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Abstract—Boolean functional synthesis allows the automated
construction of Boolean functions from declarative specifications.
BDD-based techniques for this problem can be very efficient when
the specification can be compactly represented by a BDD, but
this is not always possible. In model checking, a way around this
problem has been found by using factored representations, where
formulas are represented as a conjunction of subformulas, each
encoded individually as a BDD. We show how techniques and
heuristics for quantifier elimination on factored formulas can also
be lifted to perform synthesis, and show that this approach allows
the synthesis of many problem instances that are intractable
when represented by a single BDD. We compare our approach
to other tools for Boolean synthesis that are not BDD-based. Our
empirical evaluation shows that, while no approach dominates
across the board, our tool outperforms other tools on several
problem instances.

Index Terms—Binary Decision Diagrams, Boolean synthesis,
factored representation

I. INTRODUCTION

The problem of synthesizing Boolean functions from re-
lations is central to many areas of formal methods. Boolean
functions can represent both logical circuits and programs over
finite data types, and Boolean synthesis is also an essential
component of synthesis from temporal specifications [1].

In the Boolean synthesis problem, we are given as spec-
ification a Boolean formula f(~x, ~y), where ~x is a vector of
input variables x1, . . . , xm and ~y is a vector of output variables
y1, . . . , yn. Our goal is twofold: first, to characterize the set of
valid inputs by a formula p(~x) that is satisfied exactly by those
inputs for which there is an output that satisfies f ; second,
to construct a Boolean function g : Bm → Bn such that
p(~x) ⇒ f(~x, g(~x)). In other words, for every input ~x that
satisfies p(~x), setting ~y = g(~x) satisfies f(~x, ~y).

Early approaches to this problem have used techniques
based on Binary Decision Diagrams (BDDs) [2], [3]. The
efficiency of BDDs, however, is highly dependent on finding
a good variable ordering, which is a hard optimization prob-
lem. Furthermore, it is well-known that there are interesting
Boolean formulas that cannot be represented by a polynomial-
sized BDD. Because of this, more recent works have avoided
BDDs in favor of approaches using SAT solvers [4].

Nevertheless, BDD-based techniques have been shown to be
very competitive when the specification can be efficiently rep-
resented by a BDD and a good variable ordering is known [5].
This raises the question of whether it is possible, instead
of discarding BDDs, to find a way to employ BDD-based
techniques even in cases when a BDD for the specification

cannot be constructed. In other applications where the use of
BDDs is common, the solution to this problem came in the
form of factored representations of formulas, which allow a
much wider range of instances to be effectively computed [6].

Factored representations are based on the fact that it is
common for Boolean formulas of practical importance to be
represented by conjunctions of constraints. In other words,
a Boolean formula f(~x, ~y) might be written in the format
f1(~x, ~y)∧ . . .∧ fk(~x, ~y). In this case, rather than constructing
a single monolithic BDD B for f , we can instead represent
the formula as a collection of BDDs B1, . . . , Bk for each of
the factors f1, . . . , fk, implicitly interpreted as a conjunction.
Since conjoining multiple BDDs can lead to a combinatorial
explosion, the factored representation is usually significantly
more compact.

In symbolic model checking, where the idea of factored
BDD representations originated, this approach was able to
reduce the size of representations of transition relations by an
order of magnitude [6]. Since then, different techniques have
been developed for further improving performance, including
heuristics for clustering and reordering factors [7]. Similar
techniques have been used for processing factored formulas
in the context of symbolic satisfiability [8]. In this approach
to the satisfiability problem, a CNF formula is encoded by
partitioning the set of clauses and representing each partition
as a BDD. Then, symbolic quantifier elimination is used to
find if there is a satisfying assignment to the formula. In this
paper we show how techniques and heuristics used in these
applications can be adapted to perform synthesis from factored
specifications.

Other approaches have been developed for synthesis of
factored formulas that do not employ BDDs. A recent work [9]
uses And-Inverter Graphs (AIGs) for representing Boolean
formulas and a counterexample-guided abstraction refinement
(CEGAR) loop for synthesizing the function. A downside to
this approach is that the CEGAR loop requires repeated calls
to a SAT solver, which can have a high cost in running time.
Furthermore, BDDs can be very compact for small formulas,
which poses the question of whether they can produce smaller
functions than AIGs when using factored representation.

A different synthesis approach is based on the close rela-
tion between Boolean synthesis and QBF solving. The CNF
formulas given as input to QBF solvers are special cases of
factored formulas, and a number of modern solvers are capable
of computing Skolem functions for the existential variables



in terms of the universal variables [10] [11]. Therefore, by
writing a specification f(~x, ~y) in CNF, the synthesis problem
can be encoded as a QBF ∀~x.∃~y.f(~x, ~y).

