
Effective Word-Level Interpolation
for Software Verification

Alberto Griggio ∗
Embedded Systems Unit – FBK-IRST – Trento, Italy.

Abstract—We present an interpolation procedure for the the-
ory of fixed-size bit-vectors, which allows to apply effective
interpolation-based techniques for software verification without
giving up the ability of handling precisely the word-level opera-
tions of typical programming languages. Our algorithm is based
on advanced SMT techniques, and, although general, is optimized
to exploit the structure of typical interpolation problems arising in
software verification. We have implemented a prototype version of
it within the MATHSAT SMT solver, and we have integrated it into
a software verification framework based on standard predicate ab-
straction. Our experimental results show that our new technique
allows our prototype to significantly outperform other systems on
programs requiring bit-precise modeling of word-level operations.

I. INTRODUCTION AND RELATED WORK

Since the seminal paper of McMillan [1], (Craig) inter-
polation has been recognized to be a substantial tool for
formal verification. In particular, one of its most successful
applications is in the context of software verification based
on counterexample-guided abstraction-refinement (CEGAR),
where interpolants of quantifier-free formulas in suitable the-
ories are computed for automatically refining abstractions in
order to rule out spurious counterexamples [2], [3].

Most programming languages use a fixed amount of bits
for representing values of primitive data types, such as inte-
gers. However, most interpolation-based software verification
tools represent primitive types using mathematical integers
or rational numbers, encoding program operations into e.g.
a combination of linear arithmetic and uninterpreted func-
tions. This results in loss of precision, which might not only
lead to the generation of false alarms, in which correct pro-
grams are classified as incorrect, but also, and worse, to fail-
ures in detecting bugs. As a simple example, the code frag-
ment if (x > 0 && y > 0) { assert(x + y > 0); }

is wrongly classified as safe if variables are modeled using
unbounded integers.

One of the main reasons for not using a more accurate
modeling of program operations is the lack of effective in-
terpolation procedures for the theory of bit-vectors (BV), that
allow bit-precise representation of operations while retaining
the advantages of reasoning at the word-level structure of
problems. Although a significant amount of work has been
done on interpolation procedures for several important theories

∗ Supported by Provincia Autonoma di Trento and the European Commu-
nity’s FP7/2007-2013 under grant agreement Marie Curie FP7 - PCOFUND-
GA-2008-226070 “progetto Trentino”, project ADAPTATION.

(including theories of equality, linear arithmetic, data struc-
tures) [4], [5], [6], [7], [8], [9], [10], [11], interpolation for
bit-vectors has received very little attention so far. To the best
of our knowledge, the only complete interpolation algorithm
for BV is based on naı̈vely mapping a bit-level propositional
interpolant into BV (by replacing propositional variables with
bit-extraction terms and Boolean connectives with bit-wise
operations), which however completely destroys the word-level
structure of the original problem, thus defeating all the benefits
of reasoning at a level of abstraction higher than that of single
bits. The first partial solution for this problem was proposed in
[12], where an algorithm is given for constructing a word-level
interpolant from a bit-level proof of unsatisfiability. The ap-
proach, however, was limited to equality logic only. A different
direction is explored in [13], where a rewrite-based procedure
for a fragment of BV is presented. The procedure is incomplete
in general, but the authors show that their specialised rewrite
rules are often enough for successfully verifying programs, in
particular in the domain of device drivers.

In this paper, we present a novel, complete interpolation
procedure for BV which tries to retain as much as possible
the word-level structure of the input problem. Our approach
is based on lazy/DPLL(T) SMT techniques for interpolation
[7], and generates interpolants from DPLL(T)-proofs of un-
satisfiability by combining a layered hierarchy of different
interpolation procedures for conjunctions of BV-constraints, of
increasing power and complexity, with a standard Boolean in-
terpolation algorithm. Although general, the BV-interpolation
layers are optimized for the kind of formulas arising in software
verification, exploiting “definitional” equalities and interpola-
tion procedures for linear integer arithmetic, and falling back to
a bit-level algorithm when none of the specialised techniques
can be applied.

We have implemented a prototype version of our procedure
within the MATHSAT [14] SMT solver, and we have integrated
it into a software verification framework based on standard
predicate abstraction and interpolation-based refinement. Our
prototype significantly outperforms other systems on programs
requiring a bit-precise modeling of word-level operations,
which could not be verified when using linear arithmetic and
uninterpreted functions instead of BV.

Paper Outline. We introduce some background concepts in
Sec. II. In Sec. III we describe a simple bit-level interpola-
tion algorithm for BV. Our new procedure is described and

discussed in Sec. IV, and experimentally evaluated in Sec. V.
We conclude in Sec. VI with directions for future work.

II. BACKGROUND

A. Terminology and Notation

We work in the setting of standard first-order logic. We
denote formulas with ϕ, ψ, A, B, I , variables with x, y, z,
terms with s, t, predicates with p, q, possibly adding sub- and/or
superscripts. As usual in the SAT and SMT community, we
call 0-arity predicates Boolean variables. In the following, we
only deal with quantifier-free formulas, in which all variables
are implicitly existentially quantified. We use the standard
definitions of theory, model, satisfiability, validity. If ψ is a
logical consequence of ϕ in a theory T , we write ϕ |=T ψ.
If ϕ is unsatisfiable in T , we write ϕ |=T ⊥. A (fixed-width)
bit-vector, or word, is a list of bits of fixed size n. We denote
bit-vector terms of size n with t[n]. We use the definition of
the theory of bit-vectors, BV, given e.g. in [15]. BV-operators
include sub-word selection t[n][i : j] (where 0 ≤ j ≤ i ≤ n),
concatenation t1[n] :: t2[m], arithmetic operations (addition +,
subtraction−, multiplication ·, signed and unsigned division /s
and /u, and signed and unsigned remainder %s and %u), shifts
(<< and >>), and bitwise operations (bitwise not ∼, bitwise
and &, or | and xor ˆ). BV-predicates include equality = and
signed and unsigned inequalities ≤s and ≤u.

B. Interpolation for Software Verification

Given an ordered pair of formulas (A,B) in a theory T , a
(Craig) interpolant is a formula I that satisfies the following
constraints: (i) A |=T I; (ii) B ∧ I |=T ⊥; and (iii) all the
uninterpreted (in T) symbols occurring in I occur in bothA and
B (i.e., they are AB-common). Interpolants have important ap-
plications in software verification, and in particular in software
model checking based on counterexample-guided abstraction-
refinement (CEGAR) [16]. When using predicate abstraction,
predicates for automatic abstraction refinement can be extracted
from interpolants generated from formulas representing (sets
of) spurious counterexamples (i.e. program paths leading to
an error location which are feasible in the abstract space but
infeasible in the concrete program) [2]. Similarly, interpolants
from spurious counterexamples can also be used for directly
representing and refining program abstractions without the
need of computing predicate abstractions [3]. Both techniques
proved to be quite effective, and are now implemented within
many model checking tools (e.g. [17], [13], [18], [19], [20]).

