
Pseudo-Boolean Solving by Incremental Translation
to SAT

Panagiotis Manolios
Northeastern University
pete@ccs.neu.edu

Vasilis Papavasileiou
Northeastern University
vpap@ccs.neu.edu

Abstract—We revisit pseudo-Boolean Solving via compilation
to SAT. We provide an algorithm for solving pseudo-Boolean
problems through an incremental translation to SAT that works
with any incremental SAT solver as a backend. Experimental
evaluation shows that our incremental algorithm solves industrial
problems that previous SAT-based approaches do not. We also
show that SAT-based algorithms for solving pseudo-Boolean
problems should be a part of any portfolio solver.

I. INTRODUCTION

Boolean Satisfiability (SAT) has been the subject of inten-
sive research over the past decade. Many powerful solvers
have been developed, and SAT has been successfully applied
to problems in a variety of fields, like electronic design
automation, hardware verification, AI planning, and others.
In many domains, the need for non-propositional constraints
like linear inequalities naturally arises. The Pseudo-Boolean
(PB) formalism accommodates linear constraints over Boolean
variables.

Definition 1. A Pseudo-Boolean constraint is a constraint of
the form

c1p1 + c2p2 + · · ·+ cnpn � r (1)

where � is one of the relations <, ≤, =, <, or ≥, the variables
pi (for 1 ≤ i ≤ n) can take the values 0 and 1 and the
coefficients ci are integers.1 The integer r is the right-hand
side. We call cipi a term. A PB problem is a conjunction of
PB constraints.

Several kinds of solvers can deal with PB problems. PB
satisfiability (or optimization) is a restriction of Integer Linear
Programming to 0-1 variables. As a result, ILP solvers can be
used. PB constraints can also be thought of as a generalization
of clauses. Thus, SAT techniques can be applied, e.g., the
DPLL procedure can be modified to handle PB constraints [1,
2]. An alternative is to compile PB constraints to CNF and
use an off-the-shelf SAT solver [3, 4, 5].

We revisit PB solving via compilation to SAT. An advantage
of this approach is that tools based on it automatically become
more competitive as the performance of the underlying SAT
solvers they depend on improves. Furthermore, SAT solvers
provide flexible, robust, mature, and well-engineered interfaces

1We convert the constraints to a normal form with only positive coefficients
and no relation other than ≥. In this normal form, variables can appear
negated.

that have found a plethora of interesting applications. Finally,
it is desirable to have a portfolio of complementary solvers
that in aggregate provide good performance over a large class
of PB problems arising in practice. We show that SAT-based
approaches should be an integral part of any such portfolio:
while they are not competitive on some PB problems (e.g.,
those that benefit from ILP-based techniques such as cutting
planes), they do very well on other types of problems (e.g.,
those where the ratio of propositional to arithmetic constraints
is high).

We propose an algorithm for PB solving that uses a SAT
solver for the efficient exploration of the search space, but
at the same time exploits the high-level structure of the PB
constraints to simplify the problem and direct the search. We
are primarily concerned with industrial problems and show
that our algorithm can tackle industrial PB instances that were
previously beyond the reach of SAT-based solvers.

The rest of the paper is organized as follows. In section II,
we present a class of incremental algorithms for solving PB
problems. Our algorithms are parameterized by a method for
translating from PB constraints to CNF, and in section III,
we analyze several different encoding schemes. We experi-
mentally evaluate our solver in section IV. We review related
work in section V, and conclude with section VI.

II. INCREMENTAL SOLVING

Our PB solver, PB-SAT, works by translating constraints to
CNF incrementally, in stages and performs multiple SAT calls.
Knowledge we acquire after each call allows us to simplify
the remaining untranslated constraints.

Algorithm 1 shows the basic structure of our solver. We
assume the existence of a function TRANSLATE that converts
a PB constraint C to an equisatisfiable propositional formula
TRANSLATE(C). The algorithm is independent of the specifics
of TRANSLATE.

In Algorithm 1, Φ corresponds to the set of clauses we
have generated so far. We initialize Φ so that it contains PB-
clauses: PB constraints of the form l1 + l2 + . . . + ln ≥ 1,
where the li’s are literals. Optionally, we can conjoin to Φ the
translations of cardinality constraints and other constraints that
can be efficiently encoded as clauses. Ψ, initialized to contain
the non PB-clauses, is used to record the PB constraints that
have not yet been translated to CNF.