Although QBF solvers can be very efficient in solving these
formulas, they are able to synthesize Skolem functions only
when the QBF ∀~x.∃~y.f(~x, ~y) evaluates to true. This corre-
sponds to the case when the specification f(~x, ~y) is realizable,
that is, when every input ~x has an output ~y that satisfies
f , and consequently p(~x) ≡ 1. In many applications of
Boolean synthesis we are interested, however, in unrealizable
specifications as well. One such a case is LTLf synthesis using
DFA games [1], in which a winning strategy might not exist for
every state of the automaton, but we would like to synthesize
this strategy for all states for which it exists.

In our experimental evaluation, we first compare our im-
plementation using factored representation with the mono-
lithic approach, allowing us to confirm that indeed factor-
ing the specification allows us to synthesize a number of
instances that would be otherwise intractable. We then com-
pare our implementation using BDDs to two other tools:
CEGARSKOLEM [9] [12], which uses the CEGAR-based
approach, and the QBF solver CADET [11]. The results
show that no approach is universally better, and every tool
outperforms the others in some subset of the benchmarks. Al-
though the QBF approach has a clear advantage for realizable
specifications, being unable to handle unrealizable instances
limits its applicability in a number of practical cases.

Beyond performance, an advantage of using BDDs is that
this makes the approach easier to integrate in temporal synthe-
sis applications, such as [1]. This is because such applications
usually employ some kind of fixpoint computation, for which
BDDs are particularly suited due to the ease of checking if two
BDDs are equivalent. Using other representations for Boolean
formulas, such as AIGs or CNF, it becomes harder to perform
such computations.

II. PRELIMINARIES

A. Boolean Formulas and Functions

We denote by B = {0, 1} the set of Boolean values. We use
the notation ~x to represent a Boolean vector (x1, . . . , xm) ∈
Bm, for some m. We identify a Boolean formula f over
Boolean variables x1, . . . , xm with the Boolean function f :
Bm → B such that f(~x) = 1 if and only if ~x is a satisfying
assignment of formula f .

We use ¬, ∧, ∨ to denote the usual Boolean
operators of negation, conjunction and disjunction,
and ≡ to denote logical equivalence of two Boolean
formulas. Given two formulas f(x1, . . . , xm) and
f ′(y1, . . . , yn), we use f [xi 7→ f ′] to denote the formula
f(x1, . . . , xi−1, f

′(y1, . . . , yn), xi+1, . . . , xm). We say that a
variable xi is in the support of a formula f if xi determines
the value of f , that is, f [xi 7→ 0] 6≡ f [xi 7→ 1].

We also use ∀ and ∃ to denote universal and existen-
tial quantification over Boolean variables. Given a quantified
Boolean formula, we can use the following lemma to obtain
a logically equivalent quantifier-free formula:

Lemma 1 (Self-Substitution [5]). Let f(~x, y) be a Boolean
formula over variables ~x = (x1, . . . , xm) and y. Then
• ∀y.f(~x, y) ≡ f(~x, f(~x, 0))
• ∃y.f(~x, y) ≡ f(~x, f(~x, 1))

Given a formula f(~x, y) with ~x = (x1, . . . , xm), and a
function g : Bm → B, if f(~x, g(~x)) ≡ ∃y.f(~x, y), we say
that g is a witness for y in f . It is clear from Lemma 1 that,
for every formula f(~x, y), f(~x, 1) is a witness for y.

B. Boolean Synthesis

We use the following formulation of the Boolean synthesis
problem:

Problem 1 (Boolean Synthesis). Given a Boolean formula
f(~x, ~y) where ~x = (x1, . . . , xm) and ~y = (y1, . . . , yn), called
the specification, compute a Boolean formula p(~x), called
the precondition, and a Boolean function g(~x) : Bm → Bn,
called the implementation, such that ∃~y.f(~x, ~y) ≡ p(~x) ≡
f(~x, g(~x)).

In this context, we call ~x the input variables and ~y the
output variables. Intuitively, f specifies a relation between
inputs and outputs of the desired Boolean function g, and p
identifies valid inputs for g. If there is an output ~y that satisfies
f for input ~x, then a) p(~x) is true, and b) ~y = g(~x) satisfies
f . The implementation g can be represented by a sequence of
functions 〈g1, . . . , gn〉, gi : Bm → B. In this work we focus on
specifications of the form f(~x, ~y) = f1(~x, ~y) ∧ . . . ∧ fk(~x, ~y).

In the context of Boolean synthesis, we say that a spec-
ification f(~x, ~y) with input variables ~x and output variables
~y is realizable if for every assignment to ~x there exists an
assignment ~y such that f(~x, ~y) evaluates to true. In other
words, if a specification f is realizable then ∃~y.f(~x, ~y) ≡
p(~x) ≡ f(~x, g(~x)) ≡ 1. In this case, every input ~x is a valid
input for g(~x).

