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Abstract—Given a propositional formula F (x, y), a Skolem
function for x is a function ψ(y), such that substituting ψ(y) for
x in F gives a formula semantically equivalent to ∃x F . Auto-
matically generating Skolem functions is of significant interest
in several applications including certified QBF solving, finding
strategies of players in games, synthesising circuits and bit-
vector programs from specifications, disjunctive decomposition of
sequential circuits etc. In many such applications, F is given as a
conjunction of factors, each of which depends on a small subset
of variables. Existing algorithms for Skolem function generation
ignore any such factored form and treat F as a monolithic
function. This presents scalability hurdles in medium to large
problem instances. In this paper, we argue that exploiting the
factored form of F can give significant performance improve-
ments in practice when computing Skolem functions. We present
a new CEGAR style algorithm for generating Skolem functions
from factored propositional formulas. In contrast to earlier work,
our algorithm neither requires a proof of QBF satisfiability
nor uses composition of monolithic conjunctions of factors. We
show experimentally that our algorithm generates smaller Skolem
functions and outperforms state-of-the-art approaches on several
large benchmarks.

I. INTRODUCTION

Skolem functions, introduced by Thoraf Skolem in the
1920s, occupy a central role in mathematical logic. Formally,
let F (x, y) be a first-order logic formula, and let dom(x) and
dom(y) denote the domains of x and y respectively. A Skolem
function for x in F is a function ψ : dom(y)→ dom(x) such
that substituting ψ(y) for x in F yields a formula semantically
equivalent to ∃xF (x, y), i.e. F (ψ(y), y) ≡ ∃xF (x, y). In
this paper, we focus on the case where the formula F is
propositional and given as a conjunction of factors. Classically,
Skolem functions have been used in proving theorems in logic.
More recently, with the advent of fast SAT/SMT solvers, it
has been shown that several practically relevant problems can
be encoded as quantified formulas, and can be solved by
constructing realizers of quantified variables. We identify these
realizers as specific instances of Skolem functions, and focus
on algorithms for constructing them in this paper.

We begin by listing some applications that illustrate the util-
ity of constructing instances of Skolem functions in practice.

1) Quantifier elimination. Given a quantified formula
Qx F (x, y), where Q ∈ {∃,∀}, the quantifier elimination
problem requires us to find a quantifier-free formula
that is semantically equivalent to Qx F (x, y). Quantifier
elimination has important applications in diverse areas
(see, e.g. [7], [15], [2] for a sampling). It follows from
the definition of Skolem function that eliminating the
quantifier from ∃xF (x, y) can be achieved by substituting

x with a Skolem function for x. Since ∀xF (x, y) can be
written as ¬∃x¬F (x, y), the same idea applies in this
case too. In fact, the process can be repeated in principle
to eliminate quantifiers from a formula with arbitrary
quantifier prefix.

2) Controller Synthesis and Games. Control-program syn-
thesis in the Ramadge-Wonham [13] framework reduces
to games between two players—environment and the
controller—such that the optimal strategy of the controller
corresponds to an optimal control program. The optimal
(or winning) strategy of the controller corresponds to
choosing values of variables controlled by it such that
regardless of the way the environment fixes its variables,
the resulting play satisfies the controller’s objective. If
the rules of the game are encoded as a propositional
formula and if the strategy space for both players is
finite, the optimal strategy of the controller corresponds
to finding Skolem functions of variables controlled by
it. In fact, for a number of two-player games—such as
reachability games and safety games [2], tic-tac-toe [5]
and chess-like games [3], [2]—the problem of deciding
a winner can be reduced to checking satisfiability of a
quantified Boolean formula (QBF), and the problem of
finding winning or best-effort strategy reduces to Skolem
function generation.

3) Graph Decomposition. Skolem functions can be used to
compute disjunctive decompositions of implicitly speci-
fied state transition graphs of sequential circuits [17]. The
disjunctive decomposition problem asks the following
question: Given a sequential circuit, derive “component”
sequential circuits, each of which has the same state space
as the original circuit, but only a subset of transitions
going out of every state. The components should be such
that the complete set of state transitions of the original
circuit is the union of the sets of state transitions of
the components. Disjunctive decompositions have been
shown to be useful in efficient reachability analysis [16].

There are several other practical applications where Skolem
functions find use; see, e.g. [12], for a discussion. Hence, there
is a growing need for practically efficient and scalable ap-
proaches for generating instances of Skolem functions. Large
and complex representations of the formula F in ∃x F often
present scalability hurdles in generating Skolem functions
in practice. Interestingly, for several problem instances, the
specification of F is available in a factored form, i.e., as a
conjunction of simpler sub-formulas, each of which depends



on a subset of variables appearing in F . Unfortunately, unlike
in the case of disjunction, existential quantification does not
distribute over conjunction of sub-formulas. Existing algo-
rithms therefore ignore any factored form of F and treat the
conjunction of factors as a single monolithic function. We
show in this paper that exploiting the factored form can help
significantly when generating Skolem functions.

Our main technical contribution is a SAT-based Counter-
Example Guided Abstraction-Refinement (CEGAR) algorithm
for generating Skolem functions from factored formulas. Un-
like competing approaches, our algorithm exploits the factored
representation of a formula and leverages advances made in
SAT-solving technology. The factored representation is used
to arrive at an initial abstraction of Skolem functions, while a
SAT-solver is used as an oracle to identify counter-examples
that are used to refine the Skolem functions until no counter-
examples exist. We present a detailed experimental evaluation
of our algorithm vis-a-vis state-of-the-art algorithms [7], [12]
over a large class of benchmarks. We show that on several
large problem instances, we outperform competing algorithms.
Proofs that are omitted can be found in the long version at [9].