Algorithm 1 PB Solving by incremental translation to SAT
1: procedure PB-SAT(Ψ)
2: Φ← {φ ∈ Ψ : φ is a PB-clause}
3: Ψ← {ψ ∈ Ψ : ψ is not a PB-clause}
4: while true do
5: A,U ← SAT(Φ)
6: if A = UNSAT then return UNSAT
7: Ψ← SIMPLIFY(Ψ, U)
8: if A satisfies Ψ then return A
9: Ψ′ ← {ψ ∈ Ψ : ψ falsified by A}

10: if Ψ′ = ∅ then Ψ′ ← SELECT(Ψ)

11: Ψ← Ψ \Ψ′

12: for all ψ ∈ Ψ′ do Φ← Φ ∧ TRANSLATE(ψ)

After initialization, our algorithm enters a loop where it calls
the SAT solver on the current set of clauses, Φ (line 5). If Φ
is unsatisfiable, the SAT solver returns “UNSAT” for A and
the input to the algorithm is also unsatisfiable. Otherwise, the
SAT solver returns a partial satisfying assignment A and the
set of known unit literals, U . In line 7, we use U to simplify
Ψ, the constraints we have yet to translate. How this is done
is explained later. Now, if any full assignment that extends A
also satisfies Ψ, then A is a partial assignment that satisfies
the input to our algorithm, so we return A. Otherwise, any PB
constraints that are false under every full assignment extending
A are stored in Ψ′. The idea is to only translate these falsified
constraints in the next round, but it may turn out that A does
not falsify any of the remaining constraints. In that case, we
select a non-empty subset of Ψ to translate. (Note that Ψ 6= ∅
is an invariant holding right after line 8). Next, in line 11,
we update Ψ to reestablish the invariant that it contains the
constraints left to translate. We end the loop by translating all
the PB constraints in (the non-empty) Ψ′.

Note that we translate all constraints falsified by inter-
mediate partial assignments. However, a lazier version of
our algorithm could translate only a subset of the falsified
constraints. While there are many ways of deciding what to
translate during each iteration, the essence of our approach is
to incrementally translate constraints in order to obtain useful
information that is used to simplify the remaining constraints.

A. Simplification

The SIMPLIFY function in algorithm 1 uses units discovered
by the SAT solver during the incremental queries to simplify
the remaining constraints. We explain this with an example.

Example 1. Given the units x1 and ¬x2, we simplify the
constraint 2x1 + 2x2 + x3 + x4 ≥ 4 to x3 + x4 ≥ 2, which
we further simplify to the units x3, x4.

Notice that we propagate knowledge in both directions:
(i) we use units from SAT solving to simplify the PB
constraints, and (ii) we learn new units from PB constraint
propagation. SIMPLIFY propagates the units we know at the
PB level, as described above. This process may modify the

constraints and return new units. We give these units to
the SAT solver, and perform Boolean Constraint Propagation
(BCP). If BCP leads to more units, we repeat. We stop when
we reach a fixpoint (we no longer learn anything new).

Our incremental strategy works by considering only a subset
of the PB constraints: the ones falsified by intermediate
assignments. This lazy approach is very useful in applications
like synthesis, where we expect the PB constraints to be
satisfiable. For such applications, our approach tends to steer
the SAT solver towards satisfying assignments. In addition
since we return partial assignments, we can return many
solutions simultaneously. If the formula is unsatisfiable, by
focusing on the PB constraints that are falsified, we may wind
up discovering an unsatisfiable core of PB constraints without
encoding all the PB constraints.

B. Discovering More Units

SAT solving and propagation at the PB level as per algo-
rithm 1 may not discover all possible units. The reason is
that a SAT solver does not discover all the units implied by a
propositional formula during the search process. Algorithm 2
offers a practical way to discover more units implied by Φ. The
basic idea is as follows: we first find A, a satisfying (partial)
assignment for Φ. Now, suppose that literal l is true under A,
then l may be a unit (certainly ¬l is not), which we check with
the SAT query Φ∧¬l. We can control the time this operation
takes by imposing a limit on a resource R, for example the
decisions or the propagation steps that the SAT solver performs
(call to SAT-LIMITED in line 9).

