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Skolem Functions

Definition (Skolem functions)

Given a propositional function F (x, Y ), a Skolem function for x ∈ X in
F (x, Y ) is a function ψ(Y ) such that

∃x F ≡ F [x 7→ ψ].

Example 1. Find a Skolem function for x in formula
F (x, y1, y2) = x ∧ y1 ∧ y2.

1. Note that

∃x.(x ∧ y1 ∧ y2) ≡ (1 ∧ y1 ∧ y2) ∨ (0 ∧ y1 ∧ y2) ≡ y1 ∧ y2

2. Hence a Skolem function for x if ψ(y1, y2) = 1.

3. Are Skolem functions unique?
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Skolem Functions

Definition (Skolem function vector)

Given a propositional function F (X,Y ), a Skolem function vector for
X = (x1, . . . xn) in F is a vector of functions Ψ = (ψ1, . . . , ψn) such that

∃x1 . . . xn F ≡ (· · · (F [x1 7→ ψ1]) · · · [xn 7→ ψn]).

Algorithm 1. SkolemGeneration(F (x1, . . . , xn, Y )).

1. Input: Propositional formula F (x1, x2, . . . , xn, Y )

2. Output: Skolem function set Ψ = {ψ1, . . . , ψn}
3. For i = 1 to n

3.1 ψi = SkolemFun(F, xi)
3.2 F = ∃xiF = F [xi 7→ ψi]

4. Return {ψ1, ψ2, . . . , ψn}.

Example 2. Find a Skolem function vector (ψ1, ψ2) for (x1, x2) in formula
F (x1, x2, y1, y2) = x1 ∧ x2 ∧ y1 ∧ y2.



John et al. – 6 of 26

Skolem Functions

Definition (Skolem function vector)

Given a propositional function F (X,Y ), a Skolem function vector for
X = (x1, . . . xn) in F is a vector of functions Ψ = (ψ1, . . . , ψn) such that

∃x1 . . . xn F ≡ (· · · (F [x1 7→ ψ1]) · · · [xn 7→ ψn]).

Algorithm 1. SkolemGeneration(F (x1, . . . , xn, Y )).

1. Input: Propositional formula F (x1, x2, . . . , xn, Y )

2. Output: Skolem function set Ψ = {ψ1, . . . , ψn}
3. For i = 1 to n

3.1 ψi = SkolemFun(F, xi)
3.2 F = ∃xiF = F [xi 7→ ψi]

4. Return {ψ1, ψ2, . . . , ψn}.

Example 2. Find a Skolem function vector (ψ1, ψ2) for (x1, x2) in formula
F (x1, x2, y1, y2) = x1 ∧ x2 ∧ y1 ∧ y2.



John et al. – 6 of 26

Skolem Functions

Definition (Skolem function vector)

Given a propositional function F (X,Y ), a Skolem function vector for
X = (x1, . . . xn) in F is a vector of functions Ψ = (ψ1, . . . , ψn) such that

∃x1 . . . xn F ≡ (· · · (F [x1 7→ ψ1]) · · · [xn 7→ ψn]).

Algorithm 1. SkolemGeneration(F (x1, . . . , xn, Y )).

1. Input: Propositional formula F (x1, x2, . . . , xn, Y )

2. Output: Skolem function set Ψ = {ψ1, . . . , ψn}
3. For i = 1 to n

3.1 ψi = SkolemFun(F, xi)
3.2 F = ∃xiF = F [xi 7→ ψi]

4. Return {ψ1, ψ2, . . . , ψn}.

Example 2. Find a Skolem function vector (ψ1, ψ2) for (x1, x2) in formula
F (x1, x2, y1, y2) = x1 ∧ x2 ∧ y1 ∧ y2.



John et al. – 7 of 26

Our focus and applications

Skolem Generation for Factored Formulas

1. Given a propositional function F (X,Y ) as conjunction of factors,

f1(X1, Y1) ∧ f2(X2, Y2) · · · ∧ fr(Xr, Yr)

find Skolem functions for variables in X.

2. We make no assumption about validity of ∃XF (X,Y ).

Skolem function generation is a key verification/synthesis problem due to its
applications in:

1. Quantifier elimination, of course

2. Generating certificates in Quantified Boolean Formula (QBF) solving

3. Program synthesis

– Combinatorial Sketching for Finite Programs [SLTB+06]
– Complete Functional Synthesis [KMPS10]

4. Finding winning/optimal strategies in certain two-player games [AMN05]
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Plant Control Problem

input variable i

x1

x2

current state

variables

x′1 = x1x2 + ix1

x′2 = i+ x1x2

control signal

sensor signals

x′2

x′1

F/F F/F

00

01

10

11

Industrial Plant

1

0

0

1

1

0

0

1

1. How should the primary input of the controller be driven so that the
controller transitions to a desirable state in one step, whenever possible?