Related Work. We are not aware of other techniques for
Skolem function generation that exploit the factored form
of a formula. Earlier work on Skolem function generation
broadly fall in one of four categories. The first category
includes techniques that extract Skolem functions from a proof
of validity of ∃X F (X,Y ) [12], [8], [4], [10]. In problem
instances where ∃X F (X,Y ) is valid (and this forms an
important sub-class of problems), these techniques can usually
find succinct Skolem functions if there exists a short proof
of validity. However, in several other important classes of
problems, the formula ∃X F (X,Y ) does not evaluate to
true for all values of Y , and techniques in the first category
cannot be applied. The second category includes techniques
that use templates for candidate Skolem functions [15]. These
techniques are effective only when the set of candidate Skolem
functions is known and small. While this is a reasonable
assumption in some domains [15], it is not in most other
domains. BDD-based techniques [14] are yet another way to
compute Skolem functions. Unfortunately, these techniques
are known not to scale well, unless custom-crafted variable
orders are used. The last category includes techniques that
use cofactors to obtain Skolem functions [7], [17]. These
techniques do not exploit the factored representation of a
formula and, as we show experimentally, do not scale well
to large problem instances.

II. PRELIMINARIES

We use lower case letters (possibly with subscripts) to
denote propositional variables, and upper case letters to
denote sequences of such variables. We use 0 and 1 to
denote the propositional constants false and true, respec-
tively. Let F (X,Y ) be a propositional formula, where X
and Y denote the sequences of variables (x1, . . . , xn) and
(y1, . . . , ym), respectively. We are interested in problem in-
stances where F (X,Y ) is given as a conjunction of factors

f1(X1, Y1), . . . , fr(Xr, Yr), where each Xi (resp., Yi) is
a possibly empty sub-sequence of X (resp., Y ). For no-
tational convenience, we use F and

∧r
j=1 f

j interchange-
ably throughout this paper. The set of variables in F is
called the support of F , and is denoted Supp(F ). Given
a propositional formula F (X) and a propositional function
Ψ(X), we use F [xi/Ψ(X)], or simply F [xi/Ψ], to denote
the formula obtained by substituting every occurrence of the
variable xi in F with Ψ(X). Since the notions of formulas
and functions coincide in propositional logic, the above is also
conventionally called function composition. If X is a sequence
of variables and xi is a variable, we use X \ xi to denote
the sub-sequence of X obtained by removing xi (if present)
from X . Abusing notation, we use X to also denote the set
of elements in X , when there is no confusion. A valuation or
assignment π of X is a mapping π : X → {0, 1}.

Definition 1. Given a propositional formula F (X,Y ) and a
variable xi ∈ X , a Skolem function for xi in F (X,Y ) is a
function ψ(X \ xi, Y ) such that ∃xi F ≡ F [xi/ψ].

A Skolem function for xi in F need not be unique. The
following proposition, which effectively follows from [7], [17],
characterizes the space of all Skolem functions for xi in F .

Proposition 1. A function ψ(X \ xi, Y ) is a Skolem function
for xi in F (X,Y ) iff F [xi/1] ∧ ¬F [xi/0] ⇒ ψ and ψ ⇒
F [xi/1] ∨ ¬F [xi/0].

The function F [xi/0] (resp., F [xi/1]) is called the positive
(resp., negative) cofactor of F with respect to xi, and plays a
central role in the study of Skolem functions for propositional
formulas. In particular, it follows from Proposition 1 that
F [xi/1] is a Skolem function for xi in F . The above definition
for a single variable can be naturally extended to a vector of
variables. Given F (X,Y ), a Skolem function vector for X =
(x1, . . . , xn) in F is a vector of functions Ψ = (ψ1, . . . , ψn)
such that ∃x1 . . . xn F ≡ (· · · (F [x1/ψ1]) · · · [xn/ψn]). A
straightforward way to obtain a Skolem function vector Ψ is
to first obtain a Skolem function ψ1 for x1 in F , then compute
F ′ ≡ ∃x1 F and obtain a Skolem function ψ2 for x2 in F ′, and
so on until ψn has been obtained. More formally, ψi can be
computed as a Skolem function for xi in ∃x1 . . . xi−1 F , start-
ing from ψ1 and proceeding to ψn. Note that ∃x1 . . . xi−1 F
can itself be computed as (· · · (F [x1/ψ1]) · · · [xi−1/ψi−1]).

Definition 2. The “Can’t-be-1” function for xi in F , de-
noted Cb1[xi](F ), is defined to be (¬∃x1 . . . xi−1 F ) [xi/1].
Similarly, the “Can’t-be-0” function for xi in F , denoted
Cb0[xi](F ), is defined to be (¬∃x1 . . . xi−1 F ) [xi/0]. When
X and F are clear from the context, we use Cb1[i] and Cb0[i]
for Cb1[xi](F ) and Cb0[xi](F ), respectively.

Intuitively, in order to make F evaluate to 1, we cannot set xi
to 1 (resp. 0) whenever the valuation of {xi+1, . . . , xn}∪Y sat-
isfies Cb1[i] (resp., Cb0[i]). The following proposition follows
from Definition 2 and from our observation about computing
a Skolem function vector one component at a time.



Proposition 2. Ψ=(¬Cb1[1], . . . ,¬Cb1[n]) is a Skolem func-
tion vector for X in F .

