
Accelerating Invariant Generation
Kumar Madhukar∗†, Björn Wachter‡, Daniel Kroening‡, Matt Lewis‡ and Mandayam Srivas†

∗Tata Research Development and Design Center, Pune, Maharashtra, India
Email: kumar.madhukar@tcs.com

†Chennai Mathematical Institute, Chennai, Tamil Nadu, India
Email: mksrivas@hotmail.com

‡Department of Computer Science, University of Oxford, United Kingdom
Email: bjoern.wachter@cs.ox.ac.uk, kroening@cs.ox.ac.uk, matt@improbable.io

Abstract—Acceleration is a technique for summarising loops
by computing a closed-form representation of the loop behaviour.
The closed form can be turned into an accelerator, which is a
code snippet that skips over intermediate states of the loop to
the end of the loop in a single step.

Program analysers rely on invariant generation techniques
to reason about loops. The state-of-the-art invariant generation
techniques, in practice, often struggle to find concise loop
invariants, and, instead, degrade into unrolling loops, which is
ineffective for non-trivial programs. In this paper, we evaluate
experimentally whether loop accelerators enable existing pro-
gram analysis algorithm to discover loop invariants more reliably
and more efficiently. This paper is the first comprehensive study
on the synergies between acceleration and invariant generation.
We report our experience with a collection of safe and unsafe
programs drawn from the Software Verification Competition and
the literature.

I. INTRODUCTION

Consider the program in Fig. 1. It contains a simple assertion,
which follows the while loop. An automated proof of safety for
this assertion requires a technique that is able to discover the
loop invariant sn = sn+ (n− i) ∗ a. State-of-the-art software
model checkers either fail to prove the program or even if
they do (for a bounded value of n), they do so by completely
unwinding the loop, which does not scale for large n.

d e f i n e a 2

i n t main () {
unsigned i n t i , j , n , sn = 0 ;
j = i ;
whi le (i < n) {
sn = sn + a ;
i++;

}
assert ((sn == (n−j) *a) | | sn == 0) ;

}

Fig. 1: Sample Safe Program

The simple recurrent nature of the assignments in the
loop of program makes it amenable to acceleration [1]–[4].

This research was supported by ERC project 280053 (CPROVER).

Acceleration is a technique used to compute the effect of
repeated iteration of statements. Specifically, the effect of k
loop iterations in the example program is that the variable sn
is increased by k ∗a. The idea is to replace, wherever possible,
a loop with its closed form to obtain an equivalent accelerated
program that is hopefully easier to verify.

Acceleration in the general case is, of course, as difficult
as the original verification problem. Practical applications
of acceleration are therefore typically restricted to particular
special cases. For instance, Jeannet et al. [4] consider the case
of deterministic linear loops over continuous variables. As
there are very few cases in which the transitive closure is
effectively computable, it is frequently not possible to obtain
an accelerator that captures the behavior of the loop precisely.
Thus, acceleration can be over-approximative (most references)
or under-approximative (e.g. [5]). Acceleration frequently spe-
cialises in particular application domains, e.g., control software.
Furthermore, acceleration techniques are frequently tuned to
a particular analysis technique (e.g., abstract interpretation or
predicate abstraction) that is applied subsequently.

The conjectures of this paper are: 1) accelerators support
the invariant synthesis that is performed by program analysers,
irrespective of the underlying analysis approach, and 2) anal-
ysers supported by acceleration not only do better than the
original ones, they also outperform other state-of-the-art tools
performing similar analysis. We aim to test these hypotheses by
performing an evaluation over an extensive set of benchmarks
and a variety of tools. Since all our benchmarks are C programs,
we require an acceleration technique that is applicable to C
programs and the fixed-width machine integers that they use.
We use a template-based method published at CAV 2013 [5]
to obtain the accelerators, and add them to the programs as
additional paths. This transformation preserves safety i.e., the
acceleration neither over- nor under-approximates. We are
unable to pass the accelerated programs to all common off-the-
shelf analysers, but we nevertheless compare with other tools
in our experiments to quantify the advantage that acceleration
provides over the state of the art.

