
goSAT: Floating-point Satisfiability as Global
Optimization

M. Ammar Ben Khadra, Dominik Stoffel, Wolfgang Kunz
Department of Electrical and Computer Engineering

University of Kaiserslautern, Germany
{khadra,stoffel,kunz}@eit.uni-kl.de

Abstract—We introduce goSAT, a fast and publicly available
SMT solver for the theory of floating-point arithmetic. We build
on the recently proposed XSat solver [1] which casts the satisfi-
ability problem to a corresponding global optimization problem.
Compared to XSat, goSAT is an integrated tool combining
JIT compilation of SMT formulas and NLopt, a feature-rich
mathematical optimization backend. We evaluate our tool using
several optimization algorithms and compare it to XSat, Z3, and
MathSat. Our evaluation demonstrates promising results.

Index Terms—satisfiability modulo theories, decision proce-
dure, floating-point, global optimization

I. INTRODUCTION

Automated bit-precise reasoning over floating-point arith-
metic (FPA) is essential for a wide range of applications. For
instance, test generation and program synthesis. SMT solvers
are often used as a backend to implement such reasoning.
Improving the support for FPA theory has been tackled in
several recent works [2]–[5]. Despite these advances, the
performance of SMT solvers regarding FPA theory still suffers
from relatively poor scalability. Moreover, clauses involving
common non-linear functions, e.g., trigonometric, remain par-
ticularly difficult. In fact, modern SMT solvers are based on
DPLL(T) as their central framework. Therefore, their core
SAT engines can be ineffective in deducing facts that might
otherwise be “obvious” at the theory level [3]. In the following,
we elaborate on two key challenges raised by FPA theory.

Standard complexity. The IEEE 754-2008 standard defines
seven core operations that need to be correctly rounded,
namely, {+,-,*,/,rem,sqrt,fma}. The result of a core oper-
ation is affected by the rounding mode, five defined modes, and
whether it involves a special number {NaN, ±∞}. Also, rules
for type conversion and exception handling, e.g., overflow,
need to be considered.

Tunable approximation. FPA is an approximation of reals
by definition. In practice, FPA implementations are tunable
depending on the required performance and precision. For
example, the flag -ffast-math instructs GCC to enable FP
optimizations that are less precise. Moreover, a function like
sin might be evaluated using a software library or a single
hardware instruction with potentially different results [6].
Further, function sin might even be evaluated at compile time
with correct rounding1. Therefore, sound reasoning about FPA

1GCC supports compile-time evaluation of built-in functions that have
constant arguments since v4.3: https://gcc.gnu.org/gcc-4.3/changes.html

should take into account the semantics of various approximate
implementations of a single function. This can overwhelm
SMT solvers particularly in the case of non-linear functions.

To address this, Fu et al. recently proposed XSat [1], an
SMT solver for FPA based on mathematical optimization.
XSat works by transforming a quantifier-free SMT instance
F(x⃗), where x⃗ ∈ FPn, to a corresponding objective function
G(x⃗). The latter represents a distance value that needs to be
minimized by Global Optimization (GO) techniques [7]. The
goal is to find an assignment α satisfying G(α) = 0. The
key advantage of XSat is that it doesn’t need to explicitly
encode FPA semantics. Rather, it can guide its reasoning
purely by observing the outputs of G(x⃗). Consequently, it can
generally reason about any executable function. The original
implementation of XSat consists of (1) a code generator that
generates G(x⃗) in C language, and (2) a Python tool that
invokes Basin Hopping (BH) [8], a GO algorithm built in
Scipy2, to find a satisfying α. Note that the C code of G(x⃗)
needs to be compiled as a C extension to Python in a separate
step which makes XSat difficult to use.

