attempted.

• The # bad traces for N=1 column shows the number of
bad traces CDSCHECKER found in the original benchmark
with each process doing 1 iteration.

• The inferred synch column shows the number of memory
access synchronizations of every type suggested by our
tool in every solution. Due to space restrictions, we
present synchronization of up to 3 solutions per bench-
mark and use “. . . ” if more solutions exist.

All our benchmarks, when having an error trace, exhibited
one of the patterns. For the RD_1 and RD_2 patterns, SC
notation is used when the relation R was instantiated by a
possible instruction scheduling and SC synchronization was
required to prevent the error trace. In addition, the RD pattern
occurrences are reported only if they could not be captured by
patterns from Fig. 3.This is the case, for example, for pattern
instances that are similar to MP but whose path from store
x,1 to load x(0) involved more than three sb ∪ rf edges and
so can only be classified as RD_1 and cannot be classified as
MP.

For abp we can see that the original algorithm was verified

Algorithm N time space # calls patterns observed # solutions # bad traces inferred synch
(s) (Mb) ToZ3 for N=1 (SC, REL, ACQ, RLX)

Alternating Bit 5 20s.89 22 1 MP(SC), RD_1 5 (N=1,2) 0, (5, 0, 0, 1)
Protocol (abp) RD_4 (N=3) 1 (4, 0, 0, 2)

. . .
dekker [12] 1 3m:22 22 3 MP, LB, SB, 13 631 (10, 1, 0, 8)

RD_1, RD_2, (13, 0, 1, 5)
RD_1(SC), RD_4 . . .

d-prcu-v1 [6] 3 3m:14 19 20 LB, SB, RD_2, 7 5 (7, 2, 1, 0)10
RD_1(SC), RD_2(SC), (7, 1, 0, 2)

. . .
d-prcu-v2 [6] 3 3h:53m 22 88 MP, LB, RD_2, 17 8 (9, 2, 1, 4)

RD_1(SC), RD_2(SC), (12, 1, 1, 2)
. . .

kessel [15] 3 57m:16 22 5 MP, LB, SB, RD_1, 2 85 (13, 1, 0, 0)
RD_2, RD_1(SC), RD_2(SC) (14, 0, 0, 0)

peterson [22] 3 26m:41 22 3 MP, LB,RD_2, (N=1) 2* 37 (11, 1, 0, 1)
RD_1(SC) , RD_2(SC) (N=2,3) 2 *(12, 1, 0, 0)

(13, 0, 0, 0)
bakery [18] 2 10m:21 33 3 MP, LB, (N=1) 6 974 (16, 1, 1, 0)

RD_1,RD_2, (N=2)4 (17, 0, 1, 0)
RD_1(SC), RD_2(SC) . . .

ticket [5] 4 1m:08 19 7 RD_1(SC), RD_2(SC) 4 8 (9, 0, 0, 1)
(8, 0, 0, 2)

. . .
treiber stack [24] 1 1h:05 23 1 MP 1 160 (0, 5, 3, 4)

TABLE I
RESULTS OF SYNCHRONIZATION SYNTHESIS

when each process performed 1 iteration. It was not until each
process performed 3 iterations that a violation of the checked
property was encountered. At that point 1 error trace was
found but it exhibited several patterns; therefore several ways
of preventing it were found. We found 5 solutions that verified
for 3 iterations of abp, and those solutions verified for 4 and
5 iterations as well.

In fact, for almost all our benchmarks, solutions once
found, remained verified solutions when more iterations per
thread were attempted. This was not the case for peterson, as
indicated by the “*” in the last column. Here the solution (11,
1, 0, 1) (which are (SC, REL, ACQ, RLX) respectively) found
in 1 iteration had a mutual exclusion breach when attempted
with 2 iterations, and the solution was further restricted by
making the one relaxed memory access SC, thus turning it
into the solution marked with “*”. That solution later verified
for 3 iterations.

For bakery, the 6 solutions in iteration 1 reduced to a subset
of 4. For all other benchmarks the solutions in the last column
were found with 1 iteration per process and remained verified
for the maximal number of iterations attempted.

Previous attempts (e.g. [26]) were made to verify RCU
under C++RMM, but the version we verified was the first one
where an update waits only for the reads whose consistency
it affects, and does not wait for the completion of all existing
reads.