C. Binary Decision Diagrams

A [Reduced Ordered] Binary Decision Diagram, or BDD,
is a data structure that represents a Boolean function as a
directed acyclic graph [13]. BDDs can be seen as a reduced
representation of a binary decision tree of a Boolean function.
We require that variables are ordered the same way along every
path of the BDD (“ordered”) and that the BDD is minimized to
eliminate duplication (“reduced”). For a given variable order,
the reduced BDD is canonical. The variable order used can
have a major impact on BDD size, and two BDDs representing
the same function but with different orders can have an
exponential difference in size. Since BDDs represent Boolean
functions, they can be manipulated using standard Boolean
operations. We overload the notation of the operators ¬, ∧, ∨
and functional composition (e.g. B[xi 7→ B′]) with equivalent
semantics to their counterparts for Boolean formulas.

III. SYNTHESIS FROM FACTORED FORMULAS

In this section, we start by formally defining the notion of
factored representations and present some of their properties.



We then describe a method for performing synthesis over
factored representations.

A. Factored Representation of Boolean Formulas

Let the specification f for an instance of the Boolean
synthesis problem be of the form f(~x, ~y) = f1(~x, ~y) ∧
f2(~x, ~y)∧ . . .∧ fk(~x, ~y). Each formula fi is called a factor of
f . The sequence of BDDs 〈B1, B2, . . . , Bk〉, where Bi is the
BDD encoding of fi, is called the factored representation of
f . In contrast, the representation of f as a single BDD B is
called the monolithic representation.

Note that it is possible for a formula to have an exponential
monolithic representation and a polynomial factored represen-
tation. In particular, the factored representation of a formula
in CNF can always be linear, since the BDD of a single clause
is linear in size.

Although factored representations can be exponentially
more compact than monolithic representations, they introduce
complications into the synthesis procedure. To understand
why, first note from the definition of Boolean synthesis that
there is a close connection between Boolean synthesis and
quantifier elimination. In fact, substituting the implementation
g(~x) in the specification f(~x, ~y) is equivalent to existentially
quantifying ~y, and the precondition p(~x) is exactly the result
of this quantification. Then, recall that existential quanti-
fiers do not distribute over conjunction. That is, in general
∃y1, . . . , yn.

∧k
i=1 fi(~x, ~y) 6≡

∧k
i=1 ∃y1, . . . , yn.fi(~x, ~y).

More precisely, as pointed out in [9], the right-hand side
is an over-approximation of the left-hand side, meaning that
every assignment of ~x that satisfies the left-hand side satisfies
the right-hand side, but not vice-versa.

As a consequence, if we are given a factored representation
of a Boolean formula, it is not clear how to perform existential
quantifier elimination, and consequently synthesis, without
conjoining the factors. However, the insight first employed
in [6] is that it is possible to move conjuncts outside an
existential quantifier if the quantified variable does not appear
in the support of the conjunct. Formally, let Fj ⊆ {1, . . . , k}
be the set of indices i such that yj is in the support of fi.
Then,

∃y1, . . . , yn.
k∧
i=1

fi(~x, ~y)

≡ ∃y1, . . . , yn−1.

(
∃yn.

∧
i∈Fn

fi(~x, ~y)

)
∧
∧
i 6∈Fn

fi(~x, ~y)

Using the relation between synthesis and existential quan-
tification, we obtain the following result:

Lemma 2. Let f(~x, ~y) = f1(~x, ~y)∧f2(~x, ~y)∧. . .∧fk(~x, ~y) be
a specification and gj(~x) be a witness to yj in

∧
i∈Fj fi(~x, ~y).

Then, gj(~x) is a witness to yj in f(~x, ~y).

Proof. Since gj(~x) is a witness to yj in
∧
i∈Fj fi(~x, ~y),

then by definition
(∧

i∈Fj fi(~x, ~y)
)
[yj 7→ gj(~x)] ≡

∃yj .
∧
i∈Fj fi(~x, ~y).

To prove that gj(~x) is also a witness of f(~x, ~y), it needs to
be shown that f(~x, ~y)[yj 7→ gj(~x)] ≡ ∃yj .f(~x, ~y). But

f(~x, ~y)[yj 7→ gj(~x)]

≡

∧
i∈Fj

fi(~x, ~y) ∧
∧
i 6∈Fj

fi(~x, ~y)

 [yj 7→ gj(~x)]

≡

∧
i∈Fj

fi(~x, ~y)

 [yj 7→ gj(~x)] ∧
∧
i 6∈Fj

fi(~x, ~y)

≡

∃yj . ∧
i∈Fj

fi(~x, ~y)

 ∧ ∧
i 6∈Fj

fi(~x, ~y)

≡ ∃yj .

∧
i∈Fj

fi(~x, ~y) ∧
∧
i 6∈Fj

fi(~x, ~y)


≡ ∃yj .f(~x, ~y)

Therefore, gj(~x) is a witness of f(~x, ~y).