C. Bit-Vectors in SMT

For many important theories T , the currently most-popular
approach for checking the satisfiability of a formula ϕ in T ,
SMT(T), is the so-called “lazy” or “DPLL(T)” approach [21],
in which a DPLL-based SAT solver is used for enumerating
truth-assignments for the propositional skeleton of ϕ, which are
then checked for T -satisfiability by a decision procedure for
conjunctions of constraints in T (T -solver).

However, bit-vectors are an exception to this trend. Al-
though several different algorithms have been proposed in

recent years (see e.g. [15] for a survey), most current state-
of-the-art SMT(BV)-solvers (e.g. [22], [23], [24], [25]) are
based on (i) preprocessing the input BV-formula by applying
several word-level simplification techniques followed by (ii) ea-
gerly encoding the result of such preprocessing into a purely-
propositional formula (“bit-blasting”), which is then given to
an efficient SAT solver. In a nutshell, bit-blasting consists
of encoding each bit-vector t[n] using n Boolean variables
pt0, . . . , p

t
n−1 representing its bits, and then translating each BV

operation into an equivalent Boolean circuit, possibly introduc-
ing fresh auxiliary Boolean variables.

III. SIMPLE INTERPOLATION FOR BV

From the purely theoretical point of view, computing in-
terpolants in the theory of bit-vectors is an easy problem. It
is solved by a conceptually-simple algorithm, based on bit-
blasting, which exploits the availability of off-the-shelf (and
efficient) algorithms for interpolation for propositional logic
(e.g. [1]).

Given a pair of BV-formulas A and B, an interpolant I for
(A,B) can be generated from a propositional interpolant as
follows.

– First, A and B are converted via bit-blasting into two purely-
Boolean formulas Ap and Bp. For interpolation, it is im-
portant that A and B are bit-blasted using disjoint sets of
auxiliary variables (see Sec. II-C).

– Ap and Bp are then converted to CNF1 and given to an
interpolating SAT solver, which checks the satisfiability of
Ap ∧ Bp and computes a propositional interpolant Ip for
(Ap, Bp).

– By construction, Ip contains only variables that occur in
both Ap and Bp, and so it can not contain auxiliary Boolean
variables introduced by bit-blasting or CNF conversion. Each
variable ptj in Ip then corresponds to a single bit j of a bit-
vector term t[n] that occurs in both A and B. An interpolant
I for (A,B) can therefore be obtained from Ip by replacing
each variable ptj with the bit-extraction t[n][j : j], and each
Boolean connective with its corresponding bitwise operator
(i.e. ¬ with ∼, ∧ with & and ∨ with |).
This procedure is simple both to define and to implement.

It has, however, an obvious and major drawback: it completely
destroys the word-level structure of the problem, since it only
generates interpolants as Boolean combinations of individual
bits. Clearly, this completely defeats the benefits of reasoning
at a higher level of abstraction, for instance by making it very
difficult to apply effective word-level simplification techniques
which are crucial for the efficiency of current state-of-the-art
SMT solvers for BV [22], [26], [25], or to extract useful high-
level information which can be effectively exploited in software
verification, like “good” word-level predicates for abstraction
refinement.

1CNF conversion might introduce more auxiliary “label” variables. As
before, it is important that the sets of label variables for Ap and Bp are disjoint.

IV. A LAYERED APPROACH TO BV INTERPOLATION

The above reasons make the simple bit-level interpolation
procedure of the previous section not very appealing in practice.
Rather, we would like to obtain an interpolation procedure that
retains as much as possible the word-level structure of formulas.
At the same time, we would also like to keep the performance
benefits of bit-blasting, which is still the dominant technique for
SMT(BV), adopted by the most efficient state-of-the art solvers
([22], [26], [23], [24], [25]).

In the rest of the section, we present our solution to this
problem. Its main idea is that of reducing the problem of inter-
polant generation for BV-formulas with an arbitrary Boolean
structure to that of computing interpolants for conjunctions of
BV-constraints, which can then be interpolated using a lay-
ered approach, by applying a hierarchy of different techniques
which try to retain as much as possible the word-level structure
of the input problem.

This reduction to dealing only with conjunctions of con-
straints is standard in interpolation for SMT when using the
lazy/DPLL(T) approach, in which interpolants can be extracted
from proofs of unsatisfiability consisting of a Boolean skeleton,
to which a propositional interpolation algorithm is applied,
and a set of T -inconsistent conjunctions of constraints, cor-
responding to negations of the T -lemmas occurring in the
proof, which are handled by T -specific interpolation procedures
[4], [7]. However, SMT solvers based on bit-blasting typically
follow the eager approach, for which such reduction is harder
to achieve, and to the best of our knowledge has been done
only for equality logic [12]. Here, we exploit the combination
of bit-blasting and DPLL(T), which allows us to generate
proofs of unsatisfiability which can be easily partitioned into
Boolean and T -specific parts while still retaining as much
as possible the performance advantage of SAT encodings for
solving BV-formulas. After having generated such proofs, we
then tackle interpolation for the conjunctions of BV-constraints
corresponding to the negated BV-lemmas in the proof using
a layered hierarchy of four different techniques of increasing
power and complexity.

A. Lazy bit-blasting in DPLL(T)

Lazy bit-blasting is a simple technique for integrating a
decision procedure for BV based on SAT encoding within an
SMT solver based on the DPLL(T) approach. It is the default
strategy used by the MATHSAT SMT solver [14], a state-of-
the-art solver for BV.2

The main idea of lazy bit-blasting is that of using two (DPLL-
based) independent SAT solvers, DPLLBool and DPLLBV, or-
ganized in a hierarchy. DPLLBool corresponds to the “DPLL”
part of the standard DPLL(T) approach, whereas DPLLBV takes
the role of the T -solver. More precisely, when solving a BV-
formula ϕ, DPLLBool is used to reason on the Boolean skeleton

2The latest version MATHSAT was the winner of the 2011 SMT competition
on the “BV+uninterpreted functions” (QF UFBV) and the “incremental BV”
(QF BV application) categories, and performed better than the winner of 2010
on the “plain BV” (QF BV) category (see http://smtcomp.org/2011/).

of (the CNF conversion of) ϕ, like in the usual DPLL(T) ap-
proach, whereas DPLLBV is used for checking the consistency
of truth-assignments of BV-atoms enumerated by DPLLBool.
This is done by exploiting the capability of modern SAT
solvers of reasoning under assumptions [27], [28]. DPLLBV
is initialized by adding to it, for each BV-atom a occurring
in ϕ, the clauses resulting from the bit-blasting of the formula
(la ↔ a), where la is a fresh Boolean variable, which we call
the label for a. Notice that this means that the set of clauses in
DPLLBV is always satisfiable. When DPLLBV is asked to check
the consistency of a set of BV-literals L1, . . . , Ln generated
by DPLLBool, the corresponding labels l1, . . . , ln are added as
temporary assumptions to DPLLBV (if Li is a negative literal,
¬li is added as assumption instead of li). If the resulting
formula becomes unsatisfiable, then it is possible to compute
the (typically small) subset of assumptions lj , . . . , lk (some of
which possibly negated) which is responsible for the inconsis-
tency (see e.g. [28]). From this set, a BV-conflict setLj , . . . , Lk

is computed, whose negation ¬Lj ∨ . . . ∨ ¬Lk is a BV-lemma
that is given back to DPLLBool as usual in DPLL(T).