Note that the support of ψi in Ψ, as given by Proposition 2,
is {xi+1, . . . , xn} ∪ Y . If we want a Skolem function vector
Ψ such that every component function has only Y (or a
subset thereof) as support, this can be obtained by repeatedly
substituting the Skolem function for every variable xi in all
other Skolem functions where xi appears. We denote such a
Skolem function vector as Ψ(Y ).

III. A MONOLITHIC COMPOSITION BASED ALGORITHM

Our algorithm is motivated in part by cofactor-based tech-
niques for computing Skolem functions, as proposed by Jiang
et al [7] and Trivedi [17]. Given F (X,Y ) =

∧r
j=1 f

j(Xj , Yj),
the techniques of [7], [17] essentially compute a Skolem
function vector Ψ(Y ) for X in F as shown in algorithm
MONOSKOLEM (see Algorithm 1). In this algorithm, the
variables in X are assumed to be ordered by their indices.
While variable ordering is known to affect the difficulty of
computing Skolem functions [7], we assume w.l.o.g. that
the variables are indexed to represent a desirable order. We
describe the variable order used in our study later in Section V.

MONOSKOLEM works in two phases. In the first phase, it
implements a straightforward strategy for obtaining a Skolem
function vector, as suggested by Proposition 2. Specifically,
steps 3 and 4 of MONOSKOLEM build a monolithic conjunc-
tion Fi of all factors that have xi in their support, before
computing ψi. This restricts the scope of the quantifier for
xi to the conjunction of these factors. In Step 6, we use
¬Cb1[i] as a specific choice for the Skolem function ψi. After
computing ψi from Fi, step 7 discards the factors with xi
in their support, and introduces a single factor representing
∃xi Fi (computed as Fi[xi/ψi]) in their place. Note that each
ψi obtained in this manner has {xi+1, . . . , xn}∪Y (or a subset
thereof) as support. Since we want each Skolem function to
have support Y , a second phase of “reverse” substitutions is
needed. In this phase (see Algorithm 2), the Skolem function
ψn(Y ) obtained above is substituted for xn in ψ1, . . . , ψn−1.
This effectively renders all Skolem functions independent of
xn. The process is then repeated with ψn−1 substituted for
xn−1 in ψ1, . . . , ψn−2 and so on, until all Skolem functions
have been made independent of x1, . . . , xn, and have only Y
(or subsets thereof) as support.

MONOSKOLEM can be further refined by combining steps
6 and 7, and directly defining ψi in terms of Fi. However,
we introduce the intermediate step using Cb0[i] and Cb1[i] to
motivate their central role in our approach. Note that instead
of ¬Cb1[i], we could combine Cb1[i] and Cb0[i] in other
ways (denoted by COMBINE(Cb0[i], Cb1[i]) within comments
in Algorithm 1) to get ψi in Step 6. In fact, Jiang et al [7]
compute a Skolem function for xi in F as an interpolant
of ¬Cb1[i] ∧ Cb0[i] and Cb1[i] ∧ ¬Cb0[i], while Trivedi [17]
observes that the function (¬Cb1[i]∧(Cb0[i]∨g)) ∨ (Cb1[i]∧
Cb0[i] ∧ h) serves as a Skolem function for xi in F where
h and g are arbitrary propositional functions with support in

Algorithm 1: MONOSKOLEM

Input: Prop. formula F (X,Y ) =
∧r

j=1 f
j(Xj , Yj),

where X = (x1, . . . , xn)
Output: Skolem function vector Ψ(Y )
// Phase 1 of algorithm

1 Factors :=
{
f j : 1 ≤ j ≤ r

}
;

2 for i in 1 to n do
3 FactorsWithXi := {f : f ∈ Factors, xi ∈ Supp(f)};
4 Fi :=

∧
f∈FactorsWithXi f ;

5 Cb0[i] := ¬Fi[xi/0]; Cb1[i] := ¬Fi[xi/1];
6 ψi := ¬Cb1[i];

// Generally, ψi:=COMBINE(Cb0[i], Cb1[i]);
7 Factors := (Factors \ FactorsWithXi) ∪ {Fi[xi/ψi]};
// Phase 2 of algorithm

8 return REVERSESUBSTITUTE(ψ1, . . . , ψn);

X\{xi}∪Y . Since computing interpolants using a SAT solver
is often time-intensive and does not always lead to succinct
Skolem functions [7], we simply use ¬Cb1[i] as a Skolem
function in Step 6. Proposition 2 guarantees the correctness of
this choice.

Algorithm 2: REVERSESUBSTITUTE

Input: Functions
ψ1(x2, . . . , xn, Y ), ψ2(x3, . . . , xn, Y ), . . . , ψn(Y )

Output: Function vector Ψ(Y )
1 for i = n downto 2 do
2 for k = i− 1 downto 1 do ψk = ψk[xi/ψi];

3 return Ψ(Y ) = (ψ1(Y ), . . . , ψn(Y ));

Observe that MONOSKOLEM works with a monolithic
conjunction (Fi) of factors that have xi in their support.
Specifically, it composes each such monolithic conjunction
Fi with a cofactor of Fi in Step 7 to eliminate quantifiers
sequentially. This can lead to large memory footprints and
more time-outs when used with medium to large benchmarks,
as confirmed by our experiments. This motivates us to ask if
we can develop a cofactor-based algorithm that does not suffer
from the above drawbacks of MONOSKOLEM.