From Lemma 2 we have that a witness for a variable in a
factored formula can be constructed from only the factors in
which that variable appears. Since in practice each variable
will only be in the support of a small subset of the factors,
this insight means that it is possible to perform synthesis
without converting entirely from the factored to the monolithic
representation. Instead, we can design a strategy for synthesis
directly over factored formulas.

B. Synthesis from Factored Specifications

Algorithm 1 presents a synthesis framework that takes
advantage of the factored representation of the specification,
using the insight from Lemma 2 to avoid conjoining all factors
at once. Instead, we conjoin the factors one-by-one, and after
each conjunction synthesize and eliminate the variables that do
not appear in the support of any of the remaining factors. This
strategy is similar to the ones followed in model checking [6]
and symbolic satisfiability [8] from factored representations.

We assume the existence of a monolithic Boolean synthesis
procedure, denoted by synth(B,X, Y ), which receives a BDD
B, a set of input variables X and a set of output variables Y ,
and returns a BDD P representing the precondition and a se-
quence of BDDs (Wj)yj∈Y representing the implementation.

We start, in line 2, by partitioning the output variables
into sets Y1, . . . , Yk such that yj ∈ Yi if and only if Bi is
the last factor where yj appears. In other words, yj ∈ Yi
if and only if maxFj = i. We maintain a BDD B which
accumulates the factors. In line 3, B is initialized to the empty
conjunction, which is equivalent to the constant 1. We then
iterate over the factors, conjoining the next factor to B at
every iteration in line 5. Once Bi is conjoined, none of the
output variables in Yi appear in any of the remaining factors.
The monolithic synthesis procedure is then called in line 6
to synthesize witnesses for every variable in Yi, in terms of
the input variables x1, . . . , xm and the output variables in
Yi+1, . . . , Yk. Then, in line 7, B is updated to the precondition



Fig. 1. Synthesis from Factored Specifications
Input: Factored specification 〈B1, . . . , Bk〉.
Output: Precondition BDD P , witness BDDs 〈W1, . . . ,Wn〉.

1: X ← {x1, . . . , xm}
2: Yi ← {yj | Bi is the last factor where yj appears}
3: B ← 1
4: for i← 1 . . . k do
5: B ← B ∧Bi
6: Pi, (Wj)yj∈Yi ← synth(B,X ∪ Yi+1 ∪ . . . ∪ Yk, Yi)
7: B ← Pi
8: end for
9: for i← 1 . . . k, i′ ← (i+ 1) . . . k do

10: W` ←W`[yj 7→Wj ], for all y` ∈ Yi, yj ∈ Yi′
11: end for
12: P ← B
13: return P,W1, . . . ,Wn

Pi, which corresponds to the conjunction of the first i factors
with the output variables in Y1∪. . .∪Yi existentially quantified.

After the end of the loop, every witness Wj for yj ∈ Yi
has the variables from Yi+1, . . . , Yk in its support set. In
the last step, performed by the loop in lines 9-11, these
extra variables are eliminated by substituting their respective
witnesses, making every Wj dependent only in the input
variables x1, . . . , xm.

The following theorem states the correctness of Algo-
rithm 1, which follows from the correctness of the monolithic
synthesis procedure and Lemma 2.

Theorem 1. If P,W1, . . . ,Wn are computed according to
Algorithm 1, then ∃y1, . . . , yn.(B1 ∧ . . . ∧ Bk) ≡ P ≡
(B1 ∧ . . . ∧Bk)[y1 7→W1, . . . , yn 7→Wn].

Proof. We assume the correctness of the monolithic synthesis
procedure synth, meaning that synth(B,X, Y ) returns a
precondition P , and a witness Wj for each variable yj ∈ Y in
terms of the variables in X , such that ∃Y.B ≡ P ≡ B[yj 7→
Wj ]yj∈Y .

Consider the loop in lines 4-8. We will first prove that if
at the start of the i-th iteration B ≡ ∃Y1, . . . , Yi−1.(B1 ∧
. . . ∧ Bi−1), then at the end of the i-th iteration B ≡
∃Y1, . . . , Yi.(B1 ∧ . . . ∧ Bi). We will use this to prove that
P ≡ ∃y1, . . . , yn.(B1 ∧ . . . ∧Bk)

Assume that at the start of the i-th iteration B ≡
∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧ Bi−1). Then, after line 5, B ≡
(∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧ Bi−1)) ∧ Bi. Since Y1, . . . , Yi−1
do not appear in Bi, the quantifier can be moved outside the
conjunction, so B ≡ ∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧Bi−1 ∧Bi).