B. BV Interpolation via EUF layering

A good “side-effect” of using lazy bit-blasting is that it
enables the use of layering of theory solvers. In particular, since
BV-constraints are not bit-blasted at the main DPLL level, truth
assignments can be checked using a solver for equality and
uninterpreted functions (EUF) before invoking DPLLBV. In this
way, “cheap” conflicts that are due to the violations of equality
axioms can be handled efficiently, without resorting to the
potentially-expensive SAT checks in DPLLBV. In such cases,
interpolants can be computed by efficient existing algorithms
for EUF, starting from the proofs of unsatisfiability generated
by the EUF solver [4], [9]. This is therefore the first layer of our
procedure.

Example 1: Consider the BV-interpolation problem:

A
def
=(x1[32] = 3[32]) ∧ (x3[32] = x1[32] · x2[32])

B
def
=(x4[32] = x2[32]) ∧ (x5[32] = 3[32] · x4[32])∧
¬(x3[32] = x5[32]).

In order to detect the unsatisfiability of A ∧ B, it is not
necessary to take the precise semantics of the BV multiplica-
tion operation ·. In fact, a solver for EUF, which treats · as
an uninterpreted function, is enough to construct a proof of
unsatisfiability for A∧B. From such proof, the BV-interpolant
I

def
= (x3[32] = 3[32] · x2[32]) can be computed using an efficient

algorithm for EUF interpolation. �

C. BV Interpolation via Equality Substitution

Equalities can still be exploited even when EUF is not
enough for detecting unsatisfiability. As an example, consider
an interpolation problem for an inconsistent pair (A,B) of
formulas in whichA is of the form (x = e)∧ϕ, x does not occur
in e and x is the only non-common symbol between A and B.
Then, it is easy to see that the formula obtained by replacing x
with e everywhere in ϕ (denoted ϕ[x 7→ e]) is an interpolant

for (A,B). Similarly, if it is B to be of the form (x = e) ∧ ψ,
then ¬ψ[x 7→ e] is also an interpolant for (A,B). These
two examples are just special cases of the well-known general
algorithm for computing interpolants via quantifier elimination
(for theories for which this is possible): roughly speaking,
given an inconsistent pair (A,B) of formulas, an interpolant
can be computed by performing the existential elimination of
all the non-common variables either from A or from ¬B.3 In
general, however, existential quantification for BV can be quite
expensive, it may require bit-blasting (and a consequent loss of
word-level structure), and it may cause a blow-up in the size of
the formula.

The idea of our second technique is that of detecting situa-
tions in which interpolation via existential elimination amounts
to performing substitutions using equalities.

More in detail, given an inconsistent conjunction of BV-
constraints partitioned into A and B, we remove from A a
positive equality (x = e) in which x is a variable that does not
occur in e and x is not AB-common. We then replace x with e
in the rest of the constraints of A, and repeat the process until
either all the non-AB-common variables have been eliminated,
or a fixpoint is reached. If the result A′ of this procedure
contains no non-AB-common variable, then we can return A′

as an interpolant. Otherwise, we try eliminating non-common
variables from B, obtaining B′, and if this operation succeeds,
we return ¬B′ as an interpolant. Notice that this procedure
requires no satisfiability checks, and is therefore very cheap.

Example 2: Consider the BV-interpolation problem:

A
def
=(0[32] ≤s (0[24] :: x1[8])− 1[32]) ∧ (x2[8] = x1[8])

B
def
=(x3[8] = (−(0[24] :: x2[8]))[7 : 0]) ∧ (x3[8] = 0[8]).

The unsatisfiability of A ∧ B cannot be determined with the
EUF layer alone. However, using equality substitution, we can
easily compute an interpolant for (A,B). The only non-AB-
common symbol in A is the variable x1[8], which can be elimi-
nated by exploiting the equality (x2[8] = x1[8]), thus generating
the BV-interpolant I def

= (0[32] ≤s (0[24] :: x2[8])− 1[32]). �

D. BV Interpolation via LIA Encoding

In the third layer of our procedure, we try to reduce the
problem of generating interpolants for BV to the computation
of interpolants in linear arithmetic over the integers (LIA).

In principle, the idea is similar to the reduction to propo-
sitional logic described in Sec. III: given an unsatisfiable
conjunction of BV-constraints partitioned into A and B, the
algorithm consists of: (i) generating two LIA-formulas ALIA
and BLIA using the encoding described in [29], (ii) building
an interpolant ILIA for (ALIA, BLIA) using any off-the-shelf
efficient interpolation algorithm for LIA (e.g. [10], [30], [11]),
and finally (iii) “translating back” ILIA in order to obtain a BV-
interpolant I for (A,B). In practice, however, reduction to LIA

3It can be observed that this algorithm always generates the strongest or
the weakest interpolant (wrt. logical implication) for (A,B), the former when
starting from A, the latter when starting from ¬B.

presents several difficulties that do not occur in the case of
reduction to propositional logic:

– First, from the theoretical point of view the problem of
obtaining a BV-interpolant I from a LIA-interpolant ILIA is
non-trivial. In particular, in the translation of arithmetic op-
erations and predicates from LIA to BV, issues like overflow
or signed/unsigned semantics should be properly taken into
account. (We shall give examples of some of the problems
that may arise later in this section, after having given some
details of the encoding of BV into LIA.)

– Moreover, from the practical point of view, encoding of
BV constraints into LIA might result in very challenging
SMT(LIA)-formulas, which might be out of reach of current
state-of-the-art SMT(LIA)-solvers, even for BV-problems
that current SMT(BV)-solvers can easily handle. This might
happen especially when encoding BV-operations that require
a “mixed LIA/bit-blasting” approach, like e.g. multiplication
of two variables [29].