IV. CEGAR FOR GENERATING SKOLEM FUNCTIONS

We now present a new CEGAR [6] algorithm for generating
Skolem function vectors, that exploits the factored form of
F (X,Y ). Like MONOSKOLEM, our new algorithm, named
CEGARSKOLEM, works in two phases, and assumes that the
variables in X are ordered by their indices. The first phase
of the algorithm consists of the core abstraction-refinement
part, and computes a Skolem function vector (ψ1, . . . , ψn),
where ψi has {xi+1, . . . , xn}∪Y , or a subset thereof, as sup-
port. Unlike in MONOSKOLEM, this phase avoids composing
monolithic conjunctions of factors, yielding simpler Skolem
functions. The second phase of the algorithm performs reverse
substitutions, similar to that in MONOSKOLEM.



Before describing the details of CEGARSKOLEM, we intro-
duce some additional notation and terminology. Given propo-
sitional functions (or formulas) f and g, we say that f refines
g and g abstracts f iff f logically implies g. Given F (X,Y )
and a vector of functions ΨA = (ψA

1 , . . . , ψ
A
n ), we say that

ΨA is an abstract Skolem function vector for X in F iff there
exists a Skolem function vector Ψ = (ψ1, . . . , ψn) for X in F
such that ψA

i abstracts ψi, for every i ∈ {1, . . . , n}. Instead
of using Cb0[i] and Cb1[i] to compute Skolem functions, as
was done in MONOSKOLEM, we now use their refinements,
denoted r0[i] and r1[i] respectively, to compute abstract
Skolem functions. For convenience, we represent r0[i] and
r1[i] as sets of implicitly disjoined functions. Thus, if r1[i],
viewed as a set, is {g1, g2}, then it is g1 ∨ g2 when viewed as
a function. We abuse notation and use r1[i] (resp., r0[i]) to
denote a set of functions or their disjunction, as needed.

A. Overview of our CEGAR algorithm

Algorithm CEGARSKOLEM has two phases. The first phase
consists of a CEGAR loop, while the second does reverse
substitutions. The CEGAR loop has the following steps.

– Initial abstraction and refinement. This step involves
constructing refinements of Cb0[i] and Cb1[i] for every
xi in X . Using Proposition 2, we can then construct an
initial abstract Skolem function vector ΨA. This step is
implemented in Algorithm 3 (INITABSREF), which pro-
cesses individual factors of F (X,Y ) =

∧r
j=1 f

j(Xj , Yj)
separately, without considering their conjunction. As a
result, this step is time and memory efficient if the
individual factors are simple with small representations.

– Termination Condition. Once INITABSREF has com-
puted ΨA, we check whether ΨA is already a Skolem
function vector. This is achieved by constructing an
appropriate propositional formula ε, called the “error for-
mula” for ΨA (details in Subsection IV-C), and checking
for its satisfiability. An unsatisfiable formula implies that
ΨA is a Skolem function vector. Otherwise, a satisfying
assignment π of ε is used to improve the current refine-
ments of Cb1[i] and Cb0[i] for suitable variables xi.

– Counterexample guided abstraction and refinement.
This step is implemented in Algorithm 4: UPDATEAB-
SREF, and computes an improved (i.e., more abstract)
refinement of Cb0[i] and Cb1[i] for some xi ∈ X . This, in
turn, leads to a refinement of the abstract Skolem function
vector ΨA.

The overall CEGAR loop starts with the first step and repeats
the second and third steps until a Skolem function vector is
obtained. We now discuss the three steps in detail.

B. Initial Abstraction and Refinement

Algorithm INITABSREF (see Algorithm 3) starts by initial-
izing each r1[i] and r0[i], viewed as sets, to the empty set.
Subsequently, it considers each factor f in

∧r
j=1 f

j(Xj , Yj),
and determines the contribution of f to Cb0[i] and Cb1[i], for
every xi in the support of f . Specifically, if xi ∈ Supp(f),
the contribution of f to Cb0[i] is (¬∃x1 . . . xi−1 f) [xi/0], and

Algorithm 3: INITABSREF

Input: Prop. formula F (X,Y ) =
∧r

j=1 f
j(Xj , Yj),

where X = (x1, . . . , xn)
Output: Abstract Skolem function vector

ΨA = (ψA
1 , . . . , ψ

A
n ), and refinements r0[i] and

r1[i] for each xi in X
1 for i in 1 to n do
2 r0[i] := ∅; r1[i] := ∅; // Initializing

3 for j in 1 to r do
4 f := f j ; // for each factor
5 for i in 1 to n do
6 if xi ∈ Supp(f) then
7 r0[i] := r0[i] ∪ {¬f [xi/0]};
8 r1[i] := r1[i] ∪ {¬f [xi/1]};

// Skolem function for xi in f
9 ψi,f := f [xi/1];

10 f := f [xi/ψi,f ]; // ∵ f [xi/ψi,f ] ≡ ∃xi f

11 for i in 1 to n do
12 ψA

i := ¬r1[i];
// Interpreting r1[i] as a function

13 return ΨA=(ψA
1 , . . . , ψ

A
n ) and r0[i], r1[i] ∀xi∈X

its contribution to Cb1[i] is (¬∃x1 . . . xi−1 f) [xi/1]. These
contributions are accumulated in the sets r0[i] and r1[i],
respectively, and xi is existentially quantified from f . The
process is then repeated with the next variable in the support
of f . Once the contributions from all factors are accumulated
in r0[i] and r1[i] for each xi in X , INITABSREF computes
an abstract Skolem function ψA

i for each xi in F by com-
plementing r1[i], interpreted as a disjunction of functions.
Note that executing steps 4 through 10 of INITABSREF
for a specific factor f is operationally similar to executing
steps 1 through 7 of MONOSKOLEM with a singleton set
of factors, i.e., Factors = {f}. This highlights the key
difference between INITABSREF and MONOSKOLEM: while
MONOSKOLEM works with monolithic conjunctions of factors
and their compositions, INITABSREF works with individual
factors, without ever considering their conjunctions. Lemma 1
asserts the correctness of INITABSREF.