Then, in line 6 the monolithic synthesis procedure is
called on B, with input variables X ∪ Yi+1 ∪ . . . ∪ Yk and
output variables Yi. By the correctness of the monolithic
procedure, Pi ≡ ∃Yi.B ≡ ∃Y1, . . . , Yi−1, Yi.(B1 ∧ . . . ∧
Bi−1 ∧ Bi). Then, after line 7, when B is updated to Pi,
B ≡ ∃Y1, . . . , Yi−1, Yi.(B1 ∧ . . . ∧Bi−1 ∧Bi).

Therefore, if B ≡ ∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧ Bi−1) at the
start of the i-th iteration, B ≡ ∃Y1, . . . , Yi.(B1 ∧ . . . ∧ Bi)

at the end of the i-th iteration. Taking i = 1, this means that
if B ≡ 1 (the empty conjunction) before the loop then at
the end of the first iteration B ≡ ∃Y1.B1. Since the invariant
B ≡ ∃Y1, . . . , Yi.(B1 ∧ . . . ∧Bi) is maintained, at the end of
the last iteration B ≡ ∃Y1, . . . , Yk.(B1∧ . . .∧Bk). Therefore,
after line 12, P ≡ ∃Y1, . . . , Yk.(B1 ∧ . . . ∧Bk), as desired.

We now prove that (B1 ∧ . . . ∧ Bk)[y1 7→ W1, . . . , yn 7→
Wn] ≡ ∃Y1, . . . , Yk.(B1 ∧ . . . ∧ Bk). In iteration i, we
construct Wj for every yj ∈ Yi. Since at this time B ≡
∃Y1, . . . , Yi−1.(B1∧. . .∧Bi−1∧Bi), by the correctness of the
synth procedure, (∃Y1, . . . , Yi−1.(B1∧. . .∧Bi−1∧Bi))[yj 7→
Wj ]yj∈Yi ≡ ∃Y1, . . . , Yi−1, Yi.(B1 ∧ . . . ∧ Bi−1 ∧ Bi). Then,
since no variables in Y1, . . . , Yi−1 appear in Bi,

∃Y1, . . . , Yi.(B1 ∧ . . . ∧Bi)
≡ (∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧Bi))[yj 7→Wj ]yj∈Yi

≡ ((∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧Bi−1)) ∧Bi)[yj 7→Wj ]yj∈Yi

Applying this transformation recursively to
∃Y1, . . . , Yk.(B1 ∧ . . . ∧ Bk) results in (. . . (B1[yj 7→
Wj ]yj∈Y1 ∧B2)[yj 7→ Wj ]yj∈Y2 ∧ . . . ∧Bk)[yj 7→ Wj ]yj∈Yk .
Applying Lemma 2, we can move the composition operators
outside the conjunction, giving

∃Y1, . . . , Yk.(B1 ∧ . . . ∧Bk)
≡ (B1 ∧ . . . ∧Bk)[yj 7→Wj ]yj∈Y1 . . . [yj 7→Wj ]yj∈Yk

Recall that each Wj for yj ∈ Yi might contain variables
from Yi+1, . . . , Yk in its support set. Because of this, we
cannot change the order of the composition operators. How-
ever, the loop in lines 9-11 performs the composition of
each witness with the ones that succeed it, making every Wj

dependent only on x1, . . . , xm. This allows the compositions
to be performed in any order, so that ∃Y1, . . . , Yk.(B1 ∧ . . .∧
Bk) ≡ (B1 ∧ . . . ∧Bk)[y1 7→W1, . . . , yn 7→Wn].

A problem with Algorithm 1 is that performance will be
very dependent on the order of the factors. Consider for
example a specification in which for every i, the output support
of fi is {y1, . . . , yi}. Then, Y1 = Y2 = . . . = Yk−1 = {}
and Yk = {y1, . . . , yn}. Processing the factors in order will
result in all factors being conjoined before any witness can be
synthesized, thus degenerating into the monolithic synthesis
procedure. On the other hand, processing the factors in the
reverse order would allow one variable to be synthesized
immediately after each conjunction. Therefore, it is clear
that the algorithm can benefit from reordering the factors
before starting the synthesis. Finding the optimal order is
a combinatorially hard problem, but a number of heuristics
can be used instead. Another possible improvement in the
algorithm is clustering, a technique that has been employed
in other applications which use factored representations of
formulas [8], [14], [15]. In clustering, the set of factors is first
partitioned, and the factors in each partition are conjoined into
monolithic clusters. The algorithm is then applied over the
clusters rather than the individual factors. The next section
explores different heuristics for clustering and reordering.



C. Clustering and Reordering

As noted in [14], if the individual BDDs for each factor
are small, it is often better to combine different factors into
monolithic clusters. If the clusters are constructed so that they
remain of reasonable size, clustering reduces the number of
iterations while not excessively increasing the cost in space.