We address the above two issues by taking an optimistic
approach. First, in the encoding of BV constraints into LIA, we
abstract away all the operations that require a mixed LIA/bit-
blasting approach, in order to reduce the likelihood of gener-
ating difficult SMT(LIA)-formulas, by simply encoding them
with integer variables. Further, we set bounds (dependent on
the size of the input problem) to the resources available (time
and memory) for solving and constructing the proof of unsatis-
fiability of the SMT(LIA)-formula ALIA ∧ BLIA resulting from
the encoding of the BV-interpolation problem (A,B). If the
formula ALIA ∧ BLIA turns out to be satisfiable (because of the
abstraction) or its unsatisfiability can not be determined within
the resource bounds, we resort to the last layer of our procedure,
described in Sec. IV-E. Otherwise, we compute an interpolant
ILIA for (ALIA, BLIA), and we translate it back to a BV-formula
I using an optimistic naı̈ve approach that essentially disregards
overflow and signed/unsigned issues. We then check whether
I is actually an interpolant for (A,B), by testing whether the
BV-formula (A ∧ ¬I) ∨ (B ∧ I) is unsatisfiable,4 again using
bounded resources. If the check succeeds, then we return I as
an interpolant. Otherwise, we resort to the last layer of our
procedure.

In the rest of this section, we provide some details of the
encoding and the construction of a BV-interpolant from a LIA-
interpolant, giving also examples of why this might fail.

Encoding of BV constraints into LIA. We use the LIA encoding
of BV constraints described, e.g., in [29]. Each BV term t[n]
of n bits is encoded as a LIA variable xt, together with the
constraint

(0 ≤ xt) ∧ (xt ≤ 2n − 1). (1)

(In what follows, we shall denote (1) as xt ∈ [0, 2n).) Each
BV-operation/predicate is encoded as a Boolean combination
of LIA constraints, possibly introducing some auxiliary LIA

4As described later in this section, I contains only AB-common symbols by
construction.

Selection: t[i−j+1]
def
= t1[n][i : j] becomes (xt = m) ∧ (xt1 =

2i+1h+2jm+l)∧l ∈ [0, 2i)∧m ∈ [0, 2i−j+1)∧h ∈ [0, 2n−i−1),
where h,m, l are fresh.
Concatenation: t[n+m]

def
= t1[n] :: t2[m] becomes (xt = 2mxt1 +

xt2).
Addition: t[n]

def
= t1[n] + t2[n] becomes (xt = xt1 +xt2 − 2nσ)∧

(0 ≤ σ) ∧ (σ ≤ 1), where σ is fresh.
Multiplication by constant: t[n]

def
= t1[n] · k becomes (xt =

k · xt1 − 2nσ) ∧ (0 ≤ σ) ∧ (σ ≤ k), where σ is fresh.
Left-shift by constant: t[n]

def
= t1[n] << k becomes (xt =

2kxt1[n−k−1:0]), where xt1[n−k−1:0] is the LIA variable for the
selection t1[n− k − 1 : 0]

Equality: (t1[n] = t2[n]) becomes (xt1 = xt2).
Unsigned ≤: (t1[n] ≤u t2[n]) becomes (xt1 ≤ xt2).
Signed ≤: (t1[n] ≤s t2[n]) becomes ITE(((xt1 ≤ 2n−1 − 1) ∧
(xt2 ≤ 2n−1 − 1)) ∨ ((xt1 ≥ 2n−1) ∧ (xt2 ≥ 2n−1)), (xt1 ≤
xt2), (xt1 ≥ 2n−1)), where ITE(c, t, e) is a shorthand for (c →
t) ∧ (¬c→ e).

Fig. 1. LIA encoding of some BV operations and predicates.

and Boolean variables. Some examples are shown in Fig. 1.5

As already mentioned before, for performance reasons we ab-
stract BV-terms t requiring a mixed LIA/bit-blasting encoding
[29] (i.e. non-linear multiplication/division/remainder, bit-wise
operations between two non-constant terms, and shift by a
non-constant term) by simply using the corresponding LIA-
variable xt, without additional constraints (other than (1)). As
in the bit-blasting approach (see Sec. III), we assume that when
generating an interpolant for a pair of formulas (A,B), A and
B are encoded using disjoint sets of auxiliary variables.

Constructing a BV-interpolant from a LIA-interpolant. Current
interpolation algorithms for LIA allow to produce interpolants
in an extension of LIA with either divisibility predicates [10]
or with the floor function b·c [11].Once a LIA-interpolant ILIA
(in either of the two extended signatures) for the encoded pair
of formulas (ALIA, BLIA) has been generated, we translate it
back to a candidate BV-interpolant I for the original pair
(A,B), by replacing LIA-variables with the corresponding
BV-variables, LIA-numbers with their BV-encoding, and LIA-
operations with the corresponding BV-operations. More for-
mally, we proceed as follows.

1) Let β be a (partial) mapping from LIA-terms/predicates
to BV-terms/predicates. β is initialized by setting, for
every LIA-variable xt occurring in ILIA, β(xt) to the
corresponding BV-term t. Notice that, similarly to the case
of interpolation via bit-blasting, ILIA contains no auxiliary
variables, since A and B were encoded using disjoint sets
of such variables.

2) Integer constants k occurring in ILIA are mapped to BV
constants using a 2’s complement representation. The size
of the target BV-constant β(k) is determined by examin-
ing the context in which k occurs. In particular, if k is the

5Several optimizations are possible, but they are not discussed here. We refer
to [29] for the full details.

argument of a binary LIA-term or predicate t ./ k, we
encode k with a bit-vector of the same width n as β(t), 6

simply truncating if k does not fit in n bits.
3) LIA-additions and multiplications are mapped to BV-

additions and multiplications respectively, without consid-
ering potential overflow issues. (If the bit-width of β(t1)
and β(t2) are different, we extend the shortest of the
operands by padding it with zeros).

4) For floor terms b tk c, where k is a positive constant,7

β(b tk c) is set to β(t)/uβ(k).
5) LIA-equalities (t1 = t2) and inequalities (t1 ≤ t2) are

mapped to BV-equalities (β(t1) = β(t2)) and unsigned
inequalities (β(t1) ≤u β(t2)) respectively.

6) For divisibility predicates k|t, where k is a positive con-
stant, β(k|t) is set to the BV-equality (β(t)%uβ(k) =
0n), where n is the bit-width of β(t).

7) We construct I from ILIA by replacing each LIA-atom a
occurring in ILIA with β(a).

Example 3: Consider the BV-interpolation problem:

A
def
=(y1[8] = y5[4] :: y5[4]) ∧ (y1[8] = y2[8]) ∧ (y5[4] = 1[4])

B
def
=¬(y4[8] + 1[8] ≤u y2[8]) ∧ (y4[8] = 1[8]).

Encoding A and B into LIA (see Fig. 1) results in the
following:

ALIA
def
=(xy2

= 16xy5
+ xy5

) ∧ (xy1
= xy2

) ∧ (xy5
= 1)∧

(xy1
∈ [0, 28)) ∧ (xy2

∈ [0, 28)) ∧ (xy5
∈ [0, 24))

BLIA
def
=¬(xy4+1 ≤ xy2) ∧ (xy4+1 = xy4 + 1− 28σ)∧
(xy4 = 1)∧
(xy4+1 ∈ [0, 28)) ∧ (xy4 ∈ [0, 28)) ∧ (0 ≤ σ ≤ 1)

ALIA ∧ BLIA is LIA-inconsistent, and an interpolant for
(ALIA, BLIA) is ILIA

def
= (17 ≤ xy2). Using β, we obtain the

formula I def
= (17[8] ≤u y2[8]), which is a BV-interpolant for

(A,B). �

Notice that, since we encoded A and B using disjoint sets
of auxiliary variables, a formula I generated via β from a LIA-
interpolant ILIA is guaranteed to fulfill the third condition of the
definition of interpolant. However, I is not guaranteed to be an
interpolant for (A,B), as shown by the following examples.