Recall our example program. The program with accelerator
added is given as Fig. 2. The instrumented code in Fig. 2 can
be used instead of the original code for model checking state
properties, as they have equivalent sets of reachable states.

i n t nondet_int () ;
unsigned nondet_unsigned () ;

d e f i n e a 2

i n t main () {
unsigned i n t i , j , n , sn , k = 0 ;
j = i ;
whi le (i < n) {

i f (nondet_int ()) { / / a c c e l e r a t e
k = nondet_unsigned () ; sn = sn + k*a ;
i = i + k ;
assume (i <= n) ; } / / no o v e r f l o w

e l s e { / / o r i g i n a l body
sn = sn + a ; i++; }

}
assert ((sn == (n−j) *a) | | sn == 0) ;

}

Fig. 2: Program from Fig. 1 with accelerator

We observe that several model checkers that failing on the
original program are able to verify the accelerated program
successfully.

The core contribution of this paper is an experimental study,
with the goal to validate our conjectures stated earlier. We
quantify the benefit of accelerators when using commodity
program analysers. We use two analysers in our experiments
to substantiate the first claim (that accelerators aid existing
analyzers). CBMC [6] is the model checker used in [7]; as
a bounded analyser, it makes no attempt to infer invariants
and is only able to conclude correctness if the program is
shallow. IMPARA [8] is a C program verifier based on the
LAWI-paradigm. IMPARA generates invariants using a very
basic approach that relies on weakest preconditions, and does
not employ a powerful interpolation engine.

Both IMPARA and CBMC are characterised by very weak
invariant inference, and are thus expected to benefit substan-
tially from acceleration. To relate the outcome to the best
invariant generation techniques, towards validating our second
claim, we include two other analysers: CPAchecker [9] and
UFO [10]. These tools implement a broad range of invariant
generation methods, including various abstract domains and
interpolation. The comparison is performed on over 200
benchmarks, including those used in the Software Verification
Competition 2015.

Although acceleration has successfully been combined with
interpolation-based invariant construction [11], to the best of
our knowledge, there has not been a thorough experimental
study that quantifies the benefits of using it in tools that
aim to prove correctness. While [5] did integrate acceleration
within a framework where paths in the CFG were explored
lazily with refinement, the emphasis of their experiments was
to accelerate bug detection for unsafe programs. Recently,
a loop over-approximation technique based on acceleration
was proposed in [12] but this technique is not applicable to

unsafe programs. Moreover, there is no refinement to eliminate
spurious counterexamples arising from the over-approximation
in [12]. The experiments in [7] focus on bounded model
checking and do not include state-of-the-art interpolation-based
tools.

The rest of the paper is organized as follows. The next
section gives an overview of each of the tools used in our
experiments and of the acceleration method from [5], [7] and
its scope and restrictions. Section III contains experimental
data and a discussion of the results.

II. OVERVIEW OF THE ANALYSIS TOOLS

We start this section with a brief informal introduction of
the different tools used for our experiments.

UFO [10] combines the efficiency of abstract interpretation
with numerical domains with the ability to generalize by means
of interpolation in an abstraction refinement loop. UFO starts
by computing an inductive invariant for the given program
and checks if the invariant implies the given property. If the
implication does not hold, UFO employs SMT solvers to check
the feasibility of counterexample produced. If the error path is
found to be infeasible, an interpolation technique guided by
the results of an abstract interpretation is used to strengthen
the invariant.