In this work, we build on the ideas proposed in XSat. We
make a number of contributions. First, goSAT is an integrated
tool that generates the objective function G(x⃗) using Just-
in-Time (JIT) compilation and directly attempts to solve it
on-the-fly. Second, our backend is based on the feature-rich
non-linear optimization library NLopt [9]. In contrast, XSat is
restricted to the BH algorithm. Third, in addition to its native
solving mode, goSAT has a code generation mode similar to
XSat. This enables experimenting with various optimization
libraries that are not yet natively supported by goSAT. Fourth,
we evaluate our tool on the same benchmarks used in XSat. We
employ various GO algorithms available in NLopt and com-
pare them with the BH algorithm. Finally, we make our tool
publicly available at (https://github.com/abenkhadra/gosat).

II. BACKGROUND

We discuss here the theoretical basis of goSAT. Given an
SMT formula F(x⃗), where x⃗ ∈ FPn, we need to systemati-
cally derive a corresponding objective function G(x⃗). Evalu-
ating G(x⃗) for a particular assignment α returns a distance
value that becomes smaller as we get closer to the global
minimum at zero. In order to establish the equivalence between

2Popular Python library for scientific computing: https://www.scipy.org/

Analyzerlibz3

libmcjit

C compiler

BH solverNL solverlibnlopt

JIT gen.

Code gen.

Backend

libgofuncs

 Formula
 gofuncs.c

 gofuncs.h

 gofuncs.api

Fig. 1. goSAT architecture

satisfiability of F(x⃗) and global optimization of G(x⃗), the
function G(x⃗) must satisfy (R1) ∀x⃗ ∈ FPn,G(x⃗) ≥ 0 and
(R2) G(α) = 0 ⇔ α |= F(x⃗).

Consider F(x⃗) to be in the language Lfp defined over
quantifier-free FPA. Our Lfp is slightly modified to that found
in XSat, namely,

Boolean constraints π := ¬π′ | π1 ∧ π2 | π1 ∨ π2 | e1 ▷◁ e2
Arithmetic expressions e := c | x | e1⊗ e2 | H(e1, ...en)

where ▷◁∈ {<,≤, >,≥,==, ̸=}, ⊗ ∈ {+,−, ∗, /}, c is a
floating-point constant, x is a variable, and H can be any
user-defined function, e.g., logarithm.

Let Fc(x⃗) be F(x⃗) after eliminating ¬ using De-Morgan’s
law and transforming it to CNF,

Fc(x⃗)
def
=

∧
i∈I

∨
j∈J

ei,j ▷◁i,j e
′
i,j (1)

we derive G(x⃗) from Fc(x⃗) as follows:

G(x⃗) def
=

∑
i∈I

∏
j∈J

d(▷◁i,j , ei,j , e
′
i,j) (2)

where,

d(≤, e1, e2)
def
= e1 ≤ e2 ? 0 : θ(e1, e2) (3)

d(<, e1, e2)
def
= e1 < e2 ? 0 : θ(e1, e2) + 1 (4)

d(≥, e1, e2)
def
= e1 ≥ e2 ? 0 : θ(e1, e2) (5)

d(>, e1, e2)
def
= e1 > e2 ? 0 : θ(e1, e2) + 1 (6)

d(==, e1, e2)
def
= θ(e1, e2) (7)

d(̸=, e1, e2)
def
= e1 ̸= e2 ? 0 : 1 (8)

Function θ(x1, x2) represents the distance between bit repre-
sentations of x1 and x2. It has the following key properties:

∀x1, x2 ∈ FP,θ(x1, x2) ≥ 0 (9)
∀x1, x2 ∈ FP,θ(x1, x2) = 0 ⇒ x1 = x2 (10)
∀x1, x2 ∈ FP,θ(x1, x2) = θ(x2, x1) (11)

From equations (2) to (11), it can be shown that G(x⃗)
satisfies requirements R1 and R2. Consequently, goSAT pro-
vides a sound method for proving FPA satisfiability. However,
completeness of goSAT depends on the applied GO algorithm.

Generally, GO algorithms can be classified into determin-
istic [10] and stochastic [11]. The former are complete by
providing a guarantee of finding a global minimum within a
finite time. However, their applicability usually depends on the
type of considered function, e.g., convex functions. Also, they
often require the user to provide first and/or second derivatives
(gradient and Hessian, respectively). In comparison, stochastic
methods are more flexible by being applicable to functions
as black box. This comes at the expense of not guaranteeing
convergence to global minimum.