Example 4: Consider the BV-interpolation problem:

A
def
=(y2[8] = 81[8]) ∧ (y3[8] = 0[8]) ∧ (y4[8] = y2[8])

B
def
=(y13[16] = 0[8] :: y4[8])∧
(255[16] ≤u y13[16] + (0[8] :: y3[8]))

6Notice that we can always assume w.l.o.g. that ILIA is normalized such that
all integer constants occur as argument of binary terms/predicates in which the
other argument is not a constant.

7Notice that the interpolation procedure of [11] always produces floor terms
of this form.

and its LIA-encoding:

ALIA
def
=(xy2 = 81) ∧ (xy3 = 0) ∧ (xy4 = xy2)∧
(xy2

∈ [0, 28)) ∧ (xy3
∈ [0, 28)) ∧ (xy4

∈ [0, 28))

BLIA
def
=(xy13

= 28 · 0 + xy4
) ∧ (255 ≤ xy13+(0::y3))∧

(xy13+(0::y3) = xy13
+ 28 · 0 + xy3

− 216σ)∧
(xy13 ∈ [0, 216)) ∧ (xy13+(0::y3) ∈ [0, 216))∧
(0 ≤ σ ≤ 1).

A LIA-interpolant for (ALIA, BLIA) is ILIA
def
= (xy3

+ xy4
≤

81). However, the formula I def
= β(ILIA)

def
= (y3[8] + y4[8] ≤u

81[8]) is not an interpolant for (A,B), because I ∧ B 6|=BV ⊥.
The problem is that in BV, addition might overflow. In fact, if
we make sure this does not happen in I , then we obtain a correct
interpolant I ′ for (A,B):

I ′
def
= ((0[1] :: y3[8]) + (0[1] :: y4[8]) ≤u 81[9]).

�
The above example shows that, in the translation from ILIA

to I , overflows are an issue. However, they are not the only
problem that might arise.

Example 5: Consider the BV-interpolation problem:

A
def
=¬(y4[8] + 1[8] ≤u y3[8]) ∧ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ≤u y3[8]) ∧ (y7[8] = 3[8])∧
(y7[8] = y2[8] + 1[8])

and its LIA-encoding:

ALIA
def
=¬(xy4+1 ≤ xy3) ∧ (xy2 = xy4+1)∧
(xy4+1 = xy4 + 1− 28σ1)∧
(xy2

∈ [0, 28)) ∧ (xy3
∈ [0, 28)) ∧ (xy4

∈ [0, 28))∧
(xy4+1 ∈ [0, 28)) ∧ (0 ≤ σ1 ≤ 1)

BLIA
def
=(xy2+1 = xy3

) ∧ (xy7
= 3) ∧ (xy7

= xy2+1)∧
(xy2+1 = xy2 + 1− 28σ2)∧
(xy7 ∈ [0, 28)) ∧ (xy2+1 ∈ [0, 28)) ∧ (0 ≤ σ2 ≤ 1).

A LIA-interpolant for (ALIA, BLIA), computed with the algo-
rithm of [11], is ILIA

def
= (−255 ≤ xy2

− xy3
+ 256b−1xy2

256 c).
Applying β to it, we obtain I def

= β(ILIA)
def
= (1[8] ≤u y2[8] −

y3[8]+0[8] ·(255[8] ·y2[8]/u0[8]), because of the truncations that
occur when converting the LIA-constants −255 and 256 into
8-bit BV-constants. I is not an interpolant for (A,B), since
both A 6|=BV I and B ∧ I 6|=BV ⊥. However, in this case
avoiding overflows (e.g. by using 16-bit words) is not enough:
the formula I ′

def
= (65281[16] ≤u (0[8] :: y2[8]) − (0[8] ::

y3[8]) + 256[16] · (65535[16] · (0[8] :: y2[8])/u 256[16])) is still
not an interpolant for (A,B), since A 6|=BV I ′. In this case,
we could fix the problem by using a signed inequality predicate
instead of the unsigned one in I ′: the formula

I ′′
def
= (65281[16] ≤s (0[8] :: y2[8])− (0[8] :: y3[8])+

256[16] · (65535[16] · (0[8] :: y2[8])/u 256[16]))

is a correct BV-interpolant for (A,B). �
Using signed inequality, however, does not always work.
Example 6: Consider again the interpolation problem of Ex-

ample 4 and the interpolant I ′ def
= ((0[1] :: y3[8]) + (0[1] ::

y4[8]) ≤u 81[9]) for (A,B). If we replace ≤u with ≤s in I ′,
the resulting formula is not an interpolant for (A,B) anymore.
�

As mentioned before, currently we address the potential
failures in the translation from ILIA to I by explicitly checking
whether I is a correct interpolant for (A,B), which amounts
to checking whether the BV-formula (A ∧ ¬I) ∨ (B ∧ I)
is unsatisfiable. If the test fails, we simply discard I and
resort to the last layer of our procedure. The investigation of
more effective ways of extracting BV-interpolants from LIA-
interpolants is part of ongoing and future work.

E. When Everything Else Fails

When none of the above techniques can be successfully
applied to the current conjunction of BV-constraints, we resort
to the bit-level interpolation procedure described in Sec. III.
This makes our algorithm trivially complete. Clearly however,
the effectiveness of our procedure crucially depends on how
often this last layer is needed in practice. We discuss this topic
in the following section.

F. Discussion

In the worst case, our procedure does not behave much
differently from the simple bit-level algorithm of Sec. III.
Furthermore, our algorithm is also typically more expensive
to apply, since it might result in several extra calls to an SMT
solver (for both LIA and BV) for each of the (negations of the)
theory lemmas occurring in the DPLL(T)-proof of unsatisfi-
ability, whereas the bit-level algorithm requires only one call
to an eager proof-producing SMT(BV)-solver. In fact, it is not
too difficult to craft some SMT(BV)-formulas for which our
technique will always need to resort to the bit-level interpola-
tion layer. On the other hand, for formulas for which this last
layer is not needed, our procedure has the clear advantage of
producing interpolants which preserve the word-level structure
of BV-constraints, rather than flattening everything down to the
bit level. Generally, this advantage will show up in all the cases
in which the bit-level layer is needed only for a small fraction
of the (negations of the) theory lemmas occurring in the proof
of unsatisfiability.

We argue that for interpolation problems arising in software
verification, the good cases are much more likely to occur than
the bad cases, for the following reasons.