CPAchecker [9] is a tool and framework that aims
at easy integration of new verification components. Every
abstract domain, together with the corresponding operations,
implements the interface of configurable program analysis
(CPA). The main algorithm is configurable to perform a
reachability analysis on arbitrary combinations of existing
CPAs. The framework provides interfaces to SMT solvers
and interpolation procedures, such that the CPA operators can
be written in a concise and convenient way. CPAchecker uses
MATHSAT as an SMT solver, and CSISAT and MATHSAT as
interpolation procedures. It uses CBMC as a bit-precise checker
for the feasibility of error paths, JAVABDD as the BDD package
and provides an interface to an Octagon representation as well.

CBMC [6] is a bounded model checker for ANSI-C
programs. It works by jointly unwinding the transition relation
encoded in the given program and its specification, to obtain a
first-order formula that is satisfiable if there exists an error trace.
The formula is then checked using a SAT or SMT procedure.
If the formula is satisfiable, a counterexample is extracted from
the satisfying assignment provided by the SAT procedure. The
tool also checks that sufficient unwinding is done to ensure that
no longer counterexample can exist by means of unwinding
assertions. This enables CBMC to prove correctness if the
program is shallow.

IMPARA [8] extends the IMPACT algorithm to support asyn-
chronous concurrent processes using an interleaved semantics.
IMPARA, which analyses concurrent C programs with POSIX
or Win32 threads, efficiently combines partial-order-reduction
with the IMPACT algorithm. This paper highlights the benefits of
combining IMPARA with acceleration for sequential programs.

The IMPARA algorithm returns either a safety invariant for
a given program, finds a counterexample or diverges. To this

end, it constructs an abstraction of the program execution
in the form of an Abstract Reachability Tree (ART), which
corresponds to an unwinding of the control-flow graph of the
program, annotated with invariants. To prove a program correct
for unbounded executions, a criterion is needed to prune the
ART without missing any error paths. A covering relation
assumes this role.

The tool constructs an ART by alternating three different
operations on nodes: EXPAND, REFINE, and CLOSE. EXPAND
takes an uncovered leaf node and computes its successors
along a randomly chosen thread. REFINE takes an error node v,
detects whether the error path is feasible and, if not, restores a
safe tree labeling. First, it determines whether the unique path π
from the initial node to v is feasible by checking satisfiability
of the transition constraints along π. If it is satisfiable, the
solution gives a counterexample in the form of a concrete
error trace, showing that the program is unsafe. Otherwise, an
interpolant is obtained, which is used to refine the labels and
update the cover relation. CLOSE takes a node v and checks if
v can be added to the covering relation. As potential candidates
for pairs to be a part of the covering relation, it only considers
nodes created before v. This is to ensure a stable behavior, as
covering in arbitrary order may uncover other nodes, which
may not terminate.

A. Overview

The acceleration procedure used in this paper is based on
the method described in [5]. This method relies on a constraint
solver to compute the accelerators. We first provide an overview
of the steps of the acceleration procedure, and subsequently
provide additional detail. From a high-level perspective, the
procedure implements the following steps:

1) Choose a path π through the loop body to be accelerated.
2) Construct a path

π whose behaviour under-approximates

the effect of repeatedly executing π an arbitrary number
of times.

3) The construction also generates conditions under which
the acceleration is an under-approximation. These con-
ditions are given in the form of two constraints – a
feasibility constraint, which denotes the condition under
which

π can be applied, and a range constraint, which

constraints the number of iterations. These constraints
are included as assume statements in

π .

4) By construction, the assumptions and constraints in

π may contain universal quantifiers ranging over an
auxiliary variable that encodes the number of loop
iterations. The procedure uses a few simple techniques
to eliminate these quantifiers that work under certain
restrictions. The path is not accelerated if it is not able
to eliminate the quantifiers.

5) Augment the control flow graph of the original loop
body with an additional branch corresponding to

π with

a non-deterministic choice in the branch.
6) The accelerated paths subsume some (or sometimes

all) paths in the original program. The augmented loop
structure generated in the previous step is analyzed to

build a trace automaton that filters some of the redundant
paths. The result of this step is used to generate a final
program with fewer paths.