Relying on a single assignment is not a good idea. Instead,
we maintain a set α that contains different assignments for Φ.
We only perform queries of the form Φ ∧ ¬l on variables for
which every assignment in α assigns a value (recall assign-
ments are partial) and all these values are equal (condition in
line 7). We note that this check and the assignment in line 8
can be implemented efficiently using bit-vectors. If a query on
a formula Φ ∧ ¬l returns an assignment, this assignment also
satisfies Φ, so we add it to the set α.

Algorithm 2 Extracting units implied by a formula Φ

1: procedure MORE-UNITS(Φ)
2: A,U ← SAT(Φ)
3: if A = UNSAT then return UNSAT
4: α← {A}
5: for all l ∈ U do Φ← Φ ∧ l
6: for all variables v s.t. v /∈ U ∧ ¬v /∈ U do
7: if ∀A1, A2 ∈ α : A1(v) = A2(v) then
8: l← POLARITY(A′, v) for some A′ ∈ α
9: B ← SAT-LIMITED(Φ ∧ ¬l, R)

10: if B = UNSAT then
11: U ← U ∪ {l}
12: Φ← Φ ∧ l
13: else α← α ∪ {B}
14: return PICK(α), U

In addition to the units implied by Φ, MORE-UNITS returns a
satisfying assignment if there is one. The assignment returned
can be any of the assignments in α. Notice that we can
simply instantiate SAT in algorithm 1 with MORE-UNITS. In
our implementation, we use MORE-UNITS only on the initial
formula that contains PB-clauses and cardinality constraints.

C. Optimization

Algorithm 1 can be extended to handle optimization prob-
lems. Assume that the problem is minimizing the objective
function f(X). Whenever we get a satisfying assignment
such that f(X) = V , we add the constraint f(X) < V in
order to obtain solutions that decrement f(X) by at least
1. We also reset the variable phases to random values, so
that the next assignment will not be a small variation of the
current assignment. When the problem becomes unsatisfiable,
we report the last known V and the corresponding assignment.

Solving optimization problems by decrementing by 1 is
naive, but straightforward to implement using an incremental
SAT solver. We could have used binary search or some related
approach. That would require backtracking, which can be
implemented using assertion literals. Our preliminary analysis
indicated that using binary search would not have helped us
solve more optimization problems in the PB Competition [6],
hence we did not implement it. However, as we note in Sec-
tion IV, the community needs more industrial PB benchmarks.

III. TRANSLATION TO CNF

In this section, we explain how different encodings of
PB constraints affect the behavior of our incremental solver.
Encodings of PB constraints into CNF differ (i) in the size of
the resulting formulas, and (ii) with regards to the implications
preserved between the variables.

The notion of arc-consistency captures the desired property
of preserving implications: an encoding (say the one generated
by the function TRANSLATE) is arc-consistent if an assignment
that can be propagated on the original constraints can also
be propagated on the translated constraints. For a partial
assignment A, a PB constraint C and a literal l, if A can
be extended to a model of C but A ∪ {l} cannot, then
unit propagation on TRANSLATE(C) and A will produce ¬l.
Choosing an encoding is a trade-off between (proximity to)
arc-consistency and size.

We implemented translations through adders and BDDs, as
described in [3]. The encoding through adders is linear, but
it does not maintain arc-consistency. It works by synthesizing
a network of adders that adds up the terms in the left-hand
side, and a circuit comparing the sum to the right-hand side.
The encoding for the sum bit of full adders requires ternary
XORs, which are known to be problematic for SAT solvers.
However, adder-based encodings have the advantage that they
lead to small formulas. The benefit of an incremental approach
in this case is that we detect implications of the units we learn
by performing PB unit propagation, and simplify the problem
accordingly. Some of these implications would be lost if we
translated everything at once.

In contrast to adders, translation through BDDs is arc-
consistent; however, the size of the resulting BDDs is expo-
nential in the worst case. In our examples, some of the original
PB constraints are practically impossible to translate through
BDDs. Translation becomes possible after we learn units and
simplify the problem. In fact, our lazy algorithm sometimes
allows us to solve problems without even constructing BDDs
for PB constraints we could not directly translate.