First, as already observed by other authors (e.g. [31], [13]),
in important domains in which interpolation-based software
verification has been successfully applied (e.g. device drivers),
programs typically do not contain complex arithmetic expres-
sions. In such cases, our experiments have shown that the LIA-
based interpolation procedure of Sec. IV-D typically produces
correct BV-interpolants in practice.

The second reason is that in software verification, interpo-
lation is applied to formulas representing unrollings of the

TABLE I
PERFORMANCE RESULTS ON C PROGRAMS REQUIRING BIT-PRECISION

KRATOS SATABS WOLVERINE
Program BV-1 BV-2 BV-3 BV-4 BV-5
byte add 1.c 31.00 T.O. M.O. 57.30 31.54 T.O. T.O.
byte add 2.c 47.98 T.O. M.O. 72.17 44.42 T.O. T.O.
num conversion 1.c 1.85 3.20 3.67 2.67 1.13 23.78 2.16
num conversion 2.c 48.04 776.53 72.12 763.16 47.73 T.O. T.O.
gcd 1.c 1.75 20.45 20.56 1.05 1.27 FAIL 515.31
gcd 2.c 29.21 M.O. M.O. 39.21 28.21 339.86 185.56
gcd 3.c 70.05 T.O. M.O. 209.34 70.59 T.O. 290.03
gcd 4.c 3.58 M.O. T.O. T.O. 4.25 T.O. 1.26
interleave bits.c 45.90 T.O. T.O. T.O. 49.01 836.78 T.O.
modulus.c 4.87 34.00 M.O. 3.30 4.15 T.O. M.O.
parity.c 387.56 M.O. M.O. T.O. 391.84 T.O. T.O.
soft float 1.c.cil.c 48.02 T.O. T.O. T.O. T.O. T.O. 136.88
soft float 2.c.cil.c 61.34 T.O. T.O. 70.02 T.O. 1101.54 177.63
soft float 3.c.cil.c T.O. T.O. T.O. T.O. T.O. T.O. T.O.
soft float 4.c.cil.c 51.67 T.O. M.O. 247.31 49.88 T.O. T.O.
soft float 5.c.cil.c 61.70 T.O. T.O. 78.54 T.O. T.O. 193.76
s3 clnt 1.BV.c.cil.c 41.06 50.82 T.O. 48.77 42.32 FAIL T.O.
s3 clnt 2.BV.c.cil.c 20.96 9.92 116.03 8.59 22.01 T.O. T.O.
s3 clnt 3.BV.c.cil.c 7.66 T.O. 93.77 T.O. 6.68 T.O. T.O.
s3 srvr 1.BV.c.cil.c 11.59 35.91 240.77 34.74 11.63 160.74 T.O.
s3 srvr 2.BV.c.cil.c 150.64 62.22 116.54 61.26 152.10 342.11 T.O.
s3 srvr 3.BV.c.cil.c 48.35 124.32 43.63 125.19 48.36 405.48 T.O.
jain 1.c 0.34 0.39 0.30 0.12 0.36 FAIL T.O.
jain 2.c 0.43 0.48 0.35 0.21 0.44 FAIL T.O.
jain 4.c 0.55 0.60 0.40 0.33 0.54 FAIL T.O.
jain 5.c T.O. T.O. T.O. T.O. T.O. FAIL T.O.
jain 6.c 0.18 0.12 0.09 0.15 0.16 FAIL T.O.
jain 7.c 0.29 0.23 0.15 0.26 0.27 FAIL T.O.
TOTAL (solved / time) 26 / 1176.57 14 / 1119.19 13 / 708.38 21 / 1823.69 23 / 1008.89 7 / 3210.29 8 / 1500.43
Execution times are in seconds. T.O. indicates timeouts (using a cutoff value of 1200 seconds), M.O. memory outs (3GBytes), FAIL
other kinds of errors (e.g. failure in computing interpolants or in refining the abstraction). All the programs are safe.

control-flow graph of programs, represented using a Static
Single Assignment (SSA) form. Such formulas make heavy use
of “definitional” equalities, i.e. equalities of the form (x = t)
in which x does not occur in t. For example, all equalities
representing an assignment statement in SSA form are of this
kind. Such equalities are exactly the kind of constraints that are
exploited by our substitution-based technique of Sec. IV-C.

Finally, as regards performance, we remark that the BV-
interpolation layers are invoked only on the (negations of the)
BV-lemmas occurring in the final DPLL(T)-proof of unsatisfia-
bility for the input problemA∧B. At solving time, only the lazy
bit-blasting procedure of Sec. IV-A is used, whose efficiency
is typically comparable to that of eager encodings into SAT. In
general, only a fraction of all the BV-lemmas discovered during
search occur in the final proof of unsatisfiability. Moreover,
such lemmas typically involve only a subset of the constraints
occurring in the formula. In fact, although not guaranteed
to be minimal, they contain very often almost no redundant
constraints, and are thus usually much easier to solve than the
whole input problem.

V. EXPERIMENTAL EVALUATION

We have implemented the procedure described in the previ-
ous section within the MATHSAT SMT solver, and we have
integrated it within KRATOS [17], a software model checker
implementing a CEGAR-based lazy predicate abstraction al-
gorithm with interpolation-based refinement in the style of [2]

(but using the “large-block” encoding introduced in [32] for
better exploiting the underlying SMT solver). In this section,
we experimentally evaluate the effectiveness and efficiency of
our technique in the context of software model checking.

All the experiments have been run on a Linux machine
with a 2.2GHz Intel Xeon CPU, using a memory limit of
3GB. All the data and executables needed for reproducing
the experiments are available at http://es.fbk.eu/people/griggio/
papers/fmcad11 bv interpolation.tar.bz2.

A. Effectiveness

In order to evaluate the effectiveness of our technique, we
have collected a set of C programs whose verification requires
the use of a bit-precise modeling of operations. These programs
can not be proved safe by KRATOS in its default configuration,
since by default it models program variables using rational
numbers, and program operations using linear rational arith-
metic (LRA) and uninterpreted functions. In particular, we use
the following benchmark sets:
– byte add and num conversion implement arithmetic opera-

tions using shifts and bit-wise operations;
– gcd check simple assertions on Euclid’s algorithm for com-

puting the greatest common divisor;
– interleave bits, modulus and parity check the correct-

ness of some “bit twiddling hacks” described at http://
www-graphics.stanford.edu/∼seander/bithacks.html;

– soft float check simple assertions on the software floating-
point implementation used in the Picosat [33] SAT solver;

– s3 clnt and s3 srvr are modified versions of some SSH
programs used in several papers on software model checking,
in which some bit-wise and non-linear operations have been
introduced;

– jain are the simple programs used in [8].
We compare KRATOS using BV-interpolation against the

only other two software model checkers supporting BV (to the
best of our knowledge): SATABS, which implements CEGAR-
based predicate abstraction but uses weakest preconditions for
refinement [34], and WOLVERINE [35], which implements the
interpolation-based lazy abstraction of [3], using an incom-
plete rewrite-based procedure for BV-interpolation [13]. 8 For
KRATOS, we use not only the configuration in which all the
layers described in Sec. IV are active (called “BV-1”), but also
configurations in which some of the layers have been disabled
or rearranged: “BV-2” does not use equality substitution, “BV-
3” uses only the bit-level algorithm, “BV-4” tries LIA encoding
before equality substitution, and “BV-5” does not use LIA
encoding. The results of our experiments are reported in Ta-
ble I. They show that not only KRATOS outperforms the other
systems, but also that all the layers of our procedure contribute
to the performance of KRATOS, since the default configuration
“BV-1” is the clear winner. In particular, our full procedure can
solve twice as many instances as the naı̈ve configuration “BV-
3” which uses only the bit-level algorithm of Sec. IV-E. Using
“BV-1”, the final bit-level layer is needed only for four of the
programs, and always for less than 1% of the BV-interpolation
problems, and in many cases the equality substitution layer
alone is enough.