The acceleration procedure, after executing the above steps,
produces an instrumented code with the modifications described
in the last two steps. For a program with several loops, possibly
nested, the acceleration procedure processes the loops one at
a time, inside-out for nested loops. In our experiments we
analyse the instrumented code that is produced, without further
modifications. This process of acceleration may succeed, fail or
time out. The last two outcomes imply that either a closed form
solution with a given template does not exist or acceleration
was unable to find one.

In the following, we give a few more details of the procedure,
the form of the accelerated paths produced and explain the
conditions under which the procedure works.

B. Accelerating Scalar Variables in a Path

For scalar variables, the acceleration is generated by fitting
a particular polynomial template. If X = {x1, . . . ,xk} is
the vector of variables in π, then the accelerated assignment
generated for each variable is represented by the following
polynomial function:

fx(X〈0〉, n) def=
k∑

i=1

αi · x〈0〉i

+
(k∑

i=1

α(k+i) · x
〈0〉
i + α(2·k+1)

)
· n

+ α(2·k+2) · n2

Here, n is the number of loop iterations that are summarized,
x〈0〉1 , . . . ,x〈0〉k are the initial values for the variables and the
αi with 0 ≤ i ≤ 2k + 2 are the unknown coefficients.

The acceleration for a path is performed in two steps. In the
first step, the procedure solves for the coefficients αi. This is
done by considering only the assignments in the path π, i.e., by
ignoring all the conditions, including the loop condition. This
employs a combination of linear algebra techniques to first
uniquely solve for the coefficients and then makes queries to
SMT solver to inductively check that the generated polynomial
for each variable is consistent with loop execution for an
arbitrary number of iterations. If, for some xi, the inductive
check fails, then it means there is no acceleration possible that
fits the template.

In the second step the procedure considers the path with
all the conditions, and generates the feasibility constraint, i.e.,
the condition under which the path is feasible. The feasibility
constraint is essentially the negation of wlp(πn; false), where
wlp is the weakest liberal precondition. Intuitively, a cumulative
path πn would be infeasible iff any intervening path π in the n-
iteration cycle, starting from the state given by the accelerator, is
infeasible. That is, πn is infeasible if for any j < n the first time
frame of the suffix π(n−j) is infeasible (time frame refers to an
instance of π in πn). Thus, checking whether wlp(πn, false)
holds is equivalent to checking if, for some j between 0

and n, wlp(π, false) holds (after substituting every variable
in π by its accelerated closed form expressions). Thus, the
feasibility constraint for πn will, in general, contain a universal
quantifier ranging over the number of loop iterations. This can
be eliminated if the predicate in the body of the formula
is monotonic over the quantified parameter. The procedure
reduces the monotonicity check in a conservative fashion to
a SMT query by defining a representing function that returns
the size of the set of states for which a predicate is false. No
acceleration is performed if the monotonicity check fails.

C. Range Constraints

Since closed-form expressions and the derived feasibility
constraints usually contain the number of iterations n in them,
an overflow is likely to break the monotonicity requirement
when bit-vectors or modular arithmetic are used. Also, since
the behaviour of arithmetic over- or under-flow in C is not
specified for signed arithmetic, we conservatively rule out all
occurrences thereof in the accelerated path. This is done by
adding range constraints in the form assume statements, which
enforce that none of the arithmetic expressions that involve n
overflow.

D. Accelerating Array Assignments

Acceleration of array assignments is challenging, as under-
approximating closed-form solutions for them can often only
be expressed by formulas that contain quantifier alternation
(existential inside universal) ranging over the number of loop
iterations and the domain (index) of the array. It has been
shown in [5] that for array assignments of the form a[x] := e
such a quantifier pattern can be eliminated under the following
sufficient conditions.
• There exist accelerated closed-form expressions for the

index variable x and the expression e.
• The function fx defining the closed-form solution for the

index variable is linear in the number of loop iterations.
Under the above conditions one can derive a closed form
representing an under-approximation of the array assignments.