III. IMPLEMENTATION DETAILS

Now we discuss the implementation of goSAT. We begin
with its native solving mode. Then, we move to discuss
its code generation mode and helper utilities, namely, NL
solver and BH solver. Finally, we discuss our choice
of optimization algorithms and their parameter tuning. Our
discussion will be based on Fig. 1. Highlighted components
are part of our contribution. Our implementation language is
C++ except for the BH solver which is written in Python.

A. Native solving mode

This is the default mode of goSAT where it accepts an SMT
file as input. The Analyzer parses the input file using the fa-
cilities of libz3 to get an expression (expr) representing the
formula. Then, the Analyzer constructs an LLVM module
that contains the objective function G(x⃗). The latter is passed
to a JIT generator that traverses expr in a post-order
manner in order to generate the corresponding LLVM IR. The
translation process is syntax-directed resembling equations (2)
to (11) discussed previously. Next, function G(x⃗) is just-in-
time compiled (jitted) and optimized using libmcjit from
the LLVM framework. A pointer to the jitted G(x⃗) is provided
to our Backend alongside other required data structures.
Finally, the Backend configures and invokes libnlopt on
function G(x⃗) in order to find a satisfying model.

B. Code generation mode

This tool mode is similar to what is implemented in XSat.
We developed it in order to facilitate experimentation with
GO algorithms that we still do not natively support in goSAT.

x0

−10
−5

0
5

10

x 1
−10

−5

0

5

10

0.00
3.42
6.85
10.27
13.70
17.12
20.54
23.97
27.39

30.81

34.24

37.66

41.09

44.51

47.93

(a)

x0

−2.0−1.5−1.0−0.5
0.0

0.5
1.0

1.5
2.0

x 1
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

0.00
36.72
73.44
110.15
146.87
183.59
220.31
257.03
293.74

330.46

367.18

403.90

440.62

477.33

514.05

(b)

Fig. 2. Topologies of (a) levy function compared to (b) f23 function generated by goSAT. Functions generated by goSAT are non-smooth, however, they
exhibit more regularity which is a key property for goSAT to work in practice.

Additionally, we provide two utilities, NL solver and BH
solver, to demonstrate its use. The former depends on
NLopt as its backend while the latter uses Scipy as its backend.
Note that Scipy currently supports only one GO algorithm,
namely, basin hopping. We were able of reproducing (most)
results published in XSat using our BH Solver.

This goSAT mode is mainly implemented in the code
generation component, refer to Fig. 1, which receives an
expr after parsing the input formula by Analyzer. Code
generation is realized using syntax-directed translation similar
to the native solving mode. The output of this mode are C code
and header files. These need to be compiled to obtain a shared
library libgofuncs. Additionally, goSAT generates an api
text file which is required to properly call the functions in
libgofuncs. The api file, in its simplest forms, lists the
name and dimension (variable count) of each G(x⃗).

C. Optimization algorithms

We decided to use NLopt as our backend since it is publicly
available and supports several derivative-free non-linear GO
algorithms. There are, however, other open source packages
for large-scale non-linear optimization, e.g., IpOpt [12]. Un-
fortunately, they generally have restrictions regarding the types
of supported functions and the availability of derivatives. Note
that open-source derivative-free GO algorithms still lack in
performance compared to commercial implementations [13].

Our next step was to profile various GO algorithms im-
plemented in NLopt to experiment with their efficiency and
reliability. To this end, we chose several standard functions
that have multiple local minima, e.g., levy, griewank,
and rastrigin. These functions are commonly used for
benchmarking GO algorithms [14]. We ended up choosing
four promising derivative-free algorithms, namely, the de-
terministic algorithm DIRECT and the stochastic algorithms
CRS2, ISRES, and MLSL3. Note that algorithm parameters
play a crucial rule in convergence to global minima. For

3Please refer to NLopt algorithm documentation for further details.