Lemma 1. The vector ΨA computed by INITABSREF is an
abstract Skolem function vector for X in F (X,Y ). In addition,
r0[i] and r1[i] computed by INITABSREF are refinements of
Cb0[i](F ) and Cb1[i](F ) for every xi in X .

C. Termination condition

Given F (X,Y ) and an abstract Skolem function vector ΨA,
it may happen that ΨA is already a Skolem function vector
for X in F . We therefore check if ΨA is a Skolem function
vector before refinement. Towards this end, we define the error
formula for ΨA as F (X ′, Y )∧

∧n
i=1(xi ⇔ ψA

i )∧¬F (X,Y ),
where X ′=(x′1, . . . , x

′
n) is a sequence of fresh variables with

no variable in common with X . The first term in the error



formula checks if there exists some valuation of X that renders
∃Y F (X,Y ) true. The second term assigns variables in X to
the values given by the abstract Skolem functions, and the
third term checks if this assignment falsifies the formula F .

Lemma 2. The error formula for ΨA is unsatisfiable iff ΨA

is a Skolem function vector of X in F .

The following example illustrates the role of the error
formula.

Example 1. Let X = {x1, x2}, Y = {y1, y2, y3} in
∃x1x2F (X,Y ) where F ≡ (f1 ∧ f2 ∧ f3), with f1 =
(¬x1∨¬x2∨¬y1), f2 = (x2∨¬y3∨¬y2), f3 = (x1∨¬x2∨y3).

Algorithm INITABSREF gives r1[1] = (x2 ∧ y1), r0[1] =
(x2 ∧¬y3), r1[2] = false, r0[2] = y3 ∧ y2. This yields ψA

1 =
(¬x2 ∨ ¬y1), ψA

2 = true. Now, while ψA
1 is a correct Skolem

function for x1 in F , ψA
2 is not for x2. This is detected by the

satisfiability of the error formula ε = F (x′1, x
′
2, Y ) ∧ (x1 =

¬x2 ∨¬y1)∧ (x2 = 1)∧¬F (x1, x2, Y ). Note that ¬F (¬x2 ∨
¬y1, 1, Y ) simplifies to (y1 ∧ ¬y3), and y1 = 1, y2 = 1, y3 =
0, x1 = 0, x2 = 1, x′1 = 0, x′2 = 0 is a satisfying assignment
for ε.

D. Counterexample-guided abstraction and refinement

Let ε be the error formula for ΨA, and let π be a satisfying
assignment of ε. We call π a counterexample of the claim that
ΨA is a Skolem function vector. For every variable v ∈ X ′ ∪
X∪Y , we use π(v) to denote the value of v in π. Satisfiability
of ε implies that we need to refine at least one abstract Skolem
function ψA

i in ΨA to make it a Skolem function vector. Since
ψA
i is ¬r1[i] in our approach, refining ψA

i can be achieved by
computing an improved (i.e., more abstract) version of r1[i].
Algorithm UPDATEABSREF implements this idea by using π
to determine which r1[i] should be rendered abstract by adding
appropriate functions to r1[i], viewed as a set.

Before delving into the details of UPDATEABSREF, we
state some key results. In the following, we use π |= f to
denote that the formula f evaluates to 1 when the variables
in Supp(f) are set to values given by π. If π |= f , we
also say f evaluates to 1 under π. We use r0[i]init and
r1[i]init to refer to r0[i] and r1[i], as computed by algorithm
INITABSREF. Since UPDATEABSREF only adds to r1[i] and
r0[i] viewed as sets, it is easy to see that r0[i]init ⇒ r0[i] and
r1[i]init ⇒ r1[i] viewed as functions (recall these functions
are simply disjunctions of elements in the corresponding sets).

Lemma 3. Let π be a satisfying assignment of the error
formula ε for ΨA. Then the following hold.
(a) π |= ¬Cb0[n] ∨ ¬Cb1[n].
(b) There exists k ∈ {1, . . . , n− 1} s.t., π |= r1[k] ∧ r0[k].
(c) There exists no Skolem function vector Ψ = (ψ1, . . . , ψn)

such that ψj ⇔ ψA
j for all j in {k + 1, . . . , n}.

(d) There exists l ∈ {k + 1, . . . , n} such that xl = 1 in π,
and π |= Cb1[l] ∧ ¬r0[l].

Algorithm 4 (UPDATEABSREF) uses Lemma 3 to compute
abstract versions of r0[i] and r1[i], and a refined version of

Algorithm 4: UPDATEABSREF

Input: r0[i] and r1[i] for all xi in X ,
Satisfying assignment π of error formula, i.e.,
F (X ′, Y ) ∧

∧n
i=1

(
xi ⇔ ψA

i

)
∧ ¬F (X,Y )

Output: Improved (i.e., refined) ΨA = (ψA
1 , . . . , ψ

A
n ),

Improved (i.e., abstracted) r0[i] & r1[i], ∀xi ∈ X
1 k := largest m such that π satisfies r0[m] ∧ r1[m];
2 µ0 := GENERALIZE(π, r0[k]);
3 µ1 := GENERALIZE(π, r1[k]);
4 µ := µ0 ∧ µ1;
// Search for Skolem function among{

ψA
k+1, . . . , ψ

A
n

}
to be refined

5 l := k + 1;
6 while true do // current guess: refine ψA

l

7 if xl ∈ Supp(µ) then
8 if xl = 1 in π then
9 µ1 := µ[xl/1];