E. Eliminating Redundant Paths using Trace Automata

The instrumentation of the accelerators described in the
introduction preserves the unaccelerated paths in the program
along with the newly added accelerated paths – for instance,
the else branch in Fig. 2. Note that the added paths subsume
some of the previously existing program paths.

The idea presented in [7] is to eliminate executions that are
subsumed by some other execution of the program. For instance,
taking the same accelerated path twice in a row is equivalent
to taking it just once (for instance, in Fig. 2, executing the if
block twice for values k1 and k2 is the same as executing it
once with the value of k equal to k1 + k2 – which is possible
because k is chosen non-deterministically in each iteration).

Similarly, taking the unaccelerated path immediately after
taking the accelerated path is subsumed by taking the accel-
erated path just once (with the value of k being one more
its previously chosen value, in Fig. 2). The elimination of

i n t nondet_int () ;
unsigned nondet_unsigned () ;

d e f i n e a 2
i n t main () {

unsigned i n t i ,j , n , sn , k = 0 ;
bool g = * ;
j = i ;
whi le (i < n) {

i f (nondet_int ()) { / / a c c e l e r a t e
assume (!g) ;
k = nondet_unsigned () ; sn = sn + k*a ;
i = i + k ;
assume (i <= n) ; / / no o v e r f l o w
g = true ;}

e l s e { / / o r i g i n a l body
sn = sn + a ; i++;
g = false ;}

}
assert ((sn == (n−j) *a) | | sn == 0) ;

}

Fig. 3: Program from Fig. 2 with instrumented trace automaton

these redundant paths is done by encoding the redundancies
as a regular expression, which is then translated into a trace
automaton [13]. When the accelerated program executes, the
states in this automaton are also updated and it is ensured
that this automata never reaches a reject state. An optimized
version of the accelerated code for the running example is
given in Fig. 3. This is achieved by introducing an auxiliary
variable g that determines whether the accelerator was traversed
in the previous iteration of the loop. This flag is reset in the
non-accelerated branch, which, however, in our example is
infeasible.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

We ran our experiments on a set of 201 benchmarks (138 safe,
63 unsafe) collected from the sources listed in [14] (published at
CAV 2014) and SV-COMP 2015. We have eliminated examples
that had syntax errors and the ones that were not supported by
the accelerator (array examples, for instance). We compare the
performance of UFO, CPAchecker, CBMC (with and without
acceleration) and IMPARA (with and without acceleration). The
unwinding depth used for experiments with CBMC was 100
for unaccelerated programs and 3 for accelerated programs.
All experiments were run on a dual-core machine running at
2.73 GHz with 2 GB RAM, with a timeout limit of 60 seconds.

We elaborate on the benchmarks and the tools used to aid
reproducibility. The benchmarks were collected from [15]–[17],
the loops category in SV-COMP 2015 and the acceleration
examples in the regression suite of CBMC (revision 4503). The
tools used in the experiment were UFO (the SV-COMP 2014
binary), CPAchecker (release 1.3.4, with sv-comp14.properties
as the configuration file), CBMC (built from revision 4503,
used with Z3 as the decision procedure) and IMPARA (version

i n t main (void) {
unsigned i n t x = 0 ;
whi le (x < 268435454) {

i f (x < 65520){
x++;

} e l s e {
x += 2 ;

}
}
assert (! (x % 2)) ;

}

Fig. 4: A safe benchmark showing the need for acceleration.

0.2, used with MiniSat). The benchmarks, the exact commands
used to invoke the tools, and the full results are available at
http://www.cmi.ac.in/∼madhukar/fmcad15.