example, consider the levy function depicted in Fig. 2a
which has a global minimum G(x⃗) = 0 for x⃗ = (1, 1).
Basin Hopping (BH) with default parameters and an initial
guess x = (−8.2, 1) was unable of “hopping” over the barrier
and was trapped at a local minimum 6.056. Convergence to
the global minimum required increasing the Monte-Carlo step
size to 2.0. Fortunately, the transformation implemented in
goSAT produces functions with more regularity. For example,
consider formula f23 depicted in Fig. 2b which is taken from
the Griggio benchmarks [15]. BH quickly converged to the sat-
isfiable area using default parameters despite setting an initial
guess that is far away at x⃗ = (−109,−109). Actually, it is easy
see, from equations (3)-(8), that G(x⃗) generated by goSAT are
non-smooth due to the use of conditional statements. However,
they exhibit some regular structure that makes them easier to
solve compared to standard GO benchmarking functions.

IV. EVALUATION

We evaluated goSAT on the entire Griggio benchmark set
(214 instances). The GO algorithms used in the evaluation
are DIRECT, CRS2, ISRES, and MLSL. In order to draw
a comparison with XSat (BH algorithm), we used goSAT
to generate a libgofuncs library representing the same
benchmark instances. Then, we provided libgofuncs as
input to our BH solver.

We “reasonably” tuned algorithm parameters in order to
provide a fair comparison. The initial guess for all algorithms
was set to zeros, step size to 0.5, and timeout to 600s. Each
algorithm was executed once per instance. This makes BH
solver achieve slightly different results to those reported
in XSat. The latter uses a restart strategy using multiple initial
guesses. Note that native goSAT has a small extra overhead
compared to NL solver since it needs first to parse and JIT
the input formula. We draw a comparison with Z3 v4.5 and
MathSat v5.3.14. Both solvers were used with their default
parameters. Experiments were conducted on a Linux machine
with 8 GB RAM and Intel R⃝ Core i7 processors.

TABLE I
EVALUATION RESULTS

sat unsat timeout errors avg. time

CRS2 91 123 0 0 2.60

ISRES 88 126 0 0 2.89

BH 89 113 0 12 4.43

MLSL 56 116 0 42 5.30

DIRECT 45 169 0 0 13.60

MathSat 100 68 46 0 55.54

Z3 85 60 65 4 71.39

Results are summarized in Tab. I. We provide the number
of sat, unsat, timeout, and error instances together
with the average query time in seconds (excluding timeout and
error instances). Some GO algorithms faced numerical errors,
e.g., round-off. Z3 encountered 4 out-of-memory exceptions.
In the case of goSAT, error instances can be considered unsat
since GO algorithms are generally incomplete. We used Z3 to
externally validate all sat models returned by goSAT.

Our results provide a rough comparison since algorithm
parameters can be tuned further. For instance, using the same
function evaluation limit of 5×105, the deterministic DIRECT
algorithm needed more time and found fewer sat instances
compared to the stochastic CRS2. Fig. 3 compares the solving
time of BH algorithm to CRS2 and DIRECT (fastest and
slowest in goSAT respectively). Note that the performance of
DIRECT varies relatively widely across the benchmarks. Also,
BH needed a maximum of 488s for one instance while CRS2
was able to respond in about 25% of that time at most.

Overall, GO algorithms can provide a viable alternative to
conventional SMT solvers for FPA particularly in the case
of formulas involving non-linear functions. Moreover, they
can assist them in special applications, e.g., in Optimization-
Modulo-Theory (OMT) [16], [17]. Note, however, that SMT
solvers often need to reason about multiple theories which is
still not possible in goSAT. The theory of quantifier-free bit-
vectors (BV) can be particularly relevant in combination with
FPA in the domains of software verification and synthesis.
Recently, Fröhlich et al. [18] demonstrated promising results
in applying stochastic search for solving BV satisfiability
directly on the theory level. This provides potential ideas for
combining BV and FPA to be solved using stochastic search.