Formally, given a factored formula f(~x, ~y) = f1(~x, ~y) ∧
f2(~x, ~y) ∧ . . . ∧ fk(~x, ~y) a clustering heuristic partitions the
set of factors {f1, f2, . . . , fk} into κ disjoint non-empty
subsets C1, . . . , Cκ, called the clusters. In practice, each
cluster Cι is represented by a BDD Bι encoding the formula∧
fi∈Cι fi(~x, ~y). Since conjunction is associative and commu-

tative, 〈B1, . . . ,Bκ〉 is itself a factored representation of the
original formula f . Therefore, Algorithm 1 can be applied
normally to this representation.

The goal of clustering is to create a balance between the
number of factors and size of the factors. An example of
clustering strategy is rank-based clustering, employed in [8].
In this strategy, for every variable yj , cluster Cj = {fi |
rank(fi) = j}, where rank(fi) is the highest index among
the variables in the support of fi.

Rank-based clustering naturally gives rise to some re-
ordering heuristics, in which clusters are ordered either by
increasing or decreasing rank. Two more options for reordering
factors appear in the context of model checking in [7]. In
that work, factored formulas are used to represent transition
relations, and different reordering heuristics are used in the
forward and backward simulation steps. The following are the
four heuristics used in this work:

a) Bouquet’s method: [8] Order by increasing rank.
b) Bucket elimination: [8] Order by decreasing rank.
c) Forward: [7] Greedily order factors by number of

variables that can be eliminated once the factor is conjoined.
In other words, at every step choose the factor that has the
greatest number of output variables that do not appear in any
of the remaining factors.

d) Backward: [7] Order factors such that at every step
the next factor will be the one that has the fewest new
variables, that is, variables that have not appeared in any of
the previous factors. This heuristic tries to avoid as much as
possible increasing the size of the conjoined BDD.

All of the above heuristics for clustering and reordering can
be applied to synthesis from factored representations, but it is
unclear which would give better results. Section IV describes
an experimental evaluation of the different techniques.

D. BDD Variable Ordering

The size of BDDs is strongly influenced by the ordering
of the variables. Part of the goal of using factored repre-
sentations is to be able to represent specifications for which
a good variable ordering is not known beforehand. Rather
than using an arbitrary variable ordering for these cases, it
would be good to be able to compute one by analyzing the
structure of the formula. Similarly to clustering, finding the
optimal variable ordering is a hard combinatorial problem, but

numerous heuristics have been developed to find good enough
approximations.

One such heuristic is the inverse maximum cardinality
search (MCS) ordering [16]. This variable ordering is
constructed based on the Gaifman graph of the formula
f(~x, ~y) = f1(~x, ~y) ∧ . . . ∧ fk(~x, ~y), defined as G = (V,E),
where V = {x1, . . . , xm, y1, . . . , yn} and E = {(v1, v2) |
there exists an i such that v1 and v2 are in the support of fi}.
In other words, the Gaifman graph of a factored formula has
one vertex for each variable and has an edge between every
pair of variables that share a factor.

The inverse MCS order can be computed from the Gaifman
graph by the following procedure: 1) initialize an empty list
L; 2) at each step, select the vertex v ∈ V not in L with the
largest number of neighbors in L, and add v to L; 3) after
all vertices have been added, reverse L, so that vertices added
later come first in the ordering.

Other heuristics for variable ordering were studied in [8],
but among them the inverse MCS heuristic had the best results
in that work. Therefore, this heuristic was chosen for the
experiments in this paper.

IV. EXPERIMENTAL EVALUATION

We performed the experiments using QBF benchmarks
taken from the QBFLIB collection [17]. All benchmarks
selected were of the form ∀~x.∃~y.f(~x, ~y), where f(~x, ~y) is a
CNF formula. In this case, synthesis corresponds to finding a
Skolem function to the existential variables. Every clause in
f(~x, ~y) can be considered one factor.

We implemented the factored algorithm from Section III and
the various heuristics for clustering and reordering factors in
our tool RSYNTH, in C++11 and using the CUDD [18] pack-
age for manipulating BDDs. As of version 3.0.0, CUDD in-
cludes a monolithic Boolean synthesis procedure SolveEqn,
which we used in our implementation as the synth subroutine.

All experiments were executed in the DAVinCI cluster at
Rice University, consisting of 192 Westmere nodes of 12
processor cores each, running at 2.83 GHz with 4 GB of RAM
per core, and 6 Sandy Bridge nodes of 16 processor cores
each, running at 2.2 GHz with 8 GB of RAM per core. The
algorithm has not been parallelized, so the cluster was solely
used to run multiple experiments simultaneously.

Besides comparing the monolithic and factored algorithms
and evaluating different reordering heuristics, we also com-
pare our tool RSYNTH with two existing tools for Boolean
synthesis. The first is the CEGARSKOLEM tool from [9],
which uses a SAT-based CEGAR loop and AIGs to perform
synthesis from factored formulas. The second is the 2QBF
solver CADET [11].