For Dekker’s algorithm, we are not aware of any previous
attempt to synthesize the correct version of it using memory
accesses instead of fences (one such fence solution is a bench-
mark of CDSCHECKER). The solution found by our tool seems
more restrictive than the fence based solution: for example, in
our solution, the load of flags at the while condition creates

fences (when translated to intermediate code) at the exit and at
the entry of the loop; in the fenced version, however, a fence
appears only after the loop exit and not at the entrance. What’s
more, where the fence placements do correlate, ours are still
more restrictive, perhaps due to the incompleteness of our set
of patterns and corrections.

For Treiber’s stack algorithm, CDSCHECKER had a synchro-
nized verified version. For it, our proposed solution was more
restrictive than the manual one provided by CDSCHECKER.

VI. RELATED WORK

In this section, we review some closely related work,
including synthesis of synchronization, automatic verification,
bounded model checking, and dynamic analysis.

Fence Synthesis for x86-TSO and PSO Existing techniques
for synthesizing synchronization for relaxed memory models
have focused on hardware memory models. Kuperstein et
al. [16] presented a framework for fence inference in hardware
memory models such as PSO and TSO. Their framework is
based on a simple operational semantics that explicitly tracks
store buffers to capture effects of the relaxed memory model.
They later [17] extended their technique using abstractions
of unbounded store buffers. This allowed them to scale their
technique and handle a larger set of algorithms. Abdulla et
al. [3] infer memory fences for infinite-state programs under
x86-TSO by combining predicate abstraction with abstractions
of store buffers. Dan et al. [11] used an analysis based on
numerical domains to synthesize minimal fence placements
under PSO and TSO, utilizing various heuristic search op-
timizations to minimize the solution space. Our technique
synthesizes synchronization for the C++ relaxed memory
model. We note that the memory behavior under TSO and

PSO is captured by the SB violation pattern.

Formalizing C++ RMM Batty et al. [8], [9] formalized
the C++ RMM and proved correctness of compilation onto
TSO and Power [2]. These works inspired our definition of
violation patterns and avoidance templates. We also intu-
ited from the formal model when generalizing the concrete
violation patterns into abstract ones. Their tool, CPPMEM,
bears some similarity to CDSCHECKER, which we use in our
implementation. Thus, we believe that it would be possible to
incorporate CPPMEM in our synthesis procedure.

Program Logics for C++RMM Vafeiadis et al. [25], [27]
developed a Hoare-style program logic verification technique
that extends separation logic [21], [28] to C++ RMM. Batty et
al. [7] provided an extension of linearizability and verified that
an implementation of Treiber’s stack [24] corresponds to an
abstract stack under C++ RMM. These works allow for manual
verification. Our synthesis procedure is based on Bounded
Model Checking. However, if these works pan out to automatic
verification techniques, it should be fairly straightforward to
combine them with our technique as a final stage in which we
verify the synthesized solutions.

Fence Synthesis for x86-TSO, PSO and IBM Power C++
RMM was developed with underlying hardware in mind.
The following works should therefore shed some light on
the behaviors it allows. Joshi et al. [14] introduced Reorder
Bounded Model Checking. Their approach is based on in-
struction reordering, and their tool synthesizes minimal fence
placement. We, on the other hand, synthesize memory order
synchronization. It would be interesting to see whether our
technique can be combined with theirs. Musketeer, developed
by Algave et al. [4], provides a flexible scheme for fence
synthesis to ensure robustness, i.e., that every concurrent
execution be observationally equivalent to a serial execution.
CheckFence of Burckhardt et al. [10] also ensures robustness
by converting a program into a form that can be checked
against an axiomatic model specification. Our technique makes
it possible to verify user-provided safety properties.

CONCLUSION

We present the first synthesis procedure for inferring ef-
ficient memory order synchronizations for C++ RMM. Our
procedure ensures that a program complies with a user-
provided safety property in bounded executions. We introduce
a novel approach for detecting missing synchronization by
searching for violation patterns, behaviors possible under C++
RMM but not under SC. We generalize concrete patterns to
abstract ones, thus significantly improving the applicability of
our approach because the abstract patterns allow us to detect an
infinite number of concrete patterns. We provide a technique
to eliminate program executions that do not comply with the
given safety property by blocking the violation patterns they
contain using generic avoidance patterns. We successfully syn-
thesized nontrivial memory order synchronization for several
challenging concurrent algorithms, including a state of the art
Read-Copy-Update (RCU) algorithm.