Table I summarizes the performance of each of the tools. We
record the number of safe instances reported as safe (correct
proofs), the number of safe instances reported as unsafe (wrong
alarms), the number of unsafe instances reported as unsafe
(correct alarms), the number of unsafe instances reported as
safe (wrong proofs), the number of instances which could not
be decided by the tool (no result), the number of instances on
which the tool reported the correct result in the least amount
of time (fastest), the number of instances on which the tool
was the only one to report the correct result (unique) and a
score for each tool, calculated using the scoring scheme of
SV-COMP 2015.1

B. Example

Before we discuss the results, we present an example to
demonstrate the effectiveness of acceleration. Consider the
safe example shown in Figure 4. All the tools involved in our
experiments fail to prove this example safe. Even when the
timeout is increased to 15 minutes, the tools still timeout. In
general, one needs a loop invariant strong enough to prove
the assertion outside the loop, to avoid unwinding the loop
to the full. None of the tools were able to find such a loop
invariant. Upon acceleration, a closed form for the variable
x is generated: x = 1 ∗ k + 2 ∗ l. The additional constraint
generated for k, that k = 65520, along with the closed form
for x (and negation of the loop termination condition) is strong
enough an invariant to prove the property.

In some circumstances, acceleration uses quantifiers in
the accelerated programs. These are not the ones arising
from the feasibility or range constraints that we discussed in
Section II (those get eliminated during the acceleration). These
quantifiers appear while encoding the overflow constraints in
the accelerated program. Suppose we want to construct a closed
form for a variable being modified in a loop, by assuming
that the loop executed i times. In this case, we need to assure
that there is no overflow that was caused during any of these

1Score = (2·correct proofs)−(12·wrong proofs)+correct alarms−(6·wrong
alarms)

i iterations. In some cases, it is sufficient to assume that ith

iteration does not lead to an overflow. An instance is example 4,
as the loop condition is (x < 268435454). Thus, if the ith

iteration does not lead to an overflow, none of the previous
iterations do. However, if we change the loop condition to
(x 6= 268435454) this does not hold any more. Therefore,
it must be ensured separately for every k ∈ [0, . . . , i] that
there is no overflow after k iterations. In our experiments,
there were 40 benchmarks (roughly 25 %) that use quantifiers
in their corresponding accelerated programs. The presence
of quantifiers makes the verification task difficult as none of
the tools is able to instantiate the quantifiers correctly. More
effective quantifier handling will yield further results in favor
of acceleration.

C. Discussion of Results

IMPARA + Acceleration clearly outperforms IMPARA without
acceleration, UFO and CPAchecker. This underlines the benefit
of acceleration as an auxiliary method for invariant generation.
Note that we see an increase in the number of correct proofs
as well as correct alarms. CPAchecker comes close in terms
of the correct proofs, which we credit to its broad portfolio
of techniques for generating invariants, including interpolation,
abstract interpretation and predicate abstraction. The wrong
proofs CPAchecker generates are partly caused by missing
overflow situations.

When compared to CBMC + Acceleration, IMPARA + Accel-
eration does better for the following reason: The accelerators
themselves are not helpful to CBMC for generating proofs – it
simply unwinds the program CFG and makes a single decisive
query to the solver. A large number of our benchmarks are
safe, and CBMC only benefits from accelerators if the trace
automaton is able to prune the original paths. By contrast, even
without trace automata, acceleration may improve convergence
of IMPARA, as acceleration can lead to “better” interpolants.
Without acceleration an interpolation procedure is presented
an unwinding of the loop body. It is well-known, see e.g. [18],
that this can lead to overly specific interpolants that rule out
only this particular unwinding. By contrast, in the accelerated
program, the interpolation procedure is presented with the
transitive closure of the loop; it thus is forced to compute
an interpolant for a much larger number of unwindings. For
instance, IMPARA without acceleration fails to generate a loop
invariants for Figure 5, and thus falls back to loop unwinding,
whereas, on the accelerated program, unwinding is avoided,
and the tool generates the invariant x+ y = n.