B. Efficiency

In order to evaluate the efficiency of our technique, we
compare KRATOS-BV with the default version of KRATOS
using linear rational arithmetic and uninterpreted functions, on
programs that can be verified without the need of a bit-precise
modeling of program variables and operations. We use common
benchmarks for software model checking with predicate ab-
straction, used e.g. in [18]. The results are reported in Table II.9

They show that, when the additional precision given by using
bit-vectors instead of rationals is not needed, our procedure
introduces very little overhead: KRATOS-BV-1 can solve only
one instance less than KRATOS-LRA, but in fact there are cases
in which KRATOS-BV-1 is one order of magnitude faster than
KRATOS-LRA.10 It is somewhat surprising to observe that, for
these programs, even the naı̈ve configuration “BV-3” which
uses only the bit-level interpolation layer is not dramatically
inferior to KRATOS-LRA.

8We used the latest versions of SATABS and WOLVERINE, i.e. version 2.6
and 0.5 respectively. For SATABS, we used Cadence SMV as underlying model
checker.

9We omit the results for “BV-4” and “BV-5”, as they are very similar to those
for “BV-2” and “BV-1” respectively.

10Such differences are due to the fact that the two versions of KRATOS in
general discover different sets of predicates, which lead to the exploration of
different abstract search spaces.

TABLE II
PERFORMANCE RESULTS ON C PROGRAMS NOT REQUIRING

BIT-PRECISION

KRATOS configuration
Program LRA BV-1 BV-2 BV-3
cdaudio simpl1.cil.c 37.03 61.79 53.05 59.47
diskperf simpl1.cil.c 40.14 89.25 52.63 64.55
floppy simpl3.cil.c 18.37 41.06 28.61 33.55
floppy simpl4.cil.c 36.75 91.73 47.44 58.97
kbfiltr simpl1.cil.c 1.37 1.66 1.38 1.90
kbfiltr simpl2.cil.c 1.68 2.70 2.43 2.94
s3 clnt 1.cil.c 5.59 5.20 65.34 10.62
s3 clnt 2.cil.c 4.71 5.33 20.72 7.33
s3 clnt 3.cil.c 8.52 4.87 14.72 4.86
s3 clnt 4.cil.c 3.20 6.04 29.41 T.O.
s3 srvr 1.cil.c 69.35 7.97 166.88 14.71
s3 srvr 2.cil.c 65.95 224.63 313.30 16.08
s3 srvr 3.cil.c 35.54 8.52 97.51 12.24
s3 srvr 4.cil.c 99.67 185.83 312.21 T.O.
s3 srvr 6.cil.c 90.48 25.60 24.71 163.21
s3 srvr 7.cil.c 218.26 15.10 17.28 40.26
s3 srvr 8.cil.c 72.94 13.83 170.53 23.27
s3 srvr 9.cil.c 5.43 22.92 24.50 53.44
s3 srvr 10.cil.c 9.82 14.68 14.14 255.90
s3 srvr 11.cil.c 36.47 15.49 19.03 156.01
s3 srvr 12.cil.c 19.56 60.78 47.94 328.75
s3 srvr 13.cil.c 289.77 T.O. 82.42 T.O.
s3 srvr 14.cil.c 18.16 22.50 61.08 99.72
s3 srvr 15.cil.c 24.55 27.77 27.28 20.00
s3 srvr 16.cil.c 57.93 12.13 39.05 46.38
TOTAL 25 / 24 / 25 / 22 /
(solved / time) 1271.24 967.38 1733.59 1474.16
Execution times are in seconds. T.O. indicates timeouts (cutoff time of
600 seconds). All the programs are safe.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an interpolation procedure for bit-vectors
based on lazy SMT and on a layer of different techniques
optimized for exploiting the structure of typical interpola-
tion problems arising in software verification. We have inte-
grated it in KRATOS, a CEGAR-based software model checker
with interpolation-based refinement, and our experiments have
shown that the new procedure makes it possible to verify
programs requiring a bit-precise modeling of operations which
could not be verified by KRATOS before.

For future work, we plan to explore several directions. First,
we want to investigate in more depth the problem of computing
BV-interpolants by reduction to LIA, in particular to identify
smarter ways of generating a correct interpolant in BV from
an interpolant for the LIA-encoding of the problem. Second,
we plan to experiment with the integration of other layers in
our procedure, e.g. based on the application of rewriting rules
in the style of [13]. Finally, we would also like to investigate
the problem of constructing a word-level interpolant from a bit-
level proof of unsatisfiability, by exploring the possibility of
extending the work of [12] for equality logic to more general
cases.

REFERENCES

[1] K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in
Proc. of CAV’03, ser. LNCS, W. A. Hunt Jr. and F. Somenzi, Eds., vol.
2725. Springer, 2003, pp. 1–13.

[2] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan, “Abstrac-
tions from proofs,” in Proc. of POPL’04, N. D. Jones and X. Leroy, Eds.
ACM, 2004, pp. 232–244.

[3] K. L. McMillan, “Lazy Abstraction with Interpolants,” in Proc. of
CAV’06, ser. LNCS, T. Ball and R. B. Jones, Eds., vol. 4144. Springer,
2006, pp. 123–136.

[4] ——, “An interpolating theorem prover,” Theor. Comput. Sci., vol. 345,
no. 1, pp. 101–121, 2005.

[5] V. Sofronie-Stokkermans, “Interpolation in Local Theory Extensions,”
Logical Methods in Computer Science (Special issue dedicated to IJCAR
2006), vol. 4, no. 4, p. Paper 1, 2008.

[6] D. Kapur, R. Majumdar, and C. G. Zarba, “Interpolation for data struc-
tures,” in Proc. of FSE’05, M. Young and P. T. Devanbu, Eds. ACM,
2006, pp. 105–116.