Another reason to prefer BDDs is that they can represent
conjunctions of constraints. Frequently there are sets of PB
constraints with identical sets of variables. We can hash all
constraints with the sorted list of variables as the signature,
and conjoin the constraints mapped to the same hash value.
It is straightforward to adapt the BDD construction algorithm
of [3] to build BDDs for conjunctions of constraints. This can
lead to more compact encodings. More importantly, we can
achieve arc-consistency for the conjunction of constraints.

In general, we can mix encodings and pick the most suitable
for each constraint. We use adders only when the BDD is
too big, but we could also use sorters. Incremental translation
allows us to use BDDs more frequently.

IV. EXPERIMENTAL EVALUATION

PB-SAT is implemented in Common Lisp and uses Pi-
coSAT [7] as the backend. In principle we can use any SAT
solver that provides incremental functionality. The source code
is publicly available.2 We evaluate PB-SAT with instances
arising from industrial design problems, and with instances
from the 2010 PB Competition [6]. We used three servers
equipped with two 4-core Xeon X5677 (3.47GHz) CPUs each,
and 32GB or 96GB of RAM. In Section IV-A, we provide
evidence of one of our claimed contributions, viz., that we
have improved the state of the art in SAT-based approaches to
solving PB problems. In Section IV-B, we provide evidence
that SAT-based PB solvers should be part of any portfolio of
solvers.

A. Industrial Design Problems

We used our solver with a family of 20 industrial PB
instances generated by the CoBaSA design tool [8], where
16 are satisfiable, and 4 unsatisfiable. The instances encode
system assembly problems: an assignment is a way to assemble
system components so that various requirements are met. The
basic components in these problems are anywhere from 8
to 22 cabinets that provide resources (including CPU time,
memory and networking), about 200 applications that consume
resources, and up to 300 memory spaces. Applications and
memory spaces have to be mapped to cabinets subject to
various constraints, which we are going to briefly describe.
See [9] for a detailed description of these problems.

The most important variables in these instances are called
map variables: Mc,p is true iff the resource consumer c (e.g.,
an application or memory space) is mapped to cabinet p. Each

2http://www.ccs.neu.edu/home/vpap/pb-sat.html

instances CPLEX bsolo wbo SAT4J MS+ PB-SAT VPS1 VPS2
aardal 1 14 14 14 14 14 14 14 14 14

uclid 50 23 45 44 44 48 49 48 49
tsp 100 90 98 100 100 100 100 100 100

wnqueen 100 97 100 100 100 100 100 100 100
dbst 15 13 15 15 15 15 15 15 15
fpga 57 57 57 39 38 39 39 57 57

armies 12 7 6 6 7 6 8 10 10
pigeon 40 39 21 4 3 3 2 39 39

j{30,60,90,120} 81 66 65 68 68 67 67 68 68
rest 17 10 9 7 9 7 8 13 13
all 486 416 430 397 398 399 402 464 465

average time (sec) - 135.8 38.0 70.3 67.8 83.1 67.7 - -
(a) Decision Problems

instances CPLEX bsolo wbo SAT4J PB-SAT VPS1 VPS2
feature subscription 20 0 19 10 20 19 20 20

caixa 21 21 21 21 21 21 21 21
j{30,60,90,120} 80 47 52 55 55 55 55 55

area 69 69 25 47 11 22 119 120
logic synthesis 74 71 51 27 24 30 71 71

routing 15 15 15 15 15 15 15 15
primes 156 124 105 105 104 114 127 131
factor 192 192 192 190 192 192 192 192

rest 212 137 100 109 100 72 160 167
all 939 676 580 579 542 540 780 792

average time (sec) - 30.8 50.2 48.8 25.7 81.3 - -
(b) Optimization Problems

Fig. 1. Experimental Results: Small Integers, Linear Constraints (timeout after 1800 seconds, 2GB RAM limit)

application j has to reside on exactly one cabinet, so we have
cardinality constraints of the form∑

p∈P

Mj,p = 1,

where P is the set of cabinets in the system. We also have
resource requirements. For a cabinet p that provides rp units
of the resource r, let Cp be the set of consumers that can be
potentially be mapped to p. Each c ∈ Cp needs rc units of the
resource r. We thus have an inequality∑

c∈Cp

rcMc,p ≤ rp.