The overall score drops when combining CBMC with
acceleration. This is due to the wrong alarms generated by
the combination, which is heavily penalized according to the
scoring rules at SV-COMP. There is a substantial increase in
the number of correct proofs and correct alarms, however. The
advantages of combining acceleration with CBMC and IMPARA
(note that CBMC and IMPARA are very different tools) strongly
suggests that a similar advantage could be obtained with other
tools as well. An investigation of the cause for the increase in

TABLE I: Comparison of tools

Tools
Number of instances

Scorecorrect wrong correct wrong no fastest uniqueproofs proofs alarms alarms results
CPAchecker 1.3.4 83 16 35 14 53 18 11 −75
UFO SV-COMP 2014 52 2 18 2 127 4 2 86
CBMC r4503 32 0 35 0 134 16 1 99

+ Acceleration 53 0 45 12 91 28 9 79
IMPARA 0.2 78 1 36 15 71 73 0 90

+ Acceleration 86 0 47 12 56 36 6 147

i n t main () {
unsigned i n t n = nondet_uint () ;
i n t x = n ;
i n t y = 0 ;

/ / l oop i n v a r i a n t : x + y == n
whi le (x > 0) {
x = x − 1 ;
y = y + 1 ;

}
assert (y == n) ;

}

Fig. 5: Acceleration can improve generalisation in LAWI.

number of wrong alarms for CBMC and a precise quantification
of the benefit of combining other tools is future work.

The fact that acceleration helps CBMC and IMPARA on
unsafe instances is unsurprising; the technique we use was
designed to aid counterexample detection [5]. The experimental
results confirm that in addition, acceleration helps to generate
invariants. Invariant generation techniques, in practice, often
struggle to find concise loop invariants, and, instead, degrade
into unrolling loops completely, which leads to poor perfor-
mance and defeats the purpose of invariant generation. Our
experiments demonstrate that there is a synergy between the
two techniques, i.e., acceleration leads to better invariants,
and invariant generation also helps finding bugs faster. We
conjecture that the invariants steer the search for the bug away
from irrelevant parts of the state space.

While CPAchecker employs a bit-accurate tool – by default
CBMC – to verify counterexamples, its invariant-generation
engine works over mathematical integers, i.e., invariants may
hold over mathematical integers but are not checked with
respect to integer overflow. Wrong proofs observed with
CPAchecker mainly arise from deriving mathematical-integer
invariants that do not hold in presence of overflow. In such
situations, acceleration cannot help. This can be explained as
follows. The accelerator represents a transitive closure of the
loop body. It follows easily by induction that the result of
CPAchecker, if the tool terminates, must be the same as for the
unaccelerated program, since both programs are semantically
equivalent.

IV. CONCLUSION AND FUTURE WORK

In this paper we have quantified the benefit of acceleration
for checking safety properties. We report the results of a
comprehensive comparison over a number of benchmarks,
which shows that the combination of acceleration and a
safety checker indeed outperforms existing techniques. The
performance enhancement is visible for both safe and unsafe
benchmarks, shown by an increase in the number of correct
alarms as well as the correct proofs reported by the tool.

The source-level transformation of programs enables inte-
gration with futher invariant generation techniques. As a future
work, we plan to investigate the interplay between acceleration
and invariant generation to minimize the number of wrong
alarms and to handle more cases correctly, including those
that involve arrays. We also believe it would be worthwhile
to investigate whether the accelerator can be assisted with
additional invariants generated using some other technique. Our
initial experiments suggest that some of these invariants, even
over the interval domain, may help us rule out the possibility of
overflows, thereby increasing the precision of the accelerator.

REFERENCES

[1] B. Boigelot, Symbolic Methods for Exploring Infinite State Spaces, ser.
Collection des publications. Université de Liège, Faculté des sciences
appliquées, 1999.