All plots1 in this section are shown in log scale. Each
benchmark was given a time limit of two hours. Only a
subset of the total set of benchmarks is included in the plots.
Benchmarks for which the results were similar to already-
included benchmarks were omitted, as well as benchmarks
for which all or almost all of the methods timed out.

1Plots are best viewed online for ease of reading.
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Fig. 2. Performance of the factored algorithm using different reordering
heuristics, in log scale. The values include both the time spent reordering
the factors and time running the algorithm. Bars of maximum height indicate
instances that timed out. Bars not displayed mean that the instance took less
that 1ms.

A. Heuristics for Factor Reordering

We first measure the performance of the factored algorithm
using different reordering heuristics. The bar plots on Figure 2
show the running time of each heuristic on different bench-
marks. Figure 2(a) shows the results for Bouquet’s Method and
Bucket Elimination, and Figure 2(b) shows the results for the
Forward and Backward heuristics. The bars labeled None show
the running time when no heuristic is used and the factors are
simply processed in the order they are given in the input file.

Surprisingly, the results show that using no reordering is
often preferable. In most of the instances, the best running time
was achieved with no reordering. In fact, some benchmarks
were able to be synthesized in the time limit only when
no reordering was used. What this result suggests is that
the process by which CNF formulas are generated already
produces clauses in a good order. This makes sense because,
when constructing a CNF formula, clauses with the same
variables will generally be close to each other.

To confirm this point, we also ran experiments where the
clauses were reordered randomly. In this case, regardless of
the benchmark, the synthesis almost always timed out. We
conclude that we can generally assume that the input is given
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Fig. 3. Performance of the monolithic and factored synthesis algorithms, in
log scale. Bars of maximum height indicate instances that timed out.

in a good order, but, if this is not the case, using a moderately
good heuristic, such as Bouquet’s Method, already improves
significantly over an arbitrary ordering. The performance of
the other heuristics varied depending on the type of bench-
mark. Every heuristic outperformed the others on at least one
case. Overall, the Forward heuristic seems to have the worst
scalability, timing out for most of the instances. This is likely
due to it being a greedy heuristic which tries to synthesize as
many variables as possible at each step, causing the size of
the BDDs to quickly increase.

B. Factored vs. Monolithic

Next, we compare the running time of the factored algorithm
with synthesis using the monolithic procedure. In the latter,
the running time includes the time necessary to conjoin all
the factors to create the monolithic representation. Given the
previous results, no reordering was used for the factored
approach. Results are shown in the bar plot on Figure 3.

It is immediately noticeable that the monolithic approach
in most cases displays a much poorer performance compared
with the factored one. In the few cases where the monolithic
algorithm outperforms the factored algorithm, it is only by
a small margin. On the other hand, there are several cases
where the factored algorithm outperforms the monolithic one
by an order of magnitude or more. There are additionally a
number of cases synthesized by the factored algorithm which
the monolithic algorithm is not able to solve in the time
limit. This indicates that it is worthwhile to take advantage
of factored representation for synthesis, and that it allows
a number of instances to become feasible compared to a
monolithic representation.

C. Comparison with CEGARSKOLEM and CADET
We compare the performance of RSYNTH with the CEGAR-

based tool CEGARSKOLEM and the QBF solver CADET.
Given the results of previous experiments, we select the
factored algorithm with no reordering for the comparison.

Figure 4 shows a comparison of running time between
RSYNTH, CEGARSKOLEM and CADET on the same bench-
marks used in the previous experiments. All of the benchmarks
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Fig. 4. Comparison of running time between RSYNTH, CEGARSKOLEM and
CADET, in log scale. Bars of maximum height indicate instances that timed
out.
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Fig. 5. Comparison of function size, in number of nodes, between RSYNTH,
CEGARSKOLEM and CADET, in log scale. The size is not displayed for
those instances in which the tool timed out.

are realizable, allowing CADET to be used for them. Out
of 161 total benchmarks, RSYNTH was able to synthesize
87 and CEGARSKOLEM 52. There were only 6 benchmarks
in which CEGARSKOLEM outperformed RSYNTH, all from
the rankfunc class. However, CADET had by far the best
performance in almost all instances, usually by orders of
magnitude, and was able to synthesize all but one of the
161 benchmarks. This leads to the conclusion that the QBF
approach is preferable when the specification is realizable.

Figure 5 shows a comparison of the size of the synthe-
sized functions between the three tools. RSYNTH produces
functions in the form of BDDs, while CEGARSKOLEM and
CADET produce functions in the form of AIGs, therefore the
comparison is in number of nodes of these data structures.
Missing bars mean that the tool timed out for that particular
instance. RSYNTH produced smaller functions for about half
of the benchmarks, while CADET had smaller functions for
the other half. This demonstrates that in many cases BDDs are
indeed able to produce a more compact representation than the
one obtained by AIGs.