In addition, we have structural requirements, like co-
location or separation of components. These requirements
are expressible as propositional constraints. For example, if
the applications j1 and j2 have to be co-located, for every
cabinet p there is a constraint Mj1,p ⇐⇒ Mj2,p. Therefore,
the instances contain a balanced mix of propositional and
arithmetic constraints.

The ILP and native PB solvers we tried worked very
well for this class of problems, unlike existing SAT-based
approaches. To understand why, we look at a representative
instance in more detail. The best result with MiniSat+ [3] is
91 minutes: CNF generation through sorters takes 80 minutes,

and PicoSAT can find a satisfying assignment in 11 minutes.
All other translation schemes and different SAT solvers give
worse results. For example, we ran MiniSat+ using a BDD
encoding for 2 hours, at which point it failed to complete
and was using over 80GB of RAM. In contrast, PB-SAT can
solve the instance in 32 seconds (21 seconds of PicoSAT
time) using BDDs for the translation, with the units extraction
mechanism of subsection II-B disabled. The reason is that we
learn a significant number of units that allow us to simplify
the problem. Constraint propagation reveals 7938 units. Before
the 7th and last call to PicoSAT, we know 8240 PB units.
Algorithm 2 leads to even more learned units, even with a
limit of 10 decisions per query: its execution takes 0.5 seconds,
and after its execution we know 8506 PB units. These units
improve the running time to 19 seconds. SAT solving accounts
for 9 seconds.

The instances have between 14000 and 21000 variables
and between 68000 and 93000 constraints. PB-SAT solves all
instances, taking 62 seconds on average; MiniSat+ timed out
(1800 seconds) for all instances and translation schemes.

B. Pseudo-Boolean Competition Instances

For the sake of completeness, we include experimental
results for instances from the PB competition (figure 1).
We only provide results for instances with small integers

and linear constraints, because a wide range of solvers is
available for these. We compare against bsolo [10], wbo [11],
SAT4J [12], CPLEX [13] and MiniSat+. We run the best
known configuration of each solver: bsolo with cardinality
constraint learning, and the resolution version of SAT4J. In
the case of MiniSat+, we generate CNF formulas and run
PicoSAT, for a direct comparison with our solver. PB-SAT
solves 35 decision instances less than the best solver. The
difference can be attributed to hand-crafted instances, some of
which contain pigeonhole-like problems (e.g., “pigeon” and
“fpga”).

The results include two virtual portfolio solvers. VPS2
stands for a solver that would run all solvers in parallel and
report the best result. VPS1 is VPS2 minus PB-SAT. VPS1
“solves” 30 more decision instances than the best solver, and
our solver adds an extra instance to the mix. The combination
of PB-SAT and CPLEX [13] solves the same instances as
VPS1. The combination of CPLEX and any other solver
follows closely (1-3 instances less), while any combination
of two without CPLEX solves at most 443 instances. PB-SAT
contributes 12 extra optimization instances. According to this
analysis, the number of solved instances a solver contributes
to a portfolio of solvers is valuable information, due to the
diversity of techniques. Translation to SAT is a useful addition.

Interestingly, we do not learn any units before the last
SAT query for 448 out of the 486 decision instances. These
instances either consist entirely of clauses and cardinality
constraints, in which case we encode everything at once,
or the intermediate formulas do not imply any units. For
these problems, our incremental approach obviously does not
yield any improvements. These benchmarks problems are not
characteristic of the industrial problems we have seen, and we
encourage the community to contribute industrial PB problems
to the PB competition benchmark suite.

V. RELATED WORK

Different encodings of PB constraints into SAT have been
proposed. Bailleux et al. [4] describe a variant of the BDD
encoding. Een and Sorensson implemented the MiniSat+ PB
solver [3], which uses adders, sorters, and BDDs. Bailleux
et al. [5] present the first polynomial arc-consistent encoding.
Abio et al. [14] revisit BDDs, and provide a polynomial, arc-
consistent, BDD-based encoding. In addition, encodings for
cardinality constraints (an interesting special case) have been
explored (e.g., [15]).