[7] A. Cimatti, A. Griggio, and R. Sebastiani, “Efficient Generation of Craig
Interpolants in Satisfiability Modulo Theories,” ACM Trans. Comput.
Log., vol. 12, no. 1, p. 7, 2010.

[8] H. Jain, E. M. Clarke, and O. Grumberg, “Efficient Craig Interpolation
for Linear Diophantine (Dis)Equations and Linear Modular Equations,”
in Proc. of CAV’08, ser. LNCS, A. Gupta and S. Malik, Eds., vol. 5123.
Springer, 2008, pp. 254–267.

[9] A. Fuchs, A. Goel, J. Grundy, S. Krstic, and C. Tinelli, “Ground Inter-
polation for the Theory of Equality,” in Proc. of TACAS’09, ser. LNCS,
S. Kowalewski and A. Philippou, Eds., vol. 5505. Springer, 2009, pp.
413–427.

[10] A. Brillout, D. Kroening, P. Rümmer, and T. Wahl, “An Interpolating
Sequent Calculus for Quantifier-Free Presburger Arithmetic,” in Proc.
IJCAR’10, ser. LNCS, J. Giesl and R. Hähnle, Eds., vol. 6173. Springer,
2010, pp. 384–399.

[11] A. Griggio, T. T. H. Le, and R. Sebastiani, “Efficient Interpolant Gen-
eration in Satisfiability Modulo Linear Integer Arithmetic,” in Proc. of
TACAS’11, ser. LNCS, P. A. Abdulla and K. R. M. Leino, Eds., vol. 6605.
Springer, 2011, pp. 143–157.

[12] D. Kroening and G. Weissenbacher, “Lifting Propositional Interpolants
to the Word-Level,” in Proc. of FMCAD’07. IEEE Computer Society,
2007, pp. 85–89.

[13] ——, “An Interpolating Decision Procedure for Transitive Relations
with Uninterpreted Functions,” in Proc. of HVC’09, ser. LNCS, K. S.
Namjoshi, A. Zeller, and A. Ziv, Eds., vol. 6405. Springer, 2009, pp.
150–168.

[14] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani,
“The MathSAT 4 SMT Solver,” in Proc. of CAV’08, ser. LNCS, A. Gupta
and S. Malik, Eds., vol. 5123. Springer, 2008, pp. 299–303.

[15] A. Franzén, “Efficient Solving of the Satisfiability Modulo Bit-Vectors
Problem and Some Extensions to SMT,” Ph.D. dissertation, DISI -
University of Trento, 2010.

[16] R. Jhala and R. Majumdar, “Software model checking,” ACM Comput.
Surv., vol. 41, pp. 21:1–21:54, October 2009.

[17] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri,
“Kratos – a Software Model Checker for SystemC,” in Proc. of CAV’11,
ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer,
2011, pp. 310–316, to appear.

[18] D. Beyer, M. E. Keremoglu, and P. Wendler, “Predicate Abstraction
with Adjustable-Block Encoding,” in Proc. of FMCAD’10, R. Bloem and
N. Sharygina, Eds., 2010, pp. 189–187.

[19] K. Dräger, A. Kupriyanov, B. Finkbeiner, and H. Wehrheim, “SLAB:
A Certifying Model Checker for Infinite-State Concurrent Systems,” in
Proc. of TACAS’10, ser. LNCS. Springer, 2010.

[20] N. Caniart, “Merit: An Interpolating Model-Checker,” in Proc. of CAV’10,
ser. LNCS, T. Touili, B. Cook, and P. Jackson, Eds., vol. 6174. Springer,
2010, pp. 162–166.

[21] R. Sebastiani, “Lazy Satisfiability Modulo Theories,” Journal on Satis-
fiability, Boolean Modeling and Computation, JSAT, vol. 3, no. 3-4, pp.
141–224, 2007.

[22] R. Brummayer and A. Biere, “Boolector: An Efficient SMT Solver
for Bit-Vectors and Arrays,” in Proc. of TACAS’09, ser. LNCS,
S. Kowalewski and A. Philippou, Eds., vol. 5505. Springer, 2009, pp.
174–177.

[23] S. Jha, R. Limaye, and S. A. Seshia, “Beaver: Engineering an Efficient
SMT Solver for Bit-Vector Arithmetic,” in Proc. of CAV’09, ser. LNCS,
A. Bouajjani and O. Maler, Eds., vol. 5643. Springer, 2009, pp. 668–674.

[24] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Proc. of
TACAS’08, ser. LNCS, C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963.
Springer, 2008, pp. 337–340.

[25] V. Ganesh and D. L. Dill, “A Decision Procedure for Bit-Vectors and
Arrays,” in Proc. of CAV’07, ser. LNCS, W. Damm and H. Hermanns,
Eds., vol. 4590. Springer, 2007, pp. 519–531.

[26] A. Franzén, A. Cimatti, A. Nadel, R. Sebastiani, and J. Shalev, “Applying
SMT in Symbolic Execution of Microcode,” in Proc. of FMCAD’10,
R. Bloem and N. Sharygina, Eds., 2010, pp. 121–128.

[27] N. Eén and N. Sörensson, “Temporal induction by incremental SAT
solving,” Electr. Notes Theor. Comput. Sci., vol. 89, no. 4, 2003.

[28] R. J. A. Achá, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell,
“Practical algorithms for unsatisfiability proof and core generation in SAT
solvers,” AI Commun., vol. 23, no. 2-3, pp. 145–157, 2010.

[29] M. Bozzano, R. Bruttomesso, A. Cimatti, A. Franzén, Z. Hanna, Z. Khasi-
dashvili, A. Palti, and R. Sebastiani, “Encoding RTL Constructs for
MathSAT: a Preliminary Report,” Electr. Notes Theor. Comput. Sci., vol.
144, no. 2, pp. 3–14, 2006.

[30] D. Kroening, J. Leroux, and P. Rümmer, “Interpolating Quantifier-Free
Presburger Arithmetic,” in Proc. of LPAR’10, ser. LNCS, C. G. Fermüller
and A. Voronkov, Eds., vol. 6397. Springer, 2010, pp. 489–503.

[31] T. Ball, B. Cook, S. K. Lahiri, and L. Zhang, “Zapato: Automatic Theo-
rem Proving for Predicate Abstraction Refinement,” in Proc. of CAV’04,
ser. LNCS, R. Alur and D. Peled, Eds., vol. 3114. Springer, 2004, pp.
457–461.

[32] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani,
“Software model checking via large-block encoding,” in Proc. of FM-
CAD’09, 2009, pp. 25–32.

[33] A. Biere, “PicoSAT Essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97, 2008.
[34] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “Predicate

Abstraction of ANSI-C Programs Using SAT,” Formal Methods in System
Design, vol. 25, no. 2-3, pp. 105–127, 2004.

[35] D. Kroening and G. Weissenbacher, “Interpolation-Based Software Veri-
fication with Wolverine,” in Proc. of CAV’11, ser. LNCS, G. Gopalakrish-
nan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 573–578.