[2] M. Bozga, R. Iosif, and F. Konecný, “Fast acceleration of
ultimately periodic relations,” in Computer Aided Verification, ser.
LNCS. Springer, 2010, vol. 6174, pp. 227–242. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14295-6 23

[3] A. Finkel and J. Leroux, “How to compose Presburger-accelerations:
Applications to broadcast protocols,” in Foundations of Software
Technology and Theoretical Computer Science (FST TCS), ser. LNCS.
Springer, 2002, vol. 2556, pp. 145–156. [Online]. Available:
http://dx.doi.org/10.1007/3-540-36206-1 14

[4] B. Jeannet, P. Schrammel, and S. Sankaranarayanan, “Abstract
acceleration of general linear loops,” in Principles of Programming
Languages (POPL). ACM, 2014, pp. 529–540. [Online]. Available:
http://doi.acm.org/10.1145/2535838.2535843

[5] D. Kroening, M. Lewis, and G. Weissenbacher, “Under-approximating
loops in C programs for fast counterexample detection,” in Computer
Aided Verification (CAV). Springer, 2013, pp. 381–396. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-39799-8 26

[6] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis of
Systems, ser. LNCS. Springer, 2004, vol. 2988, pp. 168–176. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-24730-2 15

[7] D. Kroening, M. Lewis, and G. Weissenbacher, “Proving safety with
trace automata and bounded model checking,” in Formal Methods (FM),
ser. LNCS, vol. 9109. Springer, 2015.

[8] B. Wachter, D. Kroening, and J. Ouaknine, “Verifying multi-
threaded software with Impact,” in Formal Methods in Computer-
Aided Design (FMCAD), 2013, pp. 210–217. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=6679412

[9] D. Beyer and M. Keremoglu, “CPAchecker: A tool for configurable
software verification,” in Computer Aided Verification (CAV), ser.
LNCS. Springer, 2011, vol. 6806, pp. 184–190. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22110-1 16

[10] A. Albarghouthi, A. Gurfinkel, Y. Li, S. Chaki, and M. Chechik, “UFO:
Verification with interpolants and abstract interpretation,” in Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), ser.
LNCS. Springer, 2013, vol. 7795, pp. 637–640. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36742-7 52

[11] H. Hojjat, R. Iosif, F. Konecný, V. Kuncak, and P. Rümmer,
“Accelerating interpolants,” in Automated Technology for Verification and
Analysis (ATVA), ser. LNCS. Springer, 2012, pp. 187–202. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-33386-6 16

[12] P. Darke, B. Chimdyalwar, R. Venkatesh, U. Shrotri, and R. Metta,
“Over-approximating loops to prove properties using bounded
model checking,” in Design, Automation & Test in Europe (DATE).
EDA Consortium, 2015, pp. 1407–1412. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2757012.2757139

[13] M. Heizmann, J. Hoenicke, and A. Podelski, “Refinement of trace

abstraction,” in Static Analysis (SAS), ser. LNCS. Springer, 2009,
vol. 5673, pp. 69–85. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-03237-0 7

[14] J. Birgmeier, A. R. Bradley, and G. Weissenbacher, “Counterexample to
induction-guided abstraction-refinement (CTIGAR),” in Computer Aided
Verification (CAV), ser. LNCS. Springer International Publishing, 2014,
vol. 8559, pp. 831–848. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-08867-9 55

[15] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani, “Dag-
ger Benchmarks Suite,” http://www.cfdvs.iitb.ac.in/∼bhargav/dagger.php,
2014.

[16] A. Gupta and A. Rybalchenko, “InvGen Benchmarks Suite,” http://pub.
ist.ac.at/∼agupta/invgen/, 2014.

[17] A. Albarghouthi and K. McMillan, “Beautiful interpolants,” in Computer
Aided Verification, ser. LNCS, 2013, vol. 8044, pp. 313–329. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-39799-8 22

[18] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko, “Path
invariants,” in Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation, San Diego,
California, USA, June 10-13, 2007, J. Ferrante and K. S. McKinley,
Eds. ACM, 2007, pp. 300–309. [Online]. Available: http://doi.acm.org/
10.1145/1250734.1250769