Our algorithm can be viewed from the perspective of
lazy SMT [16], as we introduce just enough information for
the SAT solver to find a consistent assignment, or prove
unsatisfiability. SMT has already been used to tackle PB
problems: Cimatti et al. [17] extend the SMT framework with
the theory of costs C, and use it to express PB constraints.
Our approach differs from SMT in that we actually encode the
PB constraints, as opposed to learning a clause that precludes
a single theory-inconsistent conjunction of literals.

Our technique also bears resemblance to Abstraction-
Refinement, e.g., as applied to the theory of arrays [18].

We abstract the problem by omitting information from the
encoding, and then refine the abstraction based on assignments
that satisfy the partial encoding but not the PB formula.

VI. CONCLUSIONS

We presented an algorithm for pseudo-Boolean solving by
incremental translation to SAT, and implemented a solver
based on this algorithm. Incrementality allows our solver to
use unit literals derived from intermediate SAT queries to
simplify pseudo-Boolean constraints. In addition, we learn
units from constraint propagation at the pseudo-Boolean level.
Experimental evaluation on industrial problems shows that our
solver improves the state of the art in SAT-based approaches to
pseudo-Boolean problems and that any portfolio solver should
include a SAT-based solver.

ACKNOWLEDGMENTS

This research is funded in part by NASA Coopera-
tive Agreement NNX08AE37A and NSF proposal CCF-
1117184. This article reports on work supported by the De-
fense Advanced Research Projects Agency under Air Force
Research Laboratory (AFRL/Rome) Cooperative Agreement
No. FA8750-10-2-0233. The views expressed are those of the
authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government. We would
like to thank some of the anonymous reviewers for making
helpful suggestions.

REFERENCES

[1] D. Chai and A. Kuehlmann, “A Fast Pseudo-Boolean Constraint Solver,”
in DAC, 2003.

[2] H. M. Sheini and K. A. Sakallah, “Pueblo: A hybrid pseudo-boolean
SAT solver,” JSAT, vol. 2, pp. 165–189, 2006.

[3] N. Een and N. Sorensson, “Translating Pseudo-Boolean constraints into
SAT,” JSAT, vol. 2, pp. 1–26, 2006.

[4] O. Bailleux, Y. Boufkhad, and O. Roussel, “A Translation of Pseudo
Boolean Constraints to SAT,” JSAT, vol. 2, pp. 191–200, 2006.

[5] O. Bailleux, Y. Boufkhad, and O. Roussel, “New Encodings of Pseudo-
Boolean Constraints into CNF,” in SAT, 2009.

[6] Vasco Manquinho and Olivier Roussel, “Pseudo-Boolean Competition
2010.” See http://www.cril.univ-artois.fr/PB10/.

[7] A. Biere, “PicoSAT Essentials,” JSAT, vol. 4, pp. 75–97, 2008.
[8] P. Manolios, D. Vroon, and G. Subramanian, “Automating component-

based system assembly,” in ISSTA, 2007.
[9] C. Hang, P. Manolios, and V. Papavasileiou, “Synthesizing Cyber-

Physical Architectural Models with Real-Time Constraints,” in CAV,
2011.

[10] V. M. Manquinho and J. Marques-Silva, “On Using Cutting Planes in
Pseudo-Boolean Optimization,” JSAT, vol. 2, pp. 209–219, 2006.

[11] V. Manquinho, J. Marques-Silva, and J. Planes, “Algorithms for
Weighted Boolean Optimization,” in SAT, 2009.

[12] “SAT4J.” See http://www.sat4j.org/.
[13] “CPLEX.” See http://www-01.ibm.com/software/

integration/optimization/cplex-optimizer/.
[14] I. Abio, R. Nieuwenhuis, A. Oliveras, and E. Rodriguez-Carbonell,

“BDDs for Pseudo-Boolean Constraints - Revisited,” in SAT, 2011.
[15] J. Marques-Silva and I. Lynce, “Towards Robust CNF Encodings of

Cardinality Constraints,” in CP, 2007.
[16] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT

Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to DPLL(T),” JACM, vol. 53, no. 6, pp. 937–977, 2006.

[17] A. Cimatti, A. Franzen, A. Griggio, R. Sebastiani, and C. Stenico, “Sat-
isfiability Modulo the Theory of Costs: Foundations and Applications,”
in TACAS, 2010.

[18] V. Ganesh and D. L. Dill, “A Decision Procedure for Bit-Vectors and
Arrays,” in CAV, 2007.