The main conclusion that we can draw from this compari-
son is that, for realizable specifications, synthesis approaches
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Fig. 6. Comparison of running time between RSYNTH and CEGARSKOLEM
tools, in log scale, over unrealizable benchmarks. Bars of maximum height
indicate instances that timed out.

based on QBF will likely dominate in terms of running time. In
general, however, QBF solvers do not support the generation of
Skolem functions when the formula ∀~x.∃~y.f(~x, ~y) evaluates to
false, i.e., f(~x, ~y) is unrealizable. Therefore, for unrealizable
specifications it becomes necessary to turn to other synthesis
approaches. This brings up the question of how RSYNTH
and CEGARSKOLEM perform in synthesizing unrealizable
instances. The next section presents an evaluation dedicated
to answering this question.

D. Unrealizable Specifications

For this comparison, we also used QBF benchmarks of the
form ∀~x.∃~y.f(~x, ~y) from QBFLIB. This time, however, the
quantified formulas evaluate to false, meaning that f(~x, ~y)
is unrealizable. Since CADET is unable to handle such
cases, we only perform a comparison between RSYNTH and
CEGARSKOLEM for these formulas.

Figure 6 shows the running time of each tool in a set
of unrealizable benchmarks. Comparing RSYNTH and CE-
GARSKOLEM, we see that the results vary depending on the
instance, with either tool outperforming the other on a subset
of the benchmarks. There are also many cases which one of the
tools is able to synthesize while the other times out. In total,
227 benchmarks were solved by at least one of the tools, with
CEGARSKOLEM performing best in 118 cases, and RSYNTH
performing best in the remaining 109. This result suggests that
no approach is strictly better than the other, and the best choice
will likely depend on the specific instance of the problem.

The performance of QBF solvers when the specification
is realizable invites the question of whether we can find a
way to exploit them in synthesizing unrealizable formulas as
well. It turns out that it is possible to transform an unrealiz-
able formula into a realizable one with the same witnesses
by adding an additional quantifier alternation. This idea is
well known in the context of arithmetic realizability [19].
In our case, given a quantified formula ∀~x.∃~y.f(~x, ~y), we
can construct a formula ∀~x.∃p.(p ↔ ∃~y.f(~x, ~y)), which is
always true. By a few simple transformations, we obtain
∀~x.∃p.(¬p∨∃~y.f(~x, ~y))∧(p∨∀~y.¬f(~x, ~y)), and by renaming



variables and moving the quantifiers to the front, the resulting
formula is ∀~x.∃p.∃~y.∀~z.((¬p ∨ f(~x, ~y)) ∧ (p ∨ ¬f(~x, ~z)).
Because of the additional quantifier, the formula is no longer
in 2QBF, and therefore can no longer be handled by CADET,
but other certifying QBF solvers might be able to synthesize it.
Note additionally that the Skolem function for the additional
existentially quantified variable p now corresponds exactly
to the realizability precondition. This might be a promising
approach, but a number of factors will have to be taken
into consideration. Besides having to deal with the additional
quantifiers, if f is originally in CNF, its negation in the
second conjunct is now in DNF. Dealing with this may impose
another computational challenge. We leave to future work to
explore the possibilities of this transformation and the resulting
synthesis approach.

V. DISCUSSION

In this paper, we adapted techniques for processing factored
representations of Boolean formulas using BDDs to the prob-
lem of Boolean functional synthesis. We show that these tech-
niques allow synthesis from a number of specifications which
cannot be handled when using a monolithic representation.

We performed an experimental comparison of our tool
RSYNTH with other tools for Boolean synthesis, namely the
CEGAR-based tool CEGARSKOLEM [9] and the QBF solver
CADET [11]. Our experiments show the QBF approach to be
very efficient when the specification is realizable, significantly
outperforming the others. However, QBF solvers are not
generally able to synthesize functions for unrealizable spec-
ifications, which motivates the use of alternative approaches
such as the one presented in this paper. For unrealizable
specifications, the results of the comparison between RSYNTH
and CEGARSKOLEM vary, with the best tool depending on
the specific instance. Therefore, we conclude that there is no
single approach that dominates over all cases, rather every tool
is able to handle some specifications that the others cannot.

An advantage of BDD-based techniques lies on their ease
of applicability to synthesis from temporal specifications,
in which Boolean synthesis is a subproblem. The use of
partitioned transition relations is a common technique in
these problems, and BDDs are a popular representation due
to being canonical. Furthermore, these applications usually
require synthesis from unrealizable formulas, where these
formulas represent the subset of winning states in a game.
This suggests that a synthesis approach based on a factored
representation using BDDs might be a good choice for this
problem. Therefore, we are also interested in pursuing forms
of integrating the techniques presented here in frameworks for
temporal synthesis.
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