2. Solution: Find Skolem function for the primary input variable:

∃x′1∃x′2
(
(x′1 = x1x2 + ix1) ∧ (x′2 = i+ x1x2) ∧ Good(x′1, x

′
2)
)
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Graph Decomposition Problem

00
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11

0, 1 0

1

1

0

0, 1

y′1 = (¬x∧y1)∨(y1∧y2)
y′2 = ¬y2∨(¬x∧¬y1)

00
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11

?

?

?

?

1
y′1 = y1∧y2
y′2 = ¬y2

00

01

10

11

? ?

?

?

2
y′1 = y1
y′2 = ¬y2∨¬y1

NotCovered = 1 NotCovered=
(¬y1∧y2∧¬x)
∨(y1∧¬y2∧¬x)

1. Compute a disjunctive decomposition of implicitly specified state
transition graphs of sequential circuits [Tri03, TCP08].

2. Solution: Find Skolem function for the input variables X in:

∧iNotCoveredi(X,Y ).
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Existing Approaches

1. Extract Skolem function from the proof of validity of ∃XF (X,Y )

– succinct Skolem functions if there exists a short proof of validity.

– are not applicable when ∃XF (X,Y ) is not valid.
– References:

1.1 sKizzo: a suite to evaluate and certify QBFs by Benedetti [Ben05]
1.2 Resolution Proofs and Skolem functions by Jiang and Balabanov [JB11]
1.3 A first step towards a Unified Proof Checkers for QBF by Jussila et

al. [JBS+07]
1.4 Efficient extraction of Skolem functions from QRAT proofs by Heule, Seidl,

and Biere [HSB14]
1.5 Bloqqer tool [HSB14]

2. Generate Skolem functions matching a given template.

– Template-based program verification and program synthesis by Srivastava,
Gulwani, and Foster [SGF13]

– effective when the set of candidate Skolem functions is known and small
– it is not always reasonable assumption

3. Composition based approaches

– Quantifier elimination via functional composition by Jiang [Jia09]
– Techniques in Symbolic model checking by Trivedi [Tri03]
– Work well for small-sized formulas
– Compositions cause formula blow up and memory out
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Skolem functions and their applications

CEGAR for Skolem functions

Experimental Results



John et al. – 12 of 26

Find ψ(Y ) such that ∃xF (x, Y ) ≡ F (ψ(Y ), Y ).

— Set of All valuations to Y .
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Find ψ(Y ) such that ∃xF (x, Y ) ≡ F (ψ(Y ), Y ).

B

— B(Y ) = Can’t set x to 0 to satisfy F = ¬F (x, Y )[x 7→ 0]



John et al. – 12 of 26

Find ψ(Y ) such that ∃xF (x, Y ) ≡ F (ψ(Y ), Y ).

A

B

— A(Y ) = Can’t set x to 1 to satisfy F = ¬F (x, Y )[x 7→ 1]
— B(Y ) = Can’t set x to 0 to satisfy F = ¬F (x, Y )[x 7→ 0]



John et al. – 12 of 26

Find ψ(Y ) such that ∃xF (x, Y ) ≡ F (ψ(Y ), Y ).

A

B

— A(Y ) = Can’t set x to 1 to satisfy F = ¬F (x, Y )[x 7→ 1]
— B(Y ) = Can’t set x to 0 to satisfy F = ¬F (x, Y )[x 7→ 0]
— A Skolem function for x in F is any Interpolant of (B \A) and (A \B)



John et al. – 12 of 26

Find ψ(Y ) such that ∃xF (x, Y ) ≡ F (ψ(Y ), Y ).

A

— A(Y ) = Can’t set x to 1 to satisfy F = ¬F (x, Y )[x 7→ 1]
— B(Y ) = Can’t set x to 0 to satisfy F = ¬F (x, Y )[x 7→ 0]
— A Skolem function for x in F is any Interpolant of (B \A) and (A \B)
— E.g. ¬A = F (x, Y )[x 7→ 1] = F (1, Y )
— and B = ¬F (x, Y )[x 7→ 0] = ¬F (0, Y ).
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Monolithic Skolem Generation [Jia09, Tri03]

x1

x2

..
.

x`

..
.

xn

Y

f1 f2 f3 . . . fk . . . fr ψi ∃xiF

· ·

· ·

· · · ·

· ·
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Counterexample-Guided Abstraction Refinement

– Given propositional functions f(X) and g(X), we say that f is an
abstraction of g if

g =⇒ f

f

– We will also say that g is a refinement of g.
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CEGAR: Contd

– An abstract Skolem function is a function that is an abstraction of a
proper Skolem function.