V. CONCLUSION

We introduced goSAT, an SMT solver for the theory of
FPA. In contrast to XSat, goSAT is capable of natively solving
SMT formulas and is publicly available. Unlike conventional
solvers, goSAT is based on mathematical optimization which
enables it to reason, in principle, about any executable func-
tion. There are, however, several areas for future improvement.
Most notably, we plan to exploit the particular structure of
G(x⃗) generated by goSAT in order to improve solving effec-
tiveness. Also, our restriction to derivative-free GO algorithms
might be too strict. Relaxing this restriction might be possible
using automatic differentiation techniques.

Benchmarks

10−2

10−1

100

101

102

T
im

e(
s)

bh
direct
crs2

Fig. 3. Solving time of CRS2 and DIRECT compared to BH used in XSat.

REFERENCES

[1] Z. Fu and Z. Su, “XSat: A Fast Floating-Point Satisfiability Solver,” in
Computer Aided Verification (CAV’16). Springer, 2016, pp. 187–209.

[2] K. Scheibler, F. Neubauer, A. Mahdi, M. Franzle, T. Teige, T. Bien-
muller, D. Fehrer, and B. Becker, “Accurate ICP-based floating-point
reasoning,” in Formal Methods in Computer-Aided Design (FMCAD’16).
IEEE, 2016, pp. 177–184.

[3] L. Haller, A. Griggio, M. Brain, and D. Kroening, “Deciding floating-
point logic with systematic abstraction,” in Proceeding of Formal
Methods in Computer-Aided Design (FMCAD’12), 2012, pp. 131–140.

[4] A. Zeljić, C. M. Wintersteiger, and P. Rümmer, “Approximations for
Model Construction,” in Proceedings of 7th International Joint Confer-
ence on Automated Reasoning (IJCAR’14), 2014, pp. 344–359.

[5] M. Brain, V. D’Silva, A. Griggio, L. Haller, and D. Kroening, “Deciding
floating-point logic with abstract conflict driven clause learning,” Formal
Methods in System Design, vol. 45, no. 2, pp. 213–245, 2014.

[6] S. Duplichan, “Intel overstates FPU accuracy.” [Online]. Available:
http://notabs.org/fpuaccuracy/

[7] R. Horst, P. M. Pardalos, and N. V. Thoai, Introduction to global
optimization, 2nd ed. Springer, 2000.

[8] D. J. Wales and J. P. K. Doye, “Global Optimization by Basin-Hopping
and the Lowest Energy Structures of Lennard-Jones Clusters Containing
up to 110 Atoms,” Journal of Physical Chemistry, 1997.

[9] S. G. Johnson, “The NLopt nonlinear-optimization package.” [Online].
Available: http://ab-initio.mit.edu/nlopt

[10] C. A. Floudas and C. E. Gounaris, “A review of recent advances in
global optimization,” Journal of Global Optimization, vol. 45, no. 1, pp.
3–38, 2009.

[11] J. C. Spall, Introduction to Stochastic Search and Optimization. Hobo-
ken, NJ, USA: John Wiley & Sons, Inc., mar 2003.

[12] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[13] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: a review
of algorithms and comparison of software implementations,” Journal of
Global Optimization, vol. 56, no. 3, pp. 1247–1293, 2013.

[14] M. Jamil and X. S. Yang, “A literature survey of benchmark functions for
global optimisation problems,” International Journal of Mathematical
Modelling and Numerical Optimisation, vol. 4, no. 2, p. 150, 2013.

[15] “Benchmarks of QF FP track in SMT-COMP (2015).” [Online].
Available: http://www.cs.nyu.edu/∼barrett/smtlib/QF FP Hierarchy.zip

[16] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik,
“Symbolic optimization with SMT solvers,” in Proceedings of 41st
ACM Symposium on Principles of Programming Languages (POPL’14).
ACM, 2014, pp. 607–618.

[17] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “νZ - An Optimizing SMT
Solver,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2015, pp. 194–199.

[18] A. Fröhlich, A. Biere, C. M. Wintersteiger, and Y. Hamadi, “Stochastic
Local Search for Satisfiability Modulo Theories,” in Proceedings of
AAAI Conference on Artificial Intelligence, 2015.