Our set of violation patterns and avoidance templates is
not complete, and thus our algorithm might fail to find any
solution except the trivial one, where all memory operations
are sequentially consistent. In fact, we believe that coming up
with a complete set is nontrivial, if at all possible. We plan to
address this challenge in future work.

REFERENCES

[1] http://www.practicalsynthesis.org/PSynSyn.html.
[2] IBM Power ISA v.2.05. 2007.
[3] ABDULLA, P. A., ATIG, M. F., CHEN, Y.-F., LEONARDSSON, C., AND

REZINE, A. Automatic fence insertion in integer programs via predicate
abstraction. SAS’12.

[4] ALGLAVE, J., KROENING, D., NIMAL, V., AND POETZL, D. Don’t sit
on the fence - A static analysis approach to automatic fence insertion.
In CAV (2014), pp. 508–524.

[5] ANDREWS, G. R. Concurrent Programming: Principles and Practice.
Benjamin/Cummings, 1991.

[6] ARBEL, M., AND MORRISON, A. Predicate RCU: an RCU for scalable
concurrent updates. In PPoPP (2015), pp. 21–30.

[7] BATTY, M., DODDS, M., AND GOTSMAN, A. Library abstraction for
C/C++ concurrency. In POPL (2013), pp. 235–248.

[8] BATTY, M., OWENS, S., SARKAR, S., SEWELL, P., AND WEBER, T.
Mathematizing C++ concurrency. In POPL (2011), pp. 55–66.

[9] BATTY, M. J. The C11 and C++11 Concurrency Model. PhD thesis,
Wolfson College University of Cambridge, November 2014.

[10] BURCKHARDT, S., ALUR, R., AND MARTIN, M. M. K. CheckFence:
checking consistency of concurrent data types on relaxed memory
models. In PLDI (2007).

[11] DAN, A. M., MESHMAN, Y., VECHEV, M. T., AND YAHAV, E. Ef-
fective abstractions for verification under relaxed memory models. In
VMCAI (2015), pp. 449–466.

[12] DIJKSTRA, E. Cooperating sequential processes, TR EWD-123. Tech.
rep., 1965.

[13] ISO/IEC. Programming Languages – C, 9899:2011.
[14] JOSHI, S., AND KROENING., D. Property-driven fence insertion using

reorder bounded model checking. In FM (2015).
[15] KESSELS, J. L. W. Arbitration without common modifiable variables.

Acta informatica 17, 2 (1982), 135–141.
[16] KUPERSTEIN, M., VECHEV, M., AND YAHAV, E. Automatic inference

of memory fences. In FMCAD (2010).
[17] KUPERSTEIN, M., VECHEV, M., AND YAHAV, E. Partial-coherence

abstractions for relaxed memory models. PLDI ’11.
[18] LAMPORT, L. A new solution of Dijkstra’s concurrent programming

problem. Commun. ACM (1974).
[19] LAMPORT, L. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Trans. Comput. 28, 9 (Sept.
1979), 690–691.

[20] NORRIS, B., AND DEMSKY, B. CDSchecker: checking concurrent data
structures written with c/c++ atomics. In OOPSLA (2013).

[21] O’HEARN, P. W., REYNOLDS, J. C., AND YANG, H. Local reasoning
about programs that alter data structures. In CSL (2001), pp. 1–19.

[22] PETERSON, G. L. Myths about the mutual exclusion problem. Inf.
Process. Lett. 12, 3 (1981).

[23] TASSAROTTI, J., DREYER, D., AND VAFEIADIS, V. Verifying read-
copy-update in a logic for weak memory. In PLDI (2015).

[24] TREIBER, R. K. Systems Programming: Coping with parallelism. Inter-
national Business Machines Incorporated, Thomas J. Watson Research
Center, 1986.

[25] TURON, A., VAFEIADIS, V., AND DREYER, D. Gps: Navigating weak
memory with ghosts, protocols, and separation. In OOPSLA (2014),
pp. 691–707.

[26] VAFEIADIS, V., BALABONSKI, T., CHAKRABORTY, S., MORISSET, R.,
AND ZAPPA NARDELLI, F. Common compiler optimisations are invalid
in the c11 memory model and what we can do about it. In POPL (2015),
pp. 209–220.

[27] VAFEIADIS, V., AND NARAYAN, C. Relaxed separation logic: a program
logic for c11 concurrency. In OOPSLA (2013).

[28] VAFEIADIS, V., AND PARKINSON, M. J. A marriage of rely/guarantee
and separation logic. In CONCUR (2007).