10 r1[l] := r1[l] ∪ {µ1};
11 if π satisfies r0[l] then
12 µ0 := GENERALIZE(π, r0[l]);
13 µ := µ0 ∧ µ1;

14 else
15 break;

16 else
17 µ0 := µ[xl/0];
18 r0[l] := r0[l] ∪ {µ0};
19 µ1 := GENERALIZE(π, r1[l]);
20 µ := µ0 ∧ µ1;

21 l := l + 1 ;

22 ΨA = (¬r1[1], . . . ,¬r1[n]);
23 return r0[i] and r1[i] for all xi in X , and ΨA

ΨA, when ΨA is not a Skolem function vector. It takes as
input the current versions of r0[i] and r1[i] for all xi in X , and
a satisfying assignment π of the error formula for the current
version of ΨA. Since π |= F (X ′, Y ) and π |= ¬F (X,Y ), and
since the value of every xi in π is given by ψA

i , there exists
at least one ψA

l , for l ∈ {1, . . . , n}, that fails to generate
the right value of xl when the value of Y is as given by π.
UPDATEABSREF works by identifying such an index l and
refining ψA

l . Since ψA
i = ¬r1[i], ψA

l is refined by updating
(abstracting) the corresponding r1[l] set. In fact, the algorithm
may, in general, end up abstracting not only r1[l], but several
r0[i] and r1[i] as well in a sound manner.

As shown in Algorithm 4, UPDATEABSREF first finds the
largest index k such that π |= r0[k] ∧ r1[k]. Lemma 3b
guarantees the existence of such an index in {1, . . . , n}. We
assume access to a function called GENERALIZE that takes
as arguments an assignment π and a function ϕ such that
π |= ϕ, and returns a function ξ that generalizes π while
satisfying ϕ. More formally, if ξ = GENERALIZE(π, ϕ),
then Supp(ξ) ⊆ Supp(ϕ), π |= ξ and ξ ⇒ ϕ (details of



GENERALIZE used in our implementation are discussed later).
Thus, in steps 2 and 3 of UPDATEABSREF, we compute
generalizations of π that satisfy r0[k] and r1[k], respectively.
The function µ computed in step 4 is therefore such that π |= µ
and µ⇒ r0[k]∧ r1[k]. Since r0[k]∧ r1[k]⇒ ¬∃x1 . . . xkF ,
any abstract Skolem function vector that produces values of
x1, . . . , xn (given the valuation of Y as in π) for which µ
evaluates to 1, cannot be a Skolem function vector. Since the
support of µ is {xk+1, . . . , xn}∪Y , one of the abstract Skolem
functions ψA

k+1, . . . , ψ
A
n must be refined.

The loop in steps 6–21 of UPDATEABSREF tries to identify
an abstract Skolem function ψA

l to be refined, by iterating l
from k + 1 to n. Clearly, if xl 6∈ Supp(µ), the value of ψA

l

under π is of no consequence in evaluating µ, and we ignore
such variables. If xl ∈ Supp(µ) and if xl = 1 in π, then π |=
µ[xl/1] and µ[xl/1]⇒ (¬∃x1 . . . xl−1F )[xl/1]. Recalling the
definition of Cb1[l], we have µ[xl/1]⇒ Cb1[l], and therefore
µ[xl/1] can be added to r1[l] (viewed as a set) yielding a
more abstract version of r1[l]. Steps 8–10 of UPDATEABSREF
implement this update of r1[l]. Note that since π |= µ[xl/1],
we have π |= r1[l] after step 10. If it so happens that π |=
r0[l] as well, then we have π |= r0[l] ∧ r1[l], where r1[l]
refers to the updated refinement of Cb1[l]. In this case, we
have effectively found an index l > k such that π |= r0[k] ∧
r1[k]. We can therefore repeat our algorithm starting with l
instead of k. Steps 11–13 followed by step 21 of algorithm
UPDATEABSREF effectively implement this. If, on the other
hand, π 6|= r0[k], then we have found an l that satisfies the
conditions in Lemma 3d. We exit the search for an abstract
Skolem function in this case (see steps 14–15).

If xl = 0 in π, a similar argument as above shows that
µ[xl/0] can be added to r0[l]. Steps 17–18 of UPDATEAB-
SREF implement this update. As before, it is easy to see that
π |= r0[l] after step 18. Moreover, since π |=

∧n
i=1(xi ⇔ ψA

i )
and ψA

i ≡ ¬r1[l], in order to have xl = 0 in π, we must
have π |= r1[l]. Therefore, we have once again found an
index l > k such that π |= r0[k] ∧ r1[k], and can repeat
our algorithm starting with l instead of k. Steps 19–21 of
algorithm UPDATEABSREF effectively implement this.

Once we exit the loop in steps 6–21 of UPDATEABSREF,
we compute the refined Skolem function vector ΨA as
(¬r1[1], . . .¬r1[n]) in step 22 and return the updated r0[i],
r1[i] for all xi in X , and also ΨA.

Example 1 (Continued). Continuing with our earlier example,
the error formula after the first step has a satisfying assign-
ment y1 = 1, y2 = 1, y3 = 0, x1 = 0, x2 = 1, x′1 = 0, x′2 = 0.
Using this for π in UPDATEABSREF, we find that ψA

1 is
left unchanged at (¬x2 ∨ ¬y1), while ψA

2 , which was true
earlier, is refined to (¬y1 ∨ y3). With these refined Skolem
functions, F (ψA

1 , ψ
A
2 , Y ) evaluates to true for all valuations of

Y . As a result, the (new) error formula becomes unsatisfiable,
confirming the correctness of the Skolem functions.