– An abstraction Skolem function may not be a proper Skolem function.

– Given a formula F (x1, . . . , xn, Y ) and functions Ψ = {ψ1, ψ2, . . . , ψn}
how do we check if Ψ is a proper Skolem vector?

– Simply check if the following formula IsSkolem(F,Ψ) is satisfiable:

F (X ′, Y ) ∧ni=1 (xi ⇐⇒ ψi) ∧ ¬F (X,Y )

– If this formula is unsatisfiable, then ψ1, . . . , ψn are proper Skolem
functions for x1, . . . , xn

– Otherwise, satisfying assignment helps us to refine Skolem function.
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Abstraction and Refinement

Ai = ¬∃x1 . . . xi−1F [xi 7→ 1] and ψi = ¬Ai

Ai

1. Ideally when we need to compute Skolem
function for xi we need to have access to
Fi = ∃x1, . . . xi−1F .

2. Then, to compute Skolem function we can
compute the set Ai = ¬Fi[x 7→ 1] and a
proper Skolem function would be ¬A.

3. However, due to factorwise quantification,
we only know an abstraction F ′i of Fi.

4. Hence, the set A′i computed using F ′i
would be a refinement of the proper Ai.

5. This implies that the Skolem function
computed as ¬A′i will be an abstract
Skolem function.
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Ai

A′i

1. When we check if ψ1, . . . , ψn are proper
Skolem functions, and we get a
counterexample, it pinpoints a valuation
for which abstract Skolem function
returns 1 when it should not.

2. We refine Skolem function candidates for
ψi+1 . . . ψn such so as to remove this
incorrect valuation (and potentially
several others).

3. CEGAR loop continues in this way until
we find proper Skolem functions.
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Skolem functions and their applications

CEGAR for Skolem functions

Experimental Results
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Benchmarks

1. We compared the performance of the CEGAR based algorithm with

1.1 an implementation of the monolithic algorithm
1.2 The tool Bloqqer (a QRAT based Skolem function generation tool).

2. Our benchmarks were obtained by considering the disjunctive
decomposition problem for sequential circuits from HWMCC10
benchmark suite

3. We divided our benchmarks into TYPE-1 formula where ∃XF (X,Y ) is
valid (160 benchmarks) and TYPE-2 formulas where ∃XF (X,Y ) is not
valid (264 benchmarks).

4. We used ABC library to represent and manipulate functions as AIGs and
used default SAT solver provided by ABC (a variant of miniSAT).

5. We compared these algorithms with respect to Skolem function size and
total time taken to generate Skolem functions

6. The maximum time and memory usage was restricted to 2 hours and
32GB.
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Monolithic Vs CEGAR: Size
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1. There is no instance on which CEGAR generates Skolem functions that
are larger on average than Monolithic.
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Monolithic Vs CEGAR: Time
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1. Due to repeated calls to SAT solver, CEGAR took more time than
Monolithic, but for those examples total time in < 100 seconds.

2. For timed between 100 and 300, Monolithic performed much worse taking
more than 1000 seconds (due to large sizes of Skolem functions)

3. Monolithic timed out for 83 benchmarks, while CEGAR for 10
benchmarks.
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Bloqqer Vs CEGAR: Time
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1. Out of 160 TYPE-1 benchmarks Bloqqer generated Skolem functions for
148 benchmarks and gave NOT VERIFIED message for the remaining.

2. CEGAR was successful for 154 benchmarks.
3. For the benchmarks where Bloqqer gave NOT VERIFIED message, 8 of

these 12 were large benchmarks with 1000+ factors and variables
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Bloqqer Vs CEGAR: Size
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1. For the 142 common benchmarks, in majority of the cases (108/142)
CEGAR generated smaller Skolem functions.
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Conclusion

1. Presented a Counterexample guided abstraction refinement based
algorithm to generate Skolem functions for factored propositional formulas

2. Experiments show that for complex functions, our algorithm significantly
outperformed two state-of-the-art algorithms

3. As a future work, we plan to explore integration with more efficient
SAT-solvers, and refinement using multiple counter-examples in parallel.

Thank you
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A First Step Towards a Unified Proof Checker for QBF.
In Proc. of SAT, volume 4501 of LNCS, pages 201–214. Springer, 2007.

J.-H. R. Jiang.
Quantifier elimination via functional composition.



John et al. – 26 of 26

In Proc. of CAV, pages 383–397. Springer, 2009.
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