It can be shown that Algorithm UPDATEABSREF always
terminates, and renders at least one r1[i] strictly abstract, and
at least one ψA

i strictly refined, for i ∈ {1, . . . , n} (see [9] for

Algorithm 5: CEGARSKOLEM

Input: Propositional formula
F (X,Y ) =

∧r
j=1 f

j(Xj , Yj), X = (x1, . . . , xn)
Output: Skolem function vector Ψ(Y ) for X in F

1 (ΨA,{r0[i], r1[i] : 1 ≤ i ≤ n}) :=
INITABSREF(

∧r
j=1 f

j);
2 ε := F (X ′, Y ) ∧

∧n
i=1(xi ⇔ ψA

i ) ∧ ¬F (X,Y );
3 while ε is satisfiable do
4 Let π be a satisfying assignment of ε;
5 (ΨA, {r0[i], r1[i] : 1 ≤ i ≤ n}) :=

UPDATEABSREF({r0[i], r1[i] : 1 ≤ i ≤ n}, π);
6 ε := F (X ′, Y ) ∧

∧n
i=1(xi ⇔ ψA

i ) ∧ ¬F (X,Y );

7 Ψ(Y ) := REVERSESUBSTITUTE(¬r1[1], . . . ,¬r1[n]);
8 return Ψ(Y );

the proof). The overall CEGARSKOLEM algorithm can now
be implemented as depicted in Algorithm 5. From the above
discussion and Lemmas 1 and 2, we obtain our main result.

Theorem 1. CEGARSKOLEM(F (X,Y )) terminates and com-
putes a Skolem function vector for X in F .

The function GENERALIZE(π, ϕ) used in UPDATEABSREF
can be implemented in several ways. Since π |= ϕ, we may
return a conjunction of literals corresponding to the assignment
π, or the function ϕ itself. From our experiments, it appears
that the first option leads to low memory requirements and
increased run-time (due to large number of invocations of
UPDATEABSREF). The other option requires more memory
and less run-time due to fewer invocations of UPDATEAB-
SREF. For our study, we let GENERALIZE(π, r1[k]) return
one element in r1[k] (viewed as a set) amongst all those that
evaluate to 1 under π, such that the support of µ computed
in Algorithm UPDATEABSREF is minimized (we had to allow
GENERALIZE(·, ·) access to µ for this purpose). We follow a
similar strategy for GENERALIZE(π, r0[k]). This gives us a
reasonable tradeoff between time and space requirements.

V. EXPERIMENTAL RESULTS

A. Experimental Methodology

We compared CEGARSKOLEM with (a) MONOSKOLEM
(the algorithm based on the cofactoring approach of [7], [17])
and with (b) Bloqqer (a QRAT-based Skolem function gen-
eration tool reported in [12]). As described in [12], Bloqqer
generates Skolem functions by first generating QRAT proofs
using a remarkably efficient (albeit incomplete) preprocessor,
and then generates Skolem functions from these proofs.

The Skolem function generation benchmarks were obtained
by considering sequential circuits from the HWMCC10 bench-
mark suite, and by reducing the problem of disjunctively
decomposing a circuit into components to the problem of
generating Skolem function vectors. Details of how these
benchmarks were generated are described in [1]. Each bench-
mark is of the form ∃XF (X,Y ), where F (X,Y ) is a con-
junction of factors and ∃Y (∃XF (X,Y )) is true. However,



for some benchmarks, ∀Y (∃XF (X,Y )) does not evaluate to
true. Since Bloqqer can generate Skolem functions only when
∀Y (∃XF (X,Y )) is true, we divided the benchmarks into
two categories: a) TYPE-1 where ∀Y ∃XF (X,Y ) is true,
and b) TYPE-2 where ∀Y ∃XF (X,Y ) is false (although
∃Y ∃XF (X,Y ) is true). While we ran CEGARSKOLEM and
MONOSKOLEM on all benchmarks, we ran Bloqqer only on
TYPE-1 benchmarks. Further, since Bloqqer required the
input to be in qdimacs format, we converted each TYPE-1
benchmark into qdimacs format using Tseitin encoding [18].
All our benchmarks can be downloaded from [1].

Our implementations of MONOSKOLEM and
CEGARSKOLEM make use of the ABC [11] library
to represent and manipulate functions as AIGs. For
CEGARSKOLEM, we used the default SAT solver provided
by ABC, which is a variant of MiniSAT. We used a simple
heuristic to order the variables, and used the same ordering for
both MONOSKOLEM and CEGARSKOLEM. In our ordering,
variables that occur in fewer factors are indexed lower than
those that occur in more factors.

We used the following metrics to compare the performance
of the algorithms: (i) average/maximum size of the generated
Skolem functions in a Skolem function vector, where the
size is the number of nodes in the AIG representation of
a function, and ii) total time taken to generate the Skolem
function vector (excluding any input format conversion time).
The experiments were performed on a 1.87 GHz Intel(R)
Xeon machine with 128GB memory running Ubuntu 12.04.4.
The maximum time and main memory usage was restricted
to 2 hours and 32GB, although we noticed that for most
benchmarks, all three algorithms used less than 2 GB memory.

B. Results and Discussion

We conducted our experiments with 424 benchmarks, of
which 160 were TYPE-1 benchmarks and 264 were TYPE-2
benchmarks. The 424 benchmarks covered a wide spectrum
in terms of number of factors, total number of variables, and
number of quantified variables (see [9] for details).

1) CEGARSKOLEM vs MONOSKOLEM: The performance
of these two algorithms on all the benchmarks (TYPE-1
and TYPE-2) is shown in the scatter plots of Figure 1,
where Figure 1a shows the average sizes of Skolem func-
tions generated in a Skolem function vector and Figure 1b
shows the total time taken in seconds. From Figure 1a, it is
clear that the Skolem functions generated by CEGARSKOLEM
in a Skolem function vector are on average smaller than
those generated by MONOSKOLEM. There is no instance on
which CEGARSKOLEM generates Skolem function vectors with
larger functions on average vis-a-vis MONOSKOLEM.

Due to repeated calls to the SAT-solver, CEGARSKOLEM
takes more time than MONOSKOLEM on some benchmarks,
but on most of them the total time taken by both algorithms
is less than 100 seconds (Figure 1b). Indeed, on profiling
we found that CEGARSKOLEM spent most of its time on
SAT solving. On 38 benchmarks where CEGARSKOLEM took
greater than 100 but less than 300 seconds, MONOSKOLEM
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Fig. 1: CEGARSKOLEM vs MONOSKOLEM on TYPE-1 & TYPE-2
benchmarks. Topmost (rightmost) points indicate benchmarks where
MONOSKOLEM (CEGARSKOLEM) was unsuccessful.

performed significantly worse, taking more than 1000 seconds.
We found the degradation of MONOSKOLEM was due to
the large sizes of Skolem functions generated (of the order
of 1 million AIG nodes) compared to those generated by
CEGARSKOLEM (< 8000 AIG nodes). Large Skolem function
sizes clearly imply more time spent in function composition
and reverse-substitution.

For benchmarks where the sizes of Skolem functions gen-
erated were even larger (of the order of 107 AIG nodes),
MONOSKOLEM could not complete generation of all Skolem
functions: for 8 benchmarks, the memory consumed by
MONOSKOLEM increased rapidly, resulting in memory outs;
for 10 benchmarks, it ran out of time; for an overwhelming
83 benchmarks, it encountered integer overflows (and hence
assertion failures) in the underlying ABC library. These are
indicated by the topmost points (see label “FA” on the axes)
in Figure 1. In contrast, CEGARSKOLEM generated Skolem
functions for almost all (412/424) benchmarks. The rightmost
points indicate the 12 cases where CEGARSKOLEM failed, of
which 10 were time-outs and 2 were memory outs.

2) CEGARSKOLEM vs Bloqqer: Of the 160 TYPE-1
benchmarks, Bloqqer successfully generated Skolem function



 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1  10  100  1000  10000 100000 1e+06  1e+07  1e+08

S
iz

e
 i
n

 B
lo

q
q

e
r

Size in CegarSkolem

FA

FA            

(a) Maximum size of Skolem functions

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01  0.1  1  10  100  1000  10000  100000

T
im

e
 i
n

 B
lo

q
q

e
r

Time in CegarSkolem

FA

FA            

(b) Time taken (in seconds)

Fig. 2: CEGARSKOLEM vs Bloqqer on TYPE-1 benchmarks.
Topmost (rightmost) points indicate benchmarks for which Bloqqer
(CEGARSKOLEM) was unsuccessful.

vectors in 148 cases. It gave a NOT VERIFIED message for
the remaining 12 benchmarks (in less than 30 minutes). These
benchmarks are indicated by the topmost points (see label
“FA” on the axes) in the scatter plots of Figure 2. Of these,
8 are large benchmarks with 1000+ factors and variables to
eliminate (overall, there are 9 such large benchmarks). On the
other hand, CEGARSKOLEM was able to successfully generate
Skolem functions on 154 benchmarks, including the 9 large
benchmarks, on each of which it took less than 20 minutes.

For the 142 benchmarks for which both algorithms suc-
ceeded, we compared the times taken in Figure 2b. As earlier,
CEGARSKOLEM took more time on many benchmarks, but
there were several benchmarks, including the large bench-
marks, on which Bloqqer was out-performed. We also com-
pared the maximum sizes of Skolem functions generated in a
Skolem function vector (see Figure 2a). We used the maximum
(instead of average) size, since Tseitin encoding was needed
to convert the benchmarks to qdimacs format, and this in-
troduces many variables whose Skolem function sizes are very
small, skewing the average. For a majority (108/142) of the
benchmarks where both algorithms succeeded, the maximum
sizes of Skolem functions obtained by CEGARSKOLEM were

smaller than those generated by Bloqqer. Hence, not only does
CEGARSKOLEM run faster on the large benchmarks, it also
generates smaller Skolem functions on most of them.

3) Discussion: For all benchmarks on which
CEGARSKOLEM timed out, we noticed that there were
large subsets of factors that shared many variables in their
supports. As a result, CEGARSKOLEM could not exploit
the factored representation effectively, requiring many
refinements. We also noticed that for many benchmarks
(197/424), the initial abstract Skolem functions were correct,
and most of the time was spent in the SAT solver. In fact, on
averaging over all benchmarks, we found that around 33% of
the time spent by CEGARSKOLEM was for SAT-solving. This
shows that we can leverage improvements in SAT solving
technology to improve the performance of CEGARSKOLEM.

VI. CONCLUSION AND FUTURE WORK

We presented a CEGAR algorithm for generating Skolem
functions from factored propositional formulas. Our experi-
ments show that for complex functions, our algorithm out-
performs two state-of-the-art algorithms. As part of future
work, we will explore integration with more efficient SAT-
solvers and refinement using multiple counter-examples.